2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
16 #include <asm/tlbflush.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/mmu-hash64.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
24 /* Translate address of a vmalloc'd thing to a linear map address */
25 static void *real_vmalloc_addr(void *x
)
27 unsigned long addr
= (unsigned long) x
;
30 * assume we don't have huge pages in vmalloc space...
31 * So don't worry about THP collapse/split. Called
32 * Only in realmode, hence won't need irq_save/restore.
34 p
= __find_linux_pte_or_hugepte(swapper_pg_dir
, addr
, NULL
);
35 if (!p
|| !pte_present(*p
))
37 addr
= (pte_pfn(*p
) << PAGE_SHIFT
) | (addr
& ~PAGE_MASK
);
41 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
42 static int global_invalidates(struct kvm
*kvm
, unsigned long flags
)
47 * If there is only one vcore, and it's currently running,
48 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
49 * we can use tlbiel as long as we mark all other physical
50 * cores as potentially having stale TLB entries for this lpid.
51 * Otherwise, don't use tlbiel.
53 if (kvm
->arch
.online_vcores
== 1 && local_paca
->kvm_hstate
.kvm_vcpu
)
59 /* any other core might now have stale TLB entries... */
61 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
62 cpumask_clear_cpu(local_paca
->kvm_hstate
.kvm_vcore
->pcpu
,
63 &kvm
->arch
.need_tlb_flush
);
70 * Add this HPTE into the chain for the real page.
71 * Must be called with the chain locked; it unlocks the chain.
73 void kvmppc_add_revmap_chain(struct kvm
*kvm
, struct revmap_entry
*rev
,
74 unsigned long *rmap
, long pte_index
, int realmode
)
76 struct revmap_entry
*head
, *tail
;
79 if (*rmap
& KVMPPC_RMAP_PRESENT
) {
80 i
= *rmap
& KVMPPC_RMAP_INDEX
;
81 head
= &kvm
->arch
.revmap
[i
];
83 head
= real_vmalloc_addr(head
);
84 tail
= &kvm
->arch
.revmap
[head
->back
];
86 tail
= real_vmalloc_addr(tail
);
88 rev
->back
= head
->back
;
89 tail
->forw
= pte_index
;
90 head
->back
= pte_index
;
92 rev
->forw
= rev
->back
= pte_index
;
93 *rmap
= (*rmap
& ~KVMPPC_RMAP_INDEX
) |
94 pte_index
| KVMPPC_RMAP_PRESENT
;
98 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain
);
100 /* Remove this HPTE from the chain for a real page */
101 static void remove_revmap_chain(struct kvm
*kvm
, long pte_index
,
102 struct revmap_entry
*rev
,
103 unsigned long hpte_v
, unsigned long hpte_r
)
105 struct revmap_entry
*next
, *prev
;
106 unsigned long gfn
, ptel
, head
;
107 struct kvm_memory_slot
*memslot
;
109 unsigned long rcbits
;
111 rcbits
= hpte_r
& (HPTE_R_R
| HPTE_R_C
);
112 ptel
= rev
->guest_rpte
|= rcbits
;
113 gfn
= hpte_rpn(ptel
, hpte_page_size(hpte_v
, ptel
));
114 memslot
= __gfn_to_memslot(kvm_memslots_raw(kvm
), gfn
);
118 rmap
= real_vmalloc_addr(&memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
]);
121 head
= *rmap
& KVMPPC_RMAP_INDEX
;
122 next
= real_vmalloc_addr(&kvm
->arch
.revmap
[rev
->forw
]);
123 prev
= real_vmalloc_addr(&kvm
->arch
.revmap
[rev
->back
]);
124 next
->back
= rev
->back
;
125 prev
->forw
= rev
->forw
;
126 if (head
== pte_index
) {
128 if (head
== pte_index
)
129 *rmap
&= ~(KVMPPC_RMAP_PRESENT
| KVMPPC_RMAP_INDEX
);
131 *rmap
