2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
48 struct page
*empty_zero_page
;
49 EXPORT_SYMBOL(empty_zero_page
);
52 * The pmd table for the upper-most set of pages.
56 pmdval_t user_pmd_table
= _PAGE_USER_TABLE
;
58 #define CPOLICY_UNCACHED 0
59 #define CPOLICY_BUFFERED 1
60 #define CPOLICY_WRITETHROUGH 2
61 #define CPOLICY_WRITEBACK 3
62 #define CPOLICY_WRITEALLOC 4
64 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
65 static unsigned int ecc_mask __initdata
= 0;
67 pgprot_t pgprot_kernel
;
68 pgprot_t pgprot_hyp_device
;
70 pgprot_t pgprot_s2_device
;
72 EXPORT_SYMBOL(pgprot_user
);
73 EXPORT_SYMBOL(pgprot_kernel
);
76 const char policy
[16];
83 #ifdef CONFIG_ARM_LPAE
84 #define s2_policy(policy) policy
86 #define s2_policy(policy) 0
89 static struct cachepolicy cache_policies
[] __initdata
= {
93 .pmd
= PMD_SECT_UNCACHED
,
94 .pte
= L_PTE_MT_UNCACHED
,
95 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
99 .pmd
= PMD_SECT_BUFFERED
,
100 .pte
= L_PTE_MT_BUFFERABLE
,
101 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
103 .policy
= "writethrough",
106 .pte
= L_PTE_MT_WRITETHROUGH
,
107 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
109 .policy
= "writeback",
112 .pte
= L_PTE_MT_WRITEBACK
,
113 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
115 .policy
= "writealloc",
117 .pmd
= PMD_SECT_WBWA
,
118 .pte
= L_PTE_MT_WRITEALLOC
,
119 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata
= 0;
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
133 void __init
init_default_cache_policy(unsigned long pmd
)
137 initial_pmd_value
= pmd
;
139 pmd
&= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE
| PMD_SECT_CACHEABLE
;
141 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
142 if (cache_policies
[i
].pmd
== pmd
) {
147 if (i
== ARRAY_SIZE(cache_policies
))
148 pr_err("ERROR: could not find cache policy\n");
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
156 static int __init
early_cachepolicy(char *p
)
158 int i
, selected
= -1;
160 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
161 int len
= strlen(cache_policies
[i
].policy
);
163 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
170 pr_err("ERROR: unknown or unsupported cache policy\n");
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
179 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies
[cachepolicy
].policy
);
185 if (selected
!= cachepolicy
) {
186 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
187 cachepolicy
= selected
;
193 early_param("cachepolicy", early_cachepolicy
);
195 static int __init
early_nocache(char *__unused
)
197 char *p
= "buffered";
198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p
);
199 early_cachepolicy(p
);
202 early_param("nocache", early_nocache
);
204 static int __init
early_nowrite(char *__unused
)
206 char *p
= "uncached";
207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p
);
208 early_cachepolicy(p
);
211 early_param("nowb", early_nowrite
);
213 #ifndef CONFIG_ARM_LPAE
214 static int __init
early_ecc(char *p
)
216 if (memcmp(p
, "on", 2) == 0)
217 ecc_mask
= PMD_PROTECTION
;
218 else if (memcmp(p
, "off", 3) == 0)
222 early_param("ecc", early_ecc
);
225 #else /* ifdef CONFIG_CPU_CP15 */
227 static int __init
early_cachepolicy(char *p
)
229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 early_param("cachepolicy", early_cachepolicy
);
233 static int __init
noalign_setup(char *__unused
)
235 pr_warn("noalign kernel parameter not supported without cp15\n");
237 __setup("noalign", noalign_setup
);
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
241 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245 static struct mem_type mem_types
[] = {
246 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
247 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
249 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
252 .prot_l1
= PMD_TYPE_TABLE
,
253 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
256 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
257 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
258 .prot_l1
= PMD_TYPE_TABLE
,
259 .prot_sect
= PROT_SECT_DEVICE
,
262 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
263 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
264 .prot_l1
= PMD_TYPE_TABLE
,
265 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
