2 * Copyright (c) 2003-2012 Broadcom Corporation
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/msi.h>
41 #include <linux/irq.h>
42 #include <linux/irqdesc.h>
43 #include <linux/console.h>
47 #include <asm/netlogic/interrupt.h>
48 #include <asm/netlogic/haldefs.h>
49 #include <asm/netlogic/common.h>
50 #include <asm/netlogic/mips-extns.h>
52 #include <asm/netlogic/xlp-hal/iomap.h>
53 #include <asm/netlogic/xlp-hal/xlp.h>
54 #include <asm/netlogic/xlp-hal/pic.h>
55 #include <asm/netlogic/xlp-hal/pcibus.h>
56 #include <asm/netlogic/xlp-hal/bridge.h>
58 #define XLP_MSIVEC_PER_LINK 32
59 #define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32)
60 #define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8)
62 /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
63 static inline int nlm_link_msiirq(int link
, int msivec
)
65 return NLM_MSI_VEC_BASE
+ link
* XLP_MSIVEC_PER_LINK
+ msivec
;
68 /* get the link MSI vector from irq number */
69 static inline int nlm_irq_msivec(int irq
)
71 return (irq
- NLM_MSI_VEC_BASE
) % XLP_MSIVEC_PER_LINK
;
74 /* get the link from the irq number */
75 static inline int nlm_irq_msilink(int irq
)
77 int total_msivec
= XLP_MSIVEC_PER_LINK
* PCIE_NLINKS
;
79 return ((irq
- NLM_MSI_VEC_BASE
) % total_msivec
) /
84 * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
85 * there are only 32 PIC interrupts for MSI. We split them statically
86 * and use 8 MSI-X vectors per link - this keeps the allocation and
88 * On XLP 9xx, there are 32 vectors per link, and the interrupts are
89 * not routed thru PIC, so we can use all 128 MSI-X vectors.
91 static inline int nlm_link_msixirq(int link
, int bit
)
93 return NLM_MSIX_VEC_BASE
+ link
* XLP_MSIXVEC_PER_LINK
+ bit
;
96 /* get the link MSI vector from irq number */
97 static inline int nlm_irq_msixvec(int irq
)
99 return (irq
- NLM_MSIX_VEC_BASE
) % XLP_MSIXVEC_TOTAL
;
102 /* get the link from MSIX vec */
103 static inline int nlm_irq_msixlink(int msixvec
)
105 return msixvec
/ XLP_MSIXVEC_PER_LINK
;
109 * Per link MSI and MSI-X information, set as IRQ handler data for
110 * MSI and MSI-X interrupts.
112 struct xlp_msi_data
{
113 struct nlm_soc_info
*node
;
115 uint32_t msi_enabled_mask
;
116 uint32_t msi_alloc_mask
;
117 uint32_t msix_alloc_mask
;
122 * MSI Chip definitions
124 * On XLP, there is a PIC interrupt associated with each PCIe link on the
125 * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
126 * per link and 128 overall.