= (*rmap
& ~KVMPPC_RMAP_INDEX
) | head
;
133 *rmap
|= rcbits
<< KVMPPC_RMAP_RC_SHIFT
;
137 long kvmppc_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
138 long pte_index
, unsigned long pteh
, unsigned long ptel
,
139 pgd_t
*pgdir
, bool realmode
, unsigned long *pte_idx_ret
)
141 unsigned long i
, pa
, gpa
, gfn
, psize
;
142 unsigned long slot_fn
, hva
;
144 struct revmap_entry
*rev
;
145 unsigned long g_ptel
;
146 struct kvm_memory_slot
*memslot
;
147 unsigned hpage_shift
;
151 unsigned int writing
;
152 unsigned long mmu_seq
;
153 unsigned long rcbits
, irq_flags
= 0;
155 psize
= hpte_page_size(pteh
, ptel
);
158 writing
= hpte_is_writable(ptel
);
159 pteh
&= ~(HPTE_V_HVLOCK
| HPTE_V_ABSENT
| HPTE_V_VALID
);
160 ptel
&= ~HPTE_GR_RESERVED
;
163 /* used later to detect if we might have been invalidated */
164 mmu_seq
= kvm
->mmu_notifier_seq
;
167 /* Find the memslot (if any) for this address */
168 gpa
= (ptel
& HPTE_R_RPN
) & ~(psize
- 1);
169 gfn
= gpa
>> PAGE_SHIFT
;
170 memslot
= __gfn_to_memslot(kvm_memslots_raw(kvm
), gfn
);
174 if (!(memslot
&& !(memslot
->flags
& KVM_MEMSLOT_INVALID
))) {
175 /* Emulated MMIO - mark this with key=31 */
176 pteh
|= HPTE_V_ABSENT
;
177 ptel
|= HPTE_R_KEY_HI
| HPTE_R_KEY_LO
;
181 /* Check if the requested page fits entirely in the memslot. */
182 if (!slot_is_aligned(memslot
, psize
))
184 slot_fn
= gfn
- memslot
->base_gfn
;
185 rmap
= &memslot
->arch
.rmap
[slot_fn
];
187 /* Translate to host virtual address */
188 hva
= __gfn_to_hva_memslot(memslot
, gfn
);
190 * If we had a page table table change after lookup, we would
191 * retry via mmu_notifier_retry.
194 ptep
= __find_linux_pte_or_hugepte(pgdir
, hva
, &hpage_shift
);
196 local_irq_save(irq_flags
);
197 ptep
= find_linux_pte_or_hugepte(pgdir
, hva
, &hpage_shift
);
201 unsigned int host_pte_size
;
204 host_pte_size
= 1ul << hpage_shift
;
206 host_pte_size
= PAGE_SIZE
;
208 * We should always find the guest page size
209 * to <= host page size, if host is using hugepage
211 if (host_pte_size
< psize
) {
213 local_irq_restore(flags
);
216 pte
= kvmppc_read_update_linux_pte(ptep
, writing
);
217 if (pte_present(pte
) && !pte_protnone(pte
)) {
218 if (writing
&& !pte_write(pte
))
219 /* make the actual HPTE be read-only */
220 ptel
= hpte_make_readonly(ptel
);
221 is_io
= hpte_cache_bits(pte_val(pte
));
222 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
223 pa
|= hva
& (host_pte_size
- 1);
224 pa
|= gpa
& ~PAGE_MASK
;
228 local_irq_restore(irq_flags
);
230 ptel
&= ~(HPTE_R_PP0
- psize
);
234 pteh
|= HPTE_V_VALID
;
236 pteh
|= HPTE_V_ABSENT
;
239 if (is_io
!= ~0ul && !hpte_cache_flags_ok(ptel
, is_io
)) {
243 * Allow guest to map emulated device memory as
244 * uncacheable, but actually make it cacheable.
246 ptel
&= ~(HPTE_R_W
|HPTE_R_I
|HPTE_R_G
);
250 /* Find and lock the HPTEG slot to use */
252 if (pte_index
>= kvm
->arch
.hpt_npte
)
254 if (likely((flags
& H_EXACT
) == 0)) {
256 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
257 for (i
= 0; i
< 8; ++i
) {
258 if ((be64_to_cpu(*hpte
) & HPTE_V_VALID
) == 0 &&
259 try_lock_hpte(hpte
, HPTE_V_HVLOCK
| HPTE_V_VALID
|
266 * Since try_lock_hpte doesn't retry (not even stdcx.
