Linux 4.1.18
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob7186382672b5eec605cba5ff491a7019914d304b
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
41 #include "mm.h"
42 #include "tcm.h"
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
52 * The pmd table for the upper-most set of pages.
54 pmd_t *top_pmd;
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58 #define CPOLICY_UNCACHED 0
59 #define CPOLICY_BUFFERED 1
60 #define CPOLICY_WRITETHROUGH 2
61 #define CPOLICY_WRITEBACK 3
62 #define CPOLICY_WRITEALLOC 4
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 pgprot_t pgprot_hyp_device;
69 pgprot_t pgprot_s2;
70 pgprot_t pgprot_s2_device;
72 EXPORT_SYMBOL(pgprot_user);
73 EXPORT_SYMBOL(pgprot_kernel);
75 struct cachepolicy {
76 const char policy[16];
77 unsigned int cr_mask;
78 pmdval_t pmd;
79 pteval_t pte;
80 pteval_t pte_s2;
83 #ifdef CONFIG_ARM_LPAE
84 #define s2_policy(policy) policy
85 #else
86 #define s2_policy(policy) 0
87 #endif
89 static struct cachepolicy cache_policies[] __initdata = {
91 .policy = "uncached",
92 .cr_mask = CR_W|CR_C,
93 .pmd = PMD_SECT_UNCACHED,
94 .pte = L_PTE_MT_UNCACHED,
95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
96 }, {
97 .policy = "buffered",
98 .cr_mask = CR_C,
99 .pmd = PMD_SECT_BUFFERED,
100 .pte = L_PTE_MT_BUFFERABLE,
101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
102 }, {
103 .policy = "writethrough",
104 .cr_mask = 0,
105 .pmd = PMD_SECT_WT,
106 .pte = L_PTE_MT_WRITETHROUGH,
107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 }, {
109 .policy = "writeback",
110 .cr_mask = 0,
111 .pmd = PMD_SECT_WB,
112 .pte = L_PTE_MT_WRITEBACK,
113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
114 }, {
115 .policy = "writealloc",
116 .cr_mask = 0,
117 .pmd = PMD_SECT_WBWA,
118 .pte = L_PTE_MT_WRITEALLOC,
119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata = 0;
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
133 void __init init_default_cache_policy(unsigned long pmd)
135 int i;
137 initial_pmd_value = pmd;
139 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142 if (cache_policies[i].pmd == pmd) {
143 cachepolicy = i;
144 break;
147 if (i == ARRAY_SIZE(cache_policies))
148 pr_err("ERROR: could not find cache policy\n");
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
156 static int __init early_cachepolicy(char *p)
158 int i, selected = -1;
160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161 int len = strlen(cache_policies[i].policy);
163 if (memcmp(p, cache_policies[i].policy, len) == 0) {
164 selected = i;
165 break;
169 if (selected == -1)
170 pr_err("ERROR: unknown or unsupported cache policy\n");
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
177 * page tables.
179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies[cachepolicy].policy);
182 return 0;
185 if (selected != cachepolicy) {
186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187 cachepolicy = selected;
188 flush_cache_all();
189 set_cr(cr);
191 return 0;
193 early_param("cachepolicy", early_cachepolicy);
195 static int __init early_nocache(char *__unused)
197 char *p = "buffered";
198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 early_cachepolicy(p);
200 return 0;
202 early_param("nocache", early_nocache);
204 static int __init early_nowrite(char *__unused)
206 char *p = "uncached";
207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 early_cachepolicy(p);
209 return 0;
211 early_param("nowb", early_nowrite);
213 #ifndef CONFIG_ARM_LPAE
214 static int __init early_ecc(char *p)
216 if (memcmp(p, "on", 2) == 0)
217 ecc_mask = PMD_PROTECTION;
218 else if (memcmp(p, "off", 3) == 0)
219 ecc_mask = 0;
220 return 0;
222 early_param("ecc", early_ecc);
223 #endif
225 #else /* ifdef CONFIG_CPU_CP15 */
227 static int __init early_cachepolicy(char *p)
229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 early_param("cachepolicy", early_cachepolicy);
233 static int __init noalign_setup(char *__unused)
235 pr_warn("noalign kernel parameter not supported without cp15\n");
237 __setup("noalign", noalign_setup);
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245 static struct mem_type mem_types[] = {
246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248 L_PTE_SHARED,
249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251 L_PTE_SHARED,
252 .prot_l1 = PMD_TYPE_TABLE,
253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
254 .domain = DOMAIN_IO,
256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258 .prot_l1 = PMD_TYPE_TABLE,
259 .prot_sect = PROT_SECT_DEVICE,
260 .domain = DOMAIN_IO,
262 [MT_DEVICE_CACHED] = { /* ioremap_cached */
263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
266 .domain = DOMAIN_IO,
268 [MT_DEVICE_WC] = { /* ioremap_wc */