128 * When a device connected to the link raises a MSI interrupt, we get a
129 * link interrupt and we then have to look at PCIE_MSI_STATUS register at
130 * the bridge to map it to the IRQ
132 static void xlp_msi_enable(struct irq_data
*d
)
134 struct xlp_msi_data
*md
= irq_data_get_irq_handler_data(d
);
138 vec
= nlm_irq_msivec(d
->irq
);
139 spin_lock_irqsave(&md
->msi_lock
, flags
);
140 md
->msi_enabled_mask
|= 1u << vec
;
142 nlm_write_reg(md
->lnkbase
, PCIE_9XX_MSI_EN
,
143 md
->msi_enabled_mask
);
145 nlm_write_reg(md
->lnkbase
, PCIE_MSI_EN
, md
->msi_enabled_mask
);
146 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
149 static void xlp_msi_disable(struct irq_data
*d
)
151 struct xlp_msi_data
*md
= irq_data_get_irq_handler_data(d
);
155 vec
= nlm_irq_msivec(d
->irq
);
156 spin_lock_irqsave(&md
->msi_lock
, flags
);
157 md
->msi_enabled_mask
&= ~(1u << vec
);
159 nlm_write_reg(md
->lnkbase
, PCIE_9XX_MSI_EN
,
160 md
->msi_enabled_mask
);
162 nlm_write_reg(md
->lnkbase
, PCIE_MSI_EN
, md
->msi_enabled_mask
);
163 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
166 static void xlp_msi_mask_ack(struct irq_data
*d
)
168 struct xlp_msi_data
*md
= irq_data_get_irq_handler_data(d
);
171 link
= nlm_irq_msilink(d
->irq
);
172 vec
= nlm_irq_msivec(d
->irq
);
175 /* Ack MSI on bridge */
177 nlm_write_reg(md
->lnkbase
, PCIE_9XX_MSI_STATUS
, 1u << vec
);
179 nlm_write_reg(md
->lnkbase
, PCIE_MSI_STATUS
, 1u << vec
);
183 static struct irq_chip xlp_msi_chip
= {
185 .irq_enable
= xlp_msi_enable
,
186 .irq_disable
= xlp_msi_disable
,
187 .irq_mask_ack
= xlp_msi_mask_ack
,
188 .irq_unmask
= xlp_msi_enable
,
192 * XLP8XX/4XX/3XX/2XX:
193 * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
194 * interrupts generated by the PIC and each of these correspond to a MSI-X
195 * vector (0-31) that can be assigned.
197 * We divide the MSI-X vectors to 8 per link and do a per-link allocation
200 * 32 MSI-X vectors are available per link, and the interrupts are not routed
201 * thru the PIC. PIC ack not needed.
203 * Enable and disable done using standard MSI functions.
205 static void xlp_msix_mask_ack(struct irq_data
*d
)
207 struct xlp_msi_data
*md
;
209 uint32_t status_reg
, bit
;
211 msixvec
= nlm_irq_msixvec(d
->irq
);
212 link
= nlm_irq_msixlink(msixvec
);
214 md
= irq_data_get_irq_handler_data(d
);
216 /* Ack MSI on bridge */
217 if (cpu_is_xlp9xx()) {
218 status_reg
= PCIE_9XX_MSIX_STATUSX(link
);
219 bit
= msixvec
% XLP_MSIXVEC_PER_LINK
;
221 status_reg
= PCIE_MSIX_STATUS
;
224 nlm_write_reg(md
->lnkbase
, status_reg
, 1u << bit
);
226 if (!cpu_is_xlp9xx())
227 nlm_pic_ack(md
->node
->picbase
,
228 PIC_IRT_PCIE_MSIX_INDEX(msixvec
));
231 static struct irq_chip xlp_msix_chip
= {
233 .irq_enable
= pci_msi_unmask_irq
,
234 .irq_disable
= pci_msi_mask_irq
,
235 .irq_mask_ack
= xlp_msix_mask_ack
,
236 .irq_unmask
= pci_msi_unmask_irq
,
239 void arch_teardown_msi_irq(unsigned int irq
)
244 * Setup a PCIe link for MSI. By default, the links are in
245 * legacy interrupt mode. We will switch them to MSI mode
246 * at the first MSI request.