267 * failures), it could be that there is a free slot
268 * but we transiently failed to lock it. Try again,
269 * actually locking each slot and checking it.
272 for (i
= 0; i
< 8; ++i
) {
274 while (!try_lock_hpte(hpte
, HPTE_V_HVLOCK
))
276 pte
= be64_to_cpu(hpte
[0]);
277 if (!(pte
& (HPTE_V_VALID
| HPTE_V_ABSENT
)))
279 __unlock_hpte(hpte
, pte
);
287 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
288 if (!try_lock_hpte(hpte
, HPTE_V_HVLOCK
| HPTE_V_VALID
|
290 /* Lock the slot and check again */
293 while (!try_lock_hpte(hpte
, HPTE_V_HVLOCK
))
295 pte
= be64_to_cpu(hpte
[0]);
296 if (pte
& (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
297 __unlock_hpte(hpte
, pte
);
303 /* Save away the guest's idea of the second HPTE dword */
304 rev
= &kvm
->arch
.revmap
[pte_index
];
306 rev
= real_vmalloc_addr(rev
);
308 rev
->guest_rpte
= g_ptel
;
309 note_hpte_modification(kvm
, rev
);
312 /* Link HPTE into reverse-map chain */
313 if (pteh
& HPTE_V_VALID
) {
315 rmap
= real_vmalloc_addr(rmap
);
317 /* Check for pending invalidations under the rmap chain lock */
318 if (mmu_notifier_retry(kvm
, mmu_seq
)) {
319 /* inval in progress, write a non-present HPTE */
320 pteh
|= HPTE_V_ABSENT
;
321 pteh
&= ~HPTE_V_VALID
;
324 kvmppc_add_revmap_chain(kvm
, rev
, rmap
, pte_index
,
326 /* Only set R/C in real HPTE if already set in *rmap */
327 rcbits
= *rmap
>> KVMPPC_RMAP_RC_SHIFT
;
328 ptel
&= rcbits
| ~(HPTE_R_R
| HPTE_R_C
);
332 hpte
[1] = cpu_to_be64(ptel
);
334 /* Write the first HPTE dword, unlocking the HPTE and making it valid */
336 __unlock_hpte(hpte
, pteh
);
337 asm volatile("ptesync" : : : "memory");
339 *pte_idx_ret
= pte_index
;
342 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter
);
344 long kvmppc_h_enter(struct kvm_vcpu
*vcpu
, unsigned long flags
,
345 long pte_index
, unsigned long pteh
, unsigned long ptel
)
347 return kvmppc_do_h_enter(vcpu
->kvm
, flags
, pte_index
, pteh
, ptel
,
348 vcpu
->arch
.pgdir
, true, &vcpu
->arch
.gpr
[4]);
351 #ifdef __BIG_ENDIAN__
352 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
354 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
357 static inline int try_lock_tlbie(unsigned int *lock
)
359 unsigned int tmp
, old
;
360 unsigned int token
= LOCK_TOKEN
;
362 asm volatile("1:lwarx %1,0,%2\n"
369 : "=&r" (tmp
), "=&r" (old
)
370 : "r" (lock
), "r" (token
)
375 static void do_tlbies(struct kvm
*kvm
, unsigned long *rbvalues
,
376 long npages
, int global
, bool need_sync
)
381 while (!try_lock_tlbie(&kvm
->arch
.tlbie_lock
))
384 asm volatile("ptesync" : : : "memory");
385 for (i
= 0; i
< npages
; ++i
)
386 asm volatile(PPC_TLBIE(%1,%0) : :
387 "r" (rbvalues
[i
]), "r" (kvm
->arch
.lpid
));
388 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
389 kvm
->arch
.tlbie_lock
= 0;
392 asm volatile("ptesync" : : : "memory");
393 for (i
= 0; i
< npages
; ++i
)
394 asm volatile("tlbiel %0" : : "r" (rbvalues
[i
]));
395 asm volatile("ptesync" : : : "memory");
399 long kvmppc_do_h_remove(struct kvm
*kvm
, unsigned long flags
,
400 unsigned long pte_index