268 [MT_DEVICE_WC
] = { /* ioremap_wc */
269 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
270 .prot_l1
= PMD_TYPE_TABLE
,
271 .prot_sect
= PROT_SECT_DEVICE
,
275 .prot_pte
= PROT_PTE_DEVICE
,
276 .prot_l1
= PMD_TYPE_TABLE
,
277 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
281 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
282 .domain
= DOMAIN_KERNEL
,
284 #ifndef CONFIG_ARM_LPAE
286 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
287 .domain
= DOMAIN_KERNEL
,
291 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
293 .prot_l1
= PMD_TYPE_TABLE
,
294 .domain
= DOMAIN_USER
,
296 [MT_HIGH_VECTORS
] = {
297 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
298 L_PTE_USER
| L_PTE_RDONLY
,
299 .prot_l1
= PMD_TYPE_TABLE
,
300 .domain
= DOMAIN_USER
,
303 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
304 .prot_l1
= PMD_TYPE_TABLE
,
305 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
306 .domain
= DOMAIN_KERNEL
,
309 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
311 .prot_l1
= PMD_TYPE_TABLE
,
312 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
313 .domain
= DOMAIN_KERNEL
,
316 .prot_sect
= PMD_TYPE_SECT
,
317 .domain
= DOMAIN_KERNEL
,
319 [MT_MEMORY_RWX_NONCACHED
] = {
320 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
322 .prot_l1
= PMD_TYPE_TABLE
,
323 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
324 .domain
= DOMAIN_KERNEL
,
326 [MT_MEMORY_RW_DTCM
] = {
327 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
329 .prot_l1
= PMD_TYPE_TABLE
,
330 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
331 .domain
= DOMAIN_KERNEL
,
333 [MT_MEMORY_RWX_ITCM
] = {
334 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
335 .prot_l1
= PMD_TYPE_TABLE
,
336 .domain
= DOMAIN_KERNEL
,
338 [MT_MEMORY_RW_SO
] = {
339 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
340 L_PTE_MT_UNCACHED
| L_PTE_XN
,
341 .prot_l1
= PMD_TYPE_TABLE
,
342 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
343 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
344 .domain
= DOMAIN_KERNEL
,
346 [MT_MEMORY_DMA_READY
] = {
347 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
349 .prot_l1
= PMD_TYPE_TABLE
,
350 .domain
= DOMAIN_KERNEL
,
354 const struct mem_type
*get_mem_type(unsigned int type
)
356 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
358 EXPORT_SYMBOL(get_mem_type
);
361 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
362 * As a result, this can only be called with preemption disabled, as under
365 void __set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
, pgprot_t prot
)
367 unsigned long vaddr
= __fix_to_virt(idx
);
368 pte_t
*pte
= pte_offset_kernel(pmd_off_k(vaddr
), vaddr
);
370 /* Make sure fixmap region does not exceed available allocation. */
371 BUILD_BUG_ON(FIXADDR_START
+ (__end_of_fixed_addresses
* PAGE_SIZE
) >
373 BUG_ON(idx
>= __end_of_fixed_addresses
);
375 if (pgprot_val(prot
))
376 set_pte_at(NULL
, vaddr
, pte
,
377 pfn_pte(phys
>> PAGE_SHIFT
, prot
));
379 pte_clear(NULL
, vaddr
, pte
);
380 local_flush_tlb_kernel_range(vaddr
, vaddr
+ PAGE_SIZE
);
384 * Adjust the PMD section entries according to the CPU in use.
386 static void __init
build_mem_type_table(void)
388 struct cachepolicy
*cp
;
389 unsigned int cr
= get_cr();
390 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
391 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
392 int cpu_arch
= cpu_architecture();
395 if (cpu_arch
< CPU_ARCH_ARMv6
) {
396 #if defined(CONFIG_CPU_DCACHE_DISABLE)
397 if (cachepolicy
> CPOLICY_BUFFERED
)
398 cachepolicy
= CPOLICY_BUFFERED
;
399 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
400 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
401 cachepolicy
= CPOLICY_WRITETHROUGH
;
404 if (cpu_arch
< CPU_ARCH_ARMv5
) {
405 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
406 cachepolicy
= CPOLICY_WRITEBACK
;
411 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
412 pr_warn("Forcing write-allocate cache policy for SMP\n");
413 cachepolicy
= CPOLICY_WRITEALLOC
;
415 if (!(initial_pmd_value
& PMD_SECT_S
)) {
416 pr_warn("Forcing shared mappings for SMP\n");
417 initial_pmd_value
|= PMD_SECT_S
;
422 * Strip out features not present on earlier architectures.
423 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
424 * without extended page tables don't have the 'Shared' bit.
