2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
62 #define DBG(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #define DBG_LOW(fmt...)
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
90 extern unsigned long dart_tablebase
;
91 #endif /* CONFIG_U3_DART */
93 static unsigned long _SDR1
;
94 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
95 EXPORT_SYMBOL_GPL(mmu_psize_defs
);
97 struct hash_pte
*htab_address
;
98 unsigned long htab_size_bytes
;
99 unsigned long htab_hash_mask
;
100 EXPORT_SYMBOL_GPL(htab_hash_mask
);
101 int mmu_linear_psize
= MMU_PAGE_4K
;
102 EXPORT_SYMBOL_GPL(mmu_linear_psize
);
103 int mmu_virtual_psize
= MMU_PAGE_4K
;
104 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
105 #ifdef CONFIG_SPARSEMEM_VMEMMAP
106 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
108 int mmu_io_psize
= MMU_PAGE_4K
;
109 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
110 EXPORT_SYMBOL_GPL(mmu_kernel_ssize
);
111 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
112 u16 mmu_slb_size
= 64;
113 EXPORT_SYMBOL_GPL(mmu_slb_size
);
114 #ifdef CONFIG_PPC_64K_PAGES
115 int mmu_ci_restrictions
;
117 #ifdef CONFIG_DEBUG_PAGEALLOC
118 static u8
*linear_map_hash_slots
;
119 static unsigned long linear_map_hash_count
;
120 static DEFINE_SPINLOCK(linear_map_hash_lock
);
121 #endif /* CONFIG_DEBUG_PAGEALLOC */
123 /* There are definitions of page sizes arrays to be used when none
124 * is provided by the firmware.
127 /* Pre-POWER4 CPUs (4k pages only)
129 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
133 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
139 /* POWER4, GPUL, POWER5
141 * Support for 16Mb large pages
143 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
147 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
154 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
155 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
161 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
163 unsigned long rflags
= pteflags
& 0x1fa;
165 /* _PAGE_EXEC -> NOEXEC */
166 if ((pteflags
& _PAGE_EXEC
) == 0)
169 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
170 * need to add in 0x1 if it's a read-only user page
172 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
173 (pteflags
& _PAGE_DIRTY
)))
176 * Always add "C" bit for perf. Memory coherence is always enabled
178 return rflags
| HPTE_R_C
| HPTE_R_M
;
181 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
182 unsigned long pstart
, unsigned long prot
,
183 int psize
, int ssize
)
185 unsigned long vaddr
, paddr
;
186 unsigned int step
, shift
;
189 shift
= mmu_psize_defs
[psize
].shift
;
192 prot
= htab_convert_pte_flags(prot
);
194 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
195 vstart
, vend
, pstart
, prot
, psize
, ssize
);
197 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
198 vaddr
+= step
, paddr
+= step
) {
199 unsigned long hash
, hpteg
;
200 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
201 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
202 unsigned long tprot
= prot
;
205 * If we hit a bad address return error.
209 /* Make kernel text executable */
210 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
213 /* Make kvm guest trampolines executable */
214 if (overlaps_kvm_tmp(vaddr
, vaddr
+ step
))
218 * If relocatable, check if it overlaps interrupt vectors that
219 * are copied down to real 0. For relocatable kernel
220 * (e.g. kdump case) we copy interrupt vectors down to real
221 * address 0. Mark that region as executable. This is
222 * because on p8 system with relocation on exception feature
223 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
224 * in order to execute the interrupt handlers in virtual
225 * mode the vector region need to be marked as executable.
