2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
30 #include <asm/stacktrace.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
40 #include "perf_event.h"
42 struct x86_pmu x86_pmu __read_mostly
;
44 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
48 struct static_key rdpmc_always_available
= STATIC_KEY_INIT_FALSE
;
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX
]
52 [PERF_COUNT_HW_CACHE_OP_MAX
]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX
]
56 [PERF_COUNT_HW_CACHE_OP_MAX
]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
64 u64
x86_perf_event_update(struct perf_event
*event
)
66 struct hw_perf_event
*hwc
= &event
->hw
;
67 int shift
= 64 - x86_pmu
.cntval_bits
;
68 u64 prev_raw_count
, new_raw_count
;
72 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
76 * Careful: an NMI might modify the previous event value.
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
83 prev_raw_count
= local64_read(&hwc
->prev_count
);
84 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
86 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
87 new_raw_count
) != prev_raw_count
)
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
95 * Careful, not all hw sign-extends above the physical width
98 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
101 local64_add(delta
, &event
->count
);
102 local64_sub(delta
, &hwc
->period_left
);
104 return new_raw_count
;
108 * Find and validate any extra registers to set up.
110 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
112 struct hw_perf_event_extra
*reg
;
113 struct extra_reg
*er
;
115 reg
= &event
->hw
.extra_reg
;
117 if (!x86_pmu
.extra_regs
)
120 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
121 if (er
->event
!= (config
& er
->config_mask
))
123 if (event
->attr
.config1
& ~er
->valid_mask
)
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er
->extra_msr_access
)
130 reg
->config
= event
->attr
.config1
;
137 static atomic_t active_events
;
138 static DEFINE_MUTEX(pmc_reserve_mutex
);
140 #ifdef CONFIG_X86_LOCAL_APIC
142 static bool reserve_pmc_hardware(void)
146 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
151 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
159 for (i
--; i
>= 0; i
--)
160 release_evntsel_nmi(x86_pmu_config_addr(i
));
162 i
= x86_pmu
.num_counters
;
165 for (i
--; i
>= 0; i
--)
166 release_perfctr_nmi(x86_pmu_event_addr(i
));
171 static void release_pmc_hardware(void)
175 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
176 release_perfctr_nmi(x86_pmu_event_addr(i
));
177 release_evntsel_nmi(x86_pmu_config_addr(i
));
183 static bool reserve_pmc_hardware(void) { return true; }
184 static void release_pmc_hardware(void) {}
188 static bool check_hw_exists(void)
190 u64 val
, val_fail
, val_new
= ~0;
191 int i
, reg
, reg_fail
, ret
= 0;
196 * Check to see if the BIOS enabled any of the counters, if so
199 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
200 reg
= x86_pmu_config_addr(i
);
201 ret
= rdmsrl_safe(reg
, &val
);
204 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
) {
213 if (x86_pmu
.num_counters_fixed
) {
214 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
215 ret
= rdmsrl_safe(reg
, &val
);
218 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
219 if (val
& (0x03 << i
*4)) {
228 * If all the counters are enabled, the below test will always
229 * fail. The tools will also become useless in this scenario.
230 * Just fail and disable the hardware counters.
233 if (reg_safe
== -1) {
239 * Read the current value, change it and read it back to see if it
240 * matches, this is needed to detect certain hardware emulators
241 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 reg
= x86_pmu_event_addr(reg_safe
);
244 if (rdmsrl_safe(reg
, &val
))
247 ret
= wrmsrl_safe(reg
, val
);
248 ret
|= rdmsrl_safe(reg
, &val_new
);
249 if (ret
|| val
!= val_new
)
253 * We still allow the PMU driver to operate:
256 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
257 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail
, val_fail
);
263 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
264 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
265 boot_cpu_has(X86_FEATURE_HYPERVISOR
) ? KERN_INFO
: KERN_ERR
,
271 static void hw_perf_event_destroy(struct perf_event
*event
)
273 x86_release_hardware();
276 void hw_perf_lbr_event_destroy(struct perf_event
*event
)
278 hw_perf_event_destroy(event
);
280 /* undo the lbr/bts event accounting */
281 x86_del_exclusive(x86_lbr_exclusive_lbr
);
284 static inline int x86_pmu_initialized(void)
286 return x86_pmu
.handle_irq
!= NULL
;
290 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
292 struct perf_event_attr
*attr
= &event
->attr
;
293 unsigned int cache_type
, cache_op
, cache_result
;
296 config
= attr
->config
;
298 cache_type
= (config
>> 0) & 0xff;
299 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
302 cache_op
= (config
>> 8) & 0xff;
303 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
306 cache_result
= (config
>> 16) & 0xff;
307 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
310 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
319 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
320 return x86_pmu_extra_regs(val
, event
);
323 int x86_reserve_hardware(void)
327 if (!atomic_inc_not_zero(&active_events
)) {
328 mutex_lock(&pmc_reserve_mutex
);
329 if (atomic_read(&active_events
) == 0) {
330 if (!reserve_pmc_hardware())
333 reserve_ds_buffers();
336 atomic_inc(&active_events
);
337 mutex_unlock(&pmc_reserve_mutex
);
343 void x86_release_hardware(void)
345 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
346 release_pmc_hardware();
347 release_ds_buffers();
348 mutex_unlock(&pmc_reserve_mutex
);
353 * Check if we can create event of a certain type (that no conflicting events
356 int x86_add_exclusive(unsigned int what
)
360 if (atomic_inc_not_zero(&x86_pmu
.lbr_exclusive
[what
]))
363 mutex_lock(&pmc_reserve_mutex
);
364 for (i
= 0; i
< ARRAY_SIZE(x86_pmu
.lbr_exclusive
); i
++) {
365 if (i
!= what
&& atomic_read(&x86_pmu
