Linux 4.1.18
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh.c
blobcb565ad0a5b63bfd136e40b78ce9c4443094d9f2
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
50 /** Overview:
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
89 #define EEH_MAX_FAILS 2100000
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
112 int eeh_max_freezes = 5;
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
135 struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
145 static struct eeh_stats eeh_stats;
147 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
149 static int __init eeh_setup(char *str)
151 if (!strcmp(str, "off"))
152 eeh_add_flag(EEH_FORCE_DISABLED);
153 else if (!strcmp(str, "early_log"))
154 eeh_add_flag(EEH_EARLY_DUMP_LOG);
156 return 1;
158 __setup("eeh=", eeh_setup);
161 * This routine captures assorted PCI configuration space data
162 * for the indicated PCI device, and puts them into a buffer
163 * for RTAS error logging.
165 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
167 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
168 u32 cfg;
169 int cap, i;
170 int n = 0, l = 0;
171 char buffer[128];
173 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
174 edev->phb->global_number, pdn->busno,
175 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
176 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
177 edev->phb->global_number, pdn->busno,
178 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
180 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
181 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
182 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
184 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
185 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
186 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
188 /* Gather bridge-specific registers */
189 if (edev->mode & EEH_DEV_BRIDGE) {
190 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
191 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
192 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
194 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
195 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
196 pr_warn("EEH: Bridge control: %04x\n", cfg);
199 /* Dump out the PCI-X command and status regs */
200 cap = edev->pcix_cap;
201 if (cap) {
202 eeh_ops->read_config(pdn, cap, 4, &cfg);
203 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
204 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
206 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
207 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
208 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 /* If PCI-E capable, dump PCI-E cap 10 */
212 cap = edev->pcie_cap;
213 if (cap) {
214 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
215 pr_warn("EEH: PCI-E capabilities and status follow:\n");
217 for (i=0; i<=8; i++) {
218 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
219 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
221 if ((i % 4) == 0) {
222 if (i != 0)
223 pr_warn("%s\n", buffer);
225 l = scnprintf(buffer, sizeof(buffer),
226 "EEH: PCI-E %02x: %08x ",
227 4*i, cfg);
228 } else {
229 l += scnprintf(buffer+l, sizeof(buffer)-l,
230 "%08x ", cfg);
235 pr_warn("%s\n", buffer);
238 /* If AER capable, dump it */
239 cap = edev->aer_cap;
240 if (cap) {
241 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
242 pr_warn("EEH: PCI-E AER capability register set follows:\n");
244 for (i=0; i<=13; i++) {
245 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
246 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
248 if ((i % 4) == 0) {
249 if (i != 0)
250 pr_warn("%s\n", buffer);
252 l = scnprintf(buffer, sizeof(buffer),
253 "EEH: PCI-E AER %02x: %08x ",
254 4*i, cfg);
255 } else {
256 l += scnprintf(buffer+l, sizeof(buffer)-l,
257 "%08x ", cfg);
261 pr_warn("%s\n", buffer);
264 return n;
267 static void *eeh_dump_pe_log(void *data, void *flag)
269 struct eeh_pe *pe = data;
270 struct eeh_dev *edev, *tmp;
271 size_t *plen = flag;
273 /* If the PE's config space is blocked, 0xFF's will be
274 * returned. It's pointless to collect the log in this
275 * case.
277 if (pe->state & EEH_PE_CFG_BLOCKED)
278 return NULL;
280 eeh_pe_for_each_dev(pe, edev, tmp)
281 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282 EEH_PCI_REGS_LOG_LEN - *plen);
284 return NULL;
288 * eeh_slot_error_detail - Generate combined log including driver log and error log
289 * @pe: EEH PE
290 * @severity: temporary or permanent error log
292 * This routine should be called to generate the combined log, which
293 * is comprised of driver log and error log. The driver log is figured
294 * out from the config space of the corresponding PCI device, while
295 * the error log is fetched through platform dependent function call.
297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
299 size_t loglen = 0;
302 * When the PHB is fenced or dead, it's pointless to collect
303 * the data from PCI config space because it should return
304 * 0xFF's. For ER, we still retrieve the data from the PCI
305 * config space.
307 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 * 0xFF's is always returned from PCI config space.
310 if (!(pe->type & EEH_PE_PHB)) {
311 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
312 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 * The config space of some PCI devices can't be accessed
316 * when their PEs are in frozen state. Otherwise, fenced
317 * PHB might be seen. Those PEs are identified with flag
318 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 * is set automatically when the PE is put to EEH_PE_ISOLATED.
321 * Restoring BARs possibly triggers PCI config access in
322 * (OPAL) firmware and then causes fenced PHB. If the
323 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 * pointless to restore BARs and dump config space.
326 eeh_ops->configure_bridge(pe);
327 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 eeh_pe_restore_bars(pe);
330 pci_regs_buf[0] = 0;
331 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
335 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
339 * eeh_token_to_phys - Convert EEH address token to phys address
340 * @token: I/O token, should be address in the form 0xA....
342 * This routine should be called to convert virtual I/O address
343 * to physical one.
345 static inline unsigned long eeh_token_to_phys(unsigned long token)
347 pte_t *ptep;
348 unsigned long pa;
349 int hugepage_shift;
352 * We won't find hugepages here(this is iomem). Hence we are not
353 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 * page table free, because of init_mm.
