Linux 4.1.18
[linux/fpc-iii.git] / arch / powerpc / mm / hugetlbpage.c
blob3385e3d0506ec575f3eeebad77d2c65264a3acf3
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 #ifdef CONFIG_PPC_BOOK3S_64
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
69 int pmd_huge(pmd_t pmd)
72 * leaf pte for huge page, bottom two bits != 00
74 return ((pmd_val(pmd) & 0x3) != 0x0);
77 int pud_huge(pud_t pud)
80 * leaf pte for huge page, bottom two bits != 00
82 return ((pud_val(pud) & 0x3) != 0x0);
85 int pgd_huge(pgd_t pgd)
88 * leaf pte for huge page, bottom two bits != 00
90 return ((pgd_val(pgd) & 0x3) != 0x0);
92 #else
93 int pmd_huge(pmd_t pmd)
95 return 0;
98 int pud_huge(pud_t pud)
100 return 0;
103 int pgd_huge(pgd_t pgd)
105 return 0;
107 #endif
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
111 /* Only called for hugetlbfs pages, hence can ignore THP */
112 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 unsigned long address, unsigned pdshift, unsigned pshift)
118 struct kmem_cache *cachep;
119 pte_t *new;
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
125 #else
126 cachep = PGT_CACHE(pdshift - pshift);
127 #endif
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
134 if (! new)
135 return -ENOMEM;
137 spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
149 /* We use the old format for PPC_FSL_BOOK3E */
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
158 #else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
161 else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165 #else
166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
169 #endif
170 spin_unlock(&mm->page_table_lock);
171 return 0;
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
186 #ifdef CONFIG_PPC_BOOK3S_64
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
208 * We need to use hugepd table
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
228 if (!hpdp)
229 return NULL;
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
236 return hugepte_offset(*hpdp, addr, pdshift);
239 #else
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
250 addr &= ~(sz-1);
252 pg = pgd_offset(mm, addr);
254 if (pshift >= HUGEPD_PGD_SHIFT) {
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
259 if (pshift >= HUGEPD_PUD_SHIFT) {
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
268 if (!hpdp)
269 return NULL;
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
276 return hugepte_offset(*hpdp, addr, pdshift);
278 #endif
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages. This function is used in early
282 * boot before the buddy allocator is setup.
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
289 if (addr == 0)
290 return;
292 gpage_freearray[idx].nr_gpages = number_of_pages;
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
304 int alloc_bootmem_huge_page(struct hstate *hstate)
306 struct huge_bootmem_page *m;
307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
310 if (nr_gpages == 0)
311 return 0;
313 #ifdef CONFIG_HIGHMEM
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
329 return 1;
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
338 static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused)
341 static phys_addr_t size;
342 unsigned long npages;
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
369 return 0;
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
380 void __init reserve_hugetlb_gpages(void)
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
409 #else /* !PPC_FSL_BOOK3E */
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy allocator is setup.
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
429 int alloc_bootmem_huge_page(struct hstate *hstate)
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
440 #endif
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
444 return 0;
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
451 struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
468 free_page((unsigned long)batch);
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
473 struct hugepd_freelist **batchp;
475 batchp = this_cpu_ptr(&hugepd_freelist_cur);
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
481 put_cpu_var(hugepd_freelist_cur);
482 return;
485 if (*batchp == NULL) {
486 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 (*batchp)->index = 0;
490 (*batchp)->ptes[(*batchp)->index++] = hugepte;
491 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 *batchp = NULL;
495 put_cpu_var(hugepd_freelist_cur);
497 #endif
499 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 unsigned long start, unsigned long end,
501 unsigned long floor, unsigned long ceiling)
503 pte_t *hugepte = hugepd_page(*hpdp);
504 int i;
506 unsigned long pdmask = ~((1UL << pdshift) - 1);
507 unsigned int num_hugepd = 1;
509 #ifdef CONFIG_PPC_FSL_BOOK3E
510 /* Note: On fsl the hpdp may be the first of several */
511 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
512 #else
513 unsigned int shift = hugepd_shift(*hpdp);
514 #endif
516 start &= pdmask;
517 if (start < floor)
518 return;
519 if (ceiling) {
520 ceiling &= pdmask;
521 if (! ceiling)
522 return;
524 if (end - 1 > ceiling - 1)
525 return;
527 for (i = 0; i < num_hugepd; i++, hpdp++)
528 hpdp->pd = 0;
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 hugepd_free(tlb, hugepte);
532 #else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
539 unsigned long floor, unsigned long ceiling)
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
545 start = addr;
546 do {
547 pmd = pmd_offset(pud, addr);
548 next = pmd_addr_end(addr, end);
549 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
555 continue;
557 #ifdef CONFIG_PPC_FSL_BOOK3E
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
568 } while (addr = next, addr != end);
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
578 if (end - 1 > ceiling - 1)
579 return;
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
583 pmd_free_tlb(tlb, pmd, start);
584 mm_dec_nr_pmds(tlb->mm);
587 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
588 unsigned long addr, unsigned long end,
589 unsigned long floor, unsigned long ceiling)
591 pud_t *pud;
592 unsigned long next;
593 unsigned long start;
595 start = addr;
596 do {
597 pud = pud_offset(pgd, addr);
598 next = pud_addr_end(addr, end);
599 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
600 if (pud_none_or_clear_bad(pud))
601 continue;
602 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
603 ceiling);
604 } else {
605 #ifdef CONFIG_PPC_FSL_BOOK3E
607 * Increment next by the size of the huge mapping since
608 * there may be more than one entry at this level for a
609 * single hugepage, but all of them point to
610 * the same kmem cache that holds the hugepte.
