Linux 4.1.18
[linux/fpc-iii.git] / arch / powerpc / kernel / signal_32.c
blob7356c33dc897fe1498e10feb9e4cf78c882c29b0
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
55 #include "signal.h"
58 #ifdef CONFIG_PPC64
59 #define sys_rt_sigreturn compat_sys_rt_sigreturn
60 #define sys_swapcontext compat_sys_swapcontext
61 #define sys_sigreturn compat_sys_sigreturn
63 #define old_sigaction old_sigaction32
64 #define sigcontext sigcontext32
65 #define mcontext mcontext32
66 #define ucontext ucontext32
68 #define __save_altstack __compat_save_altstack
71 * Userspace code may pass a ucontext which doesn't include VSX added
72 * at the end. We need to check for this case.
74 #define UCONTEXTSIZEWITHOUTVSX \
75 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
78 * Returning 0 means we return to userspace via
79 * ret_from_except and thus restore all user
80 * registers from *regs. This is what we need
81 * to do when a signal has been delivered.
84 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
85 #undef __SIGNAL_FRAMESIZE
86 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
87 #undef ELF_NVRREG
88 #define ELF_NVRREG ELF_NVRREG32
91 * Functions for flipping sigsets (thanks to brain dead generic
92 * implementation that makes things simple for little endian only)
94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 compat_sigset_t cset;
98 switch (_NSIG_WORDS) {
99 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
100 cset.sig[7] = set->sig[3] >> 32;
101 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
102 cset.sig[5] = set->sig[2] >> 32;
103 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
104 cset.sig[3] = set->sig[1] >> 32;
105 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
106 cset.sig[1] = set->sig[0] >> 32;
108 return copy_to_user(uset, &cset, sizeof(*uset));
111 static inline int get_sigset_t(sigset_t *set,
112 const compat_sigset_t __user *uset)
114 compat_sigset_t s32;
116 if (copy_from_user(&s32, uset, sizeof(*uset)))
117 return -EFAULT;
120 * Swap the 2 words of the 64-bit sigset_t (they are stored
121 * in the "wrong" endian in 32-bit user storage).
123 switch (_NSIG_WORDS) {
124 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
125 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
126 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
127 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 return 0;
132 #define to_user_ptr(p) ptr_to_compat(p)
133 #define from_user_ptr(p) compat_ptr(p)
135 static inline int save_general_regs(struct pt_regs *regs,
136 struct mcontext __user *frame)
138 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
139 int i;
141 WARN_ON(!FULL_REGS(regs));
143 for (i = 0; i <= PT_RESULT; i ++) {
144 if (i == 14 && !FULL_REGS(regs))
145 i = 32;
146 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
147 return -EFAULT;
149 return 0;
152 static inline int restore_general_regs(struct pt_regs *regs,
153 struct mcontext __user *sr)
155 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
156 int i;
158 for (i = 0; i <= PT_RESULT; i++) {
159 if ((i == PT_MSR) || (i == PT_SOFTE))
160 continue;
161 if (__get_user(gregs[i], &sr->mc_gregs[i]))
162 return -EFAULT;
164 return 0;
167 #else /* CONFIG_PPC64 */
169 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 return copy_to_user(uset, set, sizeof(*uset));
176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 return copy_from_user(set, uset, sizeof(*uset));
181 #define to_user_ptr(p) ((unsigned long)(p))
182 #define from_user_ptr(p) ((void __user *)(p))
184 static inline int save_general_regs(struct pt_regs *regs,
185 struct mcontext __user *frame)
187 WARN_ON(!FULL_REGS(regs));
188 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
191 static inline int restore_general_regs(struct pt_regs *regs,
192 struct mcontext __user *sr)
194 /* copy up to but not including MSR */
195 if (__copy_from_user(regs, &sr->mc_gregs,
196 PT_MSR * sizeof(elf_greg_t)))
197 return -EFAULT;
198 /* copy from orig_r3 (the word after the MSR) up to the end */
199 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
200 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
201 return -EFAULT;
202 return 0;
204 #endif
207 * When we have signals to deliver, we set up on the
208 * user stack, going down from the original stack pointer:
209 * an ABI gap of 56 words
210 * an mcontext struct
211 * a sigcontext struct
212 * a gap of __SIGNAL_FRAMESIZE bytes
214 * Each of these things must be a multiple of 16 bytes in size. The following
215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
218 struct sigframe {
219 struct sigcontext sctx; /* the sigcontext */
220 struct mcontext mctx; /* all the register values */
221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
222 struct sigcontext sctx_transact;
223 struct mcontext mctx_transact;
224 #endif
226 * Programs using the rs6000/xcoff abi can save up to 19 gp
227 * regs and 18 fp regs below sp before decrementing it.
229 int abigap[56];
232 /* We use the mc_pad field for the signal return trampoline. */
233 #define tramp mc_pad
236 * When we have rt signals to deliver, we set up on the
237 * user stack, going down from the original stack pointer:
238 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
239 * a gap of __SIGNAL_FRAMESIZE+16 bytes
240 * (the +16 is to get the siginfo and ucontext in the same
241 * positions as in older kernels).
243 * Each of these things must be a multiple of 16 bytes in size.
246 struct rt_sigframe {
247 #ifdef CONFIG_PPC64
248 compat_siginfo_t info;
249 #else
250 struct siginfo info;
251 #endif
252 struct ucontext uc;
253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
254 struct ucontext uc_transact;
255 #endif
257 * Programs using the rs6000/xcoff abi can save up to 19 gp
258 * regs and 18 fp regs below sp before decrementing it.
