Linux 4.1.18
[linux/fpc-iii.git] / arch / powerpc / mm / slice.c
blob0f432a702870fa96a9d35b41110e0b6b4e99406e
1 /*
2 * address space "slices" (meta-segments) support
4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
6 * Based on hugetlb implementation
8 * Copyright (C) 2003 David Gibson, IBM Corporation.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #undef DEBUG
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/export.h>
33 #include <linux/hugetlb.h>
34 #include <asm/mman.h>
35 #include <asm/mmu.h>
36 #include <asm/copro.h>
37 #include <asm/hugetlb.h>
39 /* some sanity checks */
40 #if (PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
41 #error PGTABLE_RANGE exceeds slice_mask high_slices size
42 #endif
44 static DEFINE_SPINLOCK(slice_convert_lock);
47 #ifdef DEBUG
48 int _slice_debug = 1;
50 static void slice_print_mask(const char *label, struct slice_mask mask)
52 char *p, buf[16 + 3 + 64 + 1];
53 int i;
55 if (!_slice_debug)
56 return;
57 p = buf;
58 for (i = 0; i < SLICE_NUM_LOW; i++)
59 *(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
60 *(p++) = ' ';
61 *(p++) = '-';
62 *(p++) = ' ';
63 for (i = 0; i < SLICE_NUM_HIGH; i++)
64 *(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
65 *(p++) = 0;
67 printk(KERN_DEBUG "%s:%s\n", label, buf);
70 #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
72 #else
74 static void slice_print_mask(const char *label, struct slice_mask mask) {}
75 #define slice_dbg(fmt...)
77 #endif
79 static struct slice_mask slice_range_to_mask(unsigned long start,
80 unsigned long len)
82 unsigned long end = start + len - 1;
83 struct slice_mask ret = { 0, 0 };
85 if (start < SLICE_LOW_TOP) {
86 unsigned long mend = min(end, SLICE_LOW_TOP);
87 unsigned long mstart = min(start, SLICE_LOW_TOP);
89 ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
90 - (1u << GET_LOW_SLICE_INDEX(mstart));
93 if ((start + len) > SLICE_LOW_TOP)
94 ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
95 - (1ul << GET_HIGH_SLICE_INDEX(start));
97 return ret;
100 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
101 unsigned long len)
103 struct vm_area_struct *vma;
105 if ((mm->task_size - len) < addr)
106 return 0;
107 vma = find_vma(mm, addr);
108 return (!vma || (addr + len) <= vma->vm_start);
111 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
113 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
114 1ul << SLICE_LOW_SHIFT);
117 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
119 unsigned long start = slice << SLICE_HIGH_SHIFT;
120 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
122 /* Hack, so that each addresses is controlled by exactly one
123 * of the high or low area bitmaps, the first high area starts
124 * at 4GB, not 0 */
125 if (start == 0)
126 start = SLICE_LOW_TOP;
128 return !slice_area_is_free(mm, start, end - start);
131 static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
133 struct slice_mask ret = { 0, 0 };
134 unsigned long i;
136 for (i = 0; i < SLICE_NUM_LOW; i++)
137 if (!slice_low_has_vma(mm, i))
138 ret.low_slices |= 1u << i;
140 if (mm->task_size <= SLICE_LOW_TOP)
141 return ret;
143 for (i = 0; i < SLICE_NUM_HIGH; i++)
144 if (!slice_high_has_vma(mm, i))
145 ret.high_slices |= 1ul << i;
147 return ret;
150 static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
152 unsigned char *hpsizes;
153 int index, mask_index;
154 struct slice_mask ret = { 0, 0 };
155 unsigned long i;
156 u64 lpsizes;
158 lpsizes = mm->context.low_slices_psize;
159 for (i = 0; i < SLICE_NUM_LOW; i++)
160 if (((lpsizes >> (i * 4)) & 0xf) == psize)
161 ret.low_slices |= 1u << i;
163 hpsizes = mm->context.high_slices_psize;
164 for (i = 0; i < SLICE_NUM_HIGH; i++) {
165 mask_index = i & 0x1;
166 index = i >> 1;
167 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
168 ret.high_slices |= 1ul << i;
171 return ret;
174 static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
176 return (mask.low_slices & available.low_slices) == mask.low_slices &&
177 (mask.high_slices & available.high_slices) == mask.high_slices;
180 static void slice_flush_segments(void *parm)
182 struct mm_struct *mm = parm;
183 unsigned long flags;
185 if (mm != current->active_mm)
186 return;
188 /* update the paca copy of the context struct */
189 get_paca()->context = current->active_mm->context;
191 local_irq_save(flags);
192 slb_flush_and_rebolt();
193 local_irq_restore(flags);
196 static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
198 int index, mask_index;
199 /* Write the new slice psize bits */
200 unsigned char *hpsizes;
201 u64 lpsizes;
202 unsigned long i, flags;
204 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
205 slice_print_mask(" mask", mask);
207 /* We need to use a spinlock here to protect against
208 * concurrent 64k -> 4k demotion ...