227 if ((PHYSICAL_START
> MEMORY_START
) &&
228 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
231 hash
= hpt_hash(vpn
, shift
, ssize
);
232 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
234 BUG_ON(!ppc_md
.hpte_insert
);
235 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
236 HPTE_V_BOLTED
, psize
, psize
, ssize
);
240 #ifdef CONFIG_DEBUG_PAGEALLOC
241 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
242 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
243 #endif /* CONFIG_DEBUG_PAGEALLOC */
245 return ret
< 0 ? ret
: 0;
248 #ifdef CONFIG_MEMORY_HOTPLUG
249 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
250 int psize
, int ssize
)
253 unsigned int step
, shift
;
255 shift
= mmu_psize_defs
[psize
].shift
;
258 if (!ppc_md
.hpte_removebolted
) {
259 printk(KERN_WARNING
"Platform doesn't implement "
260 "hpte_removebolted\n");
264 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
265 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
269 #endif /* CONFIG_MEMORY_HOTPLUG */
271 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
272 const char *uname
, int depth
,
275 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
279 /* We are scanning "cpu" nodes only */
280 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
283 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
286 for (; size
>= 4; size
-= 4, ++prop
) {
287 if (be32_to_cpu(prop
[0]) == 40) {
288 DBG("1T segment support detected\n");
289 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
293 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
297 static void __init
htab_init_seg_sizes(void)
299 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
302 static int __init
get_idx_from_shift(unsigned int shift
)
326 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
327 const char *uname
, int depth
,
330 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
334 /* We are scanning "cpu" nodes only */
335 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
338 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
342 pr_info("Page sizes from device-tree:\n");
344 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
346 unsigned int base_shift
= be32_to_cpu(prop
[0]);
347 unsigned int slbenc
= be32_to_cpu(prop
[1]);
348 unsigned int lpnum
= be32_to_cpu(prop
[2]);
349 struct mmu_psize_def
*def
;
352 size
-= 3; prop
+= 3;
353 base_idx
= get_idx_from_shift(base_shift
);
355 /* skip the pte encoding also */
356 prop
+= lpnum
* 2; size
-= lpnum
* 2;
359 def
= &mmu_psize_defs
[base_idx
];
360 if (base_idx
== MMU_PAGE_16M
)
361 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
363 def
->shift
= base_shift
;
364 if (base_shift
<= 23)
367 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
370 * We don't know for sure what's up with tlbiel, so
371 * for now we only set it for 4K and 64K pages
373 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
378 while (size
> 0 && lpnum
) {
379 unsigned int shift
= be32_to_cpu(prop
[0]);
380 int penc
= be32_to_cpu(prop
[1]);
382 prop
+= 2; size
-= 2;
385 idx
= get_idx_from_shift(shift
);
390 pr_err("Invalid penc for base_shift=%d "
391 "shift=%d\n", base_shift
, shift
);
393 def
->penc
[idx
] = penc
;
394 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
395 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
396 base_shift
, shift
, def
->sllp
,
397 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
404 #ifdef CONFIG_HUGETLB_PAGE
405 /* Scan for 16G memory blocks that have been set aside for huge pages
406 * and reserve those blocks for 16G huge pages.
408 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
409 const char *uname
, int depth
,
411 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
412 const __be64
*addr_prop
;
413 const __be32
*page_count_prop
;
414 unsigned int expected_pages
;
415 long unsigned int phys_addr
;
416 long unsigned int block_size
;
418 /* We are scanning "memory" nodes only */
419 if (type
== NULL
|| strcmp(type
, "memory") != 0)
422 /* This property is the log base 2 of the number of virtual pages that
423 * will represent this memory block. */
424 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
425 if (page_count_prop
== NULL
)
427 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
428 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
429 if (addr_prop
== NULL
)
431 phys_addr
= be64_to_cpu(addr_prop
[0]);
432 block_size
= be64_to_cpu(addr_prop
[1]);
433 if (block_size
!= (16 * GB
))
435 printk(KERN_INFO
"Huge page(16GB) memory: "
436 "addr = 0x%lX size = 0x%lX pages = %d\n",
437 phys_addr
, block_size
, expected_pages
);
438 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
439 memblock_reserve(phys_addr
, block_size
* expected_pages
);
440 add_gpage(phys_addr
, block_size
, expected_pages
);
444 #endif /* CONFIG_HUGETLB_PAGE */
446 static void mmu_psize_set_default_penc(void)
449 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
450 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
451 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
454 #ifdef CONFIG_PPC_64K_PAGES
456 static bool might_have_hea(void)
459 * The HEA ethernet adapter requires awareness of the
460 * GX bus. Without that awareness we can easily assume
461 * we will never see an HEA ethernet device.
463 #ifdef CONFIG_IBMEBUS
464 return !cpu_has_feature(CPU_FTR_ARCH_207S
);
470 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
472 static void __init
htab_init_page_sizes(void)
476 /* se the invalid penc to -1 */
477 mmu_psize_set_default_penc();
479 /* Default to 4K pages only */
480 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
481 sizeof(mmu_psize_defaults_old
));
484 * Try to find the available page sizes in the device-tree
486 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
487 if (rc
!= 0) /* Found */
491 * Not in the device-tree, let's fallback on known size
492 * list for 16M capable GP & GR
494 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
495 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
496 sizeof(mmu_psize_defaults_gp
));
498 #ifndef CONFIG_DEBUG_PAGEALLOC
500 * Pick a size for the linear mapping. Currently, we only support
501 * 16M, 1M and 4K which is the default
503 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
504 mmu_linear_psize
= MMU_PAGE_16M
;
505 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
506 mmu_linear_psize
= MMU_PAGE_1M
;
507 #endif /* CONFIG_DEBUG_PAGEALLOC */
509 #ifdef CONFIG_PPC_64K_PAGES
511 * Pick a size for the ordinary pages. Default is 4K, we support
512 * 64K for user mappings and vmalloc if supported by the processor.