260 int abigap[56];
263 #ifdef CONFIG_VSX
264 unsigned long copy_fpr_to_user(void __user *to,
265 struct task_struct *task)
267 u64 buf[ELF_NFPREG];
268 int i;
270 /* save FPR copy to local buffer then write to the thread_struct */
271 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
272 buf[i] = task->thread.TS_FPR(i);
273 buf[i] = task->thread.fp_state.fpscr;
274 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
277 unsigned long copy_fpr_from_user(struct task_struct *task,
278 void __user *from)
280 u64 buf[ELF_NFPREG];
281 int i;
283 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
284 return 1;
285 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
286 task->thread.TS_FPR(i) = buf[i];
287 task->thread.fp_state.fpscr = buf[i];
289 return 0;
292 unsigned long copy_vsx_to_user(void __user *to,
293 struct task_struct *task)
295 u64 buf[ELF_NVSRHALFREG];
296 int i;
298 /* save FPR copy to local buffer then write to the thread_struct */
299 for (i = 0; i < ELF_NVSRHALFREG; i++)
300 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
301 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
304 unsigned long copy_vsx_from_user(struct task_struct *task,
305 void __user *from)
307 u64 buf[ELF_NVSRHALFREG];
308 int i;
310 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
311 return 1;
312 for (i = 0; i < ELF_NVSRHALFREG ; i++)
313 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
314 return 0;
317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
318 unsigned long copy_transact_fpr_to_user(void __user *to,
319 struct task_struct *task)
321 u64 buf[ELF_NFPREG];
322 int i;
324 /* save FPR copy to local buffer then write to the thread_struct */
325 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
326 buf[i] = task->thread.TS_TRANS_FPR(i);
327 buf[i] = task->thread.transact_fp.fpscr;
328 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
331 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
332 void __user *from)
334 u64 buf[ELF_NFPREG];
335 int i;
337 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
338 return 1;
339 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
340 task->thread.TS_TRANS_FPR(i) = buf[i];
341 task->thread.transact_fp.fpscr = buf[i];
343 return 0;
346 unsigned long copy_transact_vsx_to_user(void __user *to,
347 struct task_struct *task)
349 u64 buf[ELF_NVSRHALFREG];
350 int i;
352 /* save FPR copy to local buffer then write to the thread_struct */
353 for (i = 0; i < ELF_NVSRHALFREG; i++)
354 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
355 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
358 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
359 void __user *from)
361 u64 buf[ELF_NVSRHALFREG];
362 int i;
364 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
365 return 1;
366 for (i = 0; i < ELF_NVSRHALFREG ; i++)
367 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
368 return 0;
370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
371 #else
372 inline unsigned long copy_fpr_to_user(void __user *to,
373 struct task_struct *task)
375 return __copy_to_user(to, task->thread.fp_state.fpr,
376 ELF_NFPREG * sizeof(double));
379 inline unsigned long copy_fpr_from_user(struct task_struct *task,
380 void __user *from)
382 return __copy_from_user(task->thread.fp_state.fpr, from,
383 ELF_NFPREG * sizeof(double));
386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
387 inline unsigned long copy_transact_fpr_to_user(void __user *to,
388 struct task_struct *task)
390 return __copy_to_user(to, task->thread.transact_fp.fpr,
391 ELF_NFPREG * sizeof(double));
394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
395 void __user *from)
397 return __copy_from_user(task->thread.transact_fp.fpr, from,
398 ELF_NFPREG * sizeof(double));
400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
401 #endif
404 * Save the current user registers on the user stack.
405 * We only save the altivec/spe registers if the process has used
406 * altivec/spe instructions at some point.
408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
409 struct mcontext __user *tm_frame, int sigret,
410 int ctx_has_vsx_region)
412 unsigned long msr = regs->msr;
414 /* Make sure floating point registers are stored in regs */
415 flush_fp_to_thread(current);
417 /* save general registers */
418 if (save_general_regs(regs, frame))
419 return 1;
421 #ifdef CONFIG_ALTIVEC
422 /* save altivec registers */
423 if (current->thread.used_vr) {
424 flush_altivec_to_thread(current);
425 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
426 ELF_NVRREG * sizeof(vector128)))
427 return 1;
428 /* set MSR_VEC in the saved MSR value to indicate that
429 frame->mc_vregs contains valid data */
430 msr |= MSR_VEC;
432 /* else assert((regs->msr & MSR_VEC) == 0) */
434 /* We always copy to/from vrsave, it's 0 if we don't have or don't
435 * use altivec. Since VSCR only contains 32 bits saved in the least
436 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 * most significant bits of that same vector. --BenH
438 * Note that the current VRSAVE value is in the SPR at this point.
440 if (cpu_has_feature(CPU_FTR_ALTIVEC))
441 current->thread.vrsave = mfspr(SPRN_VRSAVE);
442 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
443 return 1;
444 #endif /* CONFIG_ALTIVEC */
445 if (copy_fpr_to_user(&frame->mc_fregs, current))
446 return 1;
449 * Clear the MSR VSX bit to indicate there is no valid state attached
450 * to this context, except in the specific case below where we set it.
