2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
9 * Vivek Goyal <vgoyal@redhat.com>
13 #define pr_fmt(fmt) "kexec: " fmt
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
26 #include <asm/processor.h>
27 #include <asm/hardirq.h>
29 #include <asm/hw_irq.h>
31 #include <asm/io_apic.h>
33 #include <linux/kdebug.h>
35 #include <asm/reboot.h>
36 #include <asm/virtext.h>
38 /* Alignment required for elf header segment */
39 #define ELF_CORE_HEADER_ALIGN 4096
41 /* This primarily represents number of split ranges due to exclusion */
42 #define CRASH_MAX_RANGES 16
44 struct crash_mem_range
{
49 unsigned int nr_ranges
;
50 struct crash_mem_range ranges
[CRASH_MAX_RANGES
];
53 /* Misc data about ram ranges needed to prepare elf headers */
54 struct crash_elf_data
{
57 * Total number of ram ranges we have after various adjustments for
58 * GART, crash reserved region etc.
60 unsigned int max_nr_ranges
;
61 unsigned long gart_start
, gart_end
;
63 /* Pointer to elf header */
65 /* Pointer to next phdr */
70 /* Used while preparing memory map entries for second kernel */
71 struct crash_memmap_data
{
72 struct boot_params
*params
;
80 * This is used to VMCLEAR all VMCSs loaded on the
81 * processor. And when loading kvm_intel module, the
82 * callback function pointer will be assigned.
86 crash_vmclear_fn __rcu
*crash_vmclear_loaded_vmcss
= NULL
;
87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss
);
88 unsigned long crash_zero_bytes
;
90 static inline void cpu_crash_vmclear_loaded_vmcss(void)
92 crash_vmclear_fn
*do_vmclear_operation
= NULL
;
95 do_vmclear_operation
= rcu_dereference(crash_vmclear_loaded_vmcss
);
96 if (do_vmclear_operation
)
97 do_vmclear_operation();
101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
103 static void kdump_nmi_callback(int cpu
, struct pt_regs
*regs
)
106 struct pt_regs fixed_regs
;
108 if (!user_mode(regs
)) {
109 crash_fixup_ss_esp(&fixed_regs
, regs
);
113 crash_save_cpu(regs
, cpu
);
116 * VMCLEAR VMCSs loaded on all cpus if needed.
118 cpu_crash_vmclear_loaded_vmcss();
120 /* Disable VMX or SVM if needed.
122 * We need to disable virtualization on all CPUs.
123 * Having VMX or SVM enabled on any CPU may break rebooting
124 * after the kdump kernel has finished its task.
126 cpu_emergency_vmxoff();
127 cpu_emergency_svm_disable();
129 disable_local_APIC();
132 static void kdump_nmi_shootdown_cpus(void)
135 nmi_shootdown_cpus(kdump_nmi_callback
);
137 disable_local_APIC();
141 static void kdump_nmi_shootdown_cpus(void)
143 /* There are no cpus to shootdown */
147 void native_machine_crash_shutdown(struct pt_regs
*regs
)
149 /* This function is only called after the system
150 * has panicked or is otherwise in a critical state.
151 * The minimum amount of code to allow a kexec'd kernel
152 * to run successfully needs to happen here.
154 * In practice this means shooting down the other cpus in
157 /* The kernel is broken so disable interrupts */
160 kdump_nmi_shootdown_cpus();
163 * VMCLEAR VMCSs loaded on this cpu if needed.
165 cpu_crash_vmclear_loaded_vmcss();
167 /* Booting kdump kernel with VMX or SVM enabled won't work,
168 * because (among other limitations) we can't disable paging
169 * with the virt flags.
171 cpu_emergency_vmxoff();
172 cpu_emergency_svm_disable();
174 #ifdef CONFIG_X86_IO_APIC
175 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
180 #ifdef CONFIG_HPET_TIMER
183 crash_save_cpu(regs
, safe_smp_processor_id());
186 #ifdef CONFIG_KEXEC_FILE
187 static int get_nr_ram_ranges_callback(u64 start
, u64 end
, void *arg
)
189 unsigned int *nr_ranges
= arg
;
195 static int get_gart_ranges_callback(u64 start
, u64 end
, void *arg
)
197 struct crash_elf_data
*ced
= arg
;
199 ced
->gart_start
= start
;
202 /* Not expecting more than 1 gart aperture */
207 /* Gather all the required information to prepare elf headers for ram regions */
208 static void fill_up_crash_elf_data(struct crash_elf_data
*ced
,
209 struct kimage
*image
)
211 unsigned int nr_ranges
= 0;
215 walk_system_ram_res(0, -1, &nr_ranges
,
216 get_nr_ram_ranges_callback
);
218 ced
->max_nr_ranges
= nr_ranges
;
221 * We don't create ELF headers for GART aperture as an attempt
222 * to dump this memory in second kernel leads to hang/crash.