513 * We only use 64k for ioremap if the processor
514 * (and firmware) support cache-inhibited large pages.
515 * If not, we use 4k and set mmu_ci_restrictions so that
516 * hash_page knows to switch processes that use cache-inhibited
517 * mappings to 4k pages.
519 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
520 mmu_virtual_psize
= MMU_PAGE_64K
;
521 mmu_vmalloc_psize
= MMU_PAGE_64K
;
522 if (mmu_linear_psize
== MMU_PAGE_4K
)
523 mmu_linear_psize
= MMU_PAGE_64K
;
524 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
526 * When running on pSeries using 64k pages for ioremap
527 * would stop us accessing the HEA ethernet. So if we
528 * have the chance of ever seeing one, stay at 4k.
530 if (!might_have_hea() || !machine_is(pseries
))
531 mmu_io_psize
= MMU_PAGE_64K
;
533 mmu_ci_restrictions
= 1;
535 #endif /* CONFIG_PPC_64K_PAGES */
537 #ifdef CONFIG_SPARSEMEM_VMEMMAP
538 /* We try to use 16M pages for vmemmap if that is supported
539 * and we have at least 1G of RAM at boot
541 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
542 memblock_phys_mem_size() >= 0x40000000)
543 mmu_vmemmap_psize
= MMU_PAGE_16M
;
544 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
545 mmu_vmemmap_psize
= MMU_PAGE_64K
;
547 mmu_vmemmap_psize
= MMU_PAGE_4K
;
548 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
550 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
551 "virtual = %d, io = %d"
552 #ifdef CONFIG_SPARSEMEM_VMEMMAP
556 mmu_psize_defs
[mmu_linear_psize
].shift
,
557 mmu_psize_defs
[mmu_virtual_psize
].shift
,
558 mmu_psize_defs
[mmu_io_psize
].shift
559 #ifdef CONFIG_SPARSEMEM_VMEMMAP
560 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
564 #ifdef CONFIG_HUGETLB_PAGE
565 /* Reserve 16G huge page memory sections for huge pages */
566 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
567 #endif /* CONFIG_HUGETLB_PAGE */
570 static int __init
htab_dt_scan_pftsize(unsigned long node
,
571 const char *uname
, int depth
,
574 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
577 /* We are scanning "cpu" nodes only */
578 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
581 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
583 /* pft_size[0] is the NUMA CEC cookie */
584 ppc64_pft_size
= be32_to_cpu(prop
[1]);
590 static unsigned long __init
htab_get_table_size(void)
592 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
594 /* If hash size isn't already provided by the platform, we try to
595 * retrieve it from the device-tree. If it's not there neither, we
596 * calculate it now based on the total RAM size
598 if (ppc64_pft_size
== 0)
599 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
601 return 1UL << ppc64_pft_size
;
603 /* round mem_size up to next power of 2 */
604 mem_size
= memblock_phys_mem_size();
605 rnd_mem_size
= 1UL << __ilog2(mem_size
);
606 if (rnd_mem_size
< mem_size
)
610 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
611 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
613 return pteg_count
<< 7;
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 int create_section_mapping(unsigned long start
, unsigned long end
)
619 return htab_bolt_mapping(start
, end
, __pa(start
),
620 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
624 int remove_section_mapping(unsigned long start
, unsigned long end
)
626 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
629 #endif /* CONFIG_MEMORY_HOTPLUG */
631 extern u32 htab_call_hpte_insert1
[];
632 extern u32 htab_call_hpte_insert2
[];
633 extern u32 htab_call_hpte_remove
[];
634 extern u32 htab_call_hpte_updatepp
[];
635 extern u32 ht64_call_hpte_insert1
[];
636 extern u32 ht64_call_hpte_insert2
[];
637 extern u32 ht64_call_hpte_remove
[];
638 extern u32 ht64_call_hpte_updatepp
[];
640 static void __init
htab_finish_init(void)
642 #ifdef CONFIG_PPC_HAS_HASH_64K
643 patch_branch(ht64_call_hpte_insert1
,
644 ppc_function_entry(ppc_md
.hpte_insert
),
646 patch_branch(ht64_call_hpte_insert2
,
647 ppc_function_entry(ppc_md
.hpte_insert
),
649 patch_branch(ht64_call_hpte_remove
,
650 ppc_function_entry(ppc_md
.hpte_remove
),
652 patch_branch(ht64_call_hpte_updatepp
,
653 ppc_function_entry(ppc_md
.hpte_updatepp
