1 #include <linux/kernel.h>
3 #include <linux/string.h>
4 #include <linux/bitops.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
11 #include <asm/processor.h>
12 #include <asm/pgtable.h>
18 #include <linux/topology.h>
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
28 static void early_init_intel(struct cpuinfo_x86
*c
)
32 /* Unmask CPUID levels if masked: */
33 if (c
->x86
> 6 || (c
->x86
== 6 && c
->x86_model
>= 0xd)) {
34 if (msr_clear_bit(MSR_IA32_MISC_ENABLE
,
35 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT
) > 0) {
36 c
->cpuid_level
= cpuid_eax(0);
41 if ((c
->x86
== 0xf && c
->x86_model
>= 0x03) ||
42 (c
->x86
== 0x6 && c
->x86_model
>= 0x0e))
43 set_cpu_cap(c
, X86_FEATURE_CONSTANT_TSC
);
45 if (c
->x86
>= 6 && !cpu_has(c
, X86_FEATURE_IA64
)) {
48 wrmsr(MSR_IA32_UCODE_REV
, 0, 0);
49 /* Required by the SDM */
51 rdmsr(MSR_IA32_UCODE_REV
, lower_word
, c
->microcode
);
55 * Atom erratum AAE44/AAF40/AAG38/AAH41:
57 * A race condition between speculative fetches and invalidating
58 * a large page. This is worked around in microcode, but we
59 * need the microcode to have already been loaded... so if it is
60 * not, recommend a BIOS update and disable large pages.
62 if (c
->x86
== 6 && c
->x86_model
== 0x1c && c
->x86_mask
<= 2 &&
63 c
->microcode
< 0x20e) {
64 printk(KERN_WARNING
"Atom PSE erratum detected, BIOS microcode update recommended\n");
65 clear_cpu_cap(c
, X86_FEATURE_PSE
);
69 set_cpu_cap(c
, X86_FEATURE_SYSENTER32
);
71 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 if (c
->x86
== 15 && c
->x86_cache_alignment
== 64)
73 c
->x86_cache_alignment
= 128;
76 /* CPUID workaround for 0F33/0F34 CPU */
77 if (c
->x86
== 0xF && c
->x86_model
== 0x3
78 && (c
->x86_mask
== 0x3 || c
->x86_mask
== 0x4))
79 c
->x86_phys_bits
= 36;
82 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 * with P/T states and does not stop in deep C-states.
85 * It is also reliable across cores and sockets. (but not across
86 * cabinets - we turn it off in that case explicitly.)
88 if (c
->x86_power
& (1 << 8)) {
89 set_cpu_cap(c
, X86_FEATURE_CONSTANT_TSC
);
90 set_cpu_cap(c
, X86_FEATURE_NONSTOP_TSC
);
91 if (!check_tsc_unstable())
92 set_sched_clock_stable();
95 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
97 switch (c
->x86_model
) {
98 case 0x27: /* Penwell */
99 case 0x35: /* Cloverview */
100 set_cpu_cap(c
, X86_FEATURE_NONSTOP_TSC_S3
);
108 * There is a known erratum on Pentium III and Core Solo
110 * " Page with PAT set to WC while associated MTRR is UC
111 * may consolidate to UC "
112 * Because of this erratum, it is better to stick with
113 * setting WC in MTRR rather than using PAT on these CPUs.
115 * Enable PAT WC only on P4, Core 2 or later CPUs.
117 if (c
->x86
== 6 && c
->x86_model
< 15)
118 clear_cpu_cap(c
, X86_FEATURE_PAT
);
120 #ifdef CONFIG_KMEMCHECK
122 * P4s have a "fast strings" feature which causes single-
123 * stepping REP instructions to only generate a #DB on
124 * cache-line boundaries.
126 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127 * (model 2) with the same problem.
130 if (msr_clear_bit(MSR_IA32_MISC_ENABLE
,
131 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT
) > 0)
132 pr_info("kmemcheck: Disabling fast string operations\n");
136 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137 * clear the fast string and enhanced fast string CPU capabilities.
139 if (c
->x86
> 6 || (c
->x86
== 6 && c
->x86_model
>= 0xd)) {
140 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_enable
);
141 if (!(misc_enable
& MSR_IA32_MISC_ENABLE_FAST_STRING
)) {
142 printk(KERN_INFO
"Disabled fast string operations\n");
143 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD
);
144 setup_clear_cpu_cap(X86_FEATURE_ERMS
);
149 * Intel Quark Core DevMan_001.pdf section 6.4.11
150 * "The operating system also is required to invalidate (i.e., flush)
151 * the TLB when any changes are made to any of the page table entries.
