3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
44 * The Descriptor Based DMA supports up to 16 channels.
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59 static dbdma_global_t
*dbdma_gptr
=
60 (dbdma_global_t
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
61 static int dbdma_initialized
;
63 static dbdev_tab_t
*dbdev_tab
;
65 static dbdev_tab_t au1550_dbdev_tab
[] __initdata
= {
67 { AU1550_DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
68 { AU1550_DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
69 { AU1550_DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
70 { AU1550_DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
73 { AU1550_DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
74 { AU1550_DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
75 { AU1550_DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
76 { AU1550_DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
79 { AU1550_DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
80 { AU1550_DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
81 { AU1550_DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
82 { AU1550_DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
83 { AU1550_DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
84 { AU1550_DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
87 { AU1550_DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
88 { AU1550_DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
89 { AU1550_DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
90 { AU1550_DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
91 { AU1550_DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
92 { AU1550_DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
93 { AU1550_DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
94 { AU1550_DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
96 { AU1550_DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
97 { AU1550_DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
100 { AU1550_DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
101 { AU1550_DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
104 { AU1550_DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
105 { AU1550_DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
107 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
108 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
111 static dbdev_tab_t au1200_dbdev_tab
[] __initdata
= {
112 { AU1200_DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
113 { AU1200_DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
114 { AU1200_DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
115 { AU1200_DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
117 { AU1200_DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
118 { AU1200_DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
120 { AU1200_DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
121 { AU1200_DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
122 { AU1200_DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
123 { AU1200_DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
125 { AU1200_DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
126 { AU1200_DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
127 { AU1200_DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
128 { AU1200_DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
130 { AU1200_DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
131 { AU1200_DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
133 { AU1200_DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
134 { AU1200_DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
135 { AU1200_DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
136 { AU1200_DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
137 { AU1200_DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
138 { AU1200_DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
140 { AU1200_DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
141 { AU1200_DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
142 { AU1200_DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
143 { AU1200_DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
145 { AU1200_DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
147 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
148 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
151 static dbdev_tab_t au1300_dbdev_tab
[] __initdata
= {
152 { AU1300_DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x10100004, 0, 0 },
153 { AU1300_DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x10100000, 0, 0 },
154 { AU1300_DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x10101004, 0, 0 },
155 { AU1300_DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x10101000, 0, 0 },
156 { AU1300_DSCR_CMD0_UART2_TX
, DEV_FLAGS_OUT
, 0, 8, 0x10102004, 0, 0 },
157 { AU1300_DSCR_CMD0_UART2_RX
, DEV_FLAGS_IN
, 0, 8, 0x10102000, 0, 0 },
158 { AU1300_DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x10103004, 0, 0 },
159 { AU1300_DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x10103000, 0, 0 },
161 { AU1300_DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
162 { AU1300_DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
163 { AU1300_DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 8, 8, 0x10601000, 0, 0 },
164 { AU1300_DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 8, 8, 0x10601004, 0, 0 },
166 { AU1300_DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
167 { AU1300_DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
169 { AU1300_DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x10a0001c, 0, 0 },
170 { AU1300_DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x10a0001c, 0, 0 },
171 { AU1300_DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x10a0101c, 0, 0 },
172 { AU1300_DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x10a0101c, 0, 0 },
173 { AU1300_DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 16, 0x10a0201c, 0, 0 },
174 { AU1300_DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 16, 0x10a0201c, 0, 0 },
175 { AU1300_DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 16, 0x10a0301c, 0, 0 },
176 { AU1300_DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 16, 0x10a0301c, 0, 0 },
178 { AU1300_DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
179 { AU1300_DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
181 { AU1300_DSCR_CMD0_SDMS_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x10602000, 0, 0 },
182 { AU1300_DSCR_CMD0_SDMS_RX2
, DEV_FLAGS_IN
, 4, 8, 0x10602004, 0, 0 },
184 { AU1300_DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
186 { AU1300_DSCR_CMD0_UDMA
, DEV_FLAGS_ANYUSE
, 0, 32, 0x14001810, 0, 0 },
188 { AU1300_DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
189 { AU1300_DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
191 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
192 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
195 /* 32 predefined plus 32 custom */
196 #define DBDEV_TAB_SIZE 64
198 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
200 static dbdev_tab_t
*find_dbdev_id(u32 id
)
204 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
212 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
214 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
216 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
218 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
222 static u16 new_id
= 0x1000;
224 p
= find_dbdev_id(~0);
226 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
227 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
231 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
232 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
238 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
240 void au1xxx_ddma_del_device(u32 devid
)
242 dbdev_tab_t
*p
= find_dbdev_id(devid
);
245 memset(p
, 0, sizeof(dbdev_tab_t
));
249 EXPORT_SYMBOL(au1xxx_ddma_del_device
);
251 /* Allocate a channel and return a non-zero descriptor if successful. */
252 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
253 void (*callback
)(int, void *), void *callparam
)
259 dbdev_tab_t
*stp
, *dtp
;
264 * We do the intialization on the first channel allocation.