210 spin_lock_irqsave(&slice_convert_lock, flags);
212 lpsizes = mm->context.low_slices_psize;
213 for (i = 0; i < SLICE_NUM_LOW; i++)
214 if (mask.low_slices & (1u << i))
215 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
216 (((unsigned long)psize) << (i * 4));
218 /* Assign the value back */
219 mm->context.low_slices_psize = lpsizes;
221 hpsizes = mm->context.high_slices_psize;
222 for (i = 0; i < SLICE_NUM_HIGH; i++) {
223 mask_index = i & 0x1;
224 index = i >> 1;
225 if (mask.high_slices & (1ul << i))
226 hpsizes[index] = (hpsizes[index] &
227 ~(0xf << (mask_index * 4))) |
228 (((unsigned long)psize) << (mask_index * 4));
231 slice_dbg(" lsps=%lx, hsps=%lx\n",
232 mm->context.low_slices_psize,
233 mm->context.high_slices_psize);
235 spin_unlock_irqrestore(&slice_convert_lock, flags);
237 copro_flush_all_slbs(mm);
241 * Compute which slice addr is part of;
242 * set *boundary_addr to the start or end boundary of that slice
243 * (depending on 'end' parameter);
244 * return boolean indicating if the slice is marked as available in the
245 * 'available' slice_mark.
247 static bool slice_scan_available(unsigned long addr,
248 struct slice_mask available,
249 int end,
250 unsigned long *boundary_addr)
252 unsigned long slice;
253 if (addr < SLICE_LOW_TOP) {
254 slice = GET_LOW_SLICE_INDEX(addr);
255 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
256 return !!(available.low_slices & (1u << slice));
257 } else {
258 slice = GET_HIGH_SLICE_INDEX(addr);
259 *boundary_addr = (slice + end) ?
260 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
261 return !!(available.high_slices & (1ul << slice));
265 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
266 unsigned long len,
267 struct slice_mask available,
268 int psize)
270 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
271 unsigned long addr, found, next_end;
272 struct vm_unmapped_area_info info;
274 info.flags = 0;
275 info.length = len;
276 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
277 info.align_offset = 0;
279 addr = TASK_UNMAPPED_BASE;
280 while (addr < TASK_SIZE) {
281 info.low_limit = addr;
282 if (!slice_scan_available(addr, available, 1, &addr))
283 continue;
285 next_slice:
287 * At this point [info.low_limit; addr) covers
288 * available slices only and ends at a slice boundary.
289 * Check if we need to reduce the range, or if we can
290 * extend it to cover the next available slice.