),
655 #endif /* CONFIG_PPC_HAS_HASH_64K */
657 patch_branch(htab_call_hpte_insert1
,
658 ppc_function_entry(ppc_md
.hpte_insert
),
660 patch_branch(htab_call_hpte_insert2
,
661 ppc_function_entry(ppc_md
.hpte_insert
),
663 patch_branch(htab_call_hpte_remove
,
664 ppc_function_entry(ppc_md
.hpte_remove
),
666 patch_branch(htab_call_hpte_updatepp
,
667 ppc_function_entry(ppc_md
.hpte_updatepp
),
671 static void __init
htab_initialize(void)
674 unsigned long pteg_count
;
676 unsigned long base
= 0, size
= 0, limit
;
677 struct memblock_region
*reg
;
679 DBG(" -> htab_initialize()\n");
681 /* Initialize segment sizes */
682 htab_init_seg_sizes();
684 /* Initialize page sizes */
685 htab_init_page_sizes();
687 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
688 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
689 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
690 printk(KERN_INFO
"Using 1TB segments\n");
694 * Calculate the required size of the htab. We want the number of
695 * PTEGs to equal one half the number of real pages.
697 htab_size_bytes
= htab_get_table_size();
698 pteg_count
= htab_size_bytes
>> 7;
700 htab_hash_mask
= pteg_count
- 1;
702 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
703 /* Using a hypervisor which owns the htab */
706 #ifdef CONFIG_FA_DUMP
708 * If firmware assisted dump is active firmware preserves
709 * the contents of htab along with entire partition memory.
710 * Clear the htab if firmware assisted dump is active so
711 * that we dont end up using old mappings.
713 if (is_fadump_active() && ppc_md
.hpte_clear_all
)
714 ppc_md
.hpte_clear_all();
717 /* Find storage for the HPT. Must be contiguous in
718 * the absolute address space. On cell we want it to be
719 * in the first 2 Gig so we can use it for IOMMU hacks.
721 if (machine_is(cell
))
724 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
726 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
728 DBG("Hash table allocated at %lx, size: %lx\n", table
,
731 htab_address
= __va(table
);
733 /* htab absolute addr + encoded htabsize */
734 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
736 /* Initialize the HPT with no entries */
737 memset((void *)table
, 0, htab_size_bytes
);
740 mtspr(SPRN_SDR1
, _SDR1
);
743 prot
= pgprot_val(PAGE_KERNEL
);
745 #ifdef CONFIG_DEBUG_PAGEALLOC
746 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
747 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
749 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
750 #endif /* CONFIG_DEBUG_PAGEALLOC */
752 /* On U3 based machines, we need to reserve the DART area and
753 * _NOT_ map it to avoid cache paradoxes as it's remapped non
757 /* create bolted the linear mapping in the hash table */
758 for_each_memblock(memory
, reg
) {
759 base
= (unsigned long)__va(reg
->base
);
762 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
765 #ifdef CONFIG_U3_DART
766 /* Do not map the DART space. Fortunately, it will be aligned
767 * in such a way that it will not cross two memblock regions and
768 * will fit within a single 16Mb page.
769 * The DART space is assumed to be a full 16Mb region even if
770 * we only use 2Mb of that space. We will use more of it later
771 * for AGP GART. We have to use a full 16Mb large page.
773 DBG("DART base: %lx\n", dart_tablebase
);
775 if (dart_tablebase
!= 0 && dart_tablebase
>= base
776 && dart_tablebase
< (base
+ size
)) {
777 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
778 if (base
!= dart_tablebase
)
779 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
783 if ((base
+ size
) > dart_table_end
)
784 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
786 __pa(dart_table_end
),
792 #endif /* CONFIG_U3_DART */
793 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
794 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
796 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
799 * If we have a memory_limit and we've allocated TCEs then we need to
800 * explicitly map the TCE area at the top of RAM. We also cope with the
801 * case that the TCEs start below memory_limit.
802 * tce_alloc_start/end are 16MB aligned so the mapping should work
803 * for either 4K or 16MB pages.