269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270 .prot_l1 = PMD_TYPE_TABLE,
271 .prot_sect = PROT_SECT_DEVICE,
272 .domain = DOMAIN_IO,
274 [MT_UNCACHED] = {
275 .prot_pte = PROT_PTE_DEVICE,
276 .prot_l1 = PMD_TYPE_TABLE,
277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
278 .domain = DOMAIN_IO,
280 [MT_CACHECLEAN] = {
281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 .domain = DOMAIN_KERNEL,
284 #ifndef CONFIG_ARM_LPAE
285 [MT_MINICLEAN] = {
286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 .domain = DOMAIN_KERNEL,
289 #endif
290 [MT_LOW_VECTORS] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 L_PTE_RDONLY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_USER,
296 [MT_HIGH_VECTORS] = {
297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298 L_PTE_USER | L_PTE_RDONLY,
299 .prot_l1 = PMD_TYPE_TABLE,
300 .domain = DOMAIN_USER,
302 [MT_MEMORY_RWX] = {
303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
308 [MT_MEMORY_RW] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_XN,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
315 [MT_ROM] = {
316 .prot_sect = PMD_TYPE_SECT,
317 .domain = DOMAIN_KERNEL,
319 [MT_MEMORY_RWX_NONCACHED] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_MT_BUFFERABLE,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324 .domain = DOMAIN_KERNEL,
326 [MT_MEMORY_RW_DTCM] = {
327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328 L_PTE_XN,
329 .prot_l1 = PMD_TYPE_TABLE,
330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331 .domain = DOMAIN_KERNEL,
333 [MT_MEMORY_RWX_ITCM] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335 .prot_l1 = PMD_TYPE_TABLE,
336 .domain = DOMAIN_KERNEL,
338 [MT_MEMORY_RW_SO] = {
339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340 L_PTE_MT_UNCACHED | L_PTE_XN,
341 .prot_l1 = PMD_TYPE_TABLE,
342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343 PMD_SECT_UNCACHED | PMD_SECT_XN,
344 .domain = DOMAIN_KERNEL,
346 [MT_MEMORY_DMA_READY] = {
347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 L_PTE_XN,
349 .prot_l1 = PMD_TYPE_TABLE,
350 .domain = DOMAIN_KERNEL,
354 const struct mem_type *get_mem_type(unsigned int type)
356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358 EXPORT_SYMBOL(get_mem_type);
361 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
362 * As a result, this can only be called with preemption disabled, as under
363 * stop_machine().
365 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
367 unsigned long vaddr = __fix_to_virt(idx);
368 pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
370 /* Make sure fixmap region does not exceed available allocation. */
371 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
372 FIXADDR_END);
373 BUG_ON(idx >= __end_of_fixed_addresses);
375 if (pgprot_val(prot))
376 set_pte_at(NULL, vaddr, pte,
377 pfn_pte(phys >> PAGE_SHIFT, prot));
378 else
379 pte_clear(NULL, vaddr, pte);
380 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
384 * Adjust the PMD section entries according to the CPU in use.
386 static void __init build_mem_type_table(void)
388 struct cachepolicy *cp;
389 unsigned int cr = get_cr();
390 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
391 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
392 int cpu_arch = cpu_architecture();
393 int i;
395 if (cpu_arch < CPU_ARCH_ARMv6) {
396 #if defined(CONFIG_CPU_DCACHE_DISABLE)
397 if (cachepolicy > CPOLICY_BUFFERED)
398 cachepolicy = CPOLICY_BUFFERED;
399 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
400 if (cachepolicy > CPOLICY_WRITETHROUGH)
401 cachepolicy = CPOLICY_WRITETHROUGH;
402 #endif
404 if (cpu_arch < CPU_ARCH_ARMv5) {
405 if (cachepolicy >= CPOLICY_WRITEALLOC)
406 cachepolicy = CPOLICY_WRITEBACK;
407 ecc_mask = 0;
410 if (is_smp()) {
411 if (cachepolicy != CPOLICY_WRITEALLOC) {
412 pr_warn("Forcing write-allocate cache policy for SMP\n");
413 cachepolicy = CPOLICY_WRITEALLOC;
415 if (!(initial_pmd_value & PMD_SECT_S)) {
416 pr_warn("Forcing shared mappings for SMP\n");
417 initial_pmd_value |= PMD_SECT_S;
422 * Strip out features not present on earlier architectures.
423 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
424 * without extended page tables don't have the 'Shared' bit.
426 if (cpu_arch < CPU_ARCH_ARMv5)
427 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
428 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
429 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
430 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
431 mem_types[i].prot_sect &= ~PMD_SECT_S;
434 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
435 * "update-able on write" bit on ARM610). However, Xscale and
436 * Xscale3 require this bit to be cleared.