356 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
357 if (!ptep)
358 return token;
359 WARN_ON(hugepage_shift);
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
362 return pa | (token & (PAGE_SIZE-1));
366 * On PowerNV platform, we might already have fenced PHB there.
367 * For that case, it's meaningless to recover frozen PE. Intead,
368 * We have to handle fenced PHB firstly.
370 static int eeh_phb_check_failure(struct eeh_pe *pe)
372 struct eeh_pe *phb_pe;
373 unsigned long flags;
374 int ret;
376 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377 return -EPERM;
379 /* Find the PHB PE */
380 phb_pe = eeh_phb_pe_get(pe->phb);
381 if (!phb_pe) {
382 pr_warn("%s Can't find PE for PHB#%d\n",
383 __func__, pe->phb->global_number);
384 return -EEXIST;
387 /* If the PHB has been in problematic state */
388 eeh_serialize_lock(&flags);
389 if (phb_pe->state & EEH_PE_ISOLATED) {
390 ret = 0;
391 goto out;
394 /* Check PHB state */
395 ret = eeh_ops->get_state(phb_pe, NULL);
396 if ((ret < 0) ||
397 (ret == EEH_STATE_NOT_SUPPORT) ||
398 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
399 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
400 ret = 0;
401 goto out;
404 /* Isolate the PHB and send event */
405 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
406 eeh_serialize_unlock(flags);
408 pr_err("EEH: PHB#%x failure detected, location: %s\n",
409 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
410 dump_stack();
411 eeh_send_failure_event(phb_pe);
413 return 1;
414 out:
415 eeh_serialize_unlock(flags);
416 return ret;
420 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
421 * @edev: eeh device
423 * Check for an EEH failure for the given device node. Call this
424 * routine if the result of a read was all 0xff's and you want to
425 * find out if this is due to an EEH slot freeze. This routine
426 * will query firmware for the EEH status.
428 * Returns 0 if there has not been an EEH error; otherwise returns
429 * a non-zero value and queues up a slot isolation event notification.
431 * It is safe to call this routine in an interrupt context.
433 int eeh_dev_check_failure(struct eeh_dev *edev)
435 int ret;
436 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
437 unsigned long flags;
438 struct pci_dn *pdn;
439 struct pci_dev *dev;
440 struct eeh_pe *pe, *parent_pe, *phb_pe;
441 int rc = 0;
442 const char *location = NULL;
444 eeh_stats.total_mmio_ffs++;
446 if (!eeh_enabled())
447 return 0;
449 if (!edev) {
450 eeh_stats.no_dn++;
451 return 0;
453 dev = eeh_dev_to_pci_dev(edev);
454 pe = eeh_dev_to_pe(edev);
456 /* Access to IO BARs might get this far and still not want checking. */
457 if (!pe) {
458 eeh_stats.ignored_check++;
459 pr_debug("EEH: Ignored check for %s\n",
460 eeh_pci_name(dev));
461 return 0;
464 if (!pe->addr && !pe->config_addr) {
465 eeh_stats.no_cfg_addr++;
466 return 0;
470 * On PowerNV platform, we might already have fenced PHB
471 * there and we need take care of that firstly.
473 ret = eeh_phb_check_failure(pe);
474 if (ret > 0)
475 return ret;
478 * If the PE isn't owned by us, we shouldn't check the
479 * state. Instead, let the owner handle it if the PE has
480 * been frozen.
482 if (eeh_pe_passed(pe))
483 return 0;
485 /* If we already have a pending isolation event for this
486 * slot, we know it's bad already, we don't need to check.
487 * Do this checking under a lock; as multiple PCI devices
488 * in one slot might report errors simultaneously, and we
489 * only want one error recovery routine running.
491 eeh_serialize_lock(&flags);
492 rc = 1;
493 if (pe->state & EEH_PE_ISOLATED) {
494 pe->check_count++;
495 if (pe->check_count % EEH_MAX_FAILS == 0) {
496 pdn = eeh_dev_to_pdn(edev);
497 if (pdn->node)
498 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
499 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
500 "location=%s driver=%s pci addr=%s\n",
501 pe->check_count,
502 location ? location : "unknown",
503 eeh_driver_name(dev), eeh_pci_name(dev));
504 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
505 eeh_driver_name(dev));
506 dump_stack();
508 goto dn_unlock;
512 * Now test for an EEH failure. This is VERY expensive.
513 * Note that the eeh_config_addr may be a parent device
514 * in the case of a device behind a bridge, or it may be
515 * function zero of a multi-function device.
516 * In any case they must share a common PHB.
518 ret = eeh_ops->get_state(pe, NULL);
520 /* Note that config-io to empty slots may fail;
521 * they are empty when they don't have children.
522 * We will punt with the following conditions: Failure to get
523 * PE's state, EEH not support and Permanently unavailable
524 * state, PE is in good state.
526 if ((ret < 0) ||
527 (ret == EEH_STATE_NOT_SUPPORT) ||
528 ((ret & active_flags) == active_flags)) {
529 eeh_stats.false_positives++;
530 pe->false_positives++;
531 rc = 0;
532 goto dn_unlock;
536 * It should be corner case that the parent PE has been
537 * put into frozen state as well. We should take care
538 * that at first.