452 msr &= ~MSR_VSX;
453 #ifdef CONFIG_VSX
455 * Copy VSR 0-31 upper half from thread_struct to local
456 * buffer, then write that to userspace. Also set MSR_VSX in
457 * the saved MSR value to indicate that frame->mc_vregs
458 * contains valid data
460 if (current->thread.used_vsr && ctx_has_vsx_region) {
461 __giveup_vsx(current);
462 if (copy_vsx_to_user(&frame->mc_vsregs, current))
463 return 1;
464 msr |= MSR_VSX;
466 #endif /* CONFIG_VSX */
467 #ifdef CONFIG_SPE
468 /* save spe registers */
469 if (current->thread.used_spe) {
470 flush_spe_to_thread(current);
471 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
472 ELF_NEVRREG * sizeof(u32)))
473 return 1;
474 /* set MSR_SPE in the saved MSR value to indicate that
475 frame->mc_vregs contains valid data */
476 msr |= MSR_SPE;
478 /* else assert((regs->msr & MSR_SPE) == 0) */
480 /* We always copy to/from spefscr */
481 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
482 return 1;
483 #endif /* CONFIG_SPE */
485 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
486 return 1;
487 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
488 * can check it on the restore to see if TM is active
490 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
491 return 1;
493 if (sigret) {
494 /* Set up the sigreturn trampoline: li r0,sigret; sc */
495 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
496 || __put_user(0x44000002UL, &frame->tramp[1]))
497 return 1;
498 flush_icache_range((unsigned long) &frame->tramp[0],
499 (unsigned long) &frame->tramp[2]);
502 return 0;
505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
507 * Save the current user registers on the user stack.
508 * We only save the altivec/spe registers if the process has used
509 * altivec/spe instructions at some point.
510 * We also save the transactional registers to a second ucontext in the
511 * frame.
513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
515 static int save_tm_user_regs(struct pt_regs *regs,
516 struct mcontext __user *frame,
517 struct mcontext __user *tm_frame, int sigret)
519 unsigned long msr = regs->msr;
521 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
522 * just indicates to userland that we were doing a transaction, but we
523 * don't want to return in transactional state. This also ensures
524 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
526 regs->msr &= ~MSR_TS_MASK;
528 /* Make sure floating point registers are stored in regs */
529 flush_fp_to_thread(current);
531 /* Save both sets of general registers */
532 if (save_general_regs(&current->thread.ckpt_regs, frame)
533 || save_general_regs(regs, tm_frame))
534 return 1;
536 /* Stash the top half of the 64bit MSR into the 32bit MSR word
537 * of the transactional mcontext. This way we have a backward-compatible
538 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
539 * also look at what type of transaction (T or S) was active at the
540 * time of the signal.
542 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
543 return 1;
545 #ifdef CONFIG_ALTIVEC
546 /* save altivec registers */
547 if (current->thread.used_vr) {
548 flush_altivec_to_thread(current);
549 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
550 ELF_NVRREG * sizeof(vector128)))
551 return 1;
552 if (msr & MSR_VEC) {
553 if (__copy_to_user(&tm_frame->mc_vregs,
554 &current->thread.transact_vr,
555 ELF_NVRREG * sizeof(vector128)))
556 return 1;
557 } else {
558 if (__copy_to_user(&tm_frame->mc_vregs,
559 &current->thread.vr_state,
560 ELF_NVRREG * sizeof(vector128)))
561 return 1;
564 /* set MSR_VEC in the saved MSR value to indicate that
565 * frame->mc_vregs contains valid data
567 msr |= MSR_VEC;
570 /* We always copy to/from vrsave, it's 0 if we don't have or don't
571 * use altivec. Since VSCR only contains 32 bits saved in the least
572 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
573 * most significant bits of that same vector. --BenH
575 if (cpu_has_feature(CPU_FTR_ALTIVEC))
576 current->thread.vrsave = mfspr(SPRN_VRSAVE);
577 if (__put_user(current->thread.vrsave,
578 (u32 __user *)&frame->mc_vregs[32]))
579 return 1;
580 if (msr & MSR_VEC) {
581 if (__put_user(current->thread.transact_vrsave,
582 (u32 __user *)&tm_frame->mc_vregs[32]))
583 return 1;
584 } else {
585 if (__put_user(current->thread.vrsave,
586 (u32 __user *)&tm_frame->mc_vregs[32]))
587 return 1;
589 #endif /* CONFIG_ALTIVEC */
591 if (copy_fpr_to_user(&frame->mc_fregs, current))
592 return 1;
593 if (msr & MSR_FP) {
594 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
595 return 1;
596 } else {
597 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
598 return 1;
601 #ifdef CONFIG_VSX
603 * Copy VSR 0-31 upper half from thread_struct to local
604 * buffer, then write that to userspace. Also set MSR_VSX in
605 * the saved MSR value to indicate that frame->mc_vregs
606 * contains valid data
608 if (current->thread.used_vsr) {
609 __giveup_vsx(current);
610 if (copy_vsx_to_user(&frame->mc_vsregs, current))
611 return 1;
612 if (msr & MSR_VSX) {
613 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
614 current))
615 return 1;
616 } else {
617 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
618 return 1;
621 msr |= MSR_VSX;
623 #endif /* CONFIG_VSX */
624 #ifdef CONFIG_SPE
625 /* SPE regs are not checkpointed with TM, so this section is
626 * simply the same as in save_user_regs().