223 * If gart aperture is present, one needs to exclude that region
224 * and that could lead to need of extra phdr.
226 walk_iomem_res("GART", IORESOURCE_MEM
, 0, -1,
227 ced
, get_gart_ranges_callback
);
230 * If we have gart region, excluding that could potentially split
231 * a memory range, resulting in extra header. Account for that.
234 ced
->max_nr_ranges
++;
236 /* Exclusion of crash region could split memory ranges */
237 ced
->max_nr_ranges
++;
239 /* If crashk_low_res is not 0, another range split possible */
240 if (crashk_low_res
.end
)
241 ced
->max_nr_ranges
++;
244 static int exclude_mem_range(struct crash_mem
*mem
,
245 unsigned long long mstart
, unsigned long long mend
)
248 unsigned long long start
, end
;
249 struct crash_mem_range temp_range
= {0, 0};
251 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
252 start
= mem
->ranges
[i
].start
;
253 end
= mem
->ranges
[i
].end
;
255 if (mstart
> end
|| mend
< start
)
258 /* Truncate any area outside of range */
264 /* Found completely overlapping range */
265 if (mstart
== start
&& mend
== end
) {
266 mem
->ranges
[i
].start
= 0;
267 mem
->ranges
[i
].end
= 0;
268 if (i
< mem
->nr_ranges
- 1) {
269 /* Shift rest of the ranges to left */
270 for (j
= i
; j
< mem
->nr_ranges
- 1; j
++) {
271 mem
->ranges
[j
].start
=
272 mem
->ranges
[j
+1].start
;
274 mem
->ranges
[j
+1].end
;
281 if (mstart
> start
&& mend
< end
) {
282 /* Split original range */
283 mem
->ranges
[i
].end
= mstart
- 1;
284 temp_range
.start
= mend
+ 1;
285 temp_range
.end
= end
;
286 } else if (mstart
!= start
)
287 mem
->ranges
[i
].end
= mstart
- 1;
289 mem
->ranges
[i
].start
= mend
+ 1;
293 /* If a split happend, add the split to array */
298 if (i
== CRASH_MAX_RANGES
- 1) {
299 pr_err("Too many crash ranges after split\n");
303 /* Location where new range should go */
305 if (j
< mem
->nr_ranges
) {
306 /* Move over all ranges one slot towards the end */
307 for (i
= mem
->nr_ranges
- 1; i
>= j
; i
--)
308 mem
->ranges
[i
+ 1] = mem
->ranges
[i
];
311 mem
->ranges
[j
].start
= temp_range
.start
;
312 mem
->ranges
[j
].end
= temp_range
.end
;
318 * Look for any unwanted ranges between mstart, mend and remove them. This
319 * might lead to split and split ranges are put in ced->mem.ranges[] array
321 static int elf_header_exclude_ranges(struct crash_elf_data
*ced
,
322 unsigned long long mstart
, unsigned long long mend
)
324 struct crash_mem
*cmem
= &ced
->mem
;
327 memset(cmem
->ranges
, 0, sizeof(cmem
->ranges
));
329 cmem
->ranges
[0].start
= mstart
;
330 cmem
->ranges
[0].end
= mend
;
333 /* Exclude crashkernel region */
334 ret
= exclude_mem_range(cmem
, crashk_res
.start
, crashk_res
.end
);
338 if (crashk_low_res
.end
) {
339 ret
= exclude_mem_range(cmem
, crashk_low_res
.start
, crashk_low_res
.end
);
344 /* Exclude GART region */
346 ret
= exclude_mem_range(cmem
, ced
->gart_start
, ced
->gart_end
);
354 static int prepare_elf64_ram_headers_callback(u64 start
, u64 end
, void *arg
)
356 struct crash_elf_data
*ced
= arg
;
359 unsigned long mstart
, mend
;
360 struct kimage
*image
= ced
->image
;
361 struct crash_mem
*cmem
;
366 /* Exclude unwanted mem ranges */
367 ret
= elf_header_exclude_ranges(ced
, start
, end
);
371 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
374 for (i
= 0; i
< cmem
->nr_ranges
; i
++) {
375 mstart
= cmem
->ranges
[i
].start
;
376 mend
= cmem
->ranges
[i
].end
;
379 ced
->bufp
+= sizeof(Elf64_Phdr
);
381 phdr
->p_type
= PT_LOAD
;
382 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
383 phdr
->p_offset
= mstart
;
386 * If a range matches backup region, adjust offset to backup
389 if (mstart
== image
->arch
.backup_src_start
&&
390 (mend
- mstart
+ 1) == image
->arch
.backup_src_sz
)
391 phdr
->p_offset
= image
->arch
.backup_load_addr
;
393 phdr
->p_paddr
= mstart
;
394 phdr
->p_vaddr
= (unsigned long long) __va(mstart
);
395 phdr
->p_filesz
= phdr
->p_memsz
= mend
- mstart
+ 1;
398 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
399 phdr
, phdr
->p_vaddr
, phdr
->p_paddr
, phdr
->p_filesz
,
400 ehdr
->e_phnum
, phdr
->p_offset
);
406 static int prepare_elf64_headers(struct crash_elf_data
*ced
,
407 void **addr
, unsigned long *sz
)
411 unsigned long nr_cpus
= num_possible_cpus(), nr_phdr
, elf_sz
;
412 unsigned char *buf
, *bufp
;
414 unsigned long long notes_addr
;
417 /* extra phdr for vmcoreinfo elf note */
418 nr_phdr
= nr_cpus
+ 1;
419 nr_phdr
+= ced
->max_nr_ranges
;
422 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
423 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
424 * I think this is required by tools like gdb. So same physical
425 * memory will be mapped in two elf headers. One will contain kernel
426 * text virtual addresses and other will have __va(physical) addresses.