152 * The operating system must reload CR3 to cause the TLB to be flushed"
154 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
155 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
158 if (c
->x86
== 5 && c
->x86_model
== 9) {
159 pr_info("Disabling PGE capability bit\n");
160 setup_clear_cpu_cap(X86_FEATURE_PGE
);
166 * Early probe support logic for ppro memory erratum #50
168 * This is called before we do cpu ident work
171 int ppro_with_ram_bug(void)
173 /* Uses data from early_cpu_detect now */
174 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
175 boot_cpu_data
.x86
== 6 &&
176 boot_cpu_data
.x86_model
== 1 &&
177 boot_cpu_data
.x86_mask
< 8) {
178 printk(KERN_INFO
"Pentium Pro with Errata#50 detected. Taking evasive action.\n");
184 static void intel_smp_check(struct cpuinfo_x86
*c
)
186 /* calling is from identify_secondary_cpu() ? */
191 * Mask B, Pentium, but not Pentium MMX
194 c
->x86_mask
>= 1 && c
->x86_mask
<= 4 &&
197 * Remember we have B step Pentia with bugs
199 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
200 "with B stepping processors.\n");
205 static int __init
forcepae_setup(char *__unused
)
210 __setup("forcepae", forcepae_setup
);
212 static void intel_workarounds(struct cpuinfo_x86
*c
)
214 #ifdef CONFIG_X86_F00F_BUG
216 * All models of Pentium and Pentium with MMX technology CPUs
217 * have the F0 0F bug, which lets nonprivileged users lock up the
218 * system. Announce that the fault handler will be checking for it.
219 * The Quark is also family 5, but does not have the same bug.
221 clear_cpu_bug(c
, X86_BUG_F00F
);
222 if (!paravirt_enabled() && c
->x86
== 5 && c
->x86_model
< 9) {
223 static int f00f_workaround_enabled
;
225 set_cpu_bug(c
, X86_BUG_F00F
);
226 if (!f00f_workaround_enabled
) {
227 printk(KERN_NOTICE
"Intel Pentium with F0 0F bug - workaround enabled.\n");
228 f00f_workaround_enabled
= 1;
234 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
237 if ((c
->x86
<<8 | c
->x86_model
<<4 | c
->x86_mask
) < 0x633)
238 clear_cpu_cap(c
, X86_FEATURE_SEP
);
241 * PAE CPUID issue: many Pentium M report no PAE but may have a
242 * functionally usable PAE implementation.
243 * Forcefully enable PAE if kernel parameter "forcepae" is present.
246 printk(KERN_WARNING
"PAE forced!\n");
247 set_cpu_cap(c
, X86_FEATURE_PAE
);
248 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_NOW_UNRELIABLE
);
252 * P4 Xeon errata 037 workaround.
253 * Hardware prefetcher may cause stale data to be loaded into the cache.
255 if ((c
->x86
== 15) && (c
->x86_model
== 1) && (c
->x86_mask
== 1)) {
256 if (msr_set_bit(MSR_IA32_MISC_ENABLE
,
257 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT
)
259 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
260 pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
265 * See if we have a good local APIC by checking for buggy Pentia,
266 * i.e. all B steppings and the C2 stepping of P54C when using their
267 * integrated APIC (see 11AP erratum in "Pentium Processor
268 * Specification Update").