, unsigned long avpn
,
401 unsigned long *hpret
)
404 unsigned long v
, r
, rb
;
405 struct revmap_entry
*rev
;
408 if (pte_index
>= kvm
->arch
.hpt_npte
)
410 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
411 while (!try_lock_hpte(hpte
, HPTE_V_HVLOCK
))
413 pte
= be64_to_cpu(hpte
[0]);
414 if ((pte
& (HPTE_V_ABSENT
| HPTE_V_VALID
)) == 0 ||
415 ((flags
& H_AVPN
) && (pte
& ~0x7fUL
) != avpn
) ||
416 ((flags
& H_ANDCOND
) && (pte
& avpn
) != 0)) {
417 __unlock_hpte(hpte
, pte
);
421 rev
= real_vmalloc_addr(&kvm
->arch
.revmap
[pte_index
]);
422 v
= pte
& ~HPTE_V_HVLOCK
;
423 if (v
& HPTE_V_VALID
) {
424 hpte
[0] &= ~cpu_to_be64(HPTE_V_VALID
);
425 rb
= compute_tlbie_rb(v
, be64_to_cpu(hpte
[1]), pte_index
);
426 do_tlbies(kvm
, &rb
, 1, global_invalidates(kvm
, flags
), true);
428 * The reference (R) and change (C) bits in a HPT
429 * entry can be set by hardware at any time up until
430 * the HPTE is invalidated and the TLB invalidation
431 * sequence has completed. This means that when
432 * removing a HPTE, we need to re-read the HPTE after
433 * the invalidation sequence has completed in order to
434 * obtain reliable values of R and C.
436 remove_revmap_chain(kvm
, pte_index
, rev
, v
,
437 be64_to_cpu(hpte
[1]));
439 r
= rev
->guest_rpte
& ~HPTE_GR_RESERVED
;
440 note_hpte_modification(kvm
, rev
);
441 unlock_hpte(hpte
, 0);
447 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove
);
449 long kvmppc_h_remove(struct kvm_vcpu
*vcpu
, unsigned long flags
,
450 unsigned long pte_index
, unsigned long avpn
)
452 return kvmppc_do_h_remove(vcpu
->kvm
, flags
, pte_index
, avpn
,
456 long kvmppc_h_bulk_remove(struct kvm_vcpu
*vcpu
)
458 struct kvm
*kvm
= vcpu
->kvm
;
459 unsigned long *args
= &vcpu
->arch
.gpr
[4];
460 __be64
*hp
, *hptes
[4];
461 unsigned long tlbrb
[4];
462 long int i
, j
, k
, n
, found
, indexes
[4];
463 unsigned long flags
, req
, pte_index
, rcbits
;
465 long int ret
= H_SUCCESS
;
466 struct revmap_entry
*rev
, *revs
[4];
469 global
= global_invalidates(kvm
, 0);
470 for (i
= 0; i
< 4 && ret
== H_SUCCESS
; ) {
475 flags
= pte_index
>> 56;
476 pte_index
&= ((1ul << 56) - 1);
479 if (req
== 3) { /* no more requests */
483 if (req
!= 1 || flags
== 3 ||
484 pte_index
>= kvm
->arch
.hpt_npte
) {
485 /* parameter error */
486 args
[j
] = ((0xa0 | flags
) << 56) + pte_index
;
490 hp
= (__be64
*) (kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
491 /* to avoid deadlock, don't spin except for first */
492 if (!try_lock_hpte(hp
, HPTE_V_HVLOCK
)) {
495 while (!try_lock_hpte(hp
, HPTE_V_HVLOCK
))
499 hp0
= be64_to_cpu(hp
[0]);
500 if (hp0
& (HPTE_V_ABSENT
| HPTE_V_VALID
)) {
502 case 0: /* absolute */
505 case 1: /* andcond */
506 if (!(hp0
& args
[j
+ 1]))
510 if ((hp0
& ~0x7fUL
) == args
[j
+ 1])
516 hp
[0] &= ~cpu_to_be64(HPTE_V_HVLOCK
);
517 args
[j
] = ((0x90 | flags
) << 56) + pte_index
;
521 args
[j
] = ((0x80 | flags
) << 56) + pte_index
;
522 rev
= real_vmalloc_addr(&kvm
->arch
.revmap
[pte_index
]);
523 note_hpte_modification(kvm
, rev
);
525 if (!(hp0
& HPTE_V_VALID
)) {