430 elf_sz
= sizeof(Elf64_Ehdr
) + nr_phdr
* sizeof(Elf64_Phdr
);
431 elf_sz
= ALIGN(elf_sz
, ELF_CORE_HEADER_ALIGN
);
433 buf
= vzalloc(elf_sz
);
438 ehdr
= (Elf64_Ehdr
*)bufp
;
439 bufp
+= sizeof(Elf64_Ehdr
);
440 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
441 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS64
;
442 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
443 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
444 ehdr
->e_ident
[EI_OSABI
] = ELF_OSABI
;
445 memset(ehdr
->e_ident
+ EI_PAD
, 0, EI_NIDENT
- EI_PAD
);
446 ehdr
->e_type
= ET_CORE
;
447 ehdr
->e_machine
= ELF_ARCH
;
448 ehdr
->e_version
= EV_CURRENT
;
449 ehdr
->e_phoff
= sizeof(Elf64_Ehdr
);
450 ehdr
->e_ehsize
= sizeof(Elf64_Ehdr
);
451 ehdr
->e_phentsize
= sizeof(Elf64_Phdr
);
453 /* Prepare one phdr of type PT_NOTE for each present cpu */
454 for_each_present_cpu(cpu
) {
455 phdr
= (Elf64_Phdr
*)bufp
;
456 bufp
+= sizeof(Elf64_Phdr
);
457 phdr
->p_type
= PT_NOTE
;
458 notes_addr
= per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes
, cpu
));
459 phdr
->p_offset
= phdr
->p_paddr
= notes_addr
;
460 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(note_buf_t
);
464 /* Prepare one PT_NOTE header for vmcoreinfo */
465 phdr
= (Elf64_Phdr
*)bufp
;
466 bufp
+= sizeof(Elf64_Phdr
);
467 phdr
->p_type
= PT_NOTE
;
468 phdr
->p_offset
= phdr
->p_paddr
= paddr_vmcoreinfo_note();
469 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(vmcoreinfo_note
);
473 /* Prepare PT_LOAD type program header for kernel text region */
474 phdr
= (Elf64_Phdr
*)bufp
;
475 bufp
+= sizeof(Elf64_Phdr
);
476 phdr
->p_type
= PT_LOAD
;
477 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
478 phdr
->p_vaddr
= (Elf64_Addr
)_text
;
479 phdr
->p_filesz
= phdr
->p_memsz
= _end
- _text
;
480 phdr
->p_offset
= phdr
->p_paddr
= __pa_symbol(_text
);
484 /* Prepare PT_LOAD headers for system ram chunks. */
487 ret
= walk_system_ram_res(0, -1, ced
,
488 prepare_elf64_ram_headers_callback
);
497 /* Prepare elf headers. Return addr and size */
498 static int prepare_elf_headers(struct kimage
*image
, void **addr
,
501 struct crash_elf_data
*ced
;
504 ced
= kzalloc(sizeof(*ced
), GFP_KERNEL
);
508 fill_up_crash_elf_data(ced
, image
);
510 /* By default prepare 64bit headers */
511 ret
= prepare_elf64_headers(ced
, addr
, sz
);
516 static int add_e820_entry(struct boot_params
*params
, struct e820entry
*entry
)
518 unsigned int nr_e820_entries
;
520 nr_e820_entries
= params
->e820_entries
;
521 if (nr_e820_entries
>= E820MAX
)
524 memcpy(¶ms
->e820_map
[nr_e820_entries
], entry
,
525 sizeof(struct e820entry
));
526 params
->e820_entries
++;
530 static int memmap_entry_callback(u64 start
, u64 end
, void *arg
)
532 struct crash_memmap_data
*cmd
= arg
;
533 struct boot_params
*params
= cmd
->params
;
537 ei
.size
= end
- start
+ 1;
539 add_e820_entry(params
, &ei
);
544 static int memmap_exclude_ranges(struct kimage
*image
, struct crash_mem
*cmem
,
545 unsigned long long mstart
,
546 unsigned long long mend
)
548 unsigned long start
, end
;
551 cmem
->ranges
[0].start
= mstart
;
552 cmem
->ranges
[0].end
= mend
;
555 /* Exclude Backup region */
556 start
= image
->arch
.backup_load_addr
;
557 end
= start
+ image
->arch
.backup_src_sz
- 1;
558 ret
= exclude_mem_range(cmem
, start
, end
);