270 if (cpu_has_apic
&& (c
->x86
<<8 | c
->x86_model
<<4) == 0x520 &&
271 (c
->x86_mask
< 0x6 || c
->x86_mask
== 0xb))
272 set_cpu_bug(c
, X86_BUG_11AP
);
275 #ifdef CONFIG_X86_INTEL_USERCOPY
277 * Set up the preferred alignment for movsl bulk memory moves
280 case 4: /* 486: untested */
282 case 5: /* Old Pentia: untested */
284 case 6: /* PII/PIII only like movsl with 8-byte alignment */
287 case 15: /* P4 is OK down to 8-byte alignment */
296 static void intel_workarounds(struct cpuinfo_x86
*c
)
301 static void srat_detect_node(struct cpuinfo_x86
*c
)
305 int cpu
= smp_processor_id();
307 /* Don't do the funky fallback heuristics the AMD version employs
309 node
= numa_cpu_node(cpu
);
310 if (node
== NUMA_NO_NODE
|| !node_online(node
)) {
311 /* reuse the value from init_cpu_to_node() */
312 node
= cpu_to_node(cpu
);
314 numa_set_node(cpu
, node
);
319 * find out the number of processor cores on the die
321 static int intel_num_cpu_cores(struct cpuinfo_x86
*c
)
323 unsigned int eax
, ebx
, ecx
, edx
;
325 if (c
->cpuid_level
< 4)
328 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
329 cpuid_count(4, 0, &eax
, &ebx
, &ecx
, &edx
);
331 return (eax
>> 26) + 1;
336 static void detect_vmx_virtcap(struct cpuinfo_x86
*c
)
338 /* Intel VMX MSR indicated features */
339 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
340 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
341 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
342 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
343 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
344 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
346 u32 vmx_msr_low
, vmx_msr_high
, msr_ctl
, msr_ctl2
;
348 clear_cpu_cap(c
, X86_FEATURE_TPR_SHADOW
);
349 clear_cpu_cap(c
, X86_FEATURE_VNMI
);
350 clear_cpu_cap(c
, X86_FEATURE_FLEXPRIORITY
);
351 clear_cpu_cap(c
, X86_FEATURE_EPT
);
352 clear_cpu_cap(c
, X86_FEATURE_VPID
);
354 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
, vmx_msr_low
, vmx_msr_high
);
355 msr_ctl
= vmx_msr_high
| vmx_msr_low
;
356 if (msr_ctl
& X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW
)
357 set_cpu_cap(c
, X86_FEATURE_TPR_SHADOW
);
358 if (msr_ctl
& X86_VMX_FEATURE_PROC_CTLS_VNMI
)
359 set_cpu_cap(c
, X86_FEATURE_VNMI
);
360 if (msr_ctl
& X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS
) {
361 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
362 vmx_msr_low
, vmx_msr_high
);
363 msr_ctl2
= vmx_msr_high
| vmx_msr_low
;
364 if ((msr_ctl2
& X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC
) &&
365 (msr_ctl
& X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW
))
366 set_cpu_cap(c
, X86_FEATURE_FLEXPRIORITY
);
367 if (msr_ctl2
& X86_VMX_FEATURE_PROC_CTLS2_EPT
)
368 set_cpu_cap(c
, X86_FEATURE_EPT
);
369 if (msr_ctl2
& X86_VMX_FEATURE_PROC_CTLS2_VPID
)
370 set_cpu_cap(c
, X86_FEATURE_VPID
);
374 static void init_intel(struct cpuinfo_x86
*c
)
380 intel_workarounds(c
);
383 * Detect the extended topology information if available. This
384 * will reinitialise the initial_apicid which will be used
385 * in init_intel_cacheinfo()
387 detect_extended_topology(c
);
389 if (!cpu_has(c
, X86_FEATURE_XTOPOLOGY
)) {
391 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
394 c
->x86_max_cores
= intel_num_cpu_cores(c
);
400 l2
= init_intel_cacheinfo(c
);
402 /* Detect legacy cache sizes if init_intel_cacheinfo did not */
404 cpu_detect_cache_sizes(c
);
405 l2
= c
->x86_cache_size
;
408 if (c
->cpuid_level
> 9) {
409 unsigned eax
= cpuid_eax(10);
410 /* Check for version and the number of counters */
411 if ((eax
& 0xff) && (((eax
>>8) & 0xff) > 1))
412 set_cpu_cap(c
, X86_FEATURE_ARCH_PERFMON
);
416 set_cpu_cap(c
, X86_FEATURE_LFENCE_RDTSC
);
419 rdmsr(MSR_IA32_MISC_ENABLE
, l1
, l2
);
421 set_cpu_cap(c
, X86_FEATURE_BTS
);
423 set_cpu_cap(c
, X86_FEATURE_PEBS
);
426 if (c
->x86
== 6 && cpu_has_clflush
&&
427 (c
->x86_model
== 29 || c
->x86_model
== 46 || c
->x86_model
== 47))
428 set_cpu_bug(c
, X86_BUG_CLFLUSH_MONITOR
);
432 c
->x86_cache_alignment
= c
->x86_clflush_size
* 2;
434 set_cpu_cap(c
, X86_FEATURE_REP_GOOD
);
437 * Names for the Pentium II/Celeron processors
438 * detectable only by also checking the cache size.
439 * Dixon is NOT a Celeron.