292 if (addr >= TASK_SIZE)
293 addr = TASK_SIZE;
294 else if (slice_scan_available(addr, available, 1, &next_end)) {
295 addr = next_end;
296 goto next_slice;
298 info.high_limit = addr;
300 found = vm_unmapped_area(&info);
301 if (!(found & ~PAGE_MASK))
302 return found;
305 return -ENOMEM;
308 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
309 unsigned long len,
310 struct slice_mask available,
311 int psize)
313 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
314 unsigned long addr, found, prev;
315 struct vm_unmapped_area_info info;
317 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
318 info.length = len;
319 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
320 info.align_offset = 0;
322 addr = mm->mmap_base;
323 while (addr > PAGE_SIZE) {
324 info.high_limit = addr;
325 if (!slice_scan_available(addr - 1, available, 0, &addr))
326 continue;
328 prev_slice:
330 * At this point [addr; info.high_limit) covers
331 * available slices only and starts at a slice boundary.
332 * Check if we need to reduce the range, or if we can
333 * extend it to cover the previous available slice.
335 if (addr < PAGE_SIZE)
336 addr = PAGE_SIZE;
337 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
338 addr = prev;
339 goto prev_slice;
341 info.low_limit = addr;
343 found = vm_unmapped_area(&info);
344 if (!(found & ~PAGE_MASK))
345 return found;
349 * A failed mmap() very likely causes application failure,
350 * so fall back to the bottom-up function here. This scenario
351 * can happen with large stack limits and large mmap()
352 * allocations.
354 return slice_find_area_bottomup(mm, len, available, psize);
358 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
359 struct slice_mask mask, int psize,
360 int topdown)
362 if (topdown)
363 return slice_find_area_topdown(mm, len, mask, psize);
364 else
365 return slice_find_area_bottomup(mm, len, mask, psize);
368 #define or_mask(dst, src) do { \
369 (dst).low_slices |= (src).low_slices; \
370 (dst).high_slices |= (src).high_slices; \
371 } while (0)
373 #define andnot_mask(dst, src) do { \
374 (dst).low_slices &= ~(src).low_slices; \
375 (dst).high_slices &= ~(src).high_slices; \
376 } while (0)
378 #ifdef CONFIG_PPC_64K_PAGES
379 #define MMU_PAGE_BASE MMU_PAGE_64K
380 #else
381 #define MMU_PAGE_BASE MMU_PAGE_4K
382 #endif
384 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
385 unsigned long flags, unsigned int psize,
386 int topdown)
388 struct slice_mask mask = {0, 0};
389 struct slice_mask good_mask;
390 struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
391 struct slice_mask compat_mask = {0, 0};
392 int fixed = (flags & MAP_FIXED);
393 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
394 struct mm_struct *mm = current->mm;
395 unsigned long newaddr;
397 /* Sanity checks */
398 BUG_ON(mm->task_size == 0);
400 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
401 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
402 addr, len, flags, topdown);
404 if (len > mm->task_size)
405 return -ENOMEM;
406 if (len & ((1ul << pshift) - 1))
407 return -EINVAL;
408 if (fixed && (addr & ((1ul << pshift) - 1)))
409 return -EINVAL;
410 if (fixed && addr > (mm->task_size - len))
411 return -ENOMEM;
413 /* If hint, make sure it matches our alignment restrictions */
414 if (!fixed && addr) {
415 addr = _ALIGN_UP(addr, 1ul << pshift);
416 slice_dbg(" aligned addr=%lx\n", addr);
417 /* Ignore hint if it's too large or overlaps a VMA */
418 if (addr > mm->task_size - len ||
419 !slice_area_is_free(mm, addr, len))
420 addr = 0;
423 /* First make up a "good" mask of slices that have the right size
424 * already
426 good_mask = slice_mask_for_size(mm, psize);
427 slice_print_mask(" good_mask", good_mask);
430 * Here "good" means slices that are already the right page size,
431 * "compat" means slices that have a compatible page size (i.e.
432 * 4k in a 64k pagesize kernel), and "free" means slices without
433 * any VMAs.