438 if (cpu_is_xscale() || cpu_is_xsc3()) {
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440 mem_types[i].prot_sect &= ~PMD_BIT4;
441 mem_types[i].prot_l1 &= ~PMD_BIT4;
443 } else if (cpu_arch < CPU_ARCH_ARMv6) {
444 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
445 if (mem_types[i].prot_l1)
446 mem_types[i].prot_l1 |= PMD_BIT4;
447 if (mem_types[i].prot_sect)
448 mem_types[i].prot_sect |= PMD_BIT4;
453 * Mark the device areas according to the CPU/architecture.
455 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
456 if (!cpu_is_xsc3()) {
458 * Mark device regions on ARMv6+ as execute-never
459 * to prevent speculative instruction fetches.
461 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
462 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
463 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
464 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
466 /* Also setup NX memory mapping */
467 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
469 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
471 * For ARMv7 with TEX remapping,
472 * - shared device is SXCB=1100
473 * - nonshared device is SXCB=0100
474 * - write combine device mem is SXCB=0001
475 * (Uncached Normal memory)
477 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
478 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
479 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
480 } else if (cpu_is_xsc3()) {
482 * For Xscale3,
483 * - shared device is TEXCB=00101
484 * - nonshared device is TEXCB=01000
485 * - write combine device mem is TEXCB=00100
486 * (Inner/Outer Uncacheable in xsc3 parlance)
488 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
489 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
490 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
491 } else {
493 * For ARMv6 and ARMv7 without TEX remapping,
494 * - shared device is TEXCB=00001
495 * - nonshared device is TEXCB=01000
496 * - write combine device mem is TEXCB=00100
497 * (Uncached Normal in ARMv6 parlance).
499 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
500 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
501 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
503 } else {
505 * On others, write combining is "Uncached/Buffered"
507 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
511 * Now deal with the memory-type mappings
513 cp = &cache_policies[cachepolicy];
514 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
515 s2_pgprot = cp->pte_s2;
516 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
517 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
519 #ifndef CONFIG_ARM_LPAE
521 * We don't use domains on ARMv6 (since this causes problems with
522 * v6/v7 kernels), so we must use a separate memory type for user
523 * r/o, kernel r/w to map the vectors page.
525 if (cpu_arch == CPU_ARCH_ARMv6)
526 vecs_pgprot |= L_PTE_MT_VECTORS;
529 * Check is it with support for the PXN bit
530 * in the Short-descriptor translation table format descriptors.
532 if (cpu_arch == CPU_ARCH_ARMv7 &&
533 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
534 user_pmd_table |= PMD_PXNTABLE;
536 #endif
539 * ARMv6 and above have extended page tables.
541 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
542 #ifndef CONFIG_ARM_LPAE
544 * Mark cache clean areas and XIP ROM read only
545 * from SVC mode and no access from userspace.
547 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
548 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
549 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
550 #endif
553 * If the initial page tables were created with the S bit
554 * set, then we need to do the same here for the same
555 * reasons given in early_cachepolicy().
557 if (initial_pmd_value & PMD_SECT_S) {
558 user_pgprot |= L_PTE_SHARED;
559 kern_pgprot |= L_PTE_SHARED;
560 vecs_pgprot |= L_PTE_SHARED;
561 s2_pgprot |= L_PTE_SHARED;
562 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
563 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
564 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
565 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
566 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
567 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
568 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
569 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
570 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
571 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
572 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
577 * Non-cacheable Normal - intended for memory areas that must
578 * not cause dirty cache line writebacks when used
580 if (cpu_arch >= CPU_ARCH_ARMv6) {
581 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
582 /* Non-cacheable Normal is XCB = 001 */
583 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
584 PMD_SECT_BUFFERED;
585 } else {
586 /* For both ARMv6 and non-TEX-remapping ARMv7 */
587 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
588 PMD_SECT_TEX(1);
590 } else {
591 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
594 #ifdef CONFIG_ARM_LPAE
596 * Do not generate access flag faults for the kernel mappings.