444 switch (c
->x86_model
) {
447 p
= "Celeron (Covington)";
449 p
= "Mobile Pentium II (Dixon)";
454 p
= "Celeron (Mendocino)";
455 else if (c
->x86_mask
== 0 || c
->x86_mask
== 5)
461 p
= "Celeron (Coppermine)";
466 strcpy(c
->x86_model_id
, p
);
470 set_cpu_cap(c
, X86_FEATURE_P4
);
472 set_cpu_cap(c
, X86_FEATURE_P3
);
475 /* Work around errata */
478 if (cpu_has(c
, X86_FEATURE_VMX
))
479 detect_vmx_virtcap(c
);
482 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
483 * x86_energy_perf_policy(8) is available to change it at run-time
485 if (cpu_has(c
, X86_FEATURE_EPB
)) {
488 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS
, epb
);
489 if ((epb
& 0xF) == ENERGY_PERF_BIAS_PERFORMANCE
) {
490 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
491 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
492 epb
= (epb
& ~0xF) | ENERGY_PERF_BIAS_NORMAL
;
493 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS
, epb
);
499 static unsigned int intel_size_cache(struct cpuinfo_x86
*c
, unsigned int size
)
502 * Intel PIII Tualatin. This comes in two flavours.
503 * One has 256kb of cache, the other 512. We have no way
504 * to determine which, so we use a boottime override
505 * for the 512kb model, and assume 256 otherwise.
507 if ((c
->x86
== 6) && (c
->x86_model
== 11) && (size
== 0))
511 * Intel Quark SoC X1000 contains a 4-way set associative
512 * 16K cache with a 16 byte cache line and 256 lines per tag
514 if ((c
->x86
== 5) && (c
->x86_model
== 9))
520 #define TLB_INST_4K 0x01
521 #define TLB_INST_4M 0x02
522 #define TLB_INST_2M_4M 0x03
524 #define TLB_INST_ALL 0x05
525 #define TLB_INST_1G 0x06
527 #define TLB_DATA_4K 0x11
528 #define TLB_DATA_4M 0x12
529 #define TLB_DATA_2M_4M 0x13
530 #define TLB_DATA_4K_4M 0x14
532 #define TLB_DATA_1G 0x16
534 #define TLB_DATA0_4K 0x21
535 #define TLB_DATA0_4M 0x22
536 #define TLB_DATA0_2M_4M 0x23
539 #define STLB_4K_2M 0x42
541 static const struct _tlb_table intel_tlb_table
[] = {
542 { 0x01, TLB_INST_4K
, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
543 { 0x02, TLB_INST_4M
, 2, " TLB_INST 4 MByte pages, full associative" },
544 { 0x03, TLB_DATA_4K
, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
545 { 0x04, TLB_DATA_4M
, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
546 { 0x05, TLB_DATA_4M
, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
547 { 0x0b, TLB_INST_4M
, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
548 { 0x4f, TLB_INST_4K
, 32, " TLB_INST 4 KByte pages */" },
549 { 0x50, TLB_INST_ALL
, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
550 { 0x51, TLB_INST_ALL
, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
551 { 0x52, TLB_INST_ALL
, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
552 { 0x55, TLB_INST_2M_4M
, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
553 { 0x56, TLB_DATA0_4M
, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
554 { 0x57, TLB_DATA0_4K
, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
555 { 0x59, TLB_DATA0_4K
, 16, " TLB_DATA0 4 KByte pages, fully associative" },
556 { 0x5a, TLB_DATA0_2M_4M
, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
557 { 0x5b, TLB_DATA_4K_4M
, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
558 { 0x5c, TLB_DATA_4K_4M
, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
559 { 0x5d, TLB_DATA_4K_4M
, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
560 { 0x61, TLB_INST_4K
, 48, " TLB_INST 4 KByte pages, full associative" },
561 { 0x63, TLB_DATA_1G
, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
562 { 0x76, TLB_INST_2M_4M
, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
563 { 0xb0, TLB_INST_4K
, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
564 { 0xb1, TLB_INST_2M_4M
, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
565 { 0xb2, TLB_INST_4K
, 64, " TLB_INST 4KByte pages, 4-way set associative" },
566 { 0xb3, TLB_DATA_4K
, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
567 { 0xb4, TLB_DATA_4K
, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
568 { 0xb5, TLB_INST_4K
, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
569 { 0xb6, TLB_INST_4K
, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
570 { 0xba, TLB_DATA_4K
, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
571 { 0xc0, TLB_DATA_4K_4M
, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
572 { 0xc1, STLB_4K_2M
, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
573 { 0xc2, TLB_DATA_2M_4M
, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
574 { 0xca, STLB_4K
, 512, " STLB 4 KByte pages, 4-way associative" },
578 static void intel_tlb_lookup(const unsigned char desc
)
584 /* look up this descriptor in the table */
585 for (k
= 0; intel_tlb_table
[k
].descriptor
!= desc
&& \
586 intel_tlb_table
[k
].descriptor
!= 0; k
++)