628 if (current->thread.used_spe) {
629 flush_spe_to_thread(current);
630 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
631 ELF_NEVRREG * sizeof(u32)))
632 return 1;
633 /* set MSR_SPE in the saved MSR value to indicate that
634 * frame->mc_vregs contains valid data */
635 msr |= MSR_SPE;
638 /* We always copy to/from spefscr */
639 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
640 return 1;
641 #endif /* CONFIG_SPE */
643 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
644 return 1;
645 if (sigret) {
646 /* Set up the sigreturn trampoline: li r0,sigret; sc */
647 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
648 || __put_user(0x44000002UL, &frame->tramp[1]))
649 return 1;
650 flush_icache_range((unsigned long) &frame->tramp[0],
651 (unsigned long) &frame->tramp[2]);
654 return 0;
656 #endif
659 * Restore the current user register values from the user stack,
660 * (except for MSR).
662 static long restore_user_regs(struct pt_regs *regs,
663 struct mcontext __user *sr, int sig)
665 long err;
666 unsigned int save_r2 = 0;
667 unsigned long msr;
668 #ifdef CONFIG_VSX
669 int i;
670 #endif
673 * restore general registers but not including MSR or SOFTE. Also
674 * take care of keeping r2 (TLS) intact if not a signal
676 if (!sig)
677 save_r2 = (unsigned int)regs->gpr[2];
678 err = restore_general_regs(regs, sr);
679 regs->trap = 0;
680 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
681 if (!sig)
682 regs->gpr[2] = (unsigned long) save_r2;
683 if (err)
684 return 1;
686 /* if doing signal return, restore the previous little-endian mode */
687 if (sig)
688 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
691 * Do this before updating the thread state in
692 * current->thread.fpr/vr/evr. That way, if we get preempted
693 * and another task grabs the FPU/Altivec/SPE, it won't be
694 * tempted to save the current CPU state into the thread_struct
695 * and corrupt what we are writing there.
697 discard_lazy_cpu_state();
699 #ifdef CONFIG_ALTIVEC
701 * Force the process to reload the altivec registers from
702 * current->thread when it next does altivec instructions
704 regs->msr &= ~MSR_VEC;
705 if (msr & MSR_VEC) {
706 /* restore altivec registers from the stack */
707 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
708 sizeof(sr->mc_vregs)))
709 return 1;
710 } else if (current->thread.used_vr)
711 memset(&current->thread.vr_state, 0,
712 ELF_NVRREG * sizeof(vector128));
714 /* Always get VRSAVE back */
715 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
716 return 1;
717 if (cpu_has_feature(CPU_FTR_ALTIVEC))
718 mtspr(SPRN_VRSAVE, current->thread.vrsave);
719 #endif /* CONFIG_ALTIVEC */
720 if (copy_fpr_from_user(current, &sr->mc_fregs))
721 return 1;
723 #ifdef CONFIG_VSX
725 * Force the process to reload the VSX registers from
726 * current->thread when it next does VSX instruction.
728 regs->msr &= ~MSR_VSX;
729 if (msr & MSR_VSX) {
731 * Restore altivec registers from the stack to a local
732 * buffer, then write this out to the thread_struct
734 if (copy_vsx_from_user(current, &sr->mc_vsregs))
735 return 1;
736 } else if (current->thread.used_vsr)
737 for (i = 0; i < 32 ; i++)
738 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
739 #endif /* CONFIG_VSX */
741 * force the process to reload the FP registers from
742 * current->thread when it next does FP instructions
744 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
746 #ifdef CONFIG_SPE
747 /* force the process to reload the spe registers from
748 current->thread when it next does spe instructions */
749 regs->msr &= ~MSR_SPE;
750 if (msr & MSR_SPE) {
751 /* restore spe registers from the stack */
752 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
753 ELF_NEVRREG * sizeof(u32)))
754 return 1;
755 } else if (current->thread.used_spe)
756 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
758 /* Always get SPEFSCR back */
759 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
760 return 1;
761 #endif /* CONFIG_SPE */
763 return 0;
766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
768 * Restore the current user register values from the user stack, except for
769 * MSR, and recheckpoint the original checkpointed register state for processes
770 * in transactions.
772 static long restore_tm_user_regs(struct pt_regs *regs,
773 struct mcontext __user *sr,
774 struct mcontext __user *tm_sr)
776 long err;
777 unsigned long msr, msr_hi;
778 #ifdef CONFIG_VSX
779 int i;
780 #endif
783 * restore general registers but not including MSR or SOFTE. Also
784 * take care of keeping r2 (TLS) intact if not a signal.
785 * See comment in signal_64.c:restore_tm_sigcontexts();
786 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
787 * were set by the signal delivery.
789 err = restore_general_regs(regs, tm_sr);
790 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
792 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
794 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
795 if (err)
796 return 1;
798 /* Restore the previous little-endian mode */
799 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
802 * Do this before updating the thread state in
803 * current->thread.fpr/vr/evr. That way, if we get preempted
804 * and another task grabs the FPU/Altivec/SPE, it won't be
805 * tempted to save the current CPU state into the thread_struct
806 * and corrupt what we are writing there.