248 static void xlp_config_link_msi(uint64_t lnkbase
, int lirq
, uint64_t msiaddr
)
252 if (cpu_is_xlp9xx()) {
253 val
= nlm_read_reg(lnkbase
, PCIE_9XX_INT_EN0
);
254 if ((val
& 0x200) == 0) {
255 val
|= 0x200; /* MSI Interrupt enable */
256 nlm_write_reg(lnkbase
, PCIE_9XX_INT_EN0
, val
);
259 val
= nlm_read_reg(lnkbase
, PCIE_INT_EN0
);
260 if ((val
& 0x200) == 0) {
262 nlm_write_reg(lnkbase
, PCIE_INT_EN0
, val
);
266 val
= nlm_read_reg(lnkbase
, 0x1); /* CMD */
267 if ((val
& 0x0400) == 0) {
269 nlm_write_reg(lnkbase
, 0x1, val
);
272 /* Update IRQ in the PCI irq reg */
273 val
= nlm_read_pci_reg(lnkbase
, 0xf);
275 val
|= (1 << 8) | lirq
;
276 nlm_write_pci_reg(lnkbase
, 0xf, val
);
279 nlm_write_reg(lnkbase
, PCIE_BRIDGE_MSI_ADDRH
, msiaddr
>> 32);
280 nlm_write_reg(lnkbase
, PCIE_BRIDGE_MSI_ADDRL
, msiaddr
& 0xffffffff);
282 /* MSI cap for bridge */
283 val
= nlm_read_reg(lnkbase
, PCIE_BRIDGE_MSI_CAP
);
284 if ((val
& (1 << 16)) == 0) {
285 val
|= 0xb << 16; /* mmc32, msi enable */
286 nlm_write_reg(lnkbase
, PCIE_BRIDGE_MSI_CAP
, val
);
291 * Allocate a MSI vector on a link
293 static int xlp_setup_msi(uint64_t lnkbase
, int node
, int link
,
294 struct msi_desc
*desc
)
296 struct xlp_msi_data
*md
;
299 int msivec
, irt
, lirq
, xirq
, ret
;
302 /* Get MSI data for the link */
303 lirq
= PIC_PCIE_LINK_MSI_IRQ(link
);
304 xirq
= nlm_irq_to_xirq(node
, nlm_link_msiirq(link
, 0));
305 md
= irq_get_handler_data(xirq
);
306 msiaddr
= MSI_LINK_ADDR(node
, link
);
308 spin_lock_irqsave(&md
->msi_lock
, flags
);
309 if (md
->msi_alloc_mask
== 0) {
310 xlp_config_link_msi(lnkbase
, lirq
, msiaddr
);
311 /* switch the link IRQ to MSI range */
313 irt
= PIC_9XX_IRT_PCIE_LINK_INDEX(link
);
315 irt
= PIC_IRT_PCIE_LINK_INDEX(link
);
316 nlm_setup_pic_irq(node
, lirq
, lirq
, irt
);
317 nlm_pic_init_irt(nlm_get_node(node
)->picbase
, irt
, lirq
,
318 node
* nlm_threads_per_node(), 1 /*en */);
321 /* allocate a MSI vec, and tell the bridge about it */
322 msivec
= fls(md
->msi_alloc_mask
);
323 if (msivec
== XLP_MSIVEC_PER_LINK
) {
324 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
327 md
->msi_alloc_mask
|= (1u << msivec
);
328 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
330 msg
.address_hi
= msiaddr
>> 32;
331 msg
.address_lo
= msiaddr
& 0xffffffff;
332 msg
.data
= 0xc00 | msivec
;
334 xirq
= xirq
+ msivec
; /* msi mapped to global irq space */
335 ret
= irq_set_msi_desc(xirq
, desc
);
339 pci_write_msi_msg(xirq
, &msg
);
344 * Switch a link to MSI-X mode
346 static void xlp_config_link_msix(uint64_t lnkbase
, int lirq
, uint64_t msixaddr
)
350 val
= nlm_read_reg(lnkbase
, 0x2C);
351 if ((val
& 0x80000000U
) == 0) {
353 nlm_write_reg(lnkbase
, 0x2C, val
);
356 if (cpu_is_xlp9xx()) {
357 val
= nlm_read_reg(lnkbase
, PCIE_9XX_INT_EN0
);
358 if ((val
& 0x200) == 0) {