540 parent_pe = pe->parent;
541 while (parent_pe) {
542 /* Hit the ceiling ? */
543 if (parent_pe->type & EEH_PE_PHB)
544 break;
546 /* Frozen parent PE ? */
547 ret = eeh_ops->get_state(parent_pe, NULL);
548 if (ret > 0 &&
549 (ret & active_flags) != active_flags)
550 pe = parent_pe;
552 /* Next parent level */
553 parent_pe = parent_pe->parent;
556 eeh_stats.slot_resets++;
558 /* Avoid repeated reports of this failure, including problems
559 * with other functions on this device, and functions under
560 * bridges.
562 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
563 eeh_serialize_unlock(flags);
565 /* Most EEH events are due to device driver bugs. Having
566 * a stack trace will help the device-driver authors figure
567 * out what happened. So print that out.
569 phb_pe = eeh_phb_pe_get(pe->phb);
570 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
571 pe->phb->global_number, pe->addr);
572 pr_err("EEH: PE location: %s, PHB location: %s\n",
573 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
574 dump_stack();
576 eeh_send_failure_event(pe);
578 return 1;
580 dn_unlock:
581 eeh_serialize_unlock(flags);
582 return rc;
585 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
588 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
589 * @token: I/O address
591 * Check for an EEH failure at the given I/O address. Call this
592 * routine if the result of a read was all 0xff's and you want to
593 * find out if this is due to an EEH slot freeze event. This routine
594 * will query firmware for the EEH status.
596 * Note this routine is safe to call in an interrupt context.
598 int eeh_check_failure(const volatile void __iomem *token)
600 unsigned long addr;
601 struct eeh_dev *edev;
603 /* Finding the phys addr + pci device; this is pretty quick. */
604 addr = eeh_token_to_phys((unsigned long __force) token);
605 edev = eeh_addr_cache_get_dev(addr);
606 if (!edev) {
607 eeh_stats.no_device++;
608 return 0;
611 return eeh_dev_check_failure(edev);
613 EXPORT_SYMBOL(eeh_check_failure);
617 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
618 * @pe: EEH PE
620 * This routine should be called to reenable frozen MMIO or DMA
621 * so that it would work correctly again. It's useful while doing
622 * recovery or log collection on the indicated device.
624 int eeh_pci_enable(struct eeh_pe *pe, int function)
626 int active_flag, rc;
629 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
630 * Also, it's pointless to enable them on unfrozen PE. So
631 * we have to check before enabling IO or DMA.
633 switch (function) {
634 case EEH_OPT_THAW_MMIO:
635 active_flag = EEH_STATE_MMIO_ACTIVE;
636 break;
637 case EEH_OPT_THAW_DMA:
638 active_flag = EEH_STATE_DMA_ACTIVE;
639 break;
640 case EEH_OPT_DISABLE:
641 case EEH_OPT_ENABLE:
642 case EEH_OPT_FREEZE_PE:
643 active_flag = 0;
644 break;
645 default:
646 pr_warn("%s: Invalid function %d\n",
647 __func__, function);
648 return -EINVAL;
652 * Check if IO or DMA has been enabled before
653 * enabling them.
655 if (active_flag) {
656 rc = eeh_ops->get_state(pe, NULL);
657 if (rc < 0)
658 return rc;
660 /* Needn't enable it at all */
661 if (rc == EEH_STATE_NOT_SUPPORT)
662 return 0;
664 /* It's already enabled */
665 if (rc & active_flag)
666 return 0;
670 /* Issue the request */
671 rc = eeh_ops->set_option(pe, function);
672 if (rc)
673 pr_warn("%s: Unexpected state change %d on "
674 "PHB#%d-PE#%x, err=%d\n",
675 __func__, function, pe->phb->global_number,
676 pe->addr, rc);
678 /* Check if the request is finished successfully */
679 if (active_flag) {
680 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
681 if (rc <= 0)
682 return rc;
684 if (rc & active_flag)
685 return 0;
687 return -EIO;
690 return rc;
693 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
695 struct eeh_dev *edev = data;
696 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
697 struct pci_dev *dev = userdata;
700 * The caller should have disabled and saved the
701 * state for the specified device
703 if (!pdev || pdev == dev)
704 return NULL;
706 /* Ensure we have D0 power state */
707 pci_set_power_state(pdev, PCI_D0);
709 /* Save device state */
710 pci_save_state(pdev);
713 * Disable device to avoid any DMA traffic and
714 * interrupt from the device
716 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
718 return NULL;
721 static void *eeh_restore_dev_state(void *data, void *userdata)
723 struct eeh_dev *edev = data;
724 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
725 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
726 struct pci_dev *dev = userdata;
728 if (!pdev)
729 return NULL;
731 /* Apply customization from firmware */
732 if (pdn && eeh_ops->restore_config)
733 eeh_ops->restore_config(pdn);
735 /* The caller should restore state for the specified device */
736 if (pdev != dev)
737 pci_save_state(pdev);
739 return NULL;
743 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
744 * @dev: pci device struct
745 * @state: reset state to enter
747 * Return value:
748 * 0 if success
750 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
752 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
753 struct eeh_pe *pe = eeh_dev_to_pe(edev);
755 if (!pe) {
756 pr_err("%s: No PE found on PCI device %s\n",
757 __func__, pci_name(dev));
758 return -EINVAL;
761 switch (state) {
762 case pcie_deassert_reset:
763 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
764 eeh_unfreeze_pe(pe, false);
765 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
766 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
767 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
768 break;
769 case pcie_hot_reset:
770 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
771 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
772 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
773 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
774 eeh_ops->reset(pe, EEH_RESET_HOT);
775 break;
776 case pcie_warm_reset:
777 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
778 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
781 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
782 break;
783 default:
784 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
785 return -EINVAL;
788 return 0;
792 * eeh_set_pe_freset - Check the required reset for the indicated device
793 * @data: EEH device
794 * @flag: return value
796 * Each device might have its preferred reset type: fundamental or
797 * hot reset. The routine is used to collected the information for
798 * the indicated device and its children so that the bunch of the
799 * devices could be reset properly.