808 discard_lazy_cpu_state();
810 #ifdef CONFIG_ALTIVEC
811 regs->msr &= ~MSR_VEC;
812 if (msr & MSR_VEC) {
813 /* restore altivec registers from the stack */
814 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
815 sizeof(sr->mc_vregs)) ||
816 __copy_from_user(&current->thread.transact_vr,
817 &tm_sr->mc_vregs,
818 sizeof(sr->mc_vregs)))
819 return 1;
820 } else if (current->thread.used_vr) {
821 memset(&current->thread.vr_state, 0,
822 ELF_NVRREG * sizeof(vector128));
823 memset(&current->thread.transact_vr, 0,
824 ELF_NVRREG * sizeof(vector128));
827 /* Always get VRSAVE back */
828 if (__get_user(current->thread.vrsave,
829 (u32 __user *)&sr->mc_vregs[32]) ||
830 __get_user(current->thread.transact_vrsave,
831 (u32 __user *)&tm_sr->mc_vregs[32]))
832 return 1;
833 if (cpu_has_feature(CPU_FTR_ALTIVEC))
834 mtspr(SPRN_VRSAVE, current->thread.vrsave);
835 #endif /* CONFIG_ALTIVEC */
837 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
839 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
840 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
841 return 1;
843 #ifdef CONFIG_VSX
844 regs->msr &= ~MSR_VSX;
845 if (msr & MSR_VSX) {
847 * Restore altivec registers from the stack to a local
848 * buffer, then write this out to the thread_struct
850 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
851 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
852 return 1;
853 } else if (current->thread.used_vsr)
854 for (i = 0; i < 32 ; i++) {
855 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
856 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
858 #endif /* CONFIG_VSX */
860 #ifdef CONFIG_SPE
861 /* SPE regs are not checkpointed with TM, so this section is
862 * simply the same as in restore_user_regs().
864 regs->msr &= ~MSR_SPE;
865 if (msr & MSR_SPE) {
866 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
867 ELF_NEVRREG * sizeof(u32)))
868 return 1;
869 } else if (current->thread.used_spe)
870 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
872 /* Always get SPEFSCR back */
873 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
874 + ELF_NEVRREG))
875 return 1;
876 #endif /* CONFIG_SPE */
878 /* Get the top half of the MSR from the user context */
879 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
880 return 1;
881 msr_hi <<= 32;
882 /* If TM bits are set to the reserved value, it's an invalid context */
883 if (MSR_TM_RESV(msr_hi))
884 return 1;
885 /* Pull in the MSR TM bits from the user context */
886 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
887 /* Now, recheckpoint. This loads up all of the checkpointed (older)
888 * registers, including FP and V[S]Rs. After recheckpointing, the
889 * transactional versions should be loaded.
891 tm_enable();
892 /* Make sure the transaction is marked as failed */
893 current->thread.tm_texasr |= TEXASR_FS;
894 /* This loads the checkpointed FP/VEC state, if used */
895 tm_recheckpoint(&current->thread, msr);
897 /* This loads the speculative FP/VEC state, if used */
898 if (msr & MSR_FP) {
899 do_load_up_transact_fpu(&current->thread);
900 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
902 #ifdef CONFIG_ALTIVEC
903 if (msr & MSR_VEC) {
904 do_load_up_transact_altivec(&current->thread);
905 regs->msr |= MSR_VEC;
907 #endif
909 return 0;
911 #endif
913 #ifdef CONFIG_PPC64
914 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
916 int err;
918 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
919 return -EFAULT;
921 /* If you change siginfo_t structure, please be sure
922 * this code is fixed accordingly.
923 * It should never copy any pad contained in the structure
924 * to avoid security leaks, but must copy the generic
925 * 3 ints plus the relevant union member.
926 * This routine must convert siginfo from 64bit to 32bit as well
927 * at the same time.
929 err = __put_user(s->si_signo, &d->si_signo);
930 err |= __put_user(s->si_errno, &d->si_errno);
931 err |= __put_user((short)s->si_code, &d->si_code);
932 if (s->si_code < 0)
933 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
934 SI_PAD_SIZE32);
935 else switch(s->si_code >> 16) {
936 case __SI_CHLD >> 16:
937 err |= __put_user(s->si_pid, &d->si_pid);
938 err |= __put_user(s->si_uid, &d->si_uid);
939 err |= __put_user(s->si_utime, &d->si_utime);
940 err |= __put_user(s->si_stime, &d->si_stime);
941 err |= __put_user(s->si_status, &d->si_status);
942 break;
943 case __SI_FAULT >> 16:
944 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
945 &d->si_addr);
946 break;
947 case __SI_POLL >> 16:
948 err |= __put_user(s->si_band, &d->si_band);
949 err |= __put_user(s->si_fd, &d->si_fd);
950 break;
951 case __SI_TIMER >> 16:
952 err |= __put_user(s->si_tid, &d->si_tid);
953 err |= __put_user(s->si_overrun, &d->si_overrun);
954 err |= __put_user(s->si_int, &d->si_int);
955 break;
956 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
957 case __SI_MESGQ >> 16:
958 err |= __put_user(s->si_int, &d->si_int);
959 /* fallthrough */
960 case __SI_KILL >> 16:
961 default:
962 err |= __put_user(s->si_pid, &d->si_pid);
963 err |= __put_user(s->si_uid, &d->si_uid);
964 break;
966 return err;
969 #define copy_siginfo_to_user copy_siginfo_to_user32
971 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
973 if (copy_from_user(to, from, 3*sizeof(int)) ||
974 copy_from_user(to->_sifields._pad,
975 from->_sifields._pad, SI_PAD_SIZE32))
976 return -EFAULT;
978 return 0;
980 #endif /* CONFIG_PPC64 */
983 * Set up a signal frame for a "real-time" signal handler
984 * (one which gets siginfo).