805 if (tce_alloc_start
) {
806 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
807 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
809 if (base
+ size
>= tce_alloc_start
)
810 tce_alloc_start
= base
+ size
+ 1;
812 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
813 __pa(tce_alloc_start
), prot
,
814 mmu_linear_psize
, mmu_kernel_ssize
));
819 DBG(" <- htab_initialize()\n");
824 void __init
early_init_mmu(void)
826 /* Initialize the MMU Hash table and create the linear mapping
827 * of memory. Has to be done before SLB initialization as this is
828 * currently where the page size encoding is obtained.
832 /* Initialize SLB management */
837 void early_init_mmu_secondary(void)
839 /* Initialize hash table for that CPU */
840 if (!firmware_has_feature(FW_FEATURE_LPAR
))
841 mtspr(SPRN_SDR1
, _SDR1
);
846 #endif /* CONFIG_SMP */
849 * Called by asm hashtable.S for doing lazy icache flush
851 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
855 if (!pfn_valid(pte_pfn(pte
)))
858 page
= pte_page(pte
);
861 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
863 flush_dcache_icache_page(page
);
864 set_bit(PG_arch_1
, &page
->flags
);
871 #ifdef CONFIG_PPC_MM_SLICES
872 static unsigned int get_paca_psize(unsigned long addr
)
875 unsigned char *hpsizes
;
876 unsigned long index
, mask_index
;
878 if (addr
< SLICE_LOW_TOP
) {
879 lpsizes
= get_paca()->context
.low_slices_psize
;
880 index
= GET_LOW_SLICE_INDEX(addr
);
881 return (lpsizes
>> (index
* 4)) & 0xF;
883 hpsizes
= get_paca()->context
.high_slices_psize
;
884 index
= GET_HIGH_SLICE_INDEX(addr
);
885 mask_index
= index
& 0x1;
886 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
890 unsigned int get_paca_psize(unsigned long addr
)
892 return get_paca()->context
.user_psize
;
897 * Demote a segment to using 4k pages.
898 * For now this makes the whole process use 4k pages.
900 #ifdef CONFIG_PPC_64K_PAGES
901 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
903 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
905 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
906 copro_flush_all_slbs(mm
);
907 if ((get_paca_psize(addr
) != MMU_PAGE_4K
) && (current
->mm
== mm
)) {
908 get_paca()->context
= mm
->context
;
909 slb_flush_and_rebolt();
912 #endif /* CONFIG_PPC_64K_PAGES */
914 #ifdef CONFIG_PPC_SUBPAGE_PROT
916 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
917 * Userspace sets the subpage permissions using the subpage_prot system call.
919 * Result is 0: full permissions, _PAGE_RW: read-only,
920 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
922 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
924 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
928 if (ea
>= spt
->maxaddr
)
930 if (ea
< 0x100000000UL
) {
931 /* addresses below 4GB use spt->low_prot */
932 sbpm
= spt
->low_prot
;
934 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
938 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
941 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
943 /* extract 2-bit bitfield for this 4k subpage */
944 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
946 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
947 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
951 #else /* CONFIG_PPC_SUBPAGE_PROT */
952 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
958 void hash_failure_debug(unsigned long ea
, unsigned long access
,
959 unsigned long vsid
, unsigned long trap
,
960 int ssize
, int psize
, int lpsize
, unsigned long pte
)
962 if (!printk_ratelimit())
964 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
965 ea
, access
, current
->comm
);
966 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
967 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
970 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
971 int psize
, bool user_region
)
974 if (psize
!= get_paca_psize(ea
)) {
975 get_paca()->context
= mm
->context
;
976 slb_flush_and_rebolt();
978 } else if (get_paca()->vmalloc_sllp
!=
979 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
980 get_paca()->vmalloc_sllp
=
981 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
982 slb_vmalloc_update();
988 * 1 - normal page fault
989 * -1 - critical hash insertion error
990 * -2 - access not permitted by subpage protection mechanism
992 int hash_page_mm(struct mm_struct
*mm
, unsigned long ea
,
993 unsigned long access
, unsigned long trap
,
996 enum ctx_state prev_state
= exception_enter();
1001 const struct cpumask
*tmp
;
1002 int rc
, user_region
= 0;
1005 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1008 /* Get region & vsid */
1009 switch (REGION_ID(ea
)) {
1010 case USER_REGION_ID
:
1013 DBG_LOW(" user region with no mm !\n");
1017 psize
= get_slice_psize(mm
, ea
);
1018 ssize
= user_segment_size(ea
);
1019 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1021 case VMALLOC_REGION_ID
:
1022 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1023 if (ea
< VMALLOC_END
)
1024 psize
= mmu_vmalloc_psize
;
1026 psize
= mmu_io_psize
;
1027 ssize
= mmu_kernel_ssize
;
1030 /* Not a valid range
1031 * Send the problem up to do_page_fault
1036 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1040 DBG_LOW("Bad address!\n");
1046 if (pgdir
== NULL
) {
1051 /* Check CPU locality */
1052 tmp
= cpumask_of(smp_processor_id());
1053 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
1054 flags
|= HPTE_LOCAL_UPDATE
;
1056 #ifndef CONFIG_PPC_64K_PAGES
1057 /* If we use 4K pages and our psize is not 4K, then we might
1058 * be hitting a special driver mapping, and need to align the
1059 * address before we fetch the PTE.
