Linux 4.1.18
[linux/fpc-iii.git] / arch / mips / oprofile / op_model_mipsxx.c
blob6a6e2cc55b8926975fb17f9f54649a0a634018c5
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004, 05, 06 by Ralf Baechle
7 * Copyright (C) 2005 by MIPS Technologies, Inc.
8 */
9 #include <linux/cpumask.h>
10 #include <linux/oprofile.h>
11 #include <linux/interrupt.h>
12 #include <linux/smp.h>
13 #include <asm/irq_regs.h>
14 #include <asm/time.h>
16 #include "op_impl.h"
18 #define M_PERFCTL_EXL (1UL << 0)
19 #define M_PERFCTL_KERNEL (1UL << 1)
20 #define M_PERFCTL_SUPERVISOR (1UL << 2)
21 #define M_PERFCTL_USER (1UL << 3)
22 #define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4)
23 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
24 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
25 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
26 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
27 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
28 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
29 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
30 #define M_PERFCTL_WIDE (1UL << 30)
31 #define M_PERFCTL_MORE (1UL << 31)
33 #define M_COUNTER_OVERFLOW (1UL << 31)
35 /* Netlogic XLR specific, count events in all threads in a core */
36 #define M_PERFCTL_COUNT_ALL_THREADS (1UL << 13)
38 static int (*save_perf_irq)(void);
39 static int perfcount_irq;
42 * XLR has only one set of counters per core. Designate the
43 * first hardware thread in the core for setup and init.
44 * Skip CPUs with non-zero hardware thread id (4 hwt per core)
46 #if defined(CONFIG_CPU_XLR) && defined(CONFIG_SMP)
47 #define oprofile_skip_cpu(c) ((cpu_logical_map(c) & 0x3) != 0)
48 #else
49 #define oprofile_skip_cpu(c) 0
50 #endif
52 #ifdef CONFIG_MIPS_MT_SMP
53 static int cpu_has_mipsmt_pertccounters;
54 #define WHAT (M_TC_EN_VPE | \
55 M_PERFCTL_VPEID(cpu_data[smp_processor_id()].vpe_id))
56 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
57 0 : cpu_data[smp_processor_id()].vpe_id)
60 * The number of bits to shift to convert between counters per core and
61 * counters per VPE. There is no reasonable interface atm to obtain the
62 * number of VPEs used by Linux and in the 34K this number is fixed to two
63 * anyways so we hardcore a few things here for the moment. The way it's
64 * done here will ensure that oprofile VSMP kernel will run right on a lesser
65 * core like a 24K also or with maxcpus=1.
67 static inline unsigned int vpe_shift(void)
69 if (num_possible_cpus() > 1)
70 return 1;
72 return 0;
75 #else
77 #define WHAT 0
78 #define vpe_id() 0
80 static inline unsigned int vpe_shift(void)
82 return 0;
85 #endif
87 static inline unsigned int counters_total_to_per_cpu(unsigned int counters)
89 return counters >> vpe_shift();
92 static inline unsigned int counters_per_cpu_to_total(unsigned int counters)
94 return counters << vpe_shift();
97 #define __define_perf_accessors(r, n, np) \
99 static inline unsigned int r_c0_ ## r ## n(void) \
101 unsigned int cpu = vpe_id(); \
103 switch (cpu) { \
104 case 0: \
105 return read_c0_ ## r ## n(); \
106 case 1: \
107 return read_c0_ ## r ## np(); \
108 default: \
109 BUG(); \
111 return 0; \
114 static inline void w_c0_ ## r ## n(unsigned int value) \
116 unsigned int cpu = vpe_id(); \
118 switch (cpu) { \
119 case 0: \
120 write_c0_ ## r ## n(value); \
121 return; \
122 case 1: \
123 write_c0_ ## r ## np(value); \
124 return; \
125 default: \
126 BUG(); \
128 return; \
131 __define_perf_accessors(perfcntr, 0, 2)
132 __define_perf_accessors(perfcntr, 1, 3)
133 __define_perf_accessors(perfcntr, 2, 0)
134 __define_perf_accessors(perfcntr, 3, 1)
136 __define_perf_accessors(perfctrl, 0, 2)
137 __define_perf_accessors(perfctrl, 1, 3)
138 __define_perf_accessors(perfctrl, 2, 0)