562 /* Exclude elf header region */
563 start
= image
->arch
.elf_load_addr
;
564 end
= start
+ image
->arch
.elf_headers_sz
- 1;
565 return exclude_mem_range(cmem
, start
, end
);
568 /* Prepare memory map for crash dump kernel */
569 int crash_setup_memmap_entries(struct kimage
*image
, struct boot_params
*params
)
574 struct crash_memmap_data cmd
;
575 struct crash_mem
*cmem
;
577 cmem
= vzalloc(sizeof(struct crash_mem
));
581 memset(&cmd
, 0, sizeof(struct crash_memmap_data
));
584 /* Add first 640K segment */
585 ei
.addr
= image
->arch
.backup_src_start
;
586 ei
.size
= image
->arch
.backup_src_sz
;
588 add_e820_entry(params
, &ei
);
590 /* Add ACPI tables */
591 cmd
.type
= E820_ACPI
;
592 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
593 walk_iomem_res("ACPI Tables", flags
, 0, -1, &cmd
,
594 memmap_entry_callback
);
596 /* Add ACPI Non-volatile Storage */
598 walk_iomem_res("ACPI Non-volatile Storage", flags
, 0, -1, &cmd
,
599 memmap_entry_callback
);
601 /* Add crashk_low_res region */
602 if (crashk_low_res
.end
) {
603 ei
.addr
= crashk_low_res
.start
;
604 ei
.size
= crashk_low_res
.end
- crashk_low_res
.start
+ 1;
606 add_e820_entry(params
, &ei
);
609 /* Exclude some ranges from crashk_res and add rest to memmap */
610 ret
= memmap_exclude_ranges(image
, cmem
, crashk_res
.start
,
615 for (i
= 0; i
< cmem
->nr_ranges
; i
++) {
616 ei
.size
= cmem
->ranges
[i
].end
- cmem
->ranges
[i
].start
+ 1;
618 /* If entry is less than a page, skip it */
619 if (ei
.size
< PAGE_SIZE
)
621 ei
.addr
= cmem
->ranges
[i
].start
;
623 add_e820_entry(params
, &ei
);
631 static int determine_backup_region(u64 start
, u64 end
, void *arg
)
633 struct kimage
*image
= arg
;
635 image
->arch
.backup_src_start
= start
;
636 image
->arch
.backup_src_sz
= end
- start
+ 1;
638 /* Expecting only one range for backup region */
642 int crash_load_segments(struct kimage
*image
)
644 unsigned long src_start
, src_sz
, elf_sz
;
649 * Determine and load a segment for backup area. First 640K RAM
650 * region is backup source
653 ret
= walk_system_ram_res(KEXEC_BACKUP_SRC_START
, KEXEC_BACKUP_SRC_END
,
654 image
, determine_backup_region
);
656 /* Zero or postive return values are ok */
660 src_start
= image
->arch
.backup_src_start
;
661 src_sz
= image
->arch
.backup_src_sz
;
663 /* Add backup segment. */
666 * Ideally there is no source for backup segment. This is
667 * copied in purgatory after crash. Just add a zero filled
668 * segment for now to make sure checksum logic works fine.
670 ret
= kexec_add_buffer(image
, (char *)&crash_zero_bytes
,
671 sizeof(crash_zero_bytes
), src_sz
,
673 &image
->arch
.backup_load_addr
);
676 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
677 image
->arch
.backup_load_addr
, src_start
, src_sz
);
680 /* Prepare elf headers and add a segment */
681 ret
= prepare_elf_headers(image
, &elf_addr
, &elf_sz
);
685 image
->arch
.elf_headers
= elf_addr
;
686 image
->arch
.elf_headers_sz
= elf_sz
;
688 ret
= kexec_add_buffer(image
, (char *)elf_addr
, elf_sz
, elf_sz
,
689 ELF_CORE_HEADER_ALIGN
, 0, -1, 0,
690 &image
->arch
.elf_load_addr
);
692 vfree((void *)image
->arch
.elf_headers
);
695 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
696 image
->arch
.elf_load_addr
, elf_sz
, elf_sz
);
700 #endif /* CONFIG_KEXEC_FILE */