526 /* insert R and C bits from PTE */
527 rcbits
= rev
->guest_rpte
& (HPTE_R_R
|HPTE_R_C
);
528 args
[j
] |= rcbits
<< (56 - 5);
533 /* leave it locked */
534 hp
[0] &= ~cpu_to_be64(HPTE_V_VALID
);
535 tlbrb
[n
] = compute_tlbie_rb(be64_to_cpu(hp
[0]),
536 be64_to_cpu(hp
[1]), pte_index
);
546 /* Now that we've collected a batch, do the tlbies */
547 do_tlbies(kvm
, tlbrb
, n
, global
, true);
549 /* Read PTE low words after tlbie to get final R/C values */
550 for (k
= 0; k
< n
; ++k
) {
552 pte_index
= args
[j
] & ((1ul << 56) - 1);
555 remove_revmap_chain(kvm
, pte_index
, rev
,
556 be64_to_cpu(hp
[0]), be64_to_cpu(hp
[1]));
557 rcbits
= rev
->guest_rpte
& (HPTE_R_R
|HPTE_R_C
);
558 args
[j
] |= rcbits
<< (56 - 5);
559 __unlock_hpte(hp
, 0);
566 long kvmppc_h_protect(struct kvm_vcpu
*vcpu
, unsigned long flags
,
567 unsigned long pte_index
, unsigned long avpn
,
570 struct kvm
*kvm
= vcpu
->kvm
;
572 struct revmap_entry
*rev
;
573 unsigned long v
, r
, rb
, mask
, bits
;
576 if (pte_index
>= kvm
->arch
.hpt_npte
)
579 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
580 while (!try_lock_hpte(hpte
, HPTE_V_HVLOCK
))
582 pte
= be64_to_cpu(hpte
[0]);
583 if ((pte
& (HPTE_V_ABSENT
| HPTE_V_VALID
)) == 0 ||
584 ((flags
& H_AVPN
) && (pte
& ~0x7fUL
) != avpn
)) {
585 __unlock_hpte(hpte
, pte
);
590 bits
= (flags
<< 55) & HPTE_R_PP0
;
591 bits
|= (flags
<< 48) & HPTE_R_KEY_HI
;
592 bits
|= flags
& (HPTE_R_PP
| HPTE_R_N
| HPTE_R_KEY_LO
);
594 /* Update guest view of 2nd HPTE dword */
595 mask
= HPTE_R_PP0
| HPTE_R_PP
| HPTE_R_N
|
596 HPTE_R_KEY_HI
| HPTE_R_KEY_LO
;
597 rev
= real_vmalloc_addr(&kvm
->arch
.revmap
[pte_index
]);
599 r
= (rev
->guest_rpte
& ~mask
) | bits
;
601 note_hpte_modification(kvm
, rev
);
605 if (v
& HPTE_V_VALID
) {
607 * If the page is valid, don't let it transition from
608 * readonly to writable. If it should be writable, we'll
609 * take a trap and let the page fault code sort it out.
611 pte
= be64_to_cpu(hpte
[1]);
612 r
= (pte
& ~mask
) | bits
;
613 if (hpte_is_writable(r
) && !hpte_is_writable(pte
))
614 r
= hpte_make_readonly(r
);
615 /* If the PTE is changing, invalidate it first */
617 rb
= compute_tlbie_rb(v
, r
, pte_index
);
618 hpte
[0] = cpu_to_be64((v
& ~HPTE_V_VALID
) |
620 do_tlbies(kvm
, &rb
, 1, global_invalidates(kvm
, flags
),
622 hpte
[1] = cpu_to_be64(r
);
625 unlock_hpte(hpte
, v
& ~HPTE_V_HVLOCK
);
626 asm volatile("ptesync" : : : "memory");
630 long kvmppc_h_read(struct kvm_vcpu
*vcpu
, unsigned long flags
,
631 unsigned long pte_index
)
633 struct kvm
*kvm
= vcpu
->kvm
;
637 struct revmap_entry
*rev
= NULL
;
639 if (pte_index
>= kvm
->arch
.hpt_npte
)
641 if (flags
& H_READ_4
) {
645 rev
= real_vmalloc_addr(&kvm
->arch
.revmap
[pte_index
]);
646 for (i
= 0; i
< n
; ++i
, ++pte_index
) {
647 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (pte_index
<< 4));
648 v
= be64_to_cpu(hpte
[0]) & ~HPTE_V_HVLOCK
;
649 r
= be64_to_cpu(hpte
[1]);
650 if (v
& HPTE_V_ABSENT
) {
654 if (v
& HPTE_V_VALID
) {
655 r
= rev
[i
].guest_rpte
| (r
& (HPTE_R_R
| HPTE_R_C
));
656 r
&= ~HPTE_GR_RESERVED