139 __define_perf_accessors(perfctrl, 3, 1)
141 struct op_mips_model op_model_mipsxx_ops;
143 static struct mipsxx_register_config {
144 unsigned int control[4];
145 unsigned int counter[4];
146 } reg;
148 /* Compute all of the registers in preparation for enabling profiling. */
150 static void mipsxx_reg_setup(struct op_counter_config *ctr)
152 unsigned int counters = op_model_mipsxx_ops.num_counters;
153 int i;
155 /* Compute the performance counter control word. */
156 for (i = 0; i < counters; i++) {
157 reg.control[i] = 0;
158 reg.counter[i] = 0;
160 if (!ctr[i].enabled)
161 continue;
163 reg.control[i] = M_PERFCTL_EVENT(ctr[i].event) |
164 M_PERFCTL_INTERRUPT_ENABLE;
165 if (ctr[i].kernel)
166 reg.control[i] |= M_PERFCTL_KERNEL;
167 if (ctr[i].user)
168 reg.control[i] |= M_PERFCTL_USER;
169 if (ctr[i].exl)
170 reg.control[i] |= M_PERFCTL_EXL;
171 if (boot_cpu_type() == CPU_XLR)
172 reg.control[i] |= M_PERFCTL_COUNT_ALL_THREADS;
173 reg.counter[i] = 0x80000000 - ctr[i].count;
177 /* Program all of the registers in preparation for enabling profiling. */
179 static void mipsxx_cpu_setup(void *args)
181 unsigned int counters = op_model_mipsxx_ops.num_counters;
183 if (oprofile_skip_cpu(smp_processor_id()))
184 return;
186 switch (counters) {
187 case 4:
188 w_c0_perfctrl3(0);
189 w_c0_perfcntr3(reg.counter[3]);
190 case 3:
191 w_c0_perfctrl2(0);
192 w_c0_perfcntr2(reg.counter[2]);
193 case 2:
194 w_c0_perfctrl1(0);
195 w_c0_perfcntr1(reg.counter[1]);
196 case 1:
197 w_c0_perfctrl0(0);
198 w_c0_perfcntr0(reg.counter[0]);
202 /* Start all counters on current CPU */
203 static void mipsxx_cpu_start(void *args)
205 unsigned int counters = op_model_mipsxx_ops.num_counters;
207 if (oprofile_skip_cpu(smp_processor_id()))
208 return;
210 switch (counters) {
211 case 4:
212 w_c0_perfctrl3(WHAT | reg.control[3]);
213 case 3:
214 w_c0_perfctrl2(WHAT | reg.control[2]);
215 case 2:
216 w_c0_perfctrl1(WHAT | reg.control[1]);
217 case 1:
218 w_c0_perfctrl0(WHAT | reg.control[0]);
222 /* Stop all counters on current CPU */
223 static void mipsxx_cpu_stop(void *args)
225 unsigned int counters = op_model_mipsxx_ops.num_counters;
227 if (oprofile_skip_cpu(smp_processor_id()))
228 return;
230 switch (counters) {
231 case 4:
232 w_c0_perfctrl3(0);
233 case 3:
234 w_c0_perfctrl2(0);
235 case 2:
236 w_c0_perfctrl1(0);
237 case 1:
238 w_c0_perfctrl0(0);
242 static int mipsxx_perfcount_handler(void)
244 unsigned int counters = op_model_mipsxx_ops.num_counters;
245 unsigned int control;
246 unsigned int counter;
247 int handled = IRQ_NONE;
249 if (cpu_has_mips_r2 && !(read_c0_cause() & CAUSEF_PCI))
250 return handled;
252 switch (counters) {
253 #define HANDLE_COUNTER(n) \
254 case n + 1: \
255 control = r_c0_perfctrl ## n(); \
256 counter = r_c0_perfcntr ## n(); \
257 if ((control & M_PERFCTL_INTERRUPT_ENABLE) && \
258 (counter & M_COUNTER_OVERFLOW)) { \
259 oprofile_add_sample(get_irq_regs(), n); \
260 w_c0_perfcntr ## n(reg.counter[n]); \
261 handled = IRQ_HANDLED; \
263 HANDLE_COUNTER(3)
264 HANDLE_COUNTER(2)
265 HANDLE_COUNTER(1)
266 HANDLE_COUNTER(0)
269 return handled;
272 #define M_CONFIG1_PC (1 << 4)
274 static inline int __n_counters(void)
276 if (!(read_c0_config1() & M_CONFIG1_PC))
277 return 0;
278 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
279 return 1;
280 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
281 return 2;
282 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
283 return 3;
285 return 4;
288 static inline int n_counters(void)
290 int counters;
292 switch (current_cpu_type()) {
293 case CPU_R10000:
294 counters = 2;
295 break;
297 case CPU_R12000:
298 case CPU_R14000:
299 case CPU_R16000:
300 counters = 4;
301 break;
303 default:
304 counters = __n_counters();
307 return counters;