986 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
987 struct pt_regs *regs)
989 struct rt_sigframe __user *rt_sf;
990 struct mcontext __user *frame;
991 struct mcontext __user *tm_frame = NULL;
992 void __user *addr;
993 unsigned long newsp = 0;
994 int sigret;
995 unsigned long tramp;
997 /* Set up Signal Frame */
998 /* Put a Real Time Context onto stack */
999 rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1000 addr = rt_sf;
1001 if (unlikely(rt_sf == NULL))
1002 goto badframe;
1004 /* Put the siginfo & fill in most of the ucontext */
1005 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
1006 || __put_user(0, &rt_sf->uc.uc_flags)
1007 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1008 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1009 &rt_sf->uc.uc_regs)
1010 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1011 goto badframe;
1013 /* Save user registers on the stack */
1014 frame = &rt_sf->uc.uc_mcontext;
1015 addr = frame;
1016 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1017 sigret = 0;
1018 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1019 } else {
1020 sigret = __NR_rt_sigreturn;
1021 tramp = (unsigned long) frame->tramp;
1024 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1026 if (MSR_TM_ACTIVE(regs->msr)) {
1027 if (__put_user((unsigned long)&rt_sf->uc_transact,
1028 &rt_sf->uc.uc_link) ||
1029 __put_user((unsigned long)tm_frame,
1030 &rt_sf->uc_transact.uc_regs))
1031 goto badframe;
1032 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1033 goto badframe;
1035 else
1036 #endif
1038 if (__put_user(0, &rt_sf->uc.uc_link))
1039 goto badframe;
1040 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1041 goto badframe;
1043 regs->link = tramp;
1045 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1047 /* create a stack frame for the caller of the handler */
1048 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1049 addr = (void __user *)regs->gpr[1];
1050 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1051 goto badframe;
1053 /* Fill registers for signal handler */
1054 regs->gpr[1] = newsp;
1055 regs->gpr[3] = ksig->sig;
1056 regs->gpr[4] = (unsigned long) &rt_sf->info;
1057 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1058 regs->gpr[6] = (unsigned long) rt_sf;
1059 regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1060 /* enter the signal handler in native-endian mode */
1061 regs->msr &= ~MSR_LE;
1062 regs->msr |= (MSR_KERNEL & MSR_LE);
1063 return 0;
1065 badframe:
1066 if (show_unhandled_signals)
1067 printk_ratelimited(KERN_INFO
1068 "%s[%d]: bad frame in handle_rt_signal32: "
1069 "%p nip %08lx lr %08lx\n",
1070 current->comm, current->pid,
1071 addr, regs->nip, regs->link);
1073 return 1;
1076 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1078 sigset_t set;
1079 struct mcontext __user *mcp;
1081 if (get_sigset_t(&set, &ucp->uc_sigmask))
1082 return -EFAULT;
1083 #ifdef CONFIG_PPC64
1085 u32 cmcp;
1087 if (__get_user(cmcp, &ucp->uc_regs))
1088 return -EFAULT;
1089 mcp = (struct mcontext __user *)(u64)cmcp;
1090 /* no need to check access_ok(mcp), since mcp < 4GB */
1092 #else
1093 if (__get_user(mcp, &ucp->uc_regs))
1094 return -EFAULT;
1095 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1096 return -EFAULT;
1097 #endif
1098 set_current_blocked(&set);
1099 if (restore_user_regs(regs, mcp, sig))
1100 return -EFAULT;
1102 return 0;
1105 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1106 static int do_setcontext_tm(struct ucontext __user *ucp,
1107 struct ucontext __user *tm_ucp,
1108 struct pt_regs *regs)
1110 sigset_t set;
1111 struct mcontext __user *mcp;
1112 struct mcontext __user *tm_mcp;
1113 u32 cmcp;
1114 u32 tm_cmcp;
1116 if (get_sigset_t(&set, &ucp->uc_sigmask))
1117 return -EFAULT;
1119 if (__get_user(cmcp, &ucp->uc_regs) ||
1120 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1121 return -EFAULT;
1122 mcp = (struct mcontext __user *)(u64)cmcp;
1123 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1124 /* no need to check access_ok(mcp), since mcp < 4GB */
1126 set_current_blocked(&set);
1127 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1128 return -EFAULT;
1130 return 0;
1132 #endif
1134 long sys_swapcontext(struct ucontext __user *old_ctx,
1135 struct ucontext __user *new_ctx,
1136 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1138 unsigned char tmp;
1139 int ctx_has_vsx_region = 0;
1141 #ifdef CONFIG_PPC64
1142 unsigned long new_msr = 0;
1144 if (new_ctx) {
1145 struct mcontext __user *mcp;
1146 u32 cmcp;
1149 * Get pointer to the real mcontext. No need for
1150 * access_ok since we are dealing with compat
1151 * pointers.
1153 if (__get_user(cmcp, &new_ctx->uc_regs))
1154 return -EFAULT;
1155 mcp = (struct mcontext __user *)(u64)cmcp;
1156 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1157 return -EFAULT;
1160 * Check that the context is not smaller than the original
1161 * size (with VMX but without VSX)
1163 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1164 return -EINVAL;
1166 * If the new context state sets the MSR VSX bits but
1167 * it doesn't provide VSX state.
1169 if ((ctx_size < sizeof(struct ucontext)) &&
1170 (new_msr & MSR_VSX))
1171 return -EINVAL;
1172 /* Does the context have enough room to store VSX data? */
1173 if (ctx_size >= sizeof(struct ucontext))
1174 ctx_has_vsx_region = 1;
1175 #else
1176 /* Context size is for future use. Right now, we only make sure
1177 * we are passed something we understand
1179 if (ctx_size < sizeof(struct ucontext))
1180 return -EINVAL;
1181 #endif
1182 if (old_ctx != NULL) {
1183 struct mcontext __user *mctx;
1186 * old_ctx might not be 16-byte aligned, in which
1187 * case old_ctx->uc_mcontext won't be either.