265 * We have to wait because of the interrupt handler initialization
266 * which can't be done successfully during board set up.
268 if (!dbdma_initialized
)
271 stp
= find_dbdev_id(srcid
);
274 dtp
= find_dbdev_id(destid
);
280 /* Check to see if we can get both channels. */
281 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
282 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
283 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
285 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
286 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
287 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
288 /* Got destination */
289 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
291 /* Can't get dest. Release src. */
292 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
297 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
302 /* Let's see if we can allocate a channel for it. */
305 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
306 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
307 if (chan_tab_ptr
[i
] == NULL
) {
309 * If kmalloc fails, it is caught below same
310 * as a channel not available.
312 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
313 chan_tab_ptr
[i
] = ctp
;
316 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
319 memset(ctp
, 0, sizeof(chan_tab_t
));
320 ctp
->chan_index
= chan
= i
;
321 dcp
= KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
322 dcp
+= (0x0100 * chan
);
323 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
324 cp
= (au1x_dma_chan_t
*)dcp
;
326 ctp
->chan_dest
= dtp
;
327 ctp
->chan_callback
= callback
;
328 ctp
->chan_callparam
= callparam
;
330 /* Initialize channel configuration. */
332 if (stp
->dev_intlevel
)
334 if (stp
->dev_intpolarity
)
336 if (dtp
->dev_intlevel
)
338 if (dtp
->dev_intpolarity
)
340 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
341 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
344 wmb(); /* drain writebuffer */
347 * Return a non-zero value that can be used to find the channel
348 * information in subsequent operations.
350 return (u32
)(&chan_tab_ptr
[chan
]);
353 /* Release devices */
354 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
355 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
359 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
362 * Set the device width if source or destination is a FIFO.
363 * Should be 8, 16, or 32 bits.
365 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
369 dbdev_tab_t
*stp
, *dtp
;
371 ctp
= *((chan_tab_t
**)chanid
);
373 dtp
= ctp
->chan_dest
;
376 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
377 rv
= stp
->dev_devwidth
;
378 stp
->dev_devwidth
= bits
;
380 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
381 rv
= dtp
->dev_devwidth
;
382 dtp
->dev_devwidth
= bits
;
387 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
389 /* Allocate a descriptor ring, initializing as much as possible. */
390 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
393 u32 desc_base
, srcid
, destid
;
394 u32 cmd0
, cmd1
, src1
, dest1
;
397 dbdev_tab_t
*stp
, *dtp
;
398 au1x_ddma_desc_t
*dp
;
401 * I guess we could check this to be within the
402 * range of the table......