435 * If MAP_FIXED:
436 * check if fits in good | compat => OK
437 * check if fits in good | compat | free => convert free
438 * else bad
439 * If have hint:
440 * check if hint fits in good => OK
441 * check if hint fits in good | free => convert free
442 * Otherwise:
443 * search in good, found => OK
444 * search in good | free, found => convert free
445 * search in good | compat | free, found => convert free.
448 #ifdef CONFIG_PPC_64K_PAGES
449 /* If we support combo pages, we can allow 64k pages in 4k slices */
450 if (psize == MMU_PAGE_64K) {
451 compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
452 if (fixed)
453 or_mask(good_mask, compat_mask);
455 #endif
457 /* First check hint if it's valid or if we have MAP_FIXED */
458 if (addr != 0 || fixed) {
459 /* Build a mask for the requested range */
460 mask = slice_range_to_mask(addr, len);
461 slice_print_mask(" mask", mask);
463 /* Check if we fit in the good mask. If we do, we just return,
464 * nothing else to do
466 if (slice_check_fit(mask, good_mask)) {
467 slice_dbg(" fits good !\n");
468 return addr;
470 } else {
471 /* Now let's see if we can find something in the existing
472 * slices for that size
474 newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
475 if (newaddr != -ENOMEM) {
476 /* Found within the good mask, we don't have to setup,
477 * we thus return directly
479 slice_dbg(" found area at 0x%lx\n", newaddr);
480 return newaddr;
484 /* We don't fit in the good mask, check what other slices are
485 * empty and thus can be converted
487 potential_mask = slice_mask_for_free(mm);
488 or_mask(potential_mask, good_mask);
489 slice_print_mask(" potential", potential_mask);
491 if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
492 slice_dbg(" fits potential !\n");
493 goto convert;
496 /* If we have MAP_FIXED and failed the above steps, then error out */
497 if (fixed)
498 return -EBUSY;
500 slice_dbg(" search...\n");
502 /* If we had a hint that didn't work out, see if we can fit
503 * anywhere in the good area.
505 if (addr) {
506 addr = slice_find_area(mm, len, good_mask, psize, topdown);
507 if (addr != -ENOMEM) {
508 slice_dbg(" found area at 0x%lx\n", addr);
509 return addr;
513 /* Now let's see if we can find something in the existing slices
514 * for that size plus free slices
516 addr = slice_find_area(mm, len, potential_mask, psize, topdown);
518 #ifdef CONFIG_PPC_64K_PAGES
519 if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
520 /* retry the search with 4k-page slices included */
521 or_mask(potential_mask, compat_mask);
522 addr = slice_find_area(mm, len, potential_mask, psize,
523 topdown);
525 #endif
527 if (addr == -ENOMEM)
528 return -ENOMEM;
530 mask = slice_range_to_mask(addr, len);
531 slice_dbg(" found potential area at 0x%lx\n", addr);
532 slice_print_mask(" mask", mask);
534 convert:
535 andnot_mask(mask, good_mask);
536 andnot_mask(mask, compat_mask);
537 if (mask.low_slices || mask.high_slices) {
538 slice_convert(mm, mask, psize);
539 if (psize > MMU_PAGE_BASE)
540 on_each_cpu(slice_flush_segments, mm, 1);
542 return addr;
545 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
547 unsigned long arch_get_unmapped_area(struct file *filp,
548 unsigned long addr,
549 unsigned long len,
550 unsigned long pgoff,
551 unsigned long flags)
553 return slice_get_unmapped_area(addr, len, flags,
554 current->mm->context.user_psize, 0);
557 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
558 const unsigned long addr0,
559 const unsigned long len,
560 const unsigned long pgoff,
561 const unsigned long flags)
563 return slice_get_unmapped_area(addr0, len, flags,
564 current->mm->context.user_psize, 1);
567 unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
569 unsigned char *hpsizes;
570 int index, mask_index;
572 if (addr < SLICE_LOW_TOP) {
573 u64 lpsizes;
574 lpsizes = mm->context.low_slices_psize;
575 index = GET_LOW_SLICE_INDEX(addr);
576 return (lpsizes >> (index * 4)) & 0xf;
578 hpsizes = mm->context.high_slices_psize;
579 index = GET_HIGH_SLICE_INDEX(addr);
580 mask_index = index & 0x1;
581 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
583 EXPORT_SYMBOL_GPL(get_slice_psize);
586 * This is called by hash_page when it needs to do a lazy conversion of
587 * an address space from real 64K pages to combo 4K pages (typically
588 * when hitting a non cacheable mapping on a processor or hypervisor
589 * that won't allow them for 64K pages).