;
658 vcpu
->arch
.gpr
[4 + i
* 2] = v
;
659 vcpu
->arch
.gpr
[5 + i
* 2] = r
;
664 void kvmppc_invalidate_hpte(struct kvm
*kvm
, __be64
*hptep
,
665 unsigned long pte_index
)
669 hptep
[0] &= ~cpu_to_be64(HPTE_V_VALID
);
670 rb
= compute_tlbie_rb(be64_to_cpu(hptep
[0]), be64_to_cpu(hptep
[1]),
672 do_tlbies(kvm
, &rb
, 1, 1, true);
674 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte
);
676 void kvmppc_clear_ref_hpte(struct kvm
*kvm
, __be64
*hptep
,
677 unsigned long pte_index
)
682 rb
= compute_tlbie_rb(be64_to_cpu(hptep
[0]), be64_to_cpu(hptep
[1]),
684 rbyte
= (be64_to_cpu(hptep
[1]) & ~HPTE_R_R
) >> 8;
685 /* modify only the second-last byte, which contains the ref bit */
686 *((char *)hptep
+ 14) = rbyte
;
687 do_tlbies(kvm
, &rb
, 1, 1, false);
689 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte
);
691 static int slb_base_page_shift
[4] = {
695 20, /* 1M, unsupported */
698 /* When called from virtmode, this func should be protected by
699 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
700 * can trigger deadlock issue.
702 long kvmppc_hv_find_lock_hpte(struct kvm
*kvm
, gva_t eaddr
, unsigned long slb_v
,
707 unsigned long somask
;
708 unsigned long vsid
, hash
;
711 unsigned long mask
, val
;
714 /* Get page shift, work out hash and AVPN etc. */
715 mask
= SLB_VSID_B
| HPTE_V_AVPN
| HPTE_V_SECONDARY
;
718 if (slb_v
& SLB_VSID_L
) {
719 mask
|= HPTE_V_LARGE
;
721 pshift
= slb_base_page_shift
[(slb_v
& SLB_VSID_LP
) >> 4];
723 if (slb_v
& SLB_VSID_B_1T
) {
724 somask
= (1UL << 40) - 1;
725 vsid
= (slb_v
& ~SLB_VSID_B
) >> SLB_VSID_SHIFT_1T
;
728 somask
= (1UL << 28) - 1;
729 vsid
= (slb_v
& ~SLB_VSID_B
) >> SLB_VSID_SHIFT
;
731 hash
= (vsid
^ ((eaddr
& somask
) >> pshift
)) & kvm
->arch
.hpt_mask
;
732 avpn
= slb_v
& ~(somask
>> 16); /* also includes B */
733 avpn
|= (eaddr
& somask
) >> 16;
736 avpn
&= ~((1UL << (pshift
- 16)) - 1);
742 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (hash
<< 7));
744 for (i
= 0; i
< 16; i
+= 2) {
745 /* Read the PTE racily */
746 v
= be64_to_cpu(hpte
[i
]) & ~HPTE_V_HVLOCK
;
748 /* Check valid/absent, hash, segment size and AVPN */
749 if (!(v
& valid
) || (v
& mask
) != val
)
752 /* Lock the PTE and read it under the lock */
753 while (!try_lock_hpte(&hpte
[i
], HPTE_V_HVLOCK
))
755 v
= be64_to_cpu(hpte
[i
]) & ~HPTE_V_HVLOCK
;
756 r
= be64_to_cpu(hpte
[i
+1]);
759 * Check the HPTE again, including base page size
761 if ((v
& valid
) && (v
& mask
) == val
&&
762 hpte_base_page_size(v
, r
) == (1ul << pshift
))
763 /* Return with the HPTE still locked */
764 return (hash
<< 3) + (i
>> 1);
766 __unlock_hpte(&hpte
[i
], v
);
769 if (val
& HPTE_V_SECONDARY
)
771 val
|= HPTE_V_SECONDARY
;
772 hash
= hash
^ kvm
->arch
.hpt_mask
;
776 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte
);
779 * Called in real mode to check whether an HPTE not found fault
780 * is due to accessing a paged-out page or an emulated MMIO page,
781 * or if a protection fault is due to accessing a page that the
782 * guest wanted read/write access to but which we made read-only.