.lbr_exclusive
[i
]))
369 atomic_inc(&x86_pmu
.lbr_exclusive
[what
]);
373 mutex_unlock(&pmc_reserve_mutex
);
377 void x86_del_exclusive(unsigned int what
)
379 atomic_dec(&x86_pmu
.lbr_exclusive
[what
]);
382 int x86_setup_perfctr(struct perf_event
*event
)
384 struct perf_event_attr
*attr
= &event
->attr
;
385 struct hw_perf_event
*hwc
= &event
->hw
;
388 if (!is_sampling_event(event
)) {
389 hwc
->sample_period
= x86_pmu
.max_period
;
390 hwc
->last_period
= hwc
->sample_period
;
391 local64_set(&hwc
->period_left
, hwc
->sample_period
);
394 if (attr
->type
== PERF_TYPE_RAW
)
395 return x86_pmu_extra_regs(event
->attr
.config
, event
);
397 if (attr
->type
== PERF_TYPE_HW_CACHE
)
398 return set_ext_hw_attr(hwc
, event
);
400 if (attr
->config
>= x86_pmu
.max_events
)
406 config
= x86_pmu
.event_map(attr
->config
);
417 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
418 !attr
->freq
&& hwc
->sample_period
== 1) {
419 /* BTS is not supported by this architecture. */
420 if (!x86_pmu
.bts_active
)
423 /* BTS is currently only allowed for user-mode. */
424 if (!attr
->exclude_kernel
)
427 /* disallow bts if conflicting events are present */
428 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
431 event
->destroy
= hw_perf_lbr_event_destroy
;
434 hwc
->config
|= config
;
440 * check that branch_sample_type is compatible with
441 * settings needed for precise_ip > 1 which implies
442 * using the LBR to capture ALL taken branches at the
443 * priv levels of the measurement
445 static inline int precise_br_compat(struct perf_event
*event
)
447 u64 m
= event
->attr
.branch_sample_type
;
450 /* must capture all branches */
451 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
454 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
456 if (!event
->attr
.exclude_user
)
457 b
|= PERF_SAMPLE_BRANCH_USER
;
459 if (!event
->attr
.exclude_kernel
)
460 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
463 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469 int x86_pmu_hw_config(struct perf_event
*event
)
471 if (event
->attr
.precise_ip
) {
474 /* Support for constant skid */
475 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
478 /* Support for IP fixup */
479 if (x86_pmu
.lbr_nr
|| x86_pmu
.intel_cap
.pebs_format
>= 2)
483 if (event
->attr
.precise_ip
> precise
)
487 * check that PEBS LBR correction does not conflict with
488 * whatever the user is asking with attr->branch_sample_type
490 if (event
->attr
.precise_ip
> 1 && x86_pmu
.intel_cap
.pebs_format
< 2) {
491 u64
*br_type
= &event
->attr
.branch_sample_type
;
493 if (has_branch_stack(event
)) {
494 if (!precise_br_compat(event
))
497 /* branch_sample_type is compatible */
501 * user did not specify branch_sample_type
503 * For PEBS fixups, we capture all
504 * the branches at the priv level of the
507 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
509 if (!event
->attr
.exclude_user
)
510 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
512 if (!event
->attr
.exclude_kernel
)
513 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
517 if (event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_CALL_STACK
)
518 event
->attach_state
|= PERF_ATTACH_TASK_DATA
;
522 * (keep 'enabled' bit clear for now)
524 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
527 * Count user and OS events unless requested not to
529 if (!event
->attr
.exclude_user
)
530 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
531 if (!event
->attr
.exclude_kernel
)
532 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
534 if (event
->attr
.type
== PERF_TYPE_RAW
)
535 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
537 if (event
->attr
.sample_period
&& x86_pmu
.limit_period
) {
538 if (x86_pmu
.limit_period(event
, event
->attr
.sample_period
) >
539 event
->attr
.sample_period
)
543 return x86_setup_perfctr(event
);
547 * Setup the hardware configuration for a given attr_type
549 static int __x86_pmu_event_init(struct perf_event
*event
)
553 if (!x86_pmu_initialized())
556 err
= x86_reserve_hardware();
560 event
->destroy
= hw_perf_event_destroy
;
563 event
->hw
.last_cpu
= -1;
564 event
->hw
.last_tag
= ~0ULL;
567 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
568 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
570 return x86_pmu
.hw_config(event
);
573 void x86_pmu_disable_all(void)
575 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
578 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
581 if (!test_bit(idx
, cpuc
->active_mask
))
583 rdmsrl(x86_pmu_config_addr(idx
), val
);
584 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
586 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
587 wrmsrl(x86_pmu_config_addr(idx
), val
);
591 static void x86_pmu_disable(struct pmu
*pmu
)
593 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
595 if (!x86_pmu_initialized())
605 x86_pmu
.disable_all();
608 void x86_pmu_enable_all(int added
)
610 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
613 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
614 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
616 if (!test_bit(idx
, cpuc
->active_mask
))
619 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
623 static struct pmu pmu
;
625 static inline int is_x86_event(struct perf_event
*event
)
627 return event
->pmu
== &pmu
;
631 * Event scheduler state:
633 * Assign events iterating over all events and counters, beginning
634 * with events with least weights first. Keep the current iterator
635 * state in struct sched_state.
639 int event
; /* event index */
640 int counter
; /* counter index */
641 int unassigned
; /* number of events to be assigned left */
642 int nr_gp
; /* number of GP counters used */
643 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
646 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
647 #define SCHED_STATES_MAX 2
654 struct event_constraint
**constraints
;
655 struct sched_state state
;
656 struct sched_state saved
[SCHED_STATES_MAX
];
660 * Initialize interator that runs through all events and counters.