404 ctp
= *((chan_tab_t
**)chanid
);
406 dtp
= ctp
->chan_dest
;
409 * The descriptors must be 32-byte aligned. There is a
410 * possibility the allocation will give us such an address,
411 * and if we try that first we are likely to not waste larger
414 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
419 if (desc_base
& 0x1f) {
421 * Lost....do it again, allocate extra, and round
424 kfree((const void *)desc_base
);
425 i
= entries
* sizeof(au1x_ddma_desc_t
);
426 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
427 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
431 ctp
->cdb_membase
= desc_base
;
432 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
434 ctp
->cdb_membase
= desc_base
;
436 dp
= (au1x_ddma_desc_t
*)desc_base
;
438 /* Keep track of the base descriptor. */
439 ctp
->chan_desc_base
= dp
;
441 /* Initialize the rings with as much information as we know. */
443 destid
= dtp
->dev_id
;
445 cmd0
= cmd1
= src1
= dest1
= 0;
448 cmd0
|= DSCR_CMD0_SID(srcid
);
449 cmd0
|= DSCR_CMD0_DID(destid
);
450 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
451 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
453 /* Is it mem to mem transfer? */
454 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
455 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
456 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
457 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
458 cmd0
|= DSCR_CMD0_MEM
;
460 switch (stp
->dev_devwidth
) {
462 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
465 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
469 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
473 switch (dtp
->dev_devwidth
) {
475 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
478 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
482 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
487 * If the device is marked as an in/out FIFO, ensure it is
490 if (stp
->dev_flags
& DEV_FLAGS_IN
)
491 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
492 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
493 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
496 * Set up source1. For now, assume no stride and increment.
497 * A channel attribute update can change this later.
499 switch (stp
->dev_tsize
) {
501 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
504 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
507 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
511 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
515 /* If source input is FIFO, set static address. */
516 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
517 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
518 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
520 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
523 if (stp
->dev_physaddr
)
524 src0
= stp
->dev_physaddr
;
527 * Set up dest1. For now, assume no stride and increment.
528 * A channel attribute update can change this later.
530 switch (dtp
->dev_tsize
) {
532 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
535 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
538 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
542 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
546 /* If destination output is FIFO, set static address. */
547 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
548 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
549 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
551 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
554 if (dtp
->dev_physaddr
)
555 dest0
= dtp
->dev_physaddr
;
558 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
559 "source1:%x dest0:%x dest1:%x\n",
560 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
563 for (i
= 0; i
< entries
; i
++) {
564 dp
->dscr_cmd0
= cmd0
;
565 dp
->dscr_cmd1
= cmd1
;
566 dp
->dscr_source0
= src0
;
567 dp
->dscr_source1
= src1
;
568 dp
->dscr_dest0
= dest0
;
569 dp
->dscr_dest1
= dest1
;
573 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
577 /* Make last descrptor point to the first. */
579 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
580 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
582 return (u32
)ctp
->chan_desc_base
;
584 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
587 * Put a source buffer into the DMA ring.
588 * This updates the source pointer and byte count. Normally used
589 * for memory to fifo transfers.
591 u32
au1xxx_dbdma_put_source(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
594 au1x_ddma_desc_t
*dp
;
597 * I guess we could check this to be within the
598 * range of the table......
600 ctp
= *(chan_tab_t
**)chanid
;
603 * We should have multiple callers for a particular channel,
604 * an interrupt doesn't affect this pointer nor the descriptor,
605 * so no locking should be needed.
610 * If the descriptor is valid, we are way ahead of the DMA
611 * engine, so just return an error condition.
613 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
616 /* Load up buffer address and byte count. */
617 dp
->dscr_source0
= buf
& ~0UL;
618 dp
->dscr_cmd1
= nbytes
;
620 if (flags
& DDMA_FLAGS_IE
)
621 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
622 if (flags
& DDMA_FLAGS_NOIE
)
623 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
626 * There is an errata on the Au1200/Au1550 parts that could result
627 * in "stale" data being DMA'ed. It has to do with the snoop logic on
628 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
629 * these parts. If it is fixed in the future, these dma_cache_inv will
630 * just be nothing more than empty macros. See io.h.
632 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
633 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
634 wmb(); /* drain writebuffer */
635 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
636 ctp
->chan_ptr
->ddma_dbell
= 0;
638 /* Get next descriptor pointer. */
639 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
641 /* Return something non-zero. */
644 EXPORT_SYMBOL(au1xxx_dbdma_put_source
);
646 /* Put a destination buffer into the DMA ring.