591 * This is also called in init_new_context() to change back the user
592 * psize from whatever the parent context had it set to
593 * N.B. This may be called before mm->context.id has been set.
595 * This function will only change the content of the {low,high)_slice_psize
596 * masks, it will not flush SLBs as this shall be handled lazily by the
597 * caller.
599 void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
601 int index, mask_index;
602 unsigned char *hpsizes;
603 unsigned long flags, lpsizes;
604 unsigned int old_psize;
605 int i;
607 slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
609 spin_lock_irqsave(&slice_convert_lock, flags);
611 old_psize = mm->context.user_psize;
612 slice_dbg(" old_psize=%d\n", old_psize);
613 if (old_psize == psize)
614 goto bail;
616 mm->context.user_psize = psize;
617 wmb();
619 lpsizes = mm->context.low_slices_psize;
620 for (i = 0; i < SLICE_NUM_LOW; i++)
621 if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
622 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
623 (((unsigned long)psize) << (i * 4));
624 /* Assign the value back */
625 mm->context.low_slices_psize = lpsizes;
627 hpsizes = mm->context.high_slices_psize;
628 for (i = 0; i < SLICE_NUM_HIGH; i++) {
629 mask_index = i & 0x1;
630 index = i >> 1;
631 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
632 hpsizes[index] = (hpsizes[index] &
633 ~(0xf << (mask_index * 4))) |
634 (((unsigned long)psize) << (mask_index * 4));
640 slice_dbg(" lsps=%lx, hsps=%lx\n",
641 mm->context.low_slices_psize,
642 mm->context.high_slices_psize);
644 bail:
645 spin_unlock_irqrestore(&slice_convert_lock, flags);
648 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
649 unsigned long len, unsigned int psize)
651 struct slice_mask mask = slice_range_to_mask(start, len);
653 slice_convert(mm, mask, psize);
656 #ifdef CONFIG_HUGETLB_PAGE
658 * is_hugepage_only_range() is used by generic code to verify whether
659 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
661 * until the generic code provides a more generic hook and/or starts
662 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
663 * here knows how to deal with), we hijack it to keep standard mappings
664 * away from us.
666 * because of that generic code limitation, MAP_FIXED mapping cannot
667 * "convert" back a slice with no VMAs to the standard page size, only
668 * get_unmapped_area() can. It would be possible to fix it here but I
669 * prefer working on fixing the generic code instead.
671 * WARNING: This will not work if hugetlbfs isn't enabled since the
672 * generic code will redefine that function as 0 in that. This is ok
673 * for now as we only use slices with hugetlbfs enabled. This should
674 * be fixed as the generic code gets fixed.
676 int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
677 unsigned long len)
679 struct slice_mask mask, available;
680 unsigned int psize = mm->context.user_psize;
682 mask = slice_range_to_mask(addr, len);
683 available = slice_mask_for_size(mm, psize);
684 #ifdef CONFIG_PPC_64K_PAGES
685 /* We need to account for 4k slices too */
686 if (psize == MMU_PAGE_64K) {
687 struct slice_mask compat_mask;
688 compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
689 or_mask(available, compat_mask);
691 #endif
693 #if 0 /* too verbose */
694 slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
695 mm, addr, len);
696 slice_print_mask(" mask", mask);
697 slice_print_mask(" available", available);
698 #endif
699 return !slice_check_fit(mask, available);
701 #endif