612 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
613 #endif
614 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
615 addr, next, floor, ceiling);
617 } while (addr = next, addr != end);
619 start &= PGDIR_MASK;
620 if (start < floor)
621 return;
622 if (ceiling) {
623 ceiling &= PGDIR_MASK;
624 if (!ceiling)
625 return;
627 if (end - 1 > ceiling - 1)
628 return;
630 pud = pud_offset(pgd, start);
631 pgd_clear(pgd);
632 pud_free_tlb(tlb, pud, start);
636 * This function frees user-level page tables of a process.
638 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
639 unsigned long addr, unsigned long end,
640 unsigned long floor, unsigned long ceiling)
642 pgd_t *pgd;
643 unsigned long next;
646 * Because there are a number of different possible pagetable
647 * layouts for hugepage ranges, we limit knowledge of how
648 * things should be laid out to the allocation path
649 * (huge_pte_alloc(), above). Everything else works out the
650 * structure as it goes from information in the hugepd
651 * pointers. That means that we can't here use the
652 * optimization used in the normal page free_pgd_range(), of
653 * checking whether we're actually covering a large enough
654 * range to have to do anything at the top level of the walk
655 * instead of at the bottom.
657 * To make sense of this, you should probably go read the big
658 * block comment at the top of the normal free_pgd_range(),
659 * too.
662 do {
663 next = pgd_addr_end(addr, end);
664 pgd = pgd_offset(tlb->mm, addr);
665 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
666 if (pgd_none_or_clear_bad(pgd))
667 continue;
668 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
669 } else {
670 #ifdef CONFIG_PPC_FSL_BOOK3E
672 * Increment next by the size of the huge mapping since
673 * there may be more than one entry at the pgd level
674 * for a single hugepage, but all of them point to the
675 * same kmem cache that holds the hugepte.
677 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
678 #endif
679 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
680 addr, next, floor, ceiling);
682 } while (addr = next, addr != end);
686 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
687 * To prevent hugepage split, disable irq.
689 struct page *
690 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
692 pte_t *ptep, pte;
693 unsigned shift;
694 unsigned long mask, flags;
695 struct page *page = ERR_PTR(-EINVAL);
697 local_irq_save(flags);
698 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
699 if (!ptep)
700 goto no_page;
701 pte = READ_ONCE(*ptep);
703 * Verify it is a huge page else bail.
704 * Transparent hugepages are handled by generic code. We can skip them
705 * here.