662 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**constraints
,
663 int num
, int wmin
, int wmax
, int gpmax
)
667 memset(sched
, 0, sizeof(*sched
));
668 sched
->max_events
= num
;
669 sched
->max_weight
= wmax
;
670 sched
->max_gp
= gpmax
;
671 sched
->constraints
= constraints
;
673 for (idx
= 0; idx
< num
; idx
++) {
674 if (constraints
[idx
]->weight
== wmin
)
678 sched
->state
.event
= idx
; /* start with min weight */
679 sched
->state
.weight
= wmin
;
680 sched
->state
.unassigned
= num
;
683 static void perf_sched_save_state(struct perf_sched
*sched
)
685 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
688 sched
->saved
[sched
->saved_states
] = sched
->state
;
689 sched
->saved_states
++;
692 static bool perf_sched_restore_state(struct perf_sched
*sched
)
694 if (!sched
->saved_states
)
697 sched
->saved_states
--;
698 sched
->state
= sched
->saved
[sched
->saved_states
];
700 /* continue with next counter: */
701 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
707 * Select a counter for the current event to schedule. Return true on
710 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
712 struct event_constraint
*c
;
715 if (!sched
->state
.unassigned
)
718 if (sched
->state
.event
>= sched
->max_events
)
721 c
= sched
->constraints
[sched
->state
.event
];
722 /* Prefer fixed purpose counters */
723 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
724 idx
= INTEL_PMC_IDX_FIXED
;
725 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
726 if (!__test_and_set_bit(idx
, sched
->state
.used
))
731 /* Grab the first unused counter starting with idx */
732 idx
= sched
->state
.counter
;
733 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
734 if (!__test_and_set_bit(idx
, sched
->state
.used
)) {
735 if (sched
->state
.nr_gp
++ >= sched
->max_gp
)
745 sched
->state
.counter
= idx
;
748 perf_sched_save_state(sched
);
753 static bool perf_sched_find_counter(struct perf_sched
*sched
)
755 while (!__perf_sched_find_counter(sched
)) {
756 if (!perf_sched_restore_state(sched
))
764 * Go through all unassigned events and find the next one to schedule.
765 * Take events with the least weight first. Return true on success.
767 static bool perf_sched_next_event(struct perf_sched
*sched
)
769 struct event_constraint
*c
;
771 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
776 sched
->state
.event
++;
777 if (sched
->state
.event
>= sched
->max_events
) {
779 sched
->state
.event
= 0;
780 sched
->state
.weight
++;
781 if (sched
->state
.weight
> sched
->max_weight
)
784 c
= sched
->constraints
[sched
->state
.event
];
785 } while (c
->weight
!= sched
->state
.weight
);
787 sched
->state
.counter
= 0; /* start with first counter */
793 * Assign a counter for each event.
795 int perf_assign_events(struct event_constraint
**constraints
, int n
,
796 int wmin
, int wmax
, int gpmax
, int *assign
)
798 struct perf_sched sched
;
800 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
, gpmax
);
803 if (!perf_sched_find_counter(&sched
))
806 assign
[sched
.state
.event
] = sched
.state
.counter
;
807 } while (perf_sched_next_event(&sched
));
809 return sched
.state
.unassigned
;
811 EXPORT_SYMBOL_GPL(perf_assign_events
);
813 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
815 struct event_constraint
*c
;
816 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
817 struct perf_event
*e
;
818 int i
, wmin
, wmax
, unsched
= 0;
819 struct hw_perf_event
*hwc
;
821 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
823 if (x86_pmu
.start_scheduling
)
824 x86_pmu
.start_scheduling(cpuc
);
826 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
827 cpuc
->event_constraint
[i
] = NULL
;
828 c
= x86_pmu
.get_event_constraints(cpuc
, i
, cpuc
->event_list
[i
]);
829 cpuc
->event_constraint
[i
] = c
;
831 wmin
= min(wmin
, c
->weight
);
832 wmax
= max(wmax
, c
->weight
);
836 * fastpath, try to reuse previous register
838 for (i
= 0; i
< n
; i
++) {
839 hwc
= &cpuc
->event_list
[i
]->hw
;
840 c
= cpuc
->event_constraint
[i
];
846 /* constraint still honored */
847 if (!test_bit(hwc
->idx
, c
->idxmsk
))
850 /* not already used */
851 if (test_bit(hwc
->idx
, used_mask
))
854 __set_bit(hwc
->idx
, used_mask
);
856 assign
[i
] = hwc
->idx
;
861 int gpmax
= x86_pmu
.num_counters
;
864 * Do not allow scheduling of more than half the available
867 * This helps avoid counter starvation of sibling thread by
868 * ensuring at most half the counters cannot be in exclusive
869 * mode. There is no designated counters for the limits. Any
870 * N/2 counters can be used. This helps with events with
871 * specific counter constraints.
873 if (is_ht_workaround_enabled() && !cpuc
->is_fake
&&
874 READ_ONCE(cpuc
->excl_cntrs
->exclusive_present
))
877 unsched
= perf_assign_events(cpuc
->event_constraint
, n
, wmin
,
878 wmax
, gpmax
, assign
);
882 * In case of success (unsched = 0), mark events as committed,
883 * so we do not put_constraint() in case new events are added
884 * and fail to be scheduled
886 * We invoke the lower level commit callback to lock the resource
888 * We do not need to do all of this in case we are called to
889 * validate an event group (assign == NULL)
891 if (!unsched
&& assign
) {
892 for (i
= 0; i
< n
; i
++) {
893 e
= cpuc
->event_list
[i
];
894 e
->hw
.flags
|= PERF_X86_EVENT_COMMITTED
;
895 if (x86_pmu
.commit_scheduling
)
896 x86_pmu
.commit_scheduling(cpuc
, i
, assign
[i
]);
900 if (!assign
|| unsched
) {
902 for (i
= 0; i
< n
; i
++) {
903 e
= cpuc
->event_list
[i
];
905 * do not put_constraint() on comitted events,
906 * because they are good to go
908 if ((e
->hw
.flags
& PERF_X86_EVENT_COMMITTED
))
912 * release events that failed scheduling
914 if (x86_pmu
.put_event_constraints