783 * Returns a possibly modified status (DSISR) value if not
784 * (i.e. pass the interrupt to the guest),
785 * -1 to pass the fault up to host kernel mode code, -2 to do that
786 * and also load the instruction word (for MMIO emulation),
787 * or 0 if we should make the guest retry the access.
789 long kvmppc_hpte_hv_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
790 unsigned long slb_v
, unsigned int status
, bool data
)
792 struct kvm
*kvm
= vcpu
->kvm
;
794 unsigned long v
, r
, gr
;
797 struct revmap_entry
*rev
;
798 unsigned long pp
, key
;
800 /* For protection fault, expect to find a valid HPTE */
801 valid
= HPTE_V_VALID
;
802 if (status
& DSISR_NOHPTE
)
803 valid
|= HPTE_V_ABSENT
;
805 index
= kvmppc_hv_find_lock_hpte(kvm
, addr
, slb_v
, valid
);
807 if (status
& DSISR_NOHPTE
)
808 return status
; /* there really was no HPTE */
809 return 0; /* for prot fault, HPTE disappeared */
811 hpte
= (__be64
*)(kvm
->arch
.hpt_virt
+ (index
<< 4));
812 v
= be64_to_cpu(hpte
[0]) & ~HPTE_V_HVLOCK
;
813 r
= be64_to_cpu(hpte
[1]);
814 rev
= real_vmalloc_addr(&kvm
->arch
.revmap
[index
]);
815 gr
= rev
->guest_rpte
;
817 unlock_hpte(hpte
, v
);
819 /* For not found, if the HPTE is valid by now, retry the instruction */
820 if ((status
& DSISR_NOHPTE
) && (v
& HPTE_V_VALID
))
823 /* Check access permissions to the page */
824 pp
= gr
& (HPTE_R_PP0
| HPTE_R_PP
);
825 key
= (vcpu
->arch
.shregs
.msr
& MSR_PR
) ? SLB_VSID_KP
: SLB_VSID_KS
;
826 status
&= ~DSISR_NOHPTE
; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
828 if (gr
& (HPTE_R_N
| HPTE_R_G
))
829 return status
| SRR1_ISI_N_OR_G
;
830 if (!hpte_read_permission(pp
, slb_v
& key
))
831 return status
| SRR1_ISI_PROT
;
832 } else if (status
& DSISR_ISSTORE
) {
833 /* check write permission */
834 if (!hpte_write_permission(pp
, slb_v
& key
))
835 return status
| DSISR_PROTFAULT
;
837 if (!hpte_read_permission(pp
, slb_v
& key
))
838 return status
| DSISR_PROTFAULT
;
841 /* Check storage key, if applicable */
842 if (data
&& (vcpu
->arch
.shregs
.msr
& MSR_DR
)) {
843 unsigned int perm
= hpte_get_skey_perm(gr
, vcpu
->arch
.amr
);
844 if (status
& DSISR_ISSTORE
)
847 return status
| DSISR_KEYFAULT
;
850 /* Save HPTE info for virtual-mode handler */
851 vcpu
->arch
.pgfault_addr
= addr
;
852 vcpu
->arch
.pgfault_index
= index
;
853 vcpu
->arch
.pgfault_hpte
[0] = v
;
854 vcpu
->arch
.pgfault_hpte
[1] = r
;
856 /* Check the storage key to see if it is possibly emulated MMIO */
857 if (data
&& (vcpu
->arch
.shregs
.msr
& MSR_IR
) &&
858 (r
& (HPTE_R_KEY_HI
| HPTE_R_KEY_LO
)) ==
859 (HPTE_R_KEY_HI
| HPTE_R_KEY_LO
))
860 return -2; /* MMIO emulation - load instr word */
862 return -1; /* send fault up to host kernel mode */