1061 * It could also be a hugepage mapping, in which case this is
1062 * not necessary, but it's not harmful, either.
1064 if (psize
!= MMU_PAGE_4K
)
1065 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1066 #endif /* CONFIG_PPC_64K_PAGES */
1068 /* Get PTE and page size from page tables */
1069 ptep
= __find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
1070 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1071 DBG_LOW(" no PTE !\n");
1076 /* Add _PAGE_PRESENT to the required access perm */
1077 access
|= _PAGE_PRESENT
;
1079 /* Pre-check access permissions (will be re-checked atomically
1080 * in __hash_page_XX but this pre-check is a fast path
1082 if (access
& ~pte_val(*ptep
)) {
1083 DBG_LOW(" no access !\n");
1089 if (pmd_trans_huge(*(pmd_t
*)ptep
))
1090 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1091 trap
, flags
, ssize
, psize
);
1092 #ifdef CONFIG_HUGETLB_PAGE
1094 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1095 flags
, ssize
, hugeshift
, psize
);
1099 * if we have hugeshift, and is not transhuge with
1100 * hugetlb disabled, something is really wrong.
1106 if (current
->mm
== mm
)
1107 check_paca_psize(ea
, mm
, psize
, user_region
);
1112 #ifndef CONFIG_PPC_64K_PAGES
1113 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1115 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1116 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1118 /* Do actual hashing */
1119 #ifdef CONFIG_PPC_64K_PAGES
1120 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1121 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1122 demote_segment_4k(mm
, ea
);
1123 psize
= MMU_PAGE_4K
;
1126 /* If this PTE is non-cacheable and we have restrictions on
1127 * using non cacheable large pages, then we switch to 4k
1129 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1130 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1132 demote_segment_4k(mm
, ea
);
1133 psize
= MMU_PAGE_4K
;
1134 } else if (ea
< VMALLOC_END
) {
1136 * some driver did a non-cacheable mapping
1137 * in vmalloc space, so switch vmalloc
1140 printk(KERN_ALERT
"Reducing vmalloc segment "
1141 "to 4kB pages because of "
1142 "non-cacheable mapping\n");
1143 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1144 copro_flush_all_slbs(mm
);
1148 if (current
->mm
== mm
)
1149 check_paca_psize(ea
, mm
, psize
, user_region
);
1150 #endif /* CONFIG_PPC_64K_PAGES */
1152 #ifdef CONFIG_PPC_HAS_HASH_64K
1153 if (psize
== MMU_PAGE_64K
)
1154 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1157 #endif /* CONFIG_PPC_HAS_HASH_64K */
1159 int spp
= subpage_protection(mm
, ea
);
1163 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1167 /* Dump some info in case of hash insertion failure, they should
1168 * never happen so it is really useful to know if/when they do
1171 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1172 psize
, pte_val(*ptep
));
1173 #ifndef CONFIG_PPC_64K_PAGES
1174 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1176 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1177 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1179 DBG_LOW(" -> rc=%d\n", rc
);
1182 exception_exit(prev_state
);
1185 EXPORT_SYMBOL_GPL(hash_page_mm
);
1187 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
,
1188 unsigned long dsisr
)
1190 unsigned long flags
= 0;
1191 struct mm_struct
*mm
= current
->mm
;
1193 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1196 if (dsisr
& DSISR_NOHPTE
)
1197 flags
|= HPTE_NOHPTE_UPDATE
;
1199 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1201 EXPORT_SYMBOL_GPL(hash_page
);
1203 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1204 unsigned long access
, unsigned long trap
)
1210 unsigned long flags
;
1211 int rc
, ssize
, update_flags
= 0;
1213 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1215 #ifdef CONFIG_PPC_MM_SLICES
1216 /* We only prefault standard pages for now */
1217 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1221 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1222 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1224 /* Get Linux PTE if available */
1230 ssize
= user_segment_size(ea
);
1231 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1235 * Hash doesn't like irqs. Walking linux page table with irq disabled
1236 * saves us from holding multiple locks.