647 * This updates the destination pointer and byte count. Normally used
648 * to place an empty buffer into the ring for fifo to memory transfers.
650 u32
au1xxx_dbdma_put_dest(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
653 au1x_ddma_desc_t
*dp
;
655 /* I guess we could check this to be within the
656 * range of the table......
658 ctp
= *((chan_tab_t
**)chanid
);
660 /* We should have multiple callers for a particular channel,
661 * an interrupt doesn't affect this pointer nor the descriptor,
662 * so no locking should be needed.
666 /* If the descriptor is valid, we are way ahead of the DMA
667 * engine, so just return an error condition.
669 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
672 /* Load up buffer address and byte count */
675 if (flags
& DDMA_FLAGS_IE
)
676 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
677 if (flags
& DDMA_FLAGS_NOIE
)
678 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
680 dp
->dscr_dest0
= buf
& ~0UL;
681 dp
->dscr_cmd1
= nbytes
;
683 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
684 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
685 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
688 * There is an errata on the Au1200/Au1550 parts that could result in
689 * "stale" data being DMA'ed. It has to do with the snoop logic on the
690 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
691 * parts. If it is fixed in the future, these dma_cache_inv will just
692 * be nothing more than empty macros. See io.h.
694 dma_cache_inv((unsigned long)buf
, nbytes
);
695 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
696 wmb(); /* drain writebuffer */
697 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
698 ctp
->chan_ptr
->ddma_dbell
= 0;
700 /* Get next descriptor pointer. */
701 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
703 /* Return something non-zero. */
706 EXPORT_SYMBOL(au1xxx_dbdma_put_dest
);
709 * Get a destination buffer into the DMA ring.
710 * Normally used to get a full buffer from the ring during fifo
711 * to memory transfers. This does not set the valid bit, you will
712 * have to put another destination buffer to keep the DMA going.
714 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
717 au1x_ddma_desc_t
*dp
;
721 * I guess we could check this to be within the
722 * range of the table......
724 ctp
= *((chan_tab_t
**)chanid
);
727 * We should have multiple callers for a particular channel,
728 * an interrupt doesn't affect this pointer nor the descriptor,
729 * so no locking should be needed.
734 * If the descriptor is valid, we are way ahead of the DMA
735 * engine, so just return an error condition.
737 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
740 /* Return buffer address and byte count. */
741 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
742 *nbytes
= dp
->dscr_cmd1
;
745 /* Get next descriptor pointer. */
746 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
748 /* Return something non-zero. */
751 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
753 void au1xxx_dbdma_stop(u32 chanid
)
757 int halt_timeout
= 0;
759 ctp
= *((chan_tab_t
**)chanid
);
762 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
763 wmb(); /* drain writebuffer */
764 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
767 if (halt_timeout
> 100) {
768 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
772 /* clear current desc valid and doorbell */
773 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
774 wmb(); /* drain writebuffer */
776 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
779 * Start using the current descriptor pointer. If the DBDMA encounters
780 * a non-valid descriptor, it will stop. In this case, we can just
781 * continue by adding a buffer to the list and starting again.
783 void au1xxx_dbdma_start(u32 chanid
)
788 ctp
= *((chan_tab_t
**)chanid
);
790 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
791 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
792 wmb(); /* drain writebuffer */
794 wmb(); /* drain writebuffer */
796 EXPORT_SYMBOL(au1xxx_dbdma_start
);
798 void au1xxx_dbdma_reset(u32 chanid
)
801 au1x_ddma_desc_t
*dp
;
803 au1xxx_dbdma_stop(chanid
);
805 ctp
= *((chan_tab_t
**)chanid
);
806 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
808 /* Run through the descriptors and reset the valid indicator. */
809 dp
= ctp
->chan_desc_base
;
812 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
814 * Reset our software status -- this is used to determine
815 * if a descriptor is in use by upper level software. Since
816 * posting can reset 'V' bit.