)
915 x86_pmu
.put_event_constraints(cpuc
, e
);
919 if (x86_pmu
.stop_scheduling
)
920 x86_pmu
.stop_scheduling(cpuc
);
922 return unsched
? -EINVAL
: 0;
926 * dogrp: true if must collect siblings events (group)
927 * returns total number of events and error code
929 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
931 struct perf_event
*event
;
934 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
936 /* current number of events already accepted */
939 if (is_x86_event(leader
)) {
942 cpuc
->event_list
[n
] = leader
;
948 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
949 if (!is_x86_event(event
) ||
950 event
->state
<= PERF_EVENT_STATE_OFF
)
956 cpuc
->event_list
[n
] = event
;
962 static inline void x86_assign_hw_event(struct perf_event
*event
,
963 struct cpu_hw_events
*cpuc
, int i
)
965 struct hw_perf_event
*hwc
= &event
->hw
;
967 hwc
->idx
= cpuc
->assign
[i
];
968 hwc
->last_cpu
= smp_processor_id();
969 hwc
->last_tag
= ++cpuc
->tags
[i
];
971 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
972 hwc
->config_base
= 0;
974 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
975 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
976 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
977 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
979 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
980 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
981 hwc
->event_base_rdpmc
= x86_pmu_rdpmc_index(hwc
->idx
);
985 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
986 struct cpu_hw_events
*cpuc
,
989 return hwc
->idx
== cpuc
->assign
[i
] &&
990 hwc
->last_cpu
== smp_processor_id() &&
991 hwc
->last_tag
== cpuc
->tags
[i
];
994 static void x86_pmu_start(struct perf_event
*event
, int flags
);
996 static void x86_pmu_enable(struct pmu
*pmu
)
998 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
999 struct perf_event
*event
;
1000 struct hw_perf_event
*hwc
;
1001 int i
, added
= cpuc
->n_added
;
1003 if (!x86_pmu_initialized())
1009 if (cpuc
->n_added
) {
1010 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
1012 * apply assignment obtained either from
1013 * hw_perf_group_sched_in() or x86_pmu_enable()
1015 * step1: save events moving to new counters
1017 for (i
= 0; i
< n_running
; i
++) {
1018 event
= cpuc
->event_list
[i
];
1022 * we can avoid reprogramming counter if:
1023 * - assigned same counter as last time
1024 * - running on same CPU as last time
1025 * - no other event has used the counter since
1027 if (hwc
->idx
== -1 ||
1028 match_prev_assignment(hwc
, cpuc
, i
))
1032 * Ensure we don't accidentally enable a stopped
1033 * counter simply because we rescheduled.
1035 if (hwc
->state
& PERF_HES_STOPPED
)
1036 hwc
->state
|= PERF_HES_ARCH
;
1038 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1042 * step2: reprogram moved events into new counters
1044 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1045 event
= cpuc
->event_list
[i
];
1048 if (!match_prev_assignment(hwc
, cpuc
, i
))
1049 x86_assign_hw_event(event
, cpuc
, i
);
1050 else if (i
< n_running
)
1053 if (hwc
->state
& PERF_HES_ARCH
)
1056 x86_pmu_start(event
, PERF_EF_RELOAD
);
1059 perf_events_lapic_init();
1065 x86_pmu
.enable_all(added
);
1068 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
1071 * Set the next IRQ period, based on the hwc->period_left value.
1072 * To be called with the event disabled in hw:
1074 int x86_perf_event_set_period(struct perf_event
*event
)
1076 struct hw_perf_event
*hwc
= &event
->hw
;
1077 s64 left
= local64_read(&hwc
->period_left
);
1078 s64 period
= hwc
->sample_period
;
1079 int ret
= 0, idx
= hwc
->idx
;
1081 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
1085 * If we are way outside a reasonable range then just skip forward:
1087 if (unlikely(left
<= -period
)) {
1089 local64_set(&hwc
->period_left
, left
);
1090 hwc
->last_period
= period
;
1094 if (unlikely(left
<= 0)) {
1096 local64_set(&hwc
->period_left
, left
);
1097 hwc
->last_period
= period
;
1101 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1103 if (unlikely(left
< 2))
1106 if (left
> x86_pmu
.max_period
)
1107 left
= x86_pmu
.max_period
;
1109 if (x86_pmu
.limit_period
)
1110 left
= x86_pmu
.limit_period(event
, left
);
1112 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
1115 * The hw event starts counting from this event offset,
1116 * mark it to be able to extra future deltas:
1118 local64_set(&hwc
->prev_count
, (u64
)-left
);
1120 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
1123 * Due to erratum on certan cpu we need
1124 * a second write to be sure the register
1125 * is updated properly
1127 if (x86_pmu
.perfctr_second_write
) {
1128 wrmsrl(hwc
->event_base
,
1129 (u64
)(-left
) & x86_pmu
.cntval_mask
);
1132 perf_event_update_userpage(event
);
1137 void x86_pmu_enable_event(struct perf_event
*event
)
1139 if (__this_cpu_read(cpu_hw_events
.enabled
))
1140 __x86_pmu_enable_event(&event
->hw
,
1141 ARCH_PERFMON_EVENTSEL_ENABLE
);
1145 * Add a single event to the PMU.
1147 * The event is added to the group of enabled events
1148 * but only if it can be scehduled with existing events.
1150 static int x86_pmu_add(struct perf_event
*event
, int flags
)
1152 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1153 struct hw_perf_event
*hwc
;
1154 int assign
[X86_PMC_IDX_MAX
];
1159 n0
= cpuc
->n_events
;
1160 ret
= n
= collect_events(cpuc
, event
, false);
1164 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1165 if (!(flags
& PERF_EF_START
))
1166 hwc
->state
|= PERF_HES_ARCH
;
1169 * If group events scheduling transaction was started,
1170 * skip the schedulability test here, it will be performed
1171 * at commit time (->commit_txn) as a whole.