801 static void *eeh_set_dev_freset(void *data, void *flag)
803 struct pci_dev *dev;
804 unsigned int *freset = (unsigned int *)flag;
805 struct eeh_dev *edev = (struct eeh_dev *)data;
807 dev = eeh_dev_to_pci_dev(edev);
808 if (dev)
809 *freset |= dev->needs_freset;
811 return NULL;
815 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
816 * @pe: EEH PE
818 * Assert the PCI #RST line for 1/4 second.
820 static void eeh_reset_pe_once(struct eeh_pe *pe)
822 unsigned int freset = 0;
824 /* Determine type of EEH reset required for
825 * Partitionable Endpoint, a hot-reset (1)
826 * or a fundamental reset (3).
827 * A fundamental reset required by any device under
828 * Partitionable Endpoint trumps hot-reset.
830 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
832 if (freset)
833 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
834 else
835 eeh_ops->reset(pe, EEH_RESET_HOT);
837 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
841 * eeh_reset_pe - Reset the indicated PE
842 * @pe: EEH PE
844 * This routine should be called to reset indicated device, including
845 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
846 * might be involved as well.
848 int eeh_reset_pe(struct eeh_pe *pe)
850 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
851 int i, state, ret;
853 /* Mark as reset and block config space */
854 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
856 /* Take three shots at resetting the bus */
857 for (i = 0; i < 3; i++) {
858 eeh_reset_pe_once(pe);
861 * EEH_PE_ISOLATED is expected to be removed after
862 * BAR restore.
864 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
865 if ((state & flags) == flags) {
866 ret = 0;
867 goto out;
870 if (state < 0) {
871 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
872 __func__, pe->phb->global_number, pe->addr);
873 ret = -ENOTRECOVERABLE;
874 goto out;
877 /* We might run out of credits */
878 ret = -EIO;
879 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
880 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
883 out:
884 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
885 return ret;
889 * eeh_save_bars - Save device bars
890 * @edev: PCI device associated EEH device
892 * Save the values of the device bars. Unlike the restore
893 * routine, this routine is *not* recursive. This is because
894 * PCI devices are added individually; but, for the restore,
895 * an entire slot is reset at a time.
897 void eeh_save_bars(struct eeh_dev *edev)
899 struct pci_dn *pdn;
900 int i;
902 pdn = eeh_dev_to_pdn(edev);
903 if (!pdn)
904 return;
906 for (i = 0; i < 16; i++)
907 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
910 * For PCI bridges including root port, we need enable bus
911 * master explicitly. Otherwise, it can't fetch IODA table
912 * entries correctly. So we cache the bit in advance so that
913 * we can restore it after reset, either PHB range or PE range.
915 if (edev->mode & EEH_DEV_BRIDGE)
916 edev->config_space[1] |= PCI_COMMAND_MASTER;
920 * eeh_ops_register - Register platform dependent EEH operations
921 * @ops: platform dependent EEH operations
923 * Register the platform dependent EEH operation callback
924 * functions. The platform should call this function before
925 * any other EEH operations.
927 int __init eeh_ops_register(struct eeh_ops *ops)
929 if (!ops->name) {
930 pr_warn("%s: Invalid EEH ops name for %p\n",
931 __func__, ops);
932 return -EINVAL;
935 if (eeh_ops && eeh_ops != ops) {
936 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
937 __func__, eeh_ops->name, ops->name);
938 return -EEXIST;
941 eeh_ops = ops;
943 return 0;
947 * eeh_ops_unregister - Unreigster platform dependent EEH operations
948 * @name: name of EEH platform operations
950 * Unregister the platform dependent EEH operation callback
951 * functions.
953 int __exit eeh_ops_unregister(const char *name)
955 if (!name || !strlen(name)) {
956 pr_warn("%s: Invalid EEH ops name\n",
957 __func__);
958 return -EINVAL;
961 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
962 eeh_ops = NULL;
963 return 0;
966 return -EEXIST;
969 static int eeh_reboot_notifier(struct notifier_block *nb,
970 unsigned long action, void *unused)
972 eeh_clear_flag(EEH_ENABLED);
973 return NOTIFY_DONE;
976 static struct notifier_block eeh_reboot_nb = {
977 .notifier_call = eeh_reboot_notifier,
981 * eeh_init - EEH initialization
983 * Initialize EEH by trying to enable it for all of the adapters in the system.
984 * As a side effect we can determine here if eeh is supported at all.
985 * Note that we leave EEH on so failed config cycles won't cause a machine
986 * check. If a user turns off EEH for a particular adapter they are really
987 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
988 * grant access to a slot if EEH isn't enabled, and so we always enable
989 * EEH for all slots/all devices.