1188 * Because we have the old_ctx->uc_pad2 field
1189 * before old_ctx->uc_mcontext, we need to round down
1190 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1192 mctx = (struct mcontext __user *)
1193 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1194 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1195 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1196 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1197 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1198 return -EFAULT;
1200 if (new_ctx == NULL)
1201 return 0;
1202 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1203 || __get_user(tmp, (u8 __user *) new_ctx)
1204 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1205 return -EFAULT;
1208 * If we get a fault copying the context into the kernel's
1209 * image of the user's registers, we can't just return -EFAULT
1210 * because the user's registers will be corrupted. For instance
1211 * the NIP value may have been updated but not some of the
1212 * other registers. Given that we have done the access_ok
1213 * and successfully read the first and last bytes of the region
1214 * above, this should only happen in an out-of-memory situation
1215 * or if another thread unmaps the region containing the context.
1216 * We kill the task with a SIGSEGV in this situation.
1218 if (do_setcontext(new_ctx, regs, 0))
1219 do_exit(SIGSEGV);
1221 set_thread_flag(TIF_RESTOREALL);
1222 return 0;
1225 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1226 struct pt_regs *regs)
1228 struct rt_sigframe __user *rt_sf;
1229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1230 struct ucontext __user *uc_transact;
1231 unsigned long msr_hi;
1232 unsigned long tmp;
1233 int tm_restore = 0;
1234 #endif
1235 /* Always make any pending restarted system calls return -EINTR */
1236 current->restart_block.fn = do_no_restart_syscall;
1238 rt_sf = (struct rt_sigframe __user *)
1239 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1240 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1241 goto bad;
1242 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1243 if (__get_user(tmp, &rt_sf->uc.uc_link))
1244 goto bad;
1245 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1246 if (uc_transact) {
1247 u32 cmcp;
1248 struct mcontext __user *mcp;
1250 if (__get_user(cmcp, &uc_transact->uc_regs))
1251 return -EFAULT;
1252 mcp = (struct mcontext __user *)(u64)cmcp;
1253 /* The top 32 bits of the MSR are stashed in the transactional
1254 * ucontext. */
1255 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1256 goto bad;
1258 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1259 /* We only recheckpoint on return if we're
1260 * transaction.
1262 tm_restore = 1;
1263 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1264 goto bad;
1267 if (!tm_restore)
1268 /* Fall through, for non-TM restore */
1269 #endif
1270 if (do_setcontext(&rt_sf->uc, regs, 1))
1271 goto bad;
1274 * It's not clear whether or why it is desirable to save the
1275 * sigaltstack setting on signal delivery and restore it on
1276 * signal return. But other architectures do this and we have
1277 * always done it up until now so it is probably better not to
1278 * change it. -- paulus
1280 #ifdef CONFIG_PPC64
1281 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1282 goto bad;
1283 #else
1284 if (restore_altstack(&rt_sf->uc.uc_stack))
1285 goto bad;
1286 #endif
1287 set_thread_flag(TIF_RESTOREALL);
1288 return 0;
1290 bad:
1291 if (show_unhandled_signals)
1292 printk_ratelimited(KERN_INFO
1293 "%s[%d]: bad frame in sys_rt_sigreturn: "
1294 "%p nip %08lx lr %08lx\n",
1295 current->comm, current->pid,
1296 rt_sf, regs->nip, regs->link);
1298 force_sig(SIGSEGV, current);
1299 return 0;
1302 #ifdef CONFIG_PPC32
1303 int sys_debug_setcontext(struct ucontext __user *ctx,
1304 int ndbg, struct sig_dbg_op __user *dbg,
1305 int r6, int r7, int r8,
1306 struct pt_regs *regs)
1308 struct sig_dbg_op op;
1309 int i;
1310 unsigned char tmp;
1311 unsigned long new_msr = regs->msr;
1312 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1313 unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1314 #endif
1316 for (i=0; i<ndbg; i++) {
1317 if (copy_from_user(&op, dbg + i, sizeof(op)))
1318 return -EFAULT;
1319 switch (op.dbg_type) {
1320 case SIG_DBG_SINGLE_STEPPING:
1321 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1322 if (op.dbg_value) {
1323 new_msr |= MSR_DE;
1324 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1325 } else {
1326 new_dbcr0 &= ~DBCR0_IC;
1327 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1328 current->thread.debug.dbcr1)) {
1329 new_msr &= ~MSR_DE;
1330 new_dbcr0 &= ~DBCR0_IDM;
1333 #else
1334 if (op.dbg_value)
1335 new_msr |= MSR_SE;
1336 else
1337 new_msr &= ~MSR_SE;
1338 #endif
1339 break;
1340 case SIG_DBG_BRANCH_TRACING:
1341 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1342 return -EINVAL;
1343 #else
1344 if (op.dbg_value)
1345 new_msr |= MSR_BE;
1346 else
1347 new_msr &= ~MSR_BE;
1348 #endif
1349 break;
1351 default:
1352 return -EINVAL;
1356 /* We wait until here to actually install the values in the
1357 registers so if we fail in the above loop, it will not
1358 affect the contents of these registers. After this point,
1359 failure is a problem, anyway, and it's very unlikely unless
1360 the user is really doing something wrong. */
1361 regs->msr = new_msr;
1362 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1363 current->thread.debug.dbcr0 = new_dbcr0;
1364 #endif
1366 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1367 || __get_user(tmp, (u8 __user *) ctx)
1368 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1369 return -EFAULT;
1372 * If we get a fault copying the context into the kernel's
1373 * image of the user's registers, we can't just return -EFAULT
1374 * because the user's registers will be corrupted. For instance
1375 * the NIP value may have been updated but not some of the
1376 * other registers. Given that we have done the access_ok
1377 * and successfully read the first and last bytes of the region
1378 * above, this should only happen in an out-of-memory situation
1379 * or if another thread unmaps the region containing the context.