598 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
599 mem_types[i].prot_pte |= PTE_EXT_AF;
600 if (mem_types[i].prot_sect)
601 mem_types[i].prot_sect |= PMD_SECT_AF;
603 kern_pgprot |= PTE_EXT_AF;
604 vecs_pgprot |= PTE_EXT_AF;
607 * Set PXN for user mappings
609 user_pgprot |= PTE_EXT_PXN;
610 #endif
612 for (i = 0; i < 16; i++) {
613 pteval_t v = pgprot_val(protection_map[i]);
614 protection_map[i] = __pgprot(v | user_pgprot);
617 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
618 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
620 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
621 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
622 L_PTE_DIRTY | kern_pgprot);
623 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
624 pgprot_s2_device = __pgprot(s2_device_pgprot);
625 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
627 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
628 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
629 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
630 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
631 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
632 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
633 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
634 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
635 mem_types[MT_ROM].prot_sect |= cp->pmd;
637 switch (cp->pmd) {
638 case PMD_SECT_WT:
639 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
640 break;
641 case PMD_SECT_WB:
642 case PMD_SECT_WBWA:
643 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
644 break;
646 pr_info("Memory policy: %sData cache %s\n",
647 ecc_mask ? "ECC enabled, " : "", cp->policy);
649 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
650 struct mem_type *t = &mem_types[i];
651 if (t->prot_l1)
652 t->prot_l1 |= PMD_DOMAIN(t->domain);
653 if (t->prot_sect)
654 t->prot_sect |= PMD_DOMAIN(t->domain);
658 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
659 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
660 unsigned long size, pgprot_t vma_prot)
662 if (!pfn_valid(pfn))
663 return pgprot_noncached(vma_prot);
664 else if (file->f_flags & O_SYNC)
665 return pgprot_writecombine(vma_prot);
666 return vma_prot;
668 EXPORT_SYMBOL(phys_mem_access_prot);
669 #endif
671 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
673 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
675 void *ptr = __va(memblock_alloc(sz, align));
676 memset(ptr, 0, sz);
677 return ptr;
680 static void __init *early_alloc(unsigned long sz)
682 return early_alloc_aligned(sz, sz);
685 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
687 if (pmd_none(*pmd)) {
688 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
689 __pmd_populate(pmd, __pa(pte), prot);
691 BUG_ON(pmd_bad(*pmd));
692 return pte_offset_kernel(pmd, addr);
695 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
696 unsigned long end, unsigned long pfn,
697 const struct mem_type *type)
699 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
700 do {
701 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
702 pfn++;
703 } while (pte++, addr += PAGE_SIZE, addr != end);
706 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
707 unsigned long end, phys_addr_t phys,
708 const struct mem_type *type)
710 pmd_t *p = pmd;
712 #ifndef CONFIG_ARM_LPAE
714 * In classic MMU format, puds and pmds are folded in to
715 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
716 * group of L1 entries making up one logical pointer to
717 * an L2 table (2MB), where as PMDs refer to the individual
718 * L1 entries (1MB). Hence increment to get the correct
719 * offset for odd 1MB sections.
720 * (See arch/arm/include/asm/pgtable-2level.h)
722 if (addr & SECTION_SIZE)
723 pmd++;
724 #endif
725 do {
726 *pmd = __pmd(phys | type->prot_sect);
727 phys += SECTION_SIZE;
728 } while (pmd++, addr += SECTION_SIZE, addr != end);
730 flush_pmd_entry(p);
733 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
734 unsigned long end, phys_addr_t phys,
735 const struct mem_type *type)
737 pmd_t *pmd = pmd_offset(pud, addr);
738 unsigned long next;
740 do {
742 * With LPAE, we must loop over to map
743 * all the pmds for the given range.
745 next = pmd_addr_end(addr, end);
748 * Try a section mapping - addr, next and phys must all be
749 * aligned to a section boundary.
751 if (type->prot_sect &&
752 ((addr | next | phys) & ~SECTION_MASK) == 0) {
753 __map_init_section(pmd, addr, next, phys, type);
754 } else {
755 alloc_init_pte(pmd, addr, next,
756 __phys_to_pfn(phys), type);
759 phys += next - addr;
761 } while (pmd++, addr = next, addr != end);
764 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
765 unsigned long end, phys_addr_t phys,
766 const struct mem_type *type)
768 pud_t *pud = pud_offset(pgd, addr);
769 unsigned long next;
771 do {
772 next = pud_addr_end(addr, end);
773 alloc_init_pmd(pud, addr, next, phys, type);
774 phys += next - addr;
775 } while (pud++, addr = next, addr != end);
778 #ifndef CONFIG_ARM_LPAE
779 static void __init create_36bit_mapping(struct map_desc *md,
780 const struct mem_type *type)
782 unsigned long addr, length, end;
783 phys_addr_t phys;
784 pgd_t *pgd;
786 addr = md->virtual;
787 phys = __pfn_to_phys(md->pfn);
788 length = PAGE_ALIGN(md->length);
790 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
791 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
792 (long long)__pfn_to_phys((u64)md->pfn), addr);
793 return;
796 /* N.B. ARMv6 supersections are only defined to work with domain 0.
797 * Since domain assignments can in fact be arbitrary, the
798 * 'domain == 0' check below is required to insure that ARMv6
799 * supersections are only allocated for domain 0 regardless
800 * of the actual domain assignments in use.
802 if (type->domain) {
803 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
804 (long long)__pfn_to_phys((u64)md->pfn), addr);
805 return;
808 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
809 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
810 (long long)__pfn_to_phys((u64)md->pfn), addr);
811 return;
815 * Shift bits [35:32] of address into bits [23:20] of PMD
816 * (See ARMv6 spec).