1238 local_irq_save(flags
);
1241 * THP pages use update_mmu_cache_pmd. We don't do
1242 * hash preload there. Hence can ignore THP here
1244 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugepage_shift
);
1248 WARN_ON(hugepage_shift
);
1249 #ifdef CONFIG_PPC_64K_PAGES
1250 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1251 * a 64K kernel), then we don't preload, hash_page() will take
1252 * care of it once we actually try to access the page.
1253 * That way we don't have to duplicate all of the logic for segment
1254 * page size demotion here
1256 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1258 #endif /* CONFIG_PPC_64K_PAGES */
1260 /* Is that local to this CPU ? */
1261 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1262 update_flags
|= HPTE_LOCAL_UPDATE
;
1265 #ifdef CONFIG_PPC_HAS_HASH_64K
1266 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1267 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1268 update_flags
, ssize
);
1270 #endif /* CONFIG_PPC_HAS_HASH_64K */
1271 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, update_flags
,
1272 ssize
, subpage_protection(mm
, ea
));
1274 /* Dump some info in case of hash insertion failure, they should
1275 * never happen so it is really useful to know if/when they do
1278 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1279 mm
->context
.user_psize
,
1280 mm
->context
.user_psize
,
1283 local_irq_restore(flags
);
1286 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1287 * do not forget to update the assembly call site !
1289 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1290 unsigned long flags
)
1292 unsigned long hash
, index
, shift
, hidx
, slot
;
1293 int local
= flags
& HPTE_LOCAL_UPDATE
;
1295 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1296 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1297 hash
= hpt_hash(vpn
, shift
, ssize
);
1298 hidx
= __rpte_to_hidx(pte
, index
);
1299 if (hidx
& _PTEIDX_SECONDARY
)
1301 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1302 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1303 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1305 * We use same base page size and actual psize, because we don't
1306 * use these functions for hugepage
1308 ppc_md
.hpte_invalidate(slot
, vpn
, psize
, psize
, ssize
, local
);
1309 } pte_iterate_hashed_end();
1311 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1312 /* Transactions are not aborted by tlbiel, only tlbie.
1313 * Without, syncing a page back to a block device w/ PIO could pick up
1314 * transactional data (bad!) so we force an abort here. Before the
1315 * sync the page will be made read-only, which will flush_hash_page.
1316 * BIG ISSUE here: if the kernel uses a page from userspace without
1317 * unmapping it first, it may see the speculated version.
1319 if (local
&& cpu_has_feature(CPU_FTR_TM
) &&
1320 current
->thread
.regs
&&
1321 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1323 tm_abort(TM_CAUSE_TLBI
);
1328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1329 void flush_hash_hugepage(unsigned long vsid
, unsigned long addr
,
1330 pmd_t
*pmdp
, unsigned int psize
, int ssize
,
1331 unsigned long flags
)
1333 int i
, max_hpte_count
, valid
;
1334 unsigned long s_addr
;
1335 unsigned char *hpte_slot_array
;
1336 unsigned long hidx
, shift
, vpn
, hash
, slot
;
1337 int local
= flags
& HPTE_LOCAL_UPDATE
;
1339 s_addr
= addr
& HPAGE_PMD_MASK
;
1340 hpte_slot_array
= get_hpte_slot_array(pmdp
);
1342 * IF we try to do a HUGE PTE update after a withdraw is done.
1343 * we will find the below NULL. This happens when we do
1344 * split_huge_page_pmd
1346 if (!hpte_slot_array
)
1349 if (ppc_md
.hugepage_invalidate
) {
1350 ppc_md
.hugepage_invalidate(vsid
, s_addr
, hpte_slot_array
,
1351 psize
, ssize
, local
);
1355 * No bluk hpte removal support, invalidate each entry
1357 shift
= mmu_psize_defs
[psize
].shift
;
1358 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
1359 for (i
= 0; i
< max_hpte_count
; i
++) {
1361 * 8 bits per each hpte entries
1362 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1364 valid
= hpte_valid(hpte_slot_array
, i
);
1367 hidx
= hpte_hash_index(hpte_slot_array
, i
);
1370 addr
= s_addr
+ (i
* (1ul << shift
));
1371 vpn
= hpt_vpn(addr
, vsid
, ssize
);
1372 hash
= hpt_hash(vpn
, shift
, ssize
);
1373 if (hidx
& _PTEIDX_SECONDARY
)
1376 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1377 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1378 ppc_md
.hpte_invalidate(slot
, vpn
, psize
,
1379 MMU_PAGE_16M
, ssize
, local
);
1382 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1383 /* Transactions are not aborted by tlbiel, only tlbie.