707 if (!shift || pmd_trans_huge(__pmd(pte_val(pte))))
708 goto no_page;
710 if (!pte_present(pte)) {
711 page = NULL;
712 goto no_page;
714 mask = (1UL << shift) - 1;
715 page = pte_page(pte);
716 if (page)
717 page += (address & mask) / PAGE_SIZE;
719 no_page:
720 local_irq_restore(flags);
721 return page;
724 struct page *
725 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
726 pmd_t *pmd, int write)
728 BUG();
729 return NULL;
732 struct page *
733 follow_huge_pud(struct mm_struct *mm, unsigned long address,
734 pud_t *pud, int write)
736 BUG();
737 return NULL;
740 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
741 unsigned long sz)
743 unsigned long __boundary = (addr + sz) & ~(sz-1);
744 return (__boundary - 1 < end - 1) ? __boundary : end;
747 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
748 unsigned long end, int write, struct page **pages, int *nr)
750 pte_t *ptep;
751 unsigned long sz = 1UL << hugepd_shift(hugepd);
752 unsigned long next;
754 ptep = hugepte_offset(hugepd, addr, pdshift);
755 do {
756 next = hugepte_addr_end(addr, end, sz);
757 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
758 return 0;
759 } while (ptep++, addr = next, addr != end);
761 return 1;
764 #ifdef CONFIG_PPC_MM_SLICES
765 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
766 unsigned long len, unsigned long pgoff,
767 unsigned long flags)
769 struct hstate *hstate = hstate_file(file);
770 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
772 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
774 #endif
776 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
778 #ifdef CONFIG_PPC_MM_SLICES
779 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
781 return 1UL << mmu_psize_to_shift(psize);
782 #else
783 if (!is_vm_hugetlb_page(vma))
784 return PAGE_SIZE;
786 return huge_page_size(hstate_vma(vma));
787 #endif
790 static inline bool is_power_of_4(unsigned long x)
792 if (is_power_of_2(x))
793 return (__ilog2(x) % 2) ? false : true;
794 return false;
797 static int __init add_huge_page_size(unsigned long long size)
799 int shift = __ffs(size);
800 int mmu_psize;
802 /* Check that it is a page size supported by the hardware and
803 * that it fits within pagetable and slice limits. */
804 #ifdef CONFIG_PPC_FSL_BOOK3E
805 if ((size < PAGE_SIZE) || !is_power_of_4(size))
806 return -EINVAL;
807 #else
808 if (!is_power_of_2(size)
809 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
810 return -EINVAL;
811 #endif
813 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
814 return -EINVAL;
816 #ifdef CONFIG_SPU_FS_64K_LS
817 /* Disable support for 64K huge pages when 64K SPU local store
818 * support is enabled as the current implementation conflicts.
820 if (shift == PAGE_SHIFT_64K)
821 return -EINVAL;
822 #endif /* CONFIG_SPU_FS_64K_LS */
824 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
826 /* Return if huge page size has already been setup */
827 if (size_to_hstate(size))
828 return 0;
830 hugetlb_add_hstate(shift - PAGE_SHIFT);
832 return 0;
835 static int __init hugepage_setup_sz(char *str)
837 unsigned long long size;
839 size = memparse(str, &str);
841 if (add_huge_page_size(size) != 0)
842 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
844 return 1;
846 __setup("hugepagesz=", hugepage_setup_sz);
848 #ifdef CONFIG_PPC_FSL_BOOK3E
849 struct kmem_cache *hugepte_cache;
850 static int __init hugetlbpage_init(void)
852 int psize;
854 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
855 unsigned shift;
857 if (!mmu_psize_defs[psize].shift)
858 continue;
860 shift = mmu_psize_to_shift(psize);
862 /* Don't treat normal page sizes as huge... */
863 if (shift != PAGE_SHIFT)
864 if (add_huge_page_size(1ULL << shift) < 0)
865 continue;
869 * Create a kmem cache for hugeptes. The bottom bits in the pte have
870 * size information encoded in them, so align them to allow this
872 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
873 HUGEPD_SHIFT_MASK + 1, 0, NULL);
874 if (hugepte_cache == NULL)
875 panic("%s: Unable to create kmem cache for hugeptes\n",
876 __func__);
878 /* Default hpage size = 4M */
879 if (mmu_psize_defs[MMU_PAGE_4M].shift)
880 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
881 else
882 panic("%s: Unable to set default huge page size\n", __func__);
885 return 0;
887 #else
888 static int __init hugetlbpage_init(void)
890 int psize;
892 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
893 return -ENODEV;
895 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
896 unsigned shift;
897 unsigned pdshift;
899 if (!mmu_psize_defs[psize].shift)
900 continue;
902 shift = mmu_psize_to_shift(psize);
904 if (add_huge_page_size(1ULL << shift) < 0)
905 continue;
907 if (shift < PMD_SHIFT)
908 pdshift = PMD_SHIFT;
909 else if (shift < PUD_SHIFT)
910 pdshift = PUD_SHIFT;
911 else
912 pdshift = PGDIR_SHIFT;
914 * if we have pdshift and shift value same, we don't
915 * use pgt cache for hugepd.
917 if (pdshift != shift) {
918 pgtable_cache_add(pdshift - shift, NULL);
919 if (!PGT_CACHE(pdshift - shift))
920 panic("hugetlbpage_init(): could not create "
921 "pgtable cache for %d bit pagesize\n", shift);
925 /* Set default large page size. Currently, we pick 16M or 1M
926 * depending on what is available
928 if (mmu_psize_defs[MMU_PAGE_16M].shift)
929 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
930 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
931 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
933 return 0;
935 #endif
936 module_init(hugetlbpage_init);
938 void flush_dcache_icache_hugepage(struct page *page)
940 int i;
941 void *start;
943 BUG_ON(!PageCompound(page));
945 for (i = 0; i < (1UL << compound_order(page)); i++) {
946 if (!PageHighMem(page)) {
947 __flush_dcache_icache(page_address(page+i));
948 } else {
949 start = kmap_atomic(page+i);
950 __flush_dcache_icache(start);
951 kunmap_atomic(start);
956 #endif /* CONFIG_HUGETLB_PAGE */
959 * We have 4 cases for pgds and pmds:
960 * (1) invalid (all zeroes)
961 * (2) pointer to next table, as normal; bottom 6 bits == 0
962 * (3) leaf pte for huge page, bottom two bits != 00
963 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
965 * So long as we atomically load page table pointers we are safe against teardown,
966 * we can follow the address down to the the page and take a ref on it.