426 if (cpu_arch
< CPU_ARCH_ARMv5
)
427 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
428 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
429 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
430 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
431 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
434 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
435 * "update-able on write" bit on ARM610). However, Xscale and
436 * Xscale3 require this bit to be cleared.
438 if (cpu_is_xscale() || cpu_is_xsc3()) {
439 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
440 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
441 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
443 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
444 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
445 if (mem_types
[i
].prot_l1
)
446 mem_types
[i
].prot_l1
|= PMD_BIT4
;
447 if (mem_types
[i
].prot_sect
)
448 mem_types
[i
].prot_sect
|= PMD_BIT4
;
453 * Mark the device areas according to the CPU/architecture.
455 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
456 if (!cpu_is_xsc3()) {
458 * Mark device regions on ARMv6+ as execute-never
459 * to prevent speculative instruction fetches.
461 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
462 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
463 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
464 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
466 /* Also setup NX memory mapping */
467 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
469 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
471 * For ARMv7 with TEX remapping,
472 * - shared device is SXCB=1100
473 * - nonshared device is SXCB=0100
474 * - write combine device mem is SXCB=0001
475 * (Uncached Normal memory)
477 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
478 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
479 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
480 } else if (cpu_is_xsc3()) {
483 * - shared device is TEXCB=00101
484 * - nonshared device is TEXCB=01000
485 * - write combine device mem is TEXCB=00100
486 * (Inner/Outer Uncacheable in xsc3 parlance)
488 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
489 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
490 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
493 * For ARMv6 and ARMv7 without TEX remapping,
494 * - shared device is TEXCB=00001
495 * - nonshared device is TEXCB=01000
496 * - write combine device mem is TEXCB=00100
497 * (Uncached Normal in ARMv6 parlance).
499 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
500 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
501 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
505 * On others, write combining is "Uncached/Buffered"
507 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
511 * Now deal with the memory-type mappings
513 cp
= &cache_policies
[cachepolicy
];
514 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
515 s2_pgprot
= cp
->pte_s2
;
516 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
517 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
519 #ifndef CONFIG_ARM_LPAE
521 * We don't use domains on ARMv6 (since this causes problems with
522 * v6/v7 kernels), so we must use a separate memory type for user
523 * r/o, kernel r/w to map the vectors page.
525 if (cpu_arch
== CPU_ARCH_ARMv6
)
526 vecs_pgprot
|= L_PTE_MT_VECTORS
;
529 * Check is it with support for the PXN bit
530 * in the Short-descriptor translation table format descriptors.
532 if (cpu_arch
== CPU_ARCH_ARMv7
&&
533 (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xF) == 4) {
534 user_pmd_table
|= PMD_PXNTABLE
;
539 * ARMv6 and above have extended page tables.
541 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
542 #ifndef CONFIG_ARM_LPAE
544 * Mark cache clean areas and XIP ROM read only
545 * from SVC mode and no access from userspace.
547 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
548 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
549 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
553 * If the initial page tables were created with the S bit
554 * set, then we need to do the same here for the same
555 * reasons given in early_cachepolicy().
557 if (initial_pmd_value
& PMD_SECT_S
) {
558 user_pgprot
|= L_PTE_SHARED
;
559 kern_pgprot
|= L_PTE_SHARED
;
560 vecs_pgprot
|= L_PTE_SHARED
;
561 s2_pgprot
|= L_PTE_SHARED
;
562 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
563 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
564 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
565 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
566 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
567 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
568 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
569 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
570 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
571 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
572 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
577 * Non-cacheable Normal - intended for memory areas that must
578 * not cause dirty cache line writebacks when used
580 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
581 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
582 /* Non-cacheable Normal is XCB = 001 */
583 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
586 /* For both ARMv6 and non-TEX-remapping ARMv7 */
587 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
591 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
594 #ifdef CONFIG_ARM_LPAE
596 * Do not generate access flag faults for the kernel mappings.