1384 * Without, syncing a page back to a block device w/ PIO could pick up
1385 * transactional data (bad!) so we force an abort here. Before the
1386 * sync the page will be made read-only, which will flush_hash_page.
1387 * BIG ISSUE here: if the kernel uses a page from userspace without
1388 * unmapping it first, it may see the speculated version.
1390 if (local
&& cpu_has_feature(CPU_FTR_TM
) &&
1391 current
->thread
.regs
&&
1392 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1394 tm_abort(TM_CAUSE_TLBI
);
1399 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1401 void flush_hash_range(unsigned long number
, int local
)
1403 if (ppc_md
.flush_hash_range
)
1404 ppc_md
.flush_hash_range(number
, local
);
1407 struct ppc64_tlb_batch
*batch
=
1408 this_cpu_ptr(&ppc64_tlb_batch
);
1410 for (i
= 0; i
< number
; i
++)
1411 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1412 batch
->psize
, batch
->ssize
, local
);
1417 * low_hash_fault is called when we the low level hash code failed
1418 * to instert a PTE due to an hypervisor error
1420 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1422 enum ctx_state prev_state
= exception_enter();
1424 if (user_mode(regs
)) {
1425 #ifdef CONFIG_PPC_SUBPAGE_PROT
1427 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1430 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1432 bad_page_fault(regs
, address
, SIGBUS
);
1434 exception_exit(prev_state
);
1437 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1438 unsigned long pa
, unsigned long rflags
,
1439 unsigned long vflags
, int psize
, int ssize
)
1441 unsigned long hpte_group
;
1445 hpte_group
= ((hash
& htab_hash_mask
) *
1446 HPTES_PER_GROUP
) & ~0x7UL
;
1448 /* Insert into the hash table, primary slot */
1449 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1450 psize
, psize
, ssize
);
1452 /* Primary is full, try the secondary */
1453 if (unlikely(slot
== -1)) {
1454 hpte_group
= ((~hash
& htab_hash_mask
) *
1455 HPTES_PER_GROUP
) & ~0x7UL
;
1456 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1457 vflags
| HPTE_V_SECONDARY
,
1458 psize
, psize
, ssize
);
1461 hpte_group
= ((hash
& htab_hash_mask
) *
1462 HPTES_PER_GROUP
)&~0x7UL
;
1464 ppc_md
.hpte_remove(hpte_group
);
1472 #ifdef CONFIG_DEBUG_PAGEALLOC
1473 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1476 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1477 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1478 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1481 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1483 /* Don't create HPTE entries for bad address */
1487 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1489 mmu_linear_psize
, mmu_kernel_ssize
);
1492 spin_lock(&linear_map_hash_lock
);
1493 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1494 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1495 spin_unlock(&linear_map_hash_lock
);
1498 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1500 unsigned long hash
, hidx
, slot
;
1501 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1502 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1504 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1505 spin_lock(&linear_map_hash_lock
);
1506 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1507 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1508 linear_map_hash_slots
[lmi
] = 0;
1509 spin_unlock(&linear_map_hash_lock
);
1510 if (hidx
& _PTEIDX_SECONDARY
)
1512 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1513 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1514 ppc_md
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
, mmu_linear_psize
,
1515 mmu_kernel_ssize
, 0);
1518 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1520 unsigned long flags
, vaddr
, lmi
;
1523 local_irq_save(flags
);
1524 for (i
= 0; i
< numpages
; i
++, page
++) {
1525 vaddr
= (unsigned long)page_address(page
);
1526 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1527 if (lmi
>= linear_map_hash_count
)
1530 kernel_map_linear_page(vaddr
, lmi
);
1532 kernel_unmap_linear_page(vaddr
, lmi
);
1534 local_irq_restore(flags
);
1536 #endif /* CONFIG_DEBUG_PAGEALLOC */
1538 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1539 phys_addr_t first_memblock_size
)
1541 /* We don't currently support the first MEMBLOCK not mapping 0
1542 * physical on those processors
1544 BUG_ON(first_memblock_base
!= 0);
1546 /* On LPAR systems, the first entry is our RMA region,
1547 * non-LPAR 64-bit hash MMU systems don't have a limitation
1548 * on real mode access, but using the first entry works well
1549 * enough. We also clamp it to 1G to avoid some funky things
1550 * such as RTAS bugs etc...
1552 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1554 /* Finally limit subsequent allocations */
1555 memblock_set_current_limit(ppc64_rma_size
);