310 static void reset_counters(void *arg)
312 int counters = (int)(long)arg;
313 switch (counters) {
314 case 4:
315 w_c0_perfctrl3(0);
316 w_c0_perfcntr3(0);
317 case 3:
318 w_c0_perfctrl2(0);
319 w_c0_perfcntr2(0);
320 case 2:
321 w_c0_perfctrl1(0);
322 w_c0_perfcntr1(0);
323 case 1:
324 w_c0_perfctrl0(0);
325 w_c0_perfcntr0(0);
329 static irqreturn_t mipsxx_perfcount_int(int irq, void *dev_id)
331 return mipsxx_perfcount_handler();
334 static int __init mipsxx_init(void)
336 int counters;
338 counters = n_counters();
339 if (counters == 0) {
340 printk(KERN_ERR "Oprofile: CPU has no performance counters\n");
341 return -ENODEV;
344 #ifdef CONFIG_MIPS_MT_SMP
345 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
346 if (!cpu_has_mipsmt_pertccounters)
347 counters = counters_total_to_per_cpu(counters);
348 #endif
349 on_each_cpu(reset_counters, (void *)(long)counters, 1);
351 op_model_mipsxx_ops.num_counters = counters;
352 switch (current_cpu_type()) {
353 case CPU_M14KC:
354 op_model_mipsxx_ops.cpu_type = "mips/M14Kc";
355 break;
357 case CPU_M14KEC:
358 op_model_mipsxx_ops.cpu_type = "mips/M14KEc";
359 break;
361 case CPU_20KC:
362 op_model_mipsxx_ops.cpu_type = "mips/20K";
363 break;
365 case CPU_24K:
366 op_model_mipsxx_ops.cpu_type = "mips/24K";
367 break;
369 case CPU_25KF:
370 op_model_mipsxx_ops.cpu_type = "mips/25K";
371 break;
373 case CPU_1004K:
374 case CPU_34K:
375 op_model_mipsxx_ops.cpu_type = "mips/34K";
376 break;
378 case CPU_1074K:
379 case CPU_74K:
380 op_model_mipsxx_ops.cpu_type = "mips/74K";
381 break;
383 case CPU_INTERAPTIV:
384 op_model_mipsxx_ops.cpu_type = "mips/interAptiv";
385 break;
387 case CPU_PROAPTIV:
388 op_model_mipsxx_ops.cpu_type = "mips/proAptiv";
389 break;
391 case CPU_P5600:
392 op_model_mipsxx_ops.cpu_type = "mips/P5600";
393 break;
395 case CPU_M5150:
396 op_model_mipsxx_ops.cpu_type = "mips/M5150";
397 break;
399 case CPU_5KC:
400 op_model_mipsxx_ops.cpu_type = "mips/5K";
401 break;
403 case CPU_R10000:
404 if ((current_cpu_data.processor_id & 0xff) == 0x20)
405 op_model_mipsxx_ops.cpu_type = "mips/r10000-v2.x";
406 else
407 op_model_mipsxx_ops.cpu_type = "mips/r10000";
408 break;
410 case CPU_R12000:
411 case CPU_R14000:
412 op_model_mipsxx_ops.cpu_type = "mips/r12000";
413 break;
415 case CPU_R16000:
416 op_model_mipsxx_ops.cpu_type = "mips/r16000";
417 break;
419 case CPU_SB1:
420 case CPU_SB1A:
421 op_model_mipsxx_ops.cpu_type = "mips/sb1";
422 break;
424 case CPU_LOONGSON1:
425 op_model_mipsxx_ops.cpu_type = "mips/loongson1";
426 break;
428 case CPU_XLR:
429 op_model_mipsxx_ops.cpu_type = "mips/xlr";
430 break;
432 default:
433 printk(KERN_ERR "Profiling unsupported for this CPU\n");
435 return -ENODEV;
438 save_perf_irq = perf_irq;
439 perf_irq = mipsxx_perfcount_handler;
441 if (get_c0_perfcount_int)
442 perfcount_irq = get_c0_perfcount_int();
443 else if (cp0_perfcount_irq >= 0)
444 perfcount_irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
445 else
446 perfcount_irq = -1;
448 if (perfcount_irq >= 0)
449 return request_irq(perfcount_irq, mipsxx_perfcount_int,
450 IRQF_PERCPU | IRQF_NOBALANCING |
451 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
452 IRQF_SHARED,
453 "Perfcounter", save_perf_irq);
455 return 0;
458 static void mipsxx_exit(void)
460 int counters = op_model_mipsxx_ops.num_counters;
462 if (perfcount_irq >= 0)
463 free_irq(perfcount_irq, save_perf_irq);
465 counters = counters_per_cpu_to_total(counters);
466 on_each_cpu(reset_counters, (void *)(long)counters, 1);
468 perf_irq = save_perf_irq;
471 struct op_mips_model op_model_mipsxx_ops = {
472 .reg_setup = mipsxx_reg_setup,
473 .cpu_setup = mipsxx_cpu_setup,
474 .init = mipsxx_init,
475 .exit = mipsxx_exit,
476 .cpu_start = mipsxx_cpu_start,
477 .cpu_stop = mipsxx_cpu_stop,