359 val
|= 0x200; /* MSI Interrupt enable */
360 nlm_write_reg(lnkbase
, PCIE_9XX_INT_EN0
, val
);
363 val
= nlm_read_reg(lnkbase
, PCIE_INT_EN0
);
364 if ((val
& 0x200) == 0) {
365 val
|= 0x200; /* MSI Interrupt enable */
366 nlm_write_reg(lnkbase
, PCIE_INT_EN0
, val
);
370 val
= nlm_read_reg(lnkbase
, 0x1); /* CMD */
371 if ((val
& 0x0400) == 0) {
373 nlm_write_reg(lnkbase
, 0x1, val
);
376 /* Update IRQ in the PCI irq reg */
377 val
= nlm_read_pci_reg(lnkbase
, 0xf);
379 val
|= (1 << 8) | lirq
;
380 nlm_write_pci_reg(lnkbase
, 0xf, val
);
382 if (cpu_is_xlp9xx()) {
383 /* MSI-X addresses */
384 nlm_write_reg(lnkbase
, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE
,
386 nlm_write_reg(lnkbase
, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT
,
387 (msixaddr
+ MSI_ADDR_SZ
) >> 8);
389 /* MSI-X addresses */
390 nlm_write_reg(lnkbase
, PCIE_BRIDGE_MSIX_ADDR_BASE
,
392 nlm_write_reg(lnkbase
, PCIE_BRIDGE_MSIX_ADDR_LIMIT
,
393 (msixaddr
+ MSI_ADDR_SZ
) >> 8);
398 * Allocate a MSI-X vector
400 static int xlp_setup_msix(uint64_t lnkbase
, int node
, int link
,
401 struct msi_desc
*desc
)
403 struct xlp_msi_data
*md
;
406 int t
, msixvec
, lirq
, xirq
, ret
;
409 /* Get MSI data for the link */
410 lirq
= PIC_PCIE_MSIX_IRQ(link
);
411 xirq
= nlm_irq_to_xirq(node
, nlm_link_msixirq(link
, 0));
412 md
= irq_get_handler_data(xirq
);
413 msixaddr
= MSIX_LINK_ADDR(node
, link
);
415 spin_lock_irqsave(&md
->msi_lock
, flags
);
416 /* switch the PCIe link to MSI-X mode at the first alloc */
417 if (md
->msix_alloc_mask
== 0)
418 xlp_config_link_msix(lnkbase
, lirq
, msixaddr
);
420 /* allocate a MSI-X vec, and tell the bridge about it */
421 t
= fls(md
->msix_alloc_mask
);
422 if (t
== XLP_MSIXVEC_PER_LINK
) {
423 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
426 md
->msix_alloc_mask
|= (1u << t
);
427 spin_unlock_irqrestore(&md
->msi_lock
, flags
);
430 msixvec
= nlm_irq_msixvec(xirq
);
432 msg
.address_hi
= msixaddr
>> 32;
433 msg
.address_lo
= msixaddr
& 0xffffffff;
434 msg
.data
= 0xc00 | msixvec
;
436 ret
= irq_set_msi_desc(xirq
, desc
);
440 pci_write_msi_msg(xirq
, &msg
);
444 int arch_setup_msi_irq(struct pci_dev
*dev
, struct msi_desc
*desc
)
446 struct pci_dev
*lnkdev
;
448 int node
, link
, slot
;
450 lnkdev
= xlp_get_pcie_link(dev
);
451 if (lnkdev
== NULL
) {
452 dev_err(&dev
->dev
, "Could not find bridge\n");
455 slot
= PCI_SLOT(lnkdev
->devfn
);
456 link
= PCI_FUNC(lnkdev
->devfn
);
458 lnkbase
= nlm_get_pcie_base(node
, link
);
460 if (desc
->msi_attrib
.is_msix
)
461 return xlp_setup_msix(lnkbase
, node
, link
, desc
);
463 return xlp_setup_msi(lnkbase
, node
, link
, desc
);
466 void __init
xlp_init_node_msi_irqs(int node
, int link
)
468 struct nlm_soc_info
*nodep
;
469 struct xlp_msi_data
*md
;
470 int irq
, i
, irt
, msixvec
, val