1173 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1176 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1180 * copy new assignment, now we know it is possible
1181 * will be used by hw_perf_enable()
1183 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1187 * Commit the collect_events() state. See x86_pmu_del() and
1191 cpuc
->n_added
+= n
- n0
;
1192 cpuc
->n_txn
+= n
- n0
;
1199 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1201 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1202 int idx
= event
->hw
.idx
;
1204 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1207 if (WARN_ON_ONCE(idx
== -1))
1210 if (flags
& PERF_EF_RELOAD
) {
1211 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1212 x86_perf_event_set_period(event
);
1215 event
->hw
.state
= 0;
1217 cpuc
->events
[idx
] = event
;
1218 __set_bit(idx
, cpuc
->active_mask
);
1219 __set_bit(idx
, cpuc
->running
);
1220 x86_pmu
.enable(event
);
1221 perf_event_update_userpage(event
);
1224 void perf_event_print_debug(void)
1226 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1228 struct cpu_hw_events
*cpuc
;
1229 unsigned long flags
;
1232 if (!x86_pmu
.num_counters
)
1235 local_irq_save(flags
);
1237 cpu
= smp_processor_id();
1238 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1240 if (x86_pmu
.version
>= 2) {
1241 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1242 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1243 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1244 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1247 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1248 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1249 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1250 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1251 if (x86_pmu
.pebs_constraints
) {
1252 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1253 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1255 if (x86_pmu
.lbr_nr
) {
1256 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
1257 pr_info("CPU#%d: debugctl: %016llx\n", cpu
, debugctl
);
1260 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1262 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1263 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1264 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1266 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1268 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1269 cpu
, idx
, pmc_ctrl
);
1270 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1271 cpu
, idx
, pmc_count
);
1272 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1273 cpu
, idx
, prev_left
);
1275 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1276 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1278 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1279 cpu
, idx
, pmc_count
);
1281 local_irq_restore(flags
);
1284 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1286 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1287 struct hw_perf_event
*hwc
= &event
->hw
;
1289 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1290 x86_pmu
.disable(event
);
1291 cpuc
->events
[hwc
->idx
] = NULL
;
1292 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1293 hwc
->state
|= PERF_HES_STOPPED
;
1296 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1298 * Drain the remaining delta count out of a event
1299 * that we are disabling:
1301 x86_perf_event_update(event
);
1302 hwc
->state
|= PERF_HES_UPTODATE
;
1306 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1308 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1312 * event is descheduled
1314 event
->hw
.flags
&= ~PERF_X86_EVENT_COMMITTED
;
1317 * If we're called during a txn, we don't need to do anything.
1318 * The events never got scheduled and ->cancel_txn will truncate
1321 * XXX assumes any ->del() called during a TXN will only be on
1322 * an event added during that same TXN.
1324 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1328 * Not a TXN, therefore cleanup properly.
1330 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1332 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1333 if (event
== cpuc
->event_list
[i
])
1337 if (WARN_ON_ONCE(i
== cpuc
->n_events
)) /* called ->del() without ->add() ? */
1340 /* If we have a newly added event; make sure to decrease n_added. */
1341 if (i
>= cpuc
->n_events
- cpuc
->n_added
)
1344 if (x86_pmu
.put_event_constraints
)
1345 x86_pmu
.put_event_constraints(cpuc
, event
);
1347 /* Delete the array entry. */
1348 while (++i
< cpuc
->n_events
) {
1349 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1350 cpuc
->event_constraint
[i
-1] = cpuc
->event_constraint
[i
];
1354 perf_event_update_userpage(event
);
1357 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1359 struct perf_sample_data data
;
1360 struct cpu_hw_events
*cpuc
;
1361 struct perf_event
*event
;
1362 int idx
, handled
= 0;
1365 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1368 * Some chipsets need to unmask the LVTPC in a particular spot
1369 * inside the nmi handler. As a result, the unmasking was pushed
1370 * into all the nmi handlers.
1372 * This generic handler doesn't seem to have any issues where the
1373 * unmasking occurs so it was left at the top.
1375 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1377 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1378 if (!test_bit(idx
, cpuc
->active_mask
)) {
1380 * Though we deactivated the counter some cpus
1381 * might still deliver spurious interrupts still
1382 * in flight. Catch them:
1384 if (__test_and_clear_bit(idx
, cpuc
->running
))
1389 event
= cpuc
->events
[idx
];
1391 val
= x86_perf_event_update(event
);
1392 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1399 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1401 if (!x86_perf_event_set_period(event
))
1404 if (perf_event_overflow(event
, &data
, regs
))
1405 x86_pmu_stop(event
, 0);
1409 inc_irq_stat(apic_perf_irqs
);
1414 void perf_events_lapic_init(void)
1416 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1420 * Always use NMI for PMU
1422 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1426 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1432 if (!atomic_read(&active_events
))
1435 start_clock
= sched_clock();
1436 ret
= x86_pmu
.handle_irq(regs
);
1437 finish_clock
= sched_clock();
1439 perf_sample_event_took(finish_clock
- start_clock
);
1443 NOKPROBE_SYMBOL(perf_event_nmi_handler
);
1445 struct event_constraint emptyconstraint
;
1446 struct event_constraint unconstrained
;
1449 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1451 unsigned int cpu
= (long)hcpu
;
1452 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1453 int i
, ret
= NOTIFY_OK
;
1455 switch (action
& ~CPU_TASKS_FROZEN
) {
1456 case CPU_UP_PREPARE
:
1457 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++)
1458 cpuc
->kfree_on_online
[i
] = NULL
;
1459 if (x86_pmu
.cpu_prepare
)
1460 ret
= x86_pmu
.cpu_prepare(cpu
);
1464 if (x86_pmu
.cpu_starting
)
1465 x86_pmu
.cpu_starting(cpu
);
1469 for (i
= 0 ; i
< X86_PERF_KFREE_MAX
; i
++) {
1470 kfree(cpuc
->kfree_on_online
[i
]);
1471 cpuc
->kfree_on_online
[i
] = NULL
;
1476 if (x86_pmu
.cpu_dying
)
1477 x86_pmu
.cpu_dying(cpu
);
1480 case CPU_UP_CANCELED
:
1482 if (x86_pmu
.cpu_dead
)
1483 x86_pmu
.cpu_dead(cpu
);
1493 static void __init
pmu_check_apic(void)
1499 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1500 pr_info("no hardware sampling interrupt available.\n");
1503 * If we have a PMU initialized but no APIC
1504 * interrupts, we cannot sample hardware
1505 * events (user-space has to fall back and
1506 * sample via a hrtimer based software event):
1508 pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
1512 static struct attribute_group x86_pmu_format_group
= {
1518 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1519 * out of events_attr attributes.