598 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
599 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
600 if (mem_types
[i
].prot_sect
)
601 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
603 kern_pgprot
|= PTE_EXT_AF
;
604 vecs_pgprot
|= PTE_EXT_AF
;
607 * Set PXN for user mappings
609 user_pgprot
|= PTE_EXT_PXN
;
612 for (i
= 0; i
< 16; i
++) {
613 pteval_t v
= pgprot_val(protection_map
[i
]);
614 protection_map
[i
] = __pgprot(v
| user_pgprot
);
617 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
618 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
620 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
621 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
622 L_PTE_DIRTY
| kern_pgprot
);
623 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
624 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
625 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
627 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
628 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
629 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
630 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
631 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
632 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
633 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
634 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
635 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
639 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
643 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
646 pr_info("Memory policy: %sData cache %s\n",
647 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
649 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
650 struct mem_type
*t
= &mem_types
[i
];
652 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
654 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
658 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
659 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
660 unsigned long size
, pgprot_t vma_prot
)
663 return pgprot_noncached(vma_prot
);
664 else if (file
->f_flags
& O_SYNC
)
665 return pgprot_writecombine(vma_prot
);
668 EXPORT_SYMBOL(phys_mem_access_prot
);
671 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
673 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
675 void *ptr
= __va(memblock_alloc(sz
, align
));
680 static void __init
*early_alloc(unsigned long sz
)
682 return early_alloc_aligned(sz
, sz
);
685 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
687 if (pmd_none(*pmd
)) {
688 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
689 __pmd_populate(pmd
, __pa(pte
), prot
);
691 BUG_ON(pmd_bad(*pmd
));
692 return pte_offset_kernel(pmd
, addr
);
695 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
696 unsigned long end
, unsigned long pfn
,
697 const struct mem_type
*type
)
699 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
701 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
703 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
706 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
707 unsigned long end
, phys_addr_t phys
,
708 const struct mem_type
*type
)
712 #ifndef CONFIG_ARM_LPAE
714 * In classic MMU format, puds and pmds are folded in to
715 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
716 * group of L1 entries making up one logical pointer to
717 * an L2 table (2MB), where as PMDs refer to the individual
718 * L1 entries (1MB). Hence increment to get the correct
719 * offset for odd 1MB sections.
720 * (See arch/arm/include/asm/pgtable-2level.h)
722 if (addr
& SECTION_SIZE
)
726 *pmd
= __pmd(phys
| type
->prot_sect
);
727 phys
+= SECTION_SIZE
;
728 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
733 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
734 unsigned long end
, phys_addr_t phys
,
735 const struct mem_type
*type
)
737 pmd_t
*pmd
= pmd_offset(pud
, addr
);
742 * With LPAE, we must loop over to map
743 * all the pmds for the given range.
745 next
= pmd_addr_end(addr
, end
);
748 * Try a section mapping - addr, next and phys must all be
749 * aligned to a section boundary.
751 if (type
->prot_sect
&&
752 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
753 __map_init_section(pmd
, addr
, next
, phys
, type
);
755 alloc_init_pte(pmd
, addr
, next
,
756 __phys_to_pfn(phys
), type
);
761 } while (pmd
++, addr
= next
, addr
!= end
);
764 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
765 unsigned long end
, phys_addr_t phys
,
766 const struct mem_type
*type
)
768 pud_t
*pud
= pud_offset(pgd
, addr
);
772 next
= pud_addr_end(addr
, end
);
773 alloc_init_pmd(pud
, addr
, next
, phys
, type
);
775 } while (pud
++, addr
= next
, addr
!= end
);
778 #ifndef CONFIG_ARM_LPAE
779 static void __init
create_36bit_mapping(struct map_desc
*md
,
780 const struct mem_type
*type
)
782 unsigned long addr
, length
, end
;
787 phys
= __pfn_to_phys(md
->pfn
);
788 length
= PAGE_ALIGN(md
->length
);
790 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
791 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
792 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
796 /* N.B. ARMv6 supersections are only defined to work with domain 0.
797 * Since domain assignments can in fact be arbitrary, the
798 * 'domain == 0' check below is required to insure that ARMv6
799 * supersections are only allocated for domain 0 regardless
800 * of the actual domain assignments in use.