818 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
820 pgd = pgd_offset_k(addr);
821 end = addr + length;
822 do {
823 pud_t *pud = pud_offset(pgd, addr);
824 pmd_t *pmd = pmd_offset(pud, addr);
825 int i;
827 for (i = 0; i < 16; i++)
828 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
830 addr += SUPERSECTION_SIZE;
831 phys += SUPERSECTION_SIZE;
832 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
833 } while (addr != end);
835 #endif /* !CONFIG_ARM_LPAE */
838 * Create the page directory entries and any necessary
839 * page tables for the mapping specified by `md'. We
840 * are able to cope here with varying sizes and address
841 * offsets, and we take full advantage of sections and
842 * supersections.
844 static void __init create_mapping(struct map_desc *md)
846 unsigned long addr, length, end;
847 phys_addr_t phys;
848 const struct mem_type *type;
849 pgd_t *pgd;
851 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
852 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
853 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
854 return;
857 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
858 md->virtual >= PAGE_OFFSET &&
859 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
860 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
861 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
864 type = &mem_types[md->type];
866 #ifndef CONFIG_ARM_LPAE
868 * Catch 36-bit addresses
870 if (md->pfn >= 0x100000) {
871 create_36bit_mapping(md, type);
872 return;
874 #endif
876 addr = md->virtual & PAGE_MASK;
877 phys = __pfn_to_phys(md->pfn);
878 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
880 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
881 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
882 (long long)__pfn_to_phys(md->pfn), addr);
883 return;
886 pgd = pgd_offset_k(addr);
887 end = addr + length;
888 do {
889 unsigned long next = pgd_addr_end(addr, end);
891 alloc_init_pud(pgd, addr, next, phys, type);
893 phys += next - addr;
894 addr = next;
895 } while (pgd++, addr != end);
899 * Create the architecture specific mappings
901 void __init iotable_init(struct map_desc *io_desc, int nr)
903 struct map_desc *md;
904 struct vm_struct *vm;
905 struct static_vm *svm;
907 if (!nr)
908 return;
910 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
912 for (md = io_desc; nr; md++, nr--) {
913 create_mapping(md);
915 vm = &svm->vm;
916 vm->addr = (void *)(md->virtual & PAGE_MASK);
917 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
918 vm->phys_addr = __pfn_to_phys(md->pfn);
919 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
920 vm->flags |= VM_ARM_MTYPE(md->type);
921 vm->caller = iotable_init;
922 add_static_vm_early(svm++);
926 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
927 void *caller)
929 struct vm_struct *vm;
930 struct static_vm *svm;
932 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
934 vm = &svm->vm;
935 vm->addr = (void *)addr;
936 vm->size = size;
937 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
938 vm->caller = caller;
939 add_static_vm_early(svm);
942 #ifndef CONFIG_ARM_LPAE
945 * The Linux PMD is made of two consecutive section entries covering 2MB
946 * (see definition in include/asm/pgtable-2level.h). However a call to
947 * create_mapping() may optimize static mappings by using individual
948 * 1MB section mappings. This leaves the actual PMD potentially half
949 * initialized if the top or bottom section entry isn't used, leaving it
950 * open to problems if a subsequent ioremap() or vmalloc() tries to use
951 * the virtual space left free by that unused section entry.
953 * Let's avoid the issue by inserting dummy vm entries covering the unused
954 * PMD halves once the static mappings are in place.
957 static void __init pmd_empty_section_gap(unsigned long addr)
959 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
962 static void __init fill_pmd_gaps(void)
964 struct static_vm *svm;
965 struct vm_struct *vm;
966 unsigned long addr, next = 0;
967 pmd_t *pmd;
969 list_for_each_entry(svm, &static_vmlist, list) {
970 vm = &svm->vm;
971 addr = (unsigned long)vm->addr;
972 if (addr < next)
973 continue;
976 * Check if this vm starts on an odd section boundary.
977 * If so and the first section entry for this PMD is free
978 * then we block the corresponding virtual address.
980 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
981 pmd = pmd_off_k(addr);
982 if (pmd_none(*pmd))
983 pmd_empty_section_gap(addr & PMD_MASK);
987 * Then check if this vm ends on an odd section boundary.
988 * If so and the second section entry for this PMD is empty
989 * then we block the corresponding virtual address.
991 addr += vm->size;
992 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
993 pmd = pmd_off_k(addr) + 1;
994 if (pmd_none(*pmd))
995 pmd_empty_section_gap(addr);
998 /* no need to look at any vm entry until we hit the next PMD */
999 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1003 #else
1004 #define fill_pmd_gaps() do { } while (0)
1005 #endif
1007 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1008 static void __init pci_reserve_io(void)
1010 struct static_vm *svm;
1012 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1013 if (svm)
1014 return;
1016 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1018 #else
1019 #define pci_reserve_io() do { } while (0)
1020 #endif
1022 #ifdef CONFIG_DEBUG_LL
1023 void __init debug_ll_io_init(void)
1025 struct map_desc map;
1027 debug_ll_addr(&map.pfn, &map.virtual);
1028 if (!map.pfn || !map.virtual)
1029 return;
1030 map.pfn = __phys_to_pfn(map.pfn);
1031 map.virtual &= PAGE_MASK;
1032 map.length = PAGE_SIZE;
1033 map.type = MT_DEVICE;
1034 iotable_init(&map, 1);
1036 #endif
1038 static void * __initdata vmalloc_min =
1039 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1042 * vmalloc=size forces the vmalloc area to be exactly 'size'
1043 * bytes. This can be used to increase (or decrease) the vmalloc
1044 * area - the default is 240m.