1521 static void __init
filter_events(struct attribute
**attrs
)
1523 struct device_attribute
*d
;
1524 struct perf_pmu_events_attr
*pmu_attr
;
1527 for (i
= 0; attrs
[i
]; i
++) {
1528 d
= (struct device_attribute
*)attrs
[i
];
1529 pmu_attr
= container_of(d
, struct perf_pmu_events_attr
, attr
);
1531 if (pmu_attr
->event_str
)
1533 if (x86_pmu
.event_map(i
))
1536 for (j
= i
; attrs
[j
]; j
++)
1537 attrs
[j
] = attrs
[j
+ 1];
1539 /* Check the shifted attr. */
1544 /* Merge two pointer arrays */
1545 static __init
struct attribute
**merge_attr(struct attribute
**a
, struct attribute
**b
)
1547 struct attribute
**new;
1550 for (j
= 0; a
[j
]; j
++)
1552 for (i
= 0; b
[i
]; i
++)
1556 new = kmalloc(sizeof(struct attribute
*) * j
, GFP_KERNEL
);
1561 for (i
= 0; a
[i
]; i
++)
1563 for (i
= 0; b
[i
]; i
++)
1570 ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1573 struct perf_pmu_events_attr
*pmu_attr
= \
1574 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1575 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1577 /* string trumps id */
1578 if (pmu_attr
->event_str
)
1579 return sprintf(page
, "%s", pmu_attr
->event_str
);
1581 return x86_pmu
.events_sysfs_show(page
, config
);
1584 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1585 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1586 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1587 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1588 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1589 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1590 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1591 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1592 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1593 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1595 static struct attribute
*empty_attrs
;
1597 static struct attribute
*events_attr
[] = {
1598 EVENT_PTR(CPU_CYCLES
),
1599 EVENT_PTR(INSTRUCTIONS
),
1600 EVENT_PTR(CACHE_REFERENCES
),
1601 EVENT_PTR(CACHE_MISSES
),
1602 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1603 EVENT_PTR(BRANCH_MISSES
),
1604 EVENT_PTR(BUS_CYCLES
),
1605 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1606 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1607 EVENT_PTR(REF_CPU_CYCLES
),
1611 static struct attribute_group x86_pmu_events_group
= {
1613 .attrs
= events_attr
,
1616 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1618 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1619 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1620 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1621 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1622 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1623 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1627 * We have whole page size to spend and just little data
1628 * to write, so we can safely use sprintf.
1630 ret
= sprintf(page
, "event=0x%02llx", event
);
1633 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1636 ret
+= sprintf(page
+ ret
, ",edge");
1639 ret
+= sprintf(page
+ ret
, ",pc");
1642 ret
+= sprintf(page
+ ret
, ",any");
1645 ret
+= sprintf(page
+ ret
, ",inv");
1648 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1650 ret
+= sprintf(page
+ ret
, "\n");
1655 static int __init
init_hw_perf_events(void)
1657 struct x86_pmu_quirk
*quirk
;
1660 pr_info("Performance Events: ");
1662 switch (boot_cpu_data
.x86_vendor
) {
1663 case X86_VENDOR_INTEL
:
1664 err
= intel_pmu_init();
1666 case X86_VENDOR_AMD
:
1667 err
= amd_pmu_init();
1673 pr_cont("no PMU driver, software events only.\n");
1679 /* sanity check that the hardware exists or is emulated */
1680 if (!check_hw_exists())
1683 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1685 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1687 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1690 if (!x86_pmu
.intel_ctrl
)
1691 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1693 perf_events_lapic_init();
1694 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1696 unconstrained
= (struct event_constraint
)
1697 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1698 0, x86_pmu
.num_counters
, 0, 0);
1700 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1702 if (x86_pmu
.event_attrs
)
1703 x86_pmu_events_group
.attrs
= x86_pmu
.event_attrs
;
1705 if (!x86_pmu
.events_sysfs_show
)
1706 x86_pmu_events_group
.attrs
= &empty_attrs
;
1708 filter_events(x86_pmu_events_group
.attrs
);
1710 if (x86_pmu
.cpu_events
) {
1711 struct attribute
**tmp
;
1713 tmp
= merge_attr(x86_pmu_events_group
.attrs
, x86_pmu
.cpu_events
);
1715 x86_pmu_events_group
.attrs
= tmp
;
1718 pr_info("... version: %d\n", x86_pmu
.version
);
1719 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1720 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1721 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1722 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1723 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1724 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1726 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1727 perf_cpu_notifier(x86_pmu_notifier
);
1731 early_initcall(init_hw_perf_events
);
1733 static inline void x86_pmu_read(struct perf_event
*event
)
1735 x86_perf_event_update(event
);
1739 * Start group events scheduling transaction
1740 * Set the flag to make pmu::enable() not perform the
1741 * schedulability test, it will be performed at commit time
1743 static void x86_pmu_start_txn(struct pmu
*pmu
)
1745 perf_pmu_disable(pmu
);
1746 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1747 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1751 * Stop group events scheduling transaction
1752 * Clear the flag and pmu::enable() will perform the
1753 * schedulability test.
1755 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1757 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1759 * Truncate collected array by the number of events added in this
1760 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1762 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1763 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1764 perf_pmu_enable(pmu
);
1768 * Commit group events scheduling transaction
1769 * Perform the group schedulability test as a whole
1770 * Return 0 if success
1772 * Does not cancel the transaction on failure; expects the caller to do this.