819 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
820 } while (dp
!= ctp
->chan_desc_base
);
822 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
824 u32
au1xxx_get_dma_residue(u32 chanid
)
830 ctp
= *((chan_tab_t
**)chanid
);
833 /* This is only valid if the channel is stopped. */
834 rv
= cp
->ddma_bytecnt
;
835 wmb(); /* drain writebuffer */
839 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
841 void au1xxx_dbdma_chan_free(u32 chanid
)
844 dbdev_tab_t
*stp
, *dtp
;
846 ctp
= *((chan_tab_t
**)chanid
);
848 dtp
= ctp
->chan_dest
;
850 au1xxx_dbdma_stop(chanid
);
852 kfree((void *)ctp
->cdb_membase
);
854 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
855 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
856 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
860 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
862 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
867 au1x_ddma_desc_t
*dp
;
870 intstat
= dbdma_gptr
->ddma_intstat
;
871 wmb(); /* drain writebuffer */
872 chan_index
= __ffs(intstat
);
874 ctp
= chan_tab_ptr
[chan_index
];
878 /* Reset interrupt. */
880 wmb(); /* drain writebuffer */
882 if (ctp
->chan_callback
)
883 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
885 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
886 return IRQ_RETVAL(1);
889 void au1xxx_dbdma_dump(u32 chanid
)
892 au1x_ddma_desc_t
*dp
;
893 dbdev_tab_t
*stp
, *dtp
;
897 ctp
= *((chan_tab_t
**)chanid
);
899 dtp
= ctp
->chan_dest
;
902 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
903 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
905 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
906 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
907 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
909 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
910 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
911 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
912 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
913 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
916 /* Run through the descriptors */
917 dp
= ctp
->chan_desc_base
;
920 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
921 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
922 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
923 dp
->dscr_source0
, dp
->dscr_source1
,
924 dp
->dscr_dest0
, dp
->dscr_dest1
);
925 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
926 dp
->dscr_stat
, dp
->dscr_nxtptr
);
927 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
928 } while (dp
!= ctp
->chan_desc_base
);
931 /* Put a descriptor into the DMA ring.
932 * This updates the source/destination pointers and byte count.
934 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
937 au1x_ddma_desc_t
*dp
;
941 * I guess we could check this to be within the
942 * range of the table......
944 ctp
= *((chan_tab_t
**)chanid
);
947 * We should have multiple callers for a particular channel,
948 * an interrupt doesn't affect this pointer nor the descriptor,
949 * so no locking should be needed.
954 * If the descriptor is valid, we are way ahead of the DMA
955 * engine, so just return an error condition.
957 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
960 /* Load up buffer addresses and byte count. */
961 dp
->dscr_dest0
= dscr
->dscr_dest0
;
962 dp
->dscr_source0
= dscr
->dscr_source0
;
963 dp
->dscr_dest1
= dscr
->dscr_dest1
;
964 dp
->dscr_source1
= dscr
->dscr_source1
;
965 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
966 nbytes
= dscr
->dscr_cmd1
;
967 /* Allow the caller to specifiy if an interrupt is generated */