1046 static int __init early_vmalloc(char *arg)
1048 unsigned long vmalloc_reserve = memparse(arg, NULL);
1050 if (vmalloc_reserve < SZ_16M) {
1051 vmalloc_reserve = SZ_16M;
1052 pr_warn("vmalloc area too small, limiting to %luMB\n",
1053 vmalloc_reserve >> 20);
1056 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1057 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1058 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1059 vmalloc_reserve >> 20);
1062 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1063 return 0;
1065 early_param("vmalloc", early_vmalloc);
1067 phys_addr_t arm_lowmem_limit __initdata = 0;
1069 void __init sanity_check_meminfo(void)
1071 phys_addr_t memblock_limit = 0;
1072 int highmem = 0;
1073 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1074 struct memblock_region *reg;
1076 for_each_memblock(memory, reg) {
1077 phys_addr_t block_start = reg->base;
1078 phys_addr_t block_end = reg->base + reg->size;
1079 phys_addr_t size_limit = reg->size;
1081 if (reg->base >= vmalloc_limit)
1082 highmem = 1;
1083 else
1084 size_limit = vmalloc_limit - reg->base;
1087 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1089 if (highmem) {
1090 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1091 &block_start, &block_end);
1092 memblock_remove(reg->base, reg->size);
1093 continue;
1096 if (reg->size > size_limit) {
1097 phys_addr_t overlap_size = reg->size - size_limit;
1099 pr_notice("Truncating RAM at %pa-%pa to -%pa",
1100 &block_start, &block_end, &vmalloc_limit);
1101 memblock_remove(vmalloc_limit, overlap_size);
1102 block_end = vmalloc_limit;
1106 if (!highmem) {
1107 if (block_end > arm_lowmem_limit) {
1108 if (reg->size > size_limit)
1109 arm_lowmem_limit = vmalloc_limit;
1110 else
1111 arm_lowmem_limit = block_end;
1115 * Find the first non-pmd-aligned page, and point
1116 * memblock_limit at it. This relies on rounding the
1117 * limit down to be pmd-aligned, which happens at the
1118 * end of this function.
1120 * With this algorithm, the start or end of almost any
1121 * bank can be non-pmd-aligned. The only exception is
1122 * that the start of the bank 0 must be section-
1123 * aligned, since otherwise memory would need to be
1124 * allocated when mapping the start of bank 0, which
1125 * occurs before any free memory is mapped.
1127 if (!memblock_limit) {
1128 if (!IS_ALIGNED(block_start, PMD_SIZE))
1129 memblock_limit = block_start;
1130 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1131 memblock_limit = arm_lowmem_limit;
1137 high_memory = __va(arm_lowmem_limit - 1) + 1;
1140 * Round the memblock limit down to a pmd size. This
1141 * helps to ensure that we will allocate memory from the
1142 * last full pmd, which should be mapped.
1144 if (memblock_limit)
1145 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1146 if (!memblock_limit)
1147 memblock_limit = arm_lowmem_limit;
1149 memblock_set_current_limit(memblock_limit);
1152 static inline void prepare_page_table(void)
1154 unsigned long addr;
1155 phys_addr_t end;
1158 * Clear out all the mappings below the kernel image.
1160 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1161 pmd_clear(pmd_off_k(addr));
1163 #ifdef CONFIG_XIP_KERNEL
1164 /* The XIP kernel is mapped in the module area -- skip over it */
1165 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1166 #endif
1167 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1168 pmd_clear(pmd_off_k(addr));
1171 * Find the end of the first block of lowmem.
1173 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1174 if (end >= arm_lowmem_limit)
1175 end = arm_lowmem_limit;
1178 * Clear out all the kernel space mappings, except for the first
1179 * memory bank, up to the vmalloc region.
1181 for (addr = __phys_to_virt(end);
1182 addr < VMALLOC_START; addr += PMD_SIZE)
1183 pmd_clear(pmd_off_k(addr));
1186 #ifdef CONFIG_ARM_LPAE
1187 /* the first page is reserved for pgd */
1188 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1189 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1190 #else
1191 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1192 #endif
1195 * Reserve the special regions of memory
1197 void __init arm_mm_memblock_reserve(void)
1200 * Reserve the page tables. These are already in use,
1201 * and can only be in node 0.
1203 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1205 #ifdef CONFIG_SA1111
1207 * Because of the SA1111 DMA bug, we want to preserve our
1208 * precious DMA-able memory...