1774 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1776 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1777 int assign
[X86_PMC_IDX_MAX
];
1782 if (!x86_pmu_initialized())
1785 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1790 * copy new assignment, now we know it is possible
1791 * will be used by hw_perf_enable()
1793 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1795 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1796 perf_pmu_enable(pmu
);
1800 * a fake_cpuc is used to validate event groups. Due to
1801 * the extra reg logic, we need to also allocate a fake
1802 * per_core and per_cpu structure. Otherwise, group events
1803 * using extra reg may conflict without the kernel being
1804 * able to catch this when the last event gets added to
1807 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1809 kfree(cpuc
->shared_regs
);
1813 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1815 struct cpu_hw_events
*cpuc
;
1816 int cpu
= raw_smp_processor_id();
1818 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1820 return ERR_PTR(-ENOMEM
);
1822 /* only needed, if we have extra_regs */
1823 if (x86_pmu
.extra_regs
) {
1824 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1825 if (!cpuc
->shared_regs
)
1831 free_fake_cpuc(cpuc
);
1832 return ERR_PTR(-ENOMEM
);
1836 * validate that we can schedule this event
1838 static int validate_event(struct perf_event
*event
)
1840 struct cpu_hw_events
*fake_cpuc
;
1841 struct event_constraint
*c
;
1844 fake_cpuc
= allocate_fake_cpuc();
1845 if (IS_ERR(fake_cpuc
))
1846 return PTR_ERR(fake_cpuc
);
1848 c
= x86_pmu
.get_event_constraints(fake_cpuc
, -1, event
);
1850 if (!c
|| !c
->weight
)
1853 if (x86_pmu
.put_event_constraints
)
1854 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1856 free_fake_cpuc(fake_cpuc
);
1862 * validate a single event group
1864 * validation include:
1865 * - check events are compatible which each other
1866 * - events do not compete for the same counter
1867 * - number of events <= number of counters
1869 * validation ensures the group can be loaded onto the
1870 * PMU if it was the only group available.
1872 static int validate_group(struct perf_event
*event
)
1874 struct perf_event
*leader
= event
->group_leader
;
1875 struct cpu_hw_events
*fake_cpuc
;
1876 int ret
= -EINVAL
, n
;
1878 fake_cpuc
= allocate_fake_cpuc();
1879 if (IS_ERR(fake_cpuc
))
1880 return PTR_ERR(fake_cpuc
);
1882 * the event is not yet connected with its
1883 * siblings therefore we must first collect
1884 * existing siblings, then add the new event
1885 * before we can simulate the scheduling
1887 n
= collect_events(fake_cpuc
, leader
, true);
1891 fake_cpuc
->n_events
= n
;
1892 n
= collect_events(fake_cpuc
, event
, false);
1896 fake_cpuc
->n_events
= n
;
1898 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1901 free_fake_cpuc(fake_cpuc
);
1905 static int x86_pmu_event_init(struct perf_event
*event
)
1910 switch (event
->attr
.type
) {
1912 case PERF_TYPE_HARDWARE
:
1913 case PERF_TYPE_HW_CACHE
:
1920 err
= __x86_pmu_event_init(event
);
1923 * we temporarily connect event to its pmu
1924 * such that validate_group() can classify
1925 * it as an x86 event using is_x86_event()
1930 if (event
->group_leader
!= event
)
1931 err
= validate_group(event
);
1933 err
= validate_event(event
);
1939 event
->destroy(event
);
1942 if (ACCESS_ONCE(x86_pmu
.attr_rdpmc
))
1943 event
->hw
.flags
|= PERF_X86_EVENT_RDPMC_ALLOWED
;
1948 static void refresh_pce(void *ignored
)
1951 load_mm_cr4(current
->mm
);
1954 static void x86_pmu_event_mapped(struct perf_event
*event
)
1956 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
1959 if (atomic_inc_return(¤t
->mm
->context
.perf_rdpmc_allowed
) == 1)
1960 on_each_cpu_mask(mm_cpumask(current
->mm
), refresh_pce
, NULL
, 1);
1963 static void x86_pmu_event_unmapped(struct perf_event
*event
)
1968 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
1971 if (atomic_dec_and_test(¤t
->mm
->context
.perf_rdpmc_allowed
))
1972 on_each_cpu_mask(mm_cpumask(current
->mm
), refresh_pce
, NULL
, 1);
1975 static int x86_pmu_event_idx(struct perf_event
*event
)
1977 int idx
= event
->hw
.idx
;
1979 if (!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
))
1982 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
1983 idx
-= INTEL_PMC_IDX_FIXED
;
1990 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
1991 struct device_attribute
*attr
,
1994 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
1997 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
1998 struct device_attribute
*attr
,
1999 const char *buf
, size_t count
)
2004 ret
= kstrtoul(buf
, 0, &val
);
2011 if (x86_pmu
.attr_rdpmc_broken
)
2014 if ((val
== 2) != (x86_pmu
.attr_rdpmc
== 2)) {
2016 * Changing into or out of always available, aka
2017 * perf-event-bypassing mode. This path is extremely slow,
2018 * but only root can trigger it, so it's okay.
2021 static_key_slow_inc(&rdpmc_always_available
);
2023 static_key_slow_dec(&rdpmc_always_available
);
2024 on_each_cpu(refresh_pce
, NULL
, 1);
2027 x86_pmu
.attr_rdpmc
= val
;
2032 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
2034 static struct attribute
*x86_pmu_attrs
[] = {
2035 &dev_attr_rdpmc
.attr
,
2039 static struct attribute_group x86_pmu_attr_group
= {
2040 .attrs
= x86_pmu_attrs
,
2043 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
2044 &x86_pmu_attr_group
,
2045 &x86_pmu_format_group
,
2046 &x86_pmu_events_group
,
2050 static void x86_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
2052 if (x86_pmu
.sched_task
)
2053 x86_pmu
.sched_task(ctx
, sched_in
);
2056 void perf_check_microcode(void)
2058 if (x86_pmu
.check_microcode
)
2059 x86_pmu
.check_microcode();
2061 EXPORT_SYMBOL_GPL(perf_check_microcode
);
2063 static struct pmu pmu
= {
2064 .pmu_enable
= x86_pmu_enable
,
2065 .pmu_disable
= x86_pmu_disable
,
2067 .attr_groups
= x86_pmu_attr_groups
,
2069 .event_init
= x86_pmu_event_init
,
2071 .event_mapped
= x86_pmu_event_mapped
,
2072 .event_unmapped
= x86_pmu_event_unmapped
,
2076 .start
= x86_pmu_start
,
2077 .stop
= x86_pmu_stop
,
2078 .read
= x86_pmu_read
,
2080 .start_txn
= x86_pmu_start_txn
,
2081 .cancel_txn
= x86_pmu_cancel_txn
,
2082 .commit_txn
= x86_pmu_commit_txn
,
2084 .event_idx
= x86_pmu_event_idx
,
2085 .sched_task
= x86_pmu_sched_task
,
2086 .task_ctx_size
= sizeof(struct x86_perf_task_context
),
2089 void arch_perf_update_userpage(struct perf_event
*event
,
2090 struct perf_event_mmap_page
*userpg
, u64 now
)
2092 struct cyc2ns_data
*data
;
2094 userpg
->cap_user_time
= 0;
2095 userpg
->cap_user_time_zero
= 0;
2096 userpg
->cap_user_rdpmc
=
2097 !!(event
->hw
.flags
& PERF_X86_EVENT_RDPMC_ALLOWED
);
2098 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
2100 if (!sched_clock_stable())
2103 data
= cyc2ns_read_begin();
2106 * Internal timekeeping for enabled/running/stopped times
2107 * is always in the local_clock domain.