968 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
969 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
970 ctp
->chan_ptr
->ddma_dbell
= 0;
972 /* Get next descriptor pointer. */
973 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
975 /* Return something non-zero. */
980 static unsigned long alchemy_dbdma_pm_data
[NUM_DBDMA_CHANS
+ 1][6];
982 static int alchemy_dbdma_suspend(void)
987 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
988 alchemy_dbdma_pm_data
[0][0] = __raw_readl(addr
+ 0x00);
989 alchemy_dbdma_pm_data
[0][1] = __raw_readl(addr
+ 0x04);
990 alchemy_dbdma_pm_data
[0][2] = __raw_readl(addr
+ 0x08);
991 alchemy_dbdma_pm_data
[0][3] = __raw_readl(addr
+ 0x0c);
993 /* save channel configurations */
994 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
995 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
996 alchemy_dbdma_pm_data
[i
][0] = __raw_readl(addr
+ 0x00);
997 alchemy_dbdma_pm_data
[i
][1] = __raw_readl(addr
+ 0x04);
998 alchemy_dbdma_pm_data
[i
][2] = __raw_readl(addr
+ 0x08);
999 alchemy_dbdma_pm_data
[i
][3] = __raw_readl(addr
+ 0x0c);
1000 alchemy_dbdma_pm_data
[i
][4] = __raw_readl(addr
+ 0x10);
1001 alchemy_dbdma_pm_data
[i
][5] = __raw_readl(addr
+ 0x14);
1004 __raw_writel(alchemy_dbdma_pm_data
[i
][0] & ~1, addr
+ 0x00);
1006 while (!(__raw_readl(addr
+ 0x14) & 1))
1009 addr
+= 0x100; /* next channel base */
1011 /* disable channel interrupts */
1012 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
1013 __raw_writel(0, addr
+ 0x0c);
1019 static void alchemy_dbdma_resume(void)
1024 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
1025 __raw_writel(alchemy_dbdma_pm_data
[0][0], addr
+ 0x00);
1026 __raw_writel(alchemy_dbdma_pm_data
[0][1], addr
+ 0x04);
1027 __raw_writel(alchemy_dbdma_pm_data
[0][2], addr
+ 0x08);
1028 __raw_writel(alchemy_dbdma_pm_data
[0][3], addr
+ 0x0c);
1030 /* restore channel configurations */
1031 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
1032 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
1033 __raw_writel(alchemy_dbdma_pm_data
[i
][0], addr
+ 0x00);
1034 __raw_writel(alchemy_dbdma_pm_data
[i
][1], addr
+ 0x04);
1035 __raw_writel(alchemy_dbdma_pm_data
[i
][2], addr
+ 0x08);
1036 __raw_writel(alchemy_dbdma_pm_data
[i
][3], addr
+ 0x0c);
1037 __raw_writel(alchemy_dbdma_pm_data
[i
][4], addr
+ 0x10);
1038 __raw_writel(alchemy_dbdma_pm_data
[i
][5], addr
+ 0x14);
1040 addr
+= 0x100; /* next channel base */
1044 static struct syscore_ops alchemy_dbdma_syscore_ops
= {
1045 .suspend
= alchemy_dbdma_suspend
,
1046 .resume
= alchemy_dbdma_resume
,
1049 static int __init
dbdma_setup(unsigned int irq
, dbdev_tab_t
*idtable
)
1053 dbdev_tab
= kzalloc(sizeof(dbdev_tab_t
) * DBDEV_TAB_SIZE
, GFP_KERNEL
);
1057 memcpy(dbdev_tab
, idtable
, 32 * sizeof(dbdev_tab_t
));
1058 for (ret
= 32; ret
< DBDEV_TAB_SIZE
; ret
++)
1059 dbdev_tab
[ret
].dev_id
= ~0;
1061 dbdma_gptr
->ddma_config
= 0;
1062 dbdma_gptr
->ddma_throttle
= 0;
1063 dbdma_gptr
->ddma_inten
= 0xffff;
1064 wmb(); /* drain writebuffer */
1066 ret
= request_irq(irq
, dbdma_interrupt
, 0, "dbdma", (void *)dbdma_gptr
);
1068 printk(KERN_ERR
"Cannot grab DBDMA interrupt!\n");
1070 dbdma_initialized
= 1;
1071 register_syscore_ops(&alchemy_dbdma_syscore_ops
);
1077 static int __init
alchemy_dbdma_init(void)
1079 switch (alchemy_get_cputype()) {
1080 case ALCHEMY_CPU_AU1550
:
1081 return dbdma_setup(AU1550_DDMA_INT
, au1550_dbdev_tab
);
1082 case ALCHEMY_CPU_AU1200
:
1083 return dbdma_setup(AU1200_DDMA_INT
, au1200_dbdev_tab
);
1084 case ALCHEMY_CPU_AU1300
:
1085 return dbdma_setup(AU1300_DDMA_INT
, au1300_dbdev_tab
);
1089 subsys_initcall(alchemy_dbdma_init
);