803 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
804 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
808 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
809 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
810 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
815 * Shift bits [35:32] of address into bits [23:20] of PMD
818 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
820 pgd
= pgd_offset_k(addr
);
823 pud_t
*pud
= pud_offset(pgd
, addr
);
824 pmd_t
*pmd
= pmd_offset(pud
, addr
);
827 for (i
= 0; i
< 16; i
++)
828 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
830 addr
+= SUPERSECTION_SIZE
;
831 phys
+= SUPERSECTION_SIZE
;
832 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
833 } while (addr
!= end
);
835 #endif /* !CONFIG_ARM_LPAE */
838 * Create the page directory entries and any necessary
839 * page tables for the mapping specified by `md'. We
840 * are able to cope here with varying sizes and address
841 * offsets, and we take full advantage of sections and
844 static void __init
create_mapping(struct map_desc
*md
)
846 unsigned long addr
, length
, end
;
848 const struct mem_type
*type
;
851 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
852 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
853 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
857 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
858 md
->virtual >= PAGE_OFFSET
&&
859 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
860 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
861 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
864 type
= &mem_types
[md
->type
];
866 #ifndef CONFIG_ARM_LPAE
868 * Catch 36-bit addresses
870 if (md
->pfn
>= 0x100000) {
871 create_36bit_mapping(md
, type
);
876 addr
= md
->virtual & PAGE_MASK
;
877 phys
= __pfn_to_phys(md
->pfn
);
878 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
880 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
881 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
882 (long long)__pfn_to_phys(md
->pfn
), addr
);
886 pgd
= pgd_offset_k(addr
);
889 unsigned long next
= pgd_addr_end(addr
, end
);
891 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
895 } while (pgd
++, addr
!= end
);
899 * Create the architecture specific mappings
901 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
904 struct vm_struct
*vm
;
905 struct static_vm
*svm
;
910 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
912 for (md
= io_desc
; nr
; md
++, nr
--) {
916 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
917 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
918 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
919 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
920 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
921 vm
->caller
= iotable_init
;
922 add_static_vm_early(svm
++);
926 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
929 struct vm_struct
*vm
;
930 struct static_vm
*svm
;
932 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
935 vm
->addr
= (void *)addr
;
937 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
939 add_static_vm_early(svm
);
942 #ifndef CONFIG_ARM_LPAE
945 * The Linux PMD is made of two consecutive section entries covering 2MB
946 * (see definition in include/asm/pgtable-2level.h). However a call to
947 * create_mapping() may optimize static mappings by using individual
948 * 1MB section mappings. This leaves the actual PMD potentially half
949 * initialized if the top or bottom section entry isn't used, leaving it
950 * open to problems if a subsequent ioremap() or vmalloc() tries to use
951 * the virtual space left free by that unused section entry.
953 * Let's avoid the issue by inserting dummy vm entries covering the unused
954 * PMD halves once the static mappings are in place.
957 static void __init
pmd_empty_section_gap(unsigned long addr
)
959 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
962 static void __init
fill_pmd_gaps(void)
964 struct static_vm
*svm
;
965 struct vm_struct
*vm
;
966 unsigned long addr
, next
= 0;
969 list_for_each_entry(svm
, &static_vmlist
, list
) {
971 addr
= (unsigned long)vm
->addr
;
976 * Check if this vm starts on an odd section boundary.
977 * If so and the first section entry for this PMD is free
978 * then we block the corresponding virtual address.
980 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
981 pmd
= pmd_off_k(addr
);
983 pmd_empty_section_gap(addr
& PMD_MASK
);
987 * Then check if this vm ends on an odd section boundary.
988 * If so and the second section entry for this PMD is empty
989 * then we block the corresponding virtual address.
992 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
993 pmd
= pmd_off_k(addr
) + 1;
995 pmd_empty_section_gap(addr
);
998 /* no need to look at any vm entry until we hit the next PMD */
999 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1004 #define fill_pmd_gaps() do { } while (0)
1007 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1008 static void __init
pci_reserve_io(void)
1010 struct static_vm
*svm
;
1012 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1016 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1019 #define pci_reserve_io() do { } while (0)
1022 #ifdef CONFIG_DEBUG_LL
1023 void __init
debug_ll_io_init(void)
1025 struct map_desc map
;
1027 debug_ll_addr(&map
.pfn
, &map
.virtual);
1028 if (!map
.pfn
|| !map
.virtual)
1030 map
.pfn
= __phys_to_pfn(map
.pfn
);
1031 map
.virtual &= PAGE_MASK
;
1032 map
.length
= PAGE_SIZE
;
1033 map
.type
= MT_DEVICE
;
1034 iotable_init(&map
, 1);
1038 static void * __initdata vmalloc_min
=
1039 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1042 * vmalloc=size forces the vmalloc area to be exactly 'size'
1043 * bytes. This can be used to increase (or decrease) the vmalloc
1044 * area - the default is 240m.