991 * The eeh-force-off option disables EEH checking globally, for all slots.
992 * Even if force-off is set, the EEH hardware is still enabled, so that
993 * newer systems can boot.
995 int eeh_init(void)
997 struct pci_controller *hose, *tmp;
998 struct pci_dn *pdn;
999 static int cnt = 0;
1000 int ret = 0;
1003 * We have to delay the initialization on PowerNV after
1004 * the PCI hierarchy tree has been built because the PEs
1005 * are figured out based on PCI devices instead of device
1006 * tree nodes
1008 if (machine_is(powernv) && cnt++ <= 0)
1009 return ret;
1011 /* Register reboot notifier */
1012 ret = register_reboot_notifier(&eeh_reboot_nb);
1013 if (ret) {
1014 pr_warn("%s: Failed to register notifier (%d)\n",
1015 __func__, ret);
1016 return ret;
1019 /* call platform initialization function */
1020 if (!eeh_ops) {
1021 pr_warn("%s: Platform EEH operation not found\n",
1022 __func__);
1023 return -EEXIST;
1024 } else if ((ret = eeh_ops->init()))
1025 return ret;
1027 /* Initialize EEH event */
1028 ret = eeh_event_init();
1029 if (ret)
1030 return ret;
1032 /* Enable EEH for all adapters */
1033 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1034 pdn = hose->pci_data;
1035 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1039 * Call platform post-initialization. Actually, It's good chance
1040 * to inform platform that EEH is ready to supply service if the
1041 * I/O cache stuff has been built up.
1043 if (eeh_ops->post_init) {
1044 ret = eeh_ops->post_init();
1045 if (ret)
1046 return ret;
1049 if (eeh_enabled())
1050 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1051 else
1052 pr_warn("EEH: No capable adapters found\n");
1054 return ret;
1057 core_initcall_sync(eeh_init);
1060 * eeh_add_device_early - Enable EEH for the indicated device node
1061 * @pdn: PCI device node for which to set up EEH
1063 * This routine must be used to perform EEH initialization for PCI
1064 * devices that were added after system boot (e.g. hotplug, dlpar).
1065 * This routine must be called before any i/o is performed to the
1066 * adapter (inluding any config-space i/o).
1067 * Whether this actually enables EEH or not for this device depends
1068 * on the CEC architecture, type of the device, on earlier boot
1069 * command-line arguments & etc.
1071 void eeh_add_device_early(struct pci_dn *pdn)
1073 struct pci_controller *phb;
1074 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1076 if (!edev || !eeh_enabled())
1077 return;
1079 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1080 return;
1082 /* USB Bus children of PCI devices will not have BUID's */
1083 phb = edev->phb;
1084 if (NULL == phb ||
1085 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1086 return;
1088 eeh_ops->probe(pdn, NULL);
1092 * eeh_add_device_tree_early - Enable EEH for the indicated device
1093 * @pdn: PCI device node
1095 * This routine must be used to perform EEH initialization for the
1096 * indicated PCI device that was added after system boot (e.g.
1097 * hotplug, dlpar).
1099 void eeh_add_device_tree_early(struct pci_dn *pdn)
1101 struct pci_dn *n;
1103 if (!pdn)
1104 return;
1106 list_for_each_entry(n, &pdn->child_list, list)
1107 eeh_add_device_tree_early(n);
1108 eeh_add_device_early(pdn);
1110 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1113 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1114 * @dev: pci device for which to set up EEH
1116 * This routine must be used to complete EEH initialization for PCI
1117 * devices that were added after system boot (e.g. hotplug, dlpar).
1119 void eeh_add_device_late(struct pci_dev *dev)
1121 struct pci_dn *pdn;
1122 struct eeh_dev *edev;
1124 if (!dev || !eeh_enabled())
1125 return;
1127 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1129 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1130 edev = pdn_to_eeh_dev(pdn);
1131 if (edev->pdev == dev) {
1132 pr_debug("EEH: Already referenced !\n");
1133 return;
1137 * The EEH cache might not be removed correctly because of
1138 * unbalanced kref to the device during unplug time, which
1139 * relies on pcibios_release_device(). So we have to remove
1140 * that here explicitly.
1142 if (edev->pdev) {
1143 eeh_rmv_from_parent_pe(edev);
1144 eeh_addr_cache_rmv_dev(edev->pdev);
1145 eeh_sysfs_remove_device(edev->pdev);
1146 edev->mode &= ~EEH_DEV_SYSFS;
1149 * We definitely should have the PCI device removed
1150 * though it wasn't correctly. So we needn't call
1151 * into error handler afterwards.
1153 edev->mode |= EEH_DEV_NO_HANDLER;
1155 edev->pdev = NULL;
1156 dev->dev.archdata.edev = NULL;
1159 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1160 eeh_ops->probe(pdn, NULL);
1162 edev->pdev = dev;
1163 dev->dev.archdata.edev = edev;
1165 eeh_addr_cache_insert_dev(dev);
1169 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1170 * @bus: PCI bus
1172 * This routine must be used to perform EEH initialization for PCI
1173 * devices which are attached to the indicated PCI bus. The PCI bus
1174 * is added after system boot through hotplug or dlpar.