;
472 pr_info("[%d %d] Init node PCI IRT\n", node
, link
);
473 nodep
= nlm_get_node(node
);
475 /* Alloc an MSI block for the link */
476 md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
477 spin_lock_init(&md
->msi_lock
);
478 md
->msi_enabled_mask
= 0;
479 md
->msi_alloc_mask
= 0;
480 md
->msix_alloc_mask
= 0;
482 md
->lnkbase
= nlm_get_pcie_base(node
, link
);
484 /* extended space for MSI interrupts */
485 irq
= nlm_irq_to_xirq(node
, nlm_link_msiirq(link
, 0));
486 for (i
= irq
; i
< irq
+ XLP_MSIVEC_PER_LINK
; i
++) {
487 irq_set_chip_and_handler(i
, &xlp_msi_chip
, handle_level_irq
);
488 irq_set_handler_data(i
, md
);
491 for (i
= 0; i
< XLP_MSIXVEC_PER_LINK
; i
++) {
492 if (cpu_is_xlp9xx()) {
493 val
= ((node
* nlm_threads_per_node()) << 7 |
494 PIC_PCIE_MSIX_IRQ(link
) << 1 | 0 << 0);
495 nlm_write_pcie_reg(md
->lnkbase
, PCIE_9XX_MSIX_VECX(i
+
496 (link
* XLP_MSIXVEC_PER_LINK
)), val
);
498 /* Initialize MSI-X irts to generate one interrupt
501 msixvec
= link
* XLP_MSIXVEC_PER_LINK
+ i
;
502 irt
= PIC_IRT_PCIE_MSIX_INDEX(msixvec
);
503 nlm_pic_init_irt(nodep
->picbase
, irt
,
504 PIC_PCIE_MSIX_IRQ(link
),
505 node
* nlm_threads_per_node(), 1);
508 /* Initialize MSI-X extended irq space for the link */
509 irq
= nlm_irq_to_xirq(node
, nlm_link_msixirq(link
, i
));
510 irq_set_chip_and_handler(irq
, &xlp_msix_chip
, handle_level_irq
);
511 irq_set_handler_data(irq
, md
);
515 void nlm_dispatch_msi(int node
, int lirq
)
517 struct xlp_msi_data
*md
;
518 int link
, i
, irqbase
;
521 link
= lirq
- PIC_PCIE_LINK_MSI_IRQ_BASE
;
522 irqbase
= nlm_irq_to_xirq(node
, nlm_link_msiirq(link
, 0));
523 md
= irq_get_handler_data(irqbase
);
525 status
= nlm_read_reg(md
->lnkbase
, PCIE_9XX_MSI_STATUS
) &
526 md
->msi_enabled_mask
;
528 status
= nlm_read_reg(md
->lnkbase
, PCIE_MSI_STATUS
) &
529 md
->msi_enabled_mask
;
533 status
&= status
- 1;
536 /* Ack at eirr and PIC */
537 ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link
));
539 nlm_pic_ack(md
->node
->picbase
,
540 PIC_9XX_IRT_PCIE_LINK_INDEX(link
));
542 nlm_pic_ack(md
->node
->picbase
, PIC_IRT_PCIE_LINK_INDEX(link
));
545 void nlm_dispatch_msix(int node
, int lirq
)
547 struct xlp_msi_data
*md
;
548 int link
, i
, irqbase
;
551 link
= lirq
- PIC_PCIE_MSIX_IRQ_BASE
;
552 irqbase
= nlm_irq_to_xirq(node
, nlm_link_msixirq(link
, 0));
553 md
= irq_get_handler_data(irqbase
);
555 status
= nlm_read_reg(md
->lnkbase
, PCIE_9XX_MSIX_STATUSX(link
));
557 status
= nlm_read_reg(md
->lnkbase
, PCIE_MSIX_STATUS
);
559 /* narrow it down to the MSI-x vectors for our link */
560 if (!cpu_is_xlp9xx())
561 status
= (status
>> (link
* XLP_MSIXVEC_PER_LINK
)) &
562 ((1 << XLP_MSIXVEC_PER_LINK
) - 1);
567 status
&= status
- 1;
569 /* Ack at eirr and PIC */
570 ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link
));