2109 userpg
->cap_user_time
= 1;
2110 userpg
->time_mult
= data
->cyc2ns_mul
;
2111 userpg
->time_shift
= data
->cyc2ns_shift
;
2112 userpg
->time_offset
= data
->cyc2ns_offset
- now
;
2115 * cap_user_time_zero doesn't make sense when we're using a different
2116 * time base for the records.
2118 if (event
->clock
== &local_clock
) {
2119 userpg
->cap_user_time_zero
= 1;
2120 userpg
->time_zero
= data
->cyc2ns_offset
;
2123 cyc2ns_read_end(data
);
2130 static int backtrace_stack(void *data
, char *name
)
2135 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
2137 struct perf_callchain_entry
*entry
= data
;
2139 perf_callchain_store(entry
, addr
);
2142 static const struct stacktrace_ops backtrace_ops
= {
2143 .stack
= backtrace_stack
,
2144 .address
= backtrace_address
,
2145 .walk_stack
= print_context_stack_bp
,
2149 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
2151 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2152 /* TODO: We don't support guest os callchain now */
2156 perf_callchain_store(entry
, regs
->ip
);
2158 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
2162 valid_user_frame(const void __user
*fp
, unsigned long size
)
2164 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
2167 static unsigned long get_segment_base(unsigned int segment
)
2169 struct desc_struct
*desc
;
2170 int idx
= segment
>> 3;
2172 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2173 struct ldt_struct
*ldt
;
2175 if (idx
> LDT_ENTRIES
)
2178 /* IRQs are off, so this synchronizes with smp_store_release */
2179 ldt
= lockless_dereference(current
->active_mm
->context
.ldt
);
2180 if (!ldt
|| idx
> ldt
->size
)
2183 desc
= &ldt
->entries
[idx
];
2185 if (idx
> GDT_ENTRIES
)
2188 desc
= raw_cpu_ptr(gdt_page
.gdt
) + idx
;
2191 return get_desc_base(desc
);
2194 #ifdef CONFIG_COMPAT
2196 #include <asm/compat.h>
2199 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
2201 /* 32-bit process in 64-bit kernel. */
2202 unsigned long ss_base
, cs_base
;
2203 struct stack_frame_ia32 frame
;
2204 const void __user
*fp
;
2206 if (!test_thread_flag(TIF_IA32
))
2209 cs_base
= get_segment_base(regs
->cs
);
2210 ss_base
= get_segment_base(regs
->ss
);
2212 fp
= compat_ptr(ss_base
+ regs
->bp
);
2213 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
2214 unsigned long bytes
;
2215 frame
.next_frame
= 0;
2216 frame
.return_address
= 0;
2218 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
2222 if (!valid_user_frame(fp
, sizeof(frame
)))
2225 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
2226 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
2232 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
2239 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
2241 struct stack_frame frame
;
2242 const void __user
*fp
;
2244 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2245 /* TODO: We don't support guest os callchain now */
2250 * We don't know what to do with VM86 stacks.. ignore them for now.
2252 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
2255 fp
= (void __user
*)regs
->bp
;
2257 perf_callchain_store(entry
, regs
->ip
);
2262 if (perf_callchain_user32(regs
, entry
))
2265 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
2266 unsigned long bytes
;
2267 frame
.next_frame
= NULL
;
2268 frame
.return_address
= 0;
2270 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
2274 if (!valid_user_frame(fp
, sizeof(frame
)))
2277 perf_callchain_store(entry
, frame
.return_address
);
2278 fp
= frame
.next_frame
;
2283 * Deal with code segment offsets for the various execution modes:
2285 * VM86 - the good olde 16 bit days, where the linear address is
2286 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2288 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2289 * to figure out what the 32bit base address is.
2291 * X32 - has TIF_X32 set, but is running in x86_64
2293 * X86_64 - CS,DS,SS,ES are all zero based.
2295 static unsigned long code_segment_base(struct pt_regs
*regs
)
2298 * For IA32 we look at the GDT/LDT segment base to convert the
2299 * effective IP to a linear address.
2302 #ifdef CONFIG_X86_32
2304 * If we are in VM86 mode, add the segment offset to convert to a
2307 if (regs
->flags
& X86_VM_MASK
)
2308 return 0x10 * regs
->cs
;
2310 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2311 return get_segment_base(regs
->cs
);
2313 if (user_mode(regs
) && !user_64bit_mode(regs
) &&
2314 regs
->cs
!= __USER32_CS
)
2315 return get_segment_base(regs
->cs
);
2320 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2322 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2323 return perf_guest_cbs
->get_guest_ip();
2325 return regs
->ip
+ code_segment_base(regs
);
2328 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2332 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2333 if (perf_guest_cbs
->is_user_mode())
2334 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2336 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2338 if (user_mode(regs
))
2339 misc
|= PERF_RECORD_MISC_USER
;
2341 misc
|= PERF_RECORD_MISC_KERNEL
;
2344 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2345 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2350 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2352 cap
->version
= x86_pmu
.version
;
2353 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2354 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2355 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2356 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2357 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2358 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2360 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);