1176 void eeh_add_device_tree_late(struct pci_bus *bus)
1178 struct pci_dev *dev;
1180 list_for_each_entry(dev, &bus->devices, bus_list) {
1181 eeh_add_device_late(dev);
1182 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1183 struct pci_bus *subbus = dev->subordinate;
1184 if (subbus)
1185 eeh_add_device_tree_late(subbus);
1189 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1192 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1193 * @bus: PCI bus
1195 * This routine must be used to add EEH sysfs files for PCI
1196 * devices which are attached to the indicated PCI bus. The PCI bus
1197 * is added after system boot through hotplug or dlpar.
1199 void eeh_add_sysfs_files(struct pci_bus *bus)
1201 struct pci_dev *dev;
1203 list_for_each_entry(dev, &bus->devices, bus_list) {
1204 eeh_sysfs_add_device(dev);
1205 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1206 struct pci_bus *subbus = dev->subordinate;
1207 if (subbus)
1208 eeh_add_sysfs_files(subbus);
1212 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1215 * eeh_remove_device - Undo EEH setup for the indicated pci device
1216 * @dev: pci device to be removed
1218 * This routine should be called when a device is removed from
1219 * a running system (e.g. by hotplug or dlpar). It unregisters
1220 * the PCI device from the EEH subsystem. I/O errors affecting
1221 * this device will no longer be detected after this call; thus,
1222 * i/o errors affecting this slot may leave this device unusable.
1224 void eeh_remove_device(struct pci_dev *dev)
1226 struct eeh_dev *edev;
1228 if (!dev || !eeh_enabled())
1229 return;
1230 edev = pci_dev_to_eeh_dev(dev);
1232 /* Unregister the device with the EEH/PCI address search system */
1233 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1235 if (!edev || !edev->pdev || !edev->pe) {
1236 pr_debug("EEH: Not referenced !\n");
1237 return;
1241 * During the hotplug for EEH error recovery, we need the EEH
1242 * device attached to the parent PE in order for BAR restore
1243 * a bit later. So we keep it for BAR restore and remove it
1244 * from the parent PE during the BAR resotre.
1246 edev->pdev = NULL;
1247 dev->dev.archdata.edev = NULL;
1248 if (!(edev->pe->state & EEH_PE_KEEP))
1249 eeh_rmv_from_parent_pe(edev);
1250 else
1251 edev->mode |= EEH_DEV_DISCONNECTED;
1254 * We're removing from the PCI subsystem, that means
1255 * the PCI device driver can't support EEH or not
1256 * well. So we rely on hotplug completely to do recovery
1257 * for the specific PCI device.
1259 edev->mode |= EEH_DEV_NO_HANDLER;
1261 eeh_addr_cache_rmv_dev(dev);
1262 eeh_sysfs_remove_device(dev);
1263 edev->mode &= ~EEH_DEV_SYSFS;
1266 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1268 int ret;
1270 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1271 if (ret) {
1272 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1273 __func__, ret, pe->phb->global_number, pe->addr);
1274 return ret;
1277 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1278 if (ret) {
1279 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1280 __func__, ret, pe->phb->global_number, pe->addr);
1281 return ret;
1284 /* Clear software isolated state */
1285 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1286 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1288 return ret;
1292 static struct pci_device_id eeh_reset_ids[] = {
1293 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1294 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1295 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1296 { 0 }
1299 static int eeh_pe_change_owner(struct eeh_pe *pe)
1301 struct eeh_dev *edev, *tmp;
1302 struct pci_dev *pdev;
1303 struct pci_device_id *id;
1304 int flags, ret;
1306 /* Check PE state */
1307 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1308 ret = eeh_ops->get_state(pe, NULL);
1309 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1310 return 0;
1312 /* Unfrozen PE, nothing to do */
1313 if ((ret & flags) == flags)
1314 return 0;
1316 /* Frozen PE, check if it needs PE level reset */
1317 eeh_pe_for_each_dev(pe, edev, tmp) {
1318 pdev = eeh_dev_to_pci_dev(edev);
1319 if (!pdev)
1320 continue;
1322 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1323 if (id->vendor != PCI_ANY_ID &&
1324 id->vendor != pdev->vendor)
1325 continue;
1326 if (id->device != PCI_ANY_ID &&
1327 id->device != pdev->device)
1328 continue;
1329 if (id->subvendor != PCI_ANY_ID &&
1330 id->subvendor != pdev->subsystem_vendor)
1331 continue;
1332 if (id->subdevice != PCI_ANY_ID &&
1333 id->subdevice != pdev->subsystem_device)
1334 continue;
1336 goto reset;
1340 return eeh_unfreeze_pe(pe, true);
1342 reset:
1343 return eeh_pe_reset_and_recover(pe);
1347 * eeh_dev_open - Increase count of pass through devices for PE
1348 * @pdev: PCI device
1350 * Increase count of passed through devices for the indicated
1351 * PE. In the result, the EEH errors detected on the PE won't be
1352 * reported. The PE owner will be responsible for detection
1353 * and recovery.