1380 * We kill the task with a SIGSEGV in this situation.
1382 if (do_setcontext(ctx, regs, 1)) {
1383 if (show_unhandled_signals)
1384 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1385 "sys_debug_setcontext: %p nip %08lx "
1386 "lr %08lx\n",
1387 current->comm, current->pid,
1388 ctx, regs->nip, regs->link);
1390 force_sig(SIGSEGV, current);
1391 goto out;
1395 * It's not clear whether or why it is desirable to save the
1396 * sigaltstack setting on signal delivery and restore it on
1397 * signal return. But other architectures do this and we have
1398 * always done it up until now so it is probably better not to
1399 * change it. -- paulus
1401 restore_altstack(&ctx->uc_stack);
1403 set_thread_flag(TIF_RESTOREALL);
1404 out:
1405 return 0;
1407 #endif
1410 * OK, we're invoking a handler
1412 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1414 struct sigcontext __user *sc;
1415 struct sigframe __user *frame;
1416 struct mcontext __user *tm_mctx = NULL;
1417 unsigned long newsp = 0;
1418 int sigret;
1419 unsigned long tramp;
1421 /* Set up Signal Frame */
1422 frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1423 if (unlikely(frame == NULL))
1424 goto badframe;
1425 sc = (struct sigcontext __user *) &frame->sctx;
1427 #if _NSIG != 64
1428 #error "Please adjust handle_signal()"
1429 #endif
1430 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1431 || __put_user(oldset->sig[0], &sc->oldmask)
1432 #ifdef CONFIG_PPC64
1433 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1434 #else
1435 || __put_user(oldset->sig[1], &sc->_unused[3])
1436 #endif
1437 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1438 || __put_user(ksig->sig, &sc->signal))
1439 goto badframe;
1441 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1442 sigret = 0;
1443 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1444 } else {
1445 sigret = __NR_sigreturn;
1446 tramp = (unsigned long) frame->mctx.tramp;
1449 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1450 tm_mctx = &frame->mctx_transact;
1451 if (MSR_TM_ACTIVE(regs->msr)) {
1452 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1453 sigret))
1454 goto badframe;
1456 else
1457 #endif
1459 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1460 goto badframe;
1463 regs->link = tramp;
1465 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1467 /* create a stack frame for the caller of the handler */
1468 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1469 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1470 goto badframe;
1472 regs->gpr[1] = newsp;
1473 regs->gpr[3] = ksig->sig;
1474 regs->gpr[4] = (unsigned long) sc;
1475 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1476 /* enter the signal handler in big-endian mode */
1477 regs->msr &= ~MSR_LE;
1478 return 0;
1480 badframe:
1481 if (show_unhandled_signals)
1482 printk_ratelimited(KERN_INFO
1483 "%s[%d]: bad frame in handle_signal32: "
1484 "%p nip %08lx lr %08lx\n",
1485 current->comm, current->pid,
1486 frame, regs->nip, regs->link);
1488 return 1;
1492 * Do a signal return; undo the signal stack.
1494 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1495 struct pt_regs *regs)
1497 struct sigframe __user *sf;
1498 struct sigcontext __user *sc;
1499 struct sigcontext sigctx;
1500 struct mcontext __user *sr;
1501 void __user *addr;
1502 sigset_t set;
1503 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1504 struct mcontext __user *mcp, *tm_mcp;
1505 unsigned long msr_hi;
1506 #endif
1508 /* Always make any pending restarted system calls return -EINTR */
1509 current->restart_block.fn = do_no_restart_syscall;
1511 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1512 sc = &sf->sctx;
1513 addr = sc;
1514 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1515 goto badframe;
1517 #ifdef CONFIG_PPC64
1519 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1520 * unused part of the signal stackframe
1522 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1523 #else
1524 set.sig[0] = sigctx.oldmask;
1525 set.sig[1] = sigctx._unused[3];
1526 #endif
1527 set_current_blocked(&set);
1529 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1530 mcp = (struct mcontext __user *)&sf->mctx;
1531 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1532 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1533 goto badframe;
1534 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1535 if (!cpu_has_feature(CPU_FTR_TM))
1536 goto badframe;
1537 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1538 goto badframe;
1539 } else
1540 #endif
1542 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1543 addr = sr;
1544 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1545 || restore_user_regs(regs, sr, 1))
1546 goto badframe;
1549 set_thread_flag(TIF_RESTOREALL);
1550 return 0;
1552 badframe:
1553 if (show_unhandled_signals)
1554 printk_ratelimited(KERN_INFO
1555 "%s[%d]: bad frame in sys_sigreturn: "
1556 "%p nip %08lx lr %08lx\n",
1557 current->comm, current->pid,
1558 addr, regs->nip, regs->link);
1560 force_sig(SIGSEGV, current);
1561 return 0;