589 if (intel_tlb_table
[k
].tlb_type
== 0)
592 switch (intel_tlb_table
[k
].tlb_type
) {
594 if (tlb_lli_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
595 tlb_lli_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
596 if (tlb_lld_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
597 tlb_lld_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
600 if (tlb_lli_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
601 tlb_lli_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
602 if (tlb_lld_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
603 tlb_lld_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
604 if (tlb_lli_2m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
605 tlb_lli_2m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
606 if (tlb_lld_2m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
607 tlb_lld_2m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
608 if (tlb_lli_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
609 tlb_lli_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
610 if (tlb_lld_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
611 tlb_lld_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
614 if (tlb_lli_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
615 tlb_lli_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
616 if (tlb_lli_2m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
617 tlb_lli_2m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
618 if (tlb_lli_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
619 tlb_lli_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
622 if (tlb_lli_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
623 tlb_lli_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
626 if (tlb_lli_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
627 tlb_lli_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
630 if (tlb_lli_2m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
631 tlb_lli_2m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
632 if (tlb_lli_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
633 tlb_lli_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
637 if (tlb_lld_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
638 tlb_lld_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
642 if (tlb_lld_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
643 tlb_lld_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
646 case TLB_DATA0_2M_4M
:
647 if (tlb_lld_2m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
648 tlb_lld_2m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
649 if (tlb_lld_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
650 tlb_lld_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
653 if (tlb_lld_4k
[ENTRIES
] < intel_tlb_table
[k
].entries
)
654 tlb_lld_4k
[ENTRIES
] = intel_tlb_table
[k
].entries
;
655 if (tlb_lld_4m
[ENTRIES
] < intel_tlb_table
[k
].entries
)
656 tlb_lld_4m
[ENTRIES
] = intel_tlb_table
[k
].entries
;
659 if (tlb_lld_1g
[ENTRIES
] < intel_tlb_table
[k
].entries
)
660 tlb_lld_1g
[ENTRIES
] = intel_tlb_table
[k
].entries
;
665 static void intel_detect_tlb(struct cpuinfo_x86
*c
)
668 unsigned int regs
[4];
669 unsigned char *desc
= (unsigned char *)regs
;
671 if (c
->cpuid_level
< 2)
674 /* Number of times to iterate */
675 n
= cpuid_eax(2) & 0xFF;
677 for (i
= 0 ; i
< n
; i
++) {
678 cpuid(2, ®s
[0], ®s
[1], ®s
[2], ®s
[3]);
680 /* If bit 31 is set, this is an unknown format */
681 for (j
= 0 ; j
< 3 ; j
++)
682 if (regs
[j
] & (1 << 31))
685 /* Byte 0 is level count, not a descriptor */
686 for (j
= 1 ; j
< 16 ; j
++)
687 intel_tlb_lookup(desc
[j
]);
691 static const struct cpu_dev intel_cpu_dev
= {
693 .c_ident
= { "GenuineIntel" },
696 { .family
= 4, .model_names
=
698 [0] = "486 DX-25/33",
709 { .family
= 5, .model_names
=
711 [0] = "Pentium 60/66 A-step",
712 [1] = "Pentium 60/66",
713 [2] = "Pentium 75 - 200",
714 [3] = "OverDrive PODP5V83",
716 [7] = "Mobile Pentium 75 - 200",
717 [8] = "Mobile Pentium MMX",
718 [9] = "Quark SoC X1000",
721 { .family
= 6, .model_names
=
723 [0] = "Pentium Pro A-step",
725 [3] = "Pentium II (Klamath)",
726 [4] = "Pentium II (Deschutes)",
727 [5] = "Pentium II (Deschutes)",
728 [6] = "Mobile Pentium II",
729 [7] = "Pentium III (Katmai)",
730 [8] = "Pentium III (Coppermine)",
731 [10] = "Pentium III (Cascades)",
732 [11] = "Pentium III (Tualatin)",
735 { .family
= 15, .model_names
=
737 [0] = "Pentium 4 (Unknown)",
738 [1] = "Pentium 4 (Willamette)",
739 [2] = "Pentium 4 (Northwood)",
740 [4] = "Pentium 4 (Foster)",
741 [5] = "Pentium 4 (Foster)",
745 .legacy_cache_size
= intel_size_cache
,
747 .c_detect_tlb
= intel_detect_tlb
,
748 .c_early_init
= early_init_intel
,
749 .c_init
= init_intel
,
750 .c_x86_vendor
= X86_VENDOR_INTEL
,
753 cpu_dev_register(intel_cpu_dev
);