1355 int eeh_dev_open(struct pci_dev *pdev)
1357 struct eeh_dev *edev;
1358 int ret = -ENODEV;
1360 mutex_lock(&eeh_dev_mutex);
1362 /* No PCI device ? */
1363 if (!pdev)
1364 goto out;
1366 /* No EEH device or PE ? */
1367 edev = pci_dev_to_eeh_dev(pdev);
1368 if (!edev || !edev->pe)
1369 goto out;
1372 * The PE might have been put into frozen state, but we
1373 * didn't detect that yet. The passed through PCI devices
1374 * in frozen PE won't work properly. Clear the frozen state
1375 * in advance.
1377 ret = eeh_pe_change_owner(edev->pe);
1378 if (ret)
1379 goto out;
1381 /* Increase PE's pass through count */
1382 atomic_inc(&edev->pe->pass_dev_cnt);
1383 mutex_unlock(&eeh_dev_mutex);
1385 return 0;
1386 out:
1387 mutex_unlock(&eeh_dev_mutex);
1388 return ret;
1390 EXPORT_SYMBOL_GPL(eeh_dev_open);
1393 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * @pdev: PCI device
1396 * Decrease count of pass through devices for the indicated PE. If
1397 * there is no passed through device in PE, the EEH errors detected
1398 * on the PE will be reported and handled as usual.
1400 void eeh_dev_release(struct pci_dev *pdev)
1402 struct eeh_dev *edev;
1404 mutex_lock(&eeh_dev_mutex);
1406 /* No PCI device ? */
1407 if (!pdev)
1408 goto out;
1410 /* No EEH device ? */
1411 edev = pci_dev_to_eeh_dev(pdev);
1412 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413 goto out;
1415 /* Decrease PE's pass through count */
1416 atomic_dec(&edev->pe->pass_dev_cnt);
1417 WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1418 eeh_pe_change_owner(edev->pe);
1419 out:
1420 mutex_unlock(&eeh_dev_mutex);
1422 EXPORT_SYMBOL(eeh_dev_release);
1424 #ifdef CONFIG_IOMMU_API
1426 static int dev_has_iommu_table(struct device *dev, void *data)
1428 struct pci_dev *pdev = to_pci_dev(dev);
1429 struct pci_dev **ppdev = data;
1430 struct iommu_table *tbl;
1432 if (!dev)
1433 return 0;
1435 tbl = get_iommu_table_base(dev);
1436 if (tbl && tbl->it_group) {
1437 *ppdev = pdev;
1438 return 1;
1441 return 0;
1445 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446 * @group: IOMMU group
1448 * The routine is called to convert IOMMU group to EEH PE.
1450 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1452 struct pci_dev *pdev = NULL;
1453 struct eeh_dev *edev;
1454 int ret;
1456 /* No IOMMU group ? */
1457 if (!group)
1458 return NULL;
1460 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461 if (!ret || !pdev)
1462 return NULL;
1464 /* No EEH device or PE ? */
1465 edev = pci_dev_to_eeh_dev(pdev);
1466 if (!edev || !edev->pe)
1467 return NULL;
1469 return edev->pe;
1471 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1473 #endif /* CONFIG_IOMMU_API */
1476 * eeh_pe_set_option - Set options for the indicated PE
1477 * @pe: EEH PE
1478 * @option: requested option
1480 * The routine is called to enable or disable EEH functionality
1481 * on the indicated PE, to enable IO or DMA for the frozen PE.
1483 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1485 int ret = 0;
1487 /* Invalid PE ? */
1488 if (!pe)
1489 return -ENODEV;
1492 * EEH functionality could possibly be disabled, just
1493 * return error for the case. And the EEH functinality
1494 * isn't expected to be disabled on one specific PE.
1496 switch (option) {
1497 case EEH_OPT_ENABLE:
1498 if (eeh_enabled()) {
1499 ret = eeh_pe_change_owner(pe);
1500 break;
1502 ret = -EIO;
1503 break;
1504 case EEH_OPT_DISABLE:
1505 break;
1506 case EEH_OPT_THAW_MMIO:
1507 case EEH_OPT_THAW_DMA:
1508 if (!eeh_ops || !eeh_ops->set_option) {
1509 ret = -ENOENT;
1510 break;
1513 ret = eeh_pci_enable(pe, option);
1514 break;
1515 default:
1516 pr_debug("%s: Option %d out of range (%d, %d)\n",
1517 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518 ret = -EINVAL;
1521 return ret;
1523 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1526 * eeh_pe_get_state - Retrieve PE's state
1527 * @pe: EEH PE
1529 * Retrieve the PE's state, which includes 3 aspects: enabled
1530 * DMA, enabled IO and asserted reset.
1532 int eeh_pe_get_state(struct eeh_pe *pe)
1534 int result, ret = 0;
1535 bool rst_active, dma_en, mmio_en;
1537 /* Existing PE ? */
1538 if (!pe)
1539 return -ENODEV;
1541 if (!eeh_ops || !eeh_ops->get_state)
1542 return -ENOENT;
1544 result = eeh_ops->get_state(pe, NULL);
1545 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1546 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1547 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1549 if (rst_active)
1550 ret = EEH_PE_STATE_RESET;
1551 else if (dma_en && mmio_en)
1552 ret = EEH_PE_STATE_NORMAL;
1553 else if (!dma_en && !mmio_en)
1554 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1555 else if (!dma_en && mmio_en)
1556 ret = EEH_PE_STATE_STOPPED_DMA;
1557 else
1558 ret = EEH_PE_STATE_UNAVAIL;
1560 return ret;
1562 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1564 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1566 struct eeh_dev *edev, *tmp;
1567 struct pci_dev *pdev;
1568 int ret = 0;
1570 /* Restore config space */
1571 eeh_pe_restore_bars(pe);
1574 * Reenable PCI devices as the devices passed
1575 * through are always enabled before the reset.