1210 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1211 #endif
1215 * Set up the device mappings. Since we clear out the page tables for all
1216 * mappings above VMALLOC_START, we will remove any debug device mappings.
1217 * This means you have to be careful how you debug this function, or any
1218 * called function. This means you can't use any function or debugging
1219 * method which may touch any device, otherwise the kernel _will_ crash.
1221 static void __init devicemaps_init(const struct machine_desc *mdesc)
1223 struct map_desc map;
1224 unsigned long addr;
1225 void *vectors;
1228 * Allocate the vector page early.
1230 vectors = early_alloc(PAGE_SIZE * 2);
1232 early_trap_init(vectors);
1234 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1235 pmd_clear(pmd_off_k(addr));
1238 * Map the kernel if it is XIP.
1239 * It is always first in the modulearea.
1241 #ifdef CONFIG_XIP_KERNEL
1242 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1243 map.virtual = MODULES_VADDR;
1244 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1245 map.type = MT_ROM;
1246 create_mapping(&map);
1247 #endif
1250 * Map the cache flushing regions.
1252 #ifdef FLUSH_BASE
1253 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1254 map.virtual = FLUSH_BASE;
1255 map.length = SZ_1M;
1256 map.type = MT_CACHECLEAN;
1257 create_mapping(&map);
1258 #endif
1259 #ifdef FLUSH_BASE_MINICACHE
1260 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1261 map.virtual = FLUSH_BASE_MINICACHE;
1262 map.length = SZ_1M;
1263 map.type = MT_MINICLEAN;
1264 create_mapping(&map);
1265 #endif
1268 * Create a mapping for the machine vectors at the high-vectors
1269 * location (0xffff0000). If we aren't using high-vectors, also
1270 * create a mapping at the low-vectors virtual address.
1272 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1273 map.virtual = 0xffff0000;
1274 map.length = PAGE_SIZE;
1275 #ifdef CONFIG_KUSER_HELPERS
1276 map.type = MT_HIGH_VECTORS;
1277 #else
1278 map.type = MT_LOW_VECTORS;
1279 #endif
1280 create_mapping(&map);
1282 if (!vectors_high()) {
1283 map.virtual = 0;
1284 map.length = PAGE_SIZE * 2;
1285 map.type = MT_LOW_VECTORS;
1286 create_mapping(&map);
1289 /* Now create a kernel read-only mapping */
1290 map.pfn += 1;
1291 map.virtual = 0xffff0000 + PAGE_SIZE;
1292 map.length = PAGE_SIZE;
1293 map.type = MT_LOW_VECTORS;
1294 create_mapping(&map);
1297 * Ask the machine support to map in the statically mapped devices.
1299 if (mdesc->map_io)
1300 mdesc->map_io();
1301 else
1302 debug_ll_io_init();
1303 fill_pmd_gaps();
1305 /* Reserve fixed i/o space in VMALLOC region */
1306 pci_reserve_io();
1309 * Finally flush the caches and tlb to ensure that we're in a
1310 * consistent state wrt the writebuffer. This also ensures that
1311 * any write-allocated cache lines in the vector page are written
1312 * back. After this point, we can start to touch devices again.
1314 local_flush_tlb_all();
1315 flush_cache_all();
1318 static void __init kmap_init(void)
1320 #ifdef CONFIG_HIGHMEM
1321 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1322 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1323 #endif
1325 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1326 _PAGE_KERNEL_TABLE);
1329 static void __init map_lowmem(void)
1331 struct memblock_region *reg;
1332 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1333 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1335 /* Map all the lowmem memory banks. */
1336 for_each_memblock(memory, reg) {
1337 phys_addr_t start = reg->base;
1338 phys_addr_t end = start + reg->size;
1339 struct map_desc map;
1341 if (end > arm_lowmem_limit)
1342 end = arm_lowmem_limit;
1343 if (start >= end)
1344 break;
1346 if (end < kernel_x_start) {
1347 map.pfn = __phys_to_pfn(start);
1348 map.virtual = __phys_to_virt(start);
1349 map.length = end - start;
1350 map.type = MT_MEMORY_RWX;
1352 create_mapping(&map);
1353 } else if (start >= kernel_x_end) {
1354 map.pfn = __phys_to_pfn(start);
1355 map.virtual = __phys_to_virt(start);
1356 map.length = end - start;
1357 map.type = MT_MEMORY_RW;
1359 create_mapping(&map);
1360 } else {
1361 /* This better cover the entire kernel */
1362 if (start < kernel_x_start) {
1363 map.pfn = __phys_to_pfn(start);
1364 map.virtual = __phys_to_virt(start);
1365 map.length = kernel_x_start - start;
1366 map.type = MT_MEMORY_RW;
1368 create_mapping(&map);
1371 map.pfn = __phys_to_pfn(kernel_x_start);
1372 map.virtual = __phys_to_virt(kernel_x_start);
1373 map.length = kernel_x_end - kernel_x_start;