1046 static int __init
early_vmalloc(char *arg
)
1048 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1050 if (vmalloc_reserve
< SZ_16M
) {
1051 vmalloc_reserve
= SZ_16M
;
1052 pr_warn("vmalloc area too small, limiting to %luMB\n",
1053 vmalloc_reserve
>> 20);
1056 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1057 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1058 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1059 vmalloc_reserve
>> 20);
1062 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1065 early_param("vmalloc", early_vmalloc
);
1067 phys_addr_t arm_lowmem_limit __initdata
= 0;
1069 void __init
sanity_check_meminfo(void)
1071 phys_addr_t memblock_limit
= 0;
1073 phys_addr_t vmalloc_limit
= __pa(vmalloc_min
- 1) + 1;
1074 struct memblock_region
*reg
;
1076 for_each_memblock(memory
, reg
) {
1077 phys_addr_t block_start
= reg
->base
;
1078 phys_addr_t block_end
= reg
->base
+ reg
->size
;
1079 phys_addr_t size_limit
= reg
->size
;
1081 if (reg
->base
>= vmalloc_limit
)
1084 size_limit
= vmalloc_limit
- reg
->base
;
1087 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1090 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1091 &block_start
, &block_end
);
1092 memblock_remove(reg
->base
, reg
->size
);
1096 if (reg
->size
> size_limit
) {
1097 phys_addr_t overlap_size
= reg
->size
- size_limit
;
1099 pr_notice("Truncating RAM at %pa-%pa to -%pa",
1100 &block_start
, &block_end
, &vmalloc_limit
);
1101 memblock_remove(vmalloc_limit
, overlap_size
);
1102 block_end
= vmalloc_limit
;
1107 if (block_end
> arm_lowmem_limit
) {
1108 if (reg
->size
> size_limit
)
1109 arm_lowmem_limit
= vmalloc_limit
;
1111 arm_lowmem_limit
= block_end
;
1115 * Find the first non-pmd-aligned page, and point
1116 * memblock_limit at it. This relies on rounding the
1117 * limit down to be pmd-aligned, which happens at the
1118 * end of this function.
1120 * With this algorithm, the start or end of almost any
1121 * bank can be non-pmd-aligned. The only exception is
1122 * that the start of the bank 0 must be section-
1123 * aligned, since otherwise memory would need to be
1124 * allocated when mapping the start of bank 0, which
1125 * occurs before any free memory is mapped.
1127 if (!memblock_limit
) {
1128 if (!IS_ALIGNED(block_start
, PMD_SIZE
))
1129 memblock_limit
= block_start
;
1130 else if (!IS_ALIGNED(block_end
, PMD_SIZE
))
1131 memblock_limit
= arm_lowmem_limit
;
1137 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1140 * Round the memblock limit down to a pmd size. This
1141 * helps to ensure that we will allocate memory from the
1142 * last full pmd, which should be mapped.
1145 memblock_limit
= round_down(memblock_limit
, PMD_SIZE
);
1146 if (!memblock_limit
)
1147 memblock_limit
= arm_lowmem_limit
;
1149 memblock_set_current_limit(memblock_limit
);
1152 static inline void prepare_page_table(void)
1158 * Clear out all the mappings below the kernel image.
1160 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1161 pmd_clear(pmd_off_k(addr
));
1163 #ifdef CONFIG_XIP_KERNEL
1164 /* The XIP kernel is mapped in the module area -- skip over it */
1165 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1167 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1168 pmd_clear(pmd_off_k(addr
));
1171 * Find the end of the first block of lowmem.
1173 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1174 if (end
>= arm_lowmem_limit
)
1175 end
= arm_lowmem_limit
;
1178 * Clear out all the kernel space mappings, except for the first
1179 * memory bank, up to the vmalloc region.
1181 for (addr
= __phys_to_virt(end
);
1182 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1183 pmd_clear(pmd_off_k(addr
));
1186 #ifdef CONFIG_ARM_LPAE
1187 /* the first page is reserved for pgd */
1188 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1189 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1191 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1195 * Reserve the special regions of memory
1197 void __init
arm_mm_memblock_reserve(void)
1200 * Reserve the page tables. These are already in use,
1201 * and can only be in node 0.
1203 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1205 #ifdef CONFIG_SA1111
1207 * Because of the SA1111 DMA bug, we want to preserve our
1208 * precious DMA-able memory...
1210 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1215 * Set up the device mappings. Since we clear out the page tables for all
1216 * mappings above VMALLOC_START, we will remove any debug device mappings.
1217 * This means you have to be careful how you debug this function, or any
1218 * called function. This means you can't use any function or debugging
1219 * method which may touch any device, otherwise the kernel _will_ crash.
1221 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1223 struct map_desc map
;
1228 * Allocate the vector page early.