967 * This function need to be called with interrupts disabled. We use this variant
968 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
971 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
972 unsigned *shift)
974 pgd_t pgd, *pgdp;
975 pud_t pud, *pudp;
976 pmd_t pmd, *pmdp;
977 pte_t *ret_pte;
978 hugepd_t *hpdp = NULL;
979 unsigned pdshift = PGDIR_SHIFT;
981 if (shift)
982 *shift = 0;
984 pgdp = pgdir + pgd_index(ea);
985 pgd = READ_ONCE(*pgdp);
987 * Always operate on the local stack value. This make sure the
988 * value don't get updated by a parallel THP split/collapse,
989 * page fault or a page unmap. The return pte_t * is still not
990 * stable. So should be checked there for above conditions.
992 if (pgd_none(pgd))
993 return NULL;
994 else if (pgd_huge(pgd)) {
995 ret_pte = (pte_t *) pgdp;
996 goto out;
997 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
998 hpdp = (hugepd_t *)&pgd;
999 else {
1001 * Even if we end up with an unmap, the pgtable will not
1002 * be freed, because we do an rcu free and here we are
1003 * irq disabled
1005 pdshift = PUD_SHIFT;
1006 pudp = pud_offset(&pgd, ea);
1007 pud = READ_ONCE(*pudp);
1009 if (pud_none(pud))
1010 return NULL;
1011 else if (pud_huge(pud)) {
1012 ret_pte = (pte_t *) pudp;
1013 goto out;
1014 } else if (is_hugepd(__hugepd(pud_val(pud))))
1015 hpdp = (hugepd_t *)&pud;
1016 else {
1017 pdshift = PMD_SHIFT;
1018 pmdp = pmd_offset(&pud, ea);
1019 pmd = READ_ONCE(*pmdp);
1021 * A hugepage collapse is captured by pmd_none, because
1022 * it mark the pmd none and do a hpte invalidate.
1024 * We don't worry about pmd_trans_splitting here, The
1025 * caller if it needs to handle the splitting case
1026 * should check for that.
1028 if (pmd_none(pmd))
1029 return NULL;
1031 if (pmd_huge(pmd) || pmd_large(pmd)) {
1032 ret_pte = (pte_t *) pmdp;
1033 goto out;
1034 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1035 hpdp = (hugepd_t *)&pmd;
1036 else
1037 return pte_offset_kernel(&pmd, ea);
1040 if (!hpdp)
1041 return NULL;
1043 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1044 pdshift = hugepd_shift(*hpdp);
1045 out:
1046 if (shift)
1047 *shift = pdshift;
1048 return ret_pte;
1050 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1052 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1053 unsigned long end, int write, struct page **pages, int *nr)
1055 unsigned long mask;
1056 unsigned long pte_end;
1057 struct page *head, *page, *tail;
1058 pte_t pte;
1059 int refs;
1061 pte_end = (addr + sz) & ~(sz-1);
1062 if (pte_end < end)
1063 end = pte_end;
1065 pte = READ_ONCE(*ptep);
1066 mask = _PAGE_PRESENT | _PAGE_USER;
1067 if (write)
1068 mask |= _PAGE_RW;
1070 if ((pte_val(pte) & mask) != mask)
1071 return 0;
1073 /* hugepages are never "special" */
1074 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1076 refs = 0;
1077 head = pte_page(pte);
1079 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1080 tail = page;
1081 do {
1082 VM_BUG_ON(compound_head(page) != head);
1083 pages[*nr] = page;
1084 (*nr)++;
1085 page++;
1086 refs++;
1087 } while (addr += PAGE_SIZE, addr != end);
1089 if (!page_cache_add_speculative(head, refs)) {
1090 *nr -= refs;
1091 return 0;
1094 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1095 /* Could be optimized better */
1096 *nr -= refs;
1097 while (refs--)
1098 put_page(head);
1099 return 0;
1103 * Any tail page need their mapcount reference taken before we
1104 * return.
1106 while (refs--) {
1107 if (PageTail(tail))
1108 get_huge_page_tail(tail);
1109 tail++;
1112 return 1;