1374 map.type = MT_MEMORY_RWX;
1376 create_mapping(&map);
1378 if (kernel_x_end < end) {
1379 map.pfn = __phys_to_pfn(kernel_x_end);
1380 map.virtual = __phys_to_virt(kernel_x_end);
1381 map.length = end - kernel_x_end;
1382 map.type = MT_MEMORY_RW;
1384 create_mapping(&map);
1390 #ifdef CONFIG_ARM_LPAE
1392 * early_paging_init() recreates boot time page table setup, allowing machines
1393 * to switch over to a high (>4G) address space on LPAE systems
1395 void __init early_paging_init(const struct machine_desc *mdesc,
1396 struct proc_info_list *procinfo)
1398 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1399 unsigned long map_start, map_end;
1400 pgd_t *pgd0, *pgdk;
1401 pud_t *pud0, *pudk, *pud_start;
1402 pmd_t *pmd0, *pmdk;
1403 phys_addr_t phys;
1404 int i;
1406 if (!(mdesc->init_meminfo))
1407 return;
1409 /* remap kernel code and data */
1410 map_start = init_mm.start_code & PMD_MASK;
1411 map_end = ALIGN(init_mm.brk, PMD_SIZE);
1413 /* get a handle on things... */
1414 pgd0 = pgd_offset_k(0);
1415 pud_start = pud0 = pud_offset(pgd0, 0);
1416 pmd0 = pmd_offset(pud0, 0);
1418 pgdk = pgd_offset_k(map_start);
1419 pudk = pud_offset(pgdk, map_start);
1420 pmdk = pmd_offset(pudk, map_start);
1422 mdesc->init_meminfo();
1424 /* Run the patch stub to update the constants */
1425 fixup_pv_table(&__pv_table_begin,
1426 (&__pv_table_end - &__pv_table_begin) << 2);
1429 * Cache cleaning operations for self-modifying code
1430 * We should clean the entries by MVA but running a
1431 * for loop over every pv_table entry pointer would
1432 * just complicate the code.
1434 flush_cache_louis();
1435 dsb(ishst);
1436 isb();
1439 * FIXME: This code is not architecturally compliant: we modify
1440 * the mappings in-place, indeed while they are in use by this
1441 * very same code. This may lead to unpredictable behaviour of
1442 * the CPU.
1444 * Even modifying the mappings in a separate page table does
1445 * not resolve this.
1447 * The architecture strongly recommends that when a mapping is
1448 * changed, that it is changed by first going via an invalid
1449 * mapping and back to the new mapping. This is to ensure that
1450 * no TLB conflicts (caused by the TLB having more than one TLB
1451 * entry match a translation) can occur. However, doing that
1452 * here will result in unmapping the code we are running.
1454 pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1455 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1458 * Remap level 1 table. This changes the physical addresses
1459 * used to refer to the level 2 page tables to the high
1460 * physical address alias, leaving everything else the same.
1462 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1463 set_pud(pud0,
1464 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1465 pmd0 += PTRS_PER_PMD;
1469 * Remap the level 2 table, pointing the mappings at the high
1470 * physical address alias of these pages.
1472 phys = __pa(map_start);
1473 do {
1474 *pmdk++ = __pmd(phys | pmdprot);
1475 phys += PMD_SIZE;
1476 } while (phys < map_end);
1479 * Ensure that the above updates are flushed out of the cache.
1480 * This is not strictly correct; on a system where the caches
1481 * are coherent with each other, but the MMU page table walks
1482 * may not be coherent, flush_cache_all() may be a no-op, and
1483 * this will fail.
1485 flush_cache_all();
1488 * Re-write the TTBR values to point them at the high physical
1489 * alias of the page tables. We expect __va() will work on
1490 * cpu_get_pgd(), which returns the value of TTBR0.
1492 cpu_switch_mm(pgd0, &init_mm);
1493 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1495 /* Finally flush any stale TLB values. */
1496 local_flush_bp_all();
1497 local_flush_tlb_all();
1500 #else
1502 void __init early_paging_init(const struct machine_desc *mdesc,
1503 struct proc_info_list *procinfo)
1505 if (mdesc->init_meminfo)
1506 mdesc->init_meminfo();
1509 #endif
1512 * paging_init() sets up the page tables, initialises the zone memory
1513 * maps, and sets up the zero page, bad page and bad page tables.
1515 void __init paging_init(const struct machine_desc *mdesc)
1517 void *zero_page;
1519 build_mem_type_table();
1520 prepare_page_table();
1521 map_lowmem();
1522 dma_contiguous_remap();
1523 devicemaps_init(mdesc);
1524 kmap_init();
1525 tcm_init();
1527 top_pmd = pmd_off_k(0xffff0000);
1529 /* allocate the zero page. */
1530 zero_page = early_alloc(PAGE_SIZE);
1532 bootmem_init();
1534 empty_zero_page = virt_to_page(zero_page);
1535 __flush_dcache_page(NULL, empty_zero_page);