1230 vectors
= early_alloc(PAGE_SIZE
* 2);
1232 early_trap_init(vectors
);
1234 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1235 pmd_clear(pmd_off_k(addr
));
1238 * Map the kernel if it is XIP.
1239 * It is always first in the modulearea.
1241 #ifdef CONFIG_XIP_KERNEL
1242 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1243 map
.virtual = MODULES_VADDR
;
1244 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1246 create_mapping(&map
);
1250 * Map the cache flushing regions.
1253 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1254 map
.virtual = FLUSH_BASE
;
1256 map
.type
= MT_CACHECLEAN
;
1257 create_mapping(&map
);
1259 #ifdef FLUSH_BASE_MINICACHE
1260 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1261 map
.virtual = FLUSH_BASE_MINICACHE
;
1263 map
.type
= MT_MINICLEAN
;
1264 create_mapping(&map
);
1268 * Create a mapping for the machine vectors at the high-vectors
1269 * location (0xffff0000). If we aren't using high-vectors, also
1270 * create a mapping at the low-vectors virtual address.
1272 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1273 map
.virtual = 0xffff0000;
1274 map
.length
= PAGE_SIZE
;
1275 #ifdef CONFIG_KUSER_HELPERS
1276 map
.type
= MT_HIGH_VECTORS
;
1278 map
.type
= MT_LOW_VECTORS
;
1280 create_mapping(&map
);
1282 if (!vectors_high()) {
1284 map
.length
= PAGE_SIZE
* 2;
1285 map
.type
= MT_LOW_VECTORS
;
1286 create_mapping(&map
);
1289 /* Now create a kernel read-only mapping */
1291 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1292 map
.length
= PAGE_SIZE
;
1293 map
.type
= MT_LOW_VECTORS
;
1294 create_mapping(&map
);
1297 * Ask the machine support to map in the statically mapped devices.
1305 /* Reserve fixed i/o space in VMALLOC region */
1309 * Finally flush the caches and tlb to ensure that we're in a
1310 * consistent state wrt the writebuffer. This also ensures that
1311 * any write-allocated cache lines in the vector page are written
1312 * back. After this point, we can start to touch devices again.
1314 local_flush_tlb_all();
1318 static void __init
kmap_init(void)
1320 #ifdef CONFIG_HIGHMEM
1321 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1322 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1325 early_pte_alloc(pmd_off_k(FIXADDR_START
), FIXADDR_START
,
1326 _PAGE_KERNEL_TABLE
);
1329 static void __init
map_lowmem(void)
1331 struct memblock_region
*reg
;
1332 phys_addr_t kernel_x_start
= round_down(__pa(_stext
), SECTION_SIZE
);
1333 phys_addr_t kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1335 /* Map all the lowmem memory banks. */
1336 for_each_memblock(memory
, reg
) {
1337 phys_addr_t start
= reg
->base
;
1338 phys_addr_t end
= start
+ reg
->size
;
1339 struct map_desc map
;
1341 if (end
> arm_lowmem_limit
)
1342 end
= arm_lowmem_limit
;
1346 if (end
< kernel_x_start
) {
1347 map
.pfn
= __phys_to_pfn(start
);
1348 map
.virtual = __phys_to_virt(start
);
1349 map
.length
= end
- start
;
1350 map
.type
= MT_MEMORY_RWX
;
1352 create_mapping(&map
);
1353 } else if (start
>= kernel_x_end
) {
1354 map
.pfn
= __phys_to_pfn(start
);
1355 map
.virtual = __phys_to_virt(start
);
1356 map
.length
= end
- start
;
1357 map
.type
= MT_MEMORY_RW
;
1359 create_mapping(&map
);
1361 /* This better cover the entire kernel */
1362 if (start
< kernel_x_start
) {
1363 map
.pfn
= __phys_to_pfn(start
);
1364 map
.virtual = __phys_to_virt(start
);
1365 map
.length
= kernel_x_start
- start
;
1366 map
.type
= MT_MEMORY_RW
;
1368 create_mapping(&map
);
1371 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1372 map
.virtual = __phys_to_virt(kernel_x_start
);
1373 map
.length
= kernel_x_end
- kernel_x_start
;
1374 map
.type
= MT_MEMORY_RWX
;
1376 create_mapping(&map
);
1378 if (kernel_x_end
< end
) {
1379 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1380 map
.virtual = __phys_to_virt(kernel_x_end
);
1381 map
.length
= end
- kernel_x_end
;
1382 map
.type
= MT_MEMORY_RW
;