1577 eeh_pe_for_each_dev(pe, edev, tmp) {
1578 pdev = eeh_dev_to_pci_dev(edev);
1579 if (!pdev)
1580 continue;
1582 ret = pci_reenable_device(pdev);
1583 if (ret) {
1584 pr_warn("%s: Failure %d reenabling %s\n",
1585 __func__, ret, pci_name(pdev));
1586 return ret;
1590 /* The PE is still in frozen state */
1591 return eeh_unfreeze_pe(pe, true);
1595 * eeh_pe_reset - Issue PE reset according to specified type
1596 * @pe: EEH PE
1597 * @option: reset type
1599 * The routine is called to reset the specified PE with the
1600 * indicated type, either fundamental reset or hot reset.
1601 * PE reset is the most important part for error recovery.
1603 int eeh_pe_reset(struct eeh_pe *pe, int option)
1605 int ret = 0;
1607 /* Invalid PE ? */
1608 if (!pe)
1609 return -ENODEV;
1611 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1612 return -ENOENT;
1614 switch (option) {
1615 case EEH_RESET_DEACTIVATE:
1616 ret = eeh_ops->reset(pe, option);
1617 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1618 if (ret)
1619 break;
1621 ret = eeh_pe_reenable_devices(pe);
1622 break;
1623 case EEH_RESET_HOT:
1624 case EEH_RESET_FUNDAMENTAL:
1626 * Proactively freeze the PE to drop all MMIO access
1627 * during reset, which should be banned as it's always
1628 * cause recursive EEH error.
1630 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1632 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1633 ret = eeh_ops->reset(pe, option);
1634 break;
1635 default:
1636 pr_debug("%s: Unsupported option %d\n",
1637 __func__, option);
1638 ret = -EINVAL;
1641 return ret;
1643 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1646 * eeh_pe_configure - Configure PCI bridges after PE reset
1647 * @pe: EEH PE
1649 * The routine is called to restore the PCI config space for
1650 * those PCI devices, especially PCI bridges affected by PE
1651 * reset issued previously.
1653 int eeh_pe_configure(struct eeh_pe *pe)
1655 int ret = 0;
1657 /* Invalid PE ? */
1658 if (!pe)
1659 return -ENODEV;
1661 return ret;
1663 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1665 static int proc_eeh_show(struct seq_file *m, void *v)
1667 if (!eeh_enabled()) {
1668 seq_printf(m, "EEH Subsystem is globally disabled\n");
1669 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1670 } else {
1671 seq_printf(m, "EEH Subsystem is enabled\n");
1672 seq_printf(m,
1673 "no device=%llu\n"
1674 "no device node=%llu\n"
1675 "no config address=%llu\n"
1676 "check not wanted=%llu\n"
1677 "eeh_total_mmio_ffs=%llu\n"
1678 "eeh_false_positives=%llu\n"
1679 "eeh_slot_resets=%llu\n",
1680 eeh_stats.no_device,
1681 eeh_stats.no_dn,
1682 eeh_stats.no_cfg_addr,
1683 eeh_stats.ignored_check,
1684 eeh_stats.total_mmio_ffs,
1685 eeh_stats.false_positives,
1686 eeh_stats.slot_resets);
1689 return 0;
1692 static int proc_eeh_open(struct inode *inode, struct file *file)
1694 return single_open(file, proc_eeh_show, NULL);
1697 static const struct file_operations proc_eeh_operations = {
1698 .open = proc_eeh_open,
1699 .read = seq_read,
1700 .llseek = seq_lseek,
1701 .release = single_release,
1704 #ifdef CONFIG_DEBUG_FS
1705 static int eeh_enable_dbgfs_set(void *data, u64 val)
1707 if (val)
1708 eeh_clear_flag(EEH_FORCE_DISABLED);
1709 else
1710 eeh_add_flag(EEH_FORCE_DISABLED);
1712 /* Notify the backend */
1713 if (eeh_ops->post_init)
1714 eeh_ops->post_init();
1716 return 0;
1719 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1721 if (eeh_enabled())
1722 *val = 0x1ul;
1723 else
1724 *val = 0x0ul;
1725 return 0;
1728 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1730 eeh_max_freezes = val;
1731 return 0;
1734 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1736 *val = eeh_max_freezes;
1737 return 0;
1740 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1741 eeh_enable_dbgfs_set, "0x%llx\n");
1742 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1743 eeh_freeze_dbgfs_set, "0x%llx\n");
1744 #endif
1746 static int __init eeh_init_proc(void)
1748 if (machine_is(pseries) || machine_is(powernv)) {
1749 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1750 #ifdef CONFIG_DEBUG_FS
1751 debugfs_create_file("eeh_enable", 0600,
1752 powerpc_debugfs_root, NULL,
1753 &eeh_enable_dbgfs_ops);
1754 debugfs_create_file("eeh_max_freezes", 0600,
1755 powerpc_debugfs_root, NULL,
1756 &eeh_freeze_dbgfs_ops);
1757 #endif
1760 return 0;
1762 __initcall(eeh_init_proc);