1384 create_mapping(&map
);
1390 #ifdef CONFIG_ARM_LPAE
1392 * early_paging_init() recreates boot time page table setup, allowing machines
1393 * to switch over to a high (>4G) address space on LPAE systems
1395 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1396 struct proc_info_list
*procinfo
)
1398 pmdval_t pmdprot
= procinfo
->__cpu_mm_mmu_flags
;
1399 unsigned long map_start
, map_end
;
1401 pud_t
*pud0
, *pudk
, *pud_start
;
1406 if (!(mdesc
->init_meminfo
))
1409 /* remap kernel code and data */
1410 map_start
= init_mm
.start_code
& PMD_MASK
;
1411 map_end
= ALIGN(init_mm
.brk
, PMD_SIZE
);
1413 /* get a handle on things... */
1414 pgd0
= pgd_offset_k(0);
1415 pud_start
= pud0
= pud_offset(pgd0
, 0);
1416 pmd0
= pmd_offset(pud0
, 0);
1418 pgdk
= pgd_offset_k(map_start
);
1419 pudk
= pud_offset(pgdk
, map_start
);
1420 pmdk
= pmd_offset(pudk
, map_start
);
1422 mdesc
->init_meminfo();
1424 /* Run the patch stub to update the constants */
1425 fixup_pv_table(&__pv_table_begin
,
1426 (&__pv_table_end
- &__pv_table_begin
) << 2);
1429 * Cache cleaning operations for self-modifying code
1430 * We should clean the entries by MVA but running a
1431 * for loop over every pv_table entry pointer would
1432 * just complicate the code.
1434 flush_cache_louis();
1439 * FIXME: This code is not architecturally compliant: we modify
1440 * the mappings in-place, indeed while they are in use by this
1441 * very same code. This may lead to unpredictable behaviour of
1444 * Even modifying the mappings in a separate page table does
1447 * The architecture strongly recommends that when a mapping is
1448 * changed, that it is changed by first going via an invalid
1449 * mapping and back to the new mapping. This is to ensure that
1450 * no TLB conflicts (caused by the TLB having more than one TLB
1451 * entry match a translation) can occur. However, doing that
1452 * here will result in unmapping the code we are running.
1454 pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1455 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1458 * Remap level 1 table. This changes the physical addresses
1459 * used to refer to the level 2 page tables to the high
1460 * physical address alias, leaving everything else the same.
1462 for (i
= 0; i
< PTRS_PER_PGD
; pud0
++, i
++) {
1464 __pud(__pa(pmd0
) | PMD_TYPE_TABLE
| L_PGD_SWAPPER
));
1465 pmd0
+= PTRS_PER_PMD
;
1469 * Remap the level 2 table, pointing the mappings at the high
1470 * physical address alias of these pages.
1472 phys
= __pa(map_start
);
1474 *pmdk
++ = __pmd(phys
| pmdprot
);
1476 } while (phys
< map_end
);
1479 * Ensure that the above updates are flushed out of the cache.
1480 * This is not strictly correct; on a system where the caches
1481 * are coherent with each other, but the MMU page table walks
1482 * may not be coherent, flush_cache_all() may be a no-op, and
1488 * Re-write the TTBR values to point them at the high physical
1489 * alias of the page tables. We expect __va() will work on
1490 * cpu_get_pgd(), which returns the value of TTBR0.
1492 cpu_switch_mm(pgd0
, &init_mm
);
1493 cpu_set_ttbr(1, __pa(pgd0
) + TTBR1_OFFSET
);
1495 /* Finally flush any stale TLB values. */
1496 local_flush_bp_all();
1497 local_flush_tlb_all();
1502 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1503 struct proc_info_list
*procinfo
)
1505 if (mdesc
->init_meminfo
)
1506 mdesc
->init_meminfo();
1512 * paging_init() sets up the page tables, initialises the zone memory
1513 * maps, and sets up the zero page, bad page and bad page tables.
1515 void __init
paging_init(const struct machine_desc
*mdesc
)
1519 build_mem_type_table();
1520 prepare_page_table();
1522 dma_contiguous_remap();
1523 devicemaps_init(mdesc
);
1527 top_pmd
= pmd_off_k(0xffff0000);
1529 /* allocate the zero page. */
1530 zero_page
= early_alloc(PAGE_SIZE
);
1534 empty_zero_page
= virt_to_page(zero_page
);
1535 __flush_dcache_page(NULL
, empty_zero_page
);