Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / kernel / crash.c
blob403ace539b73d4fdf01410ee5d1b9b8c28972c3b
1 /*
2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8 * Authors:
9 * Vivek Goyal <vgoyal@redhat.com>
13 #define pr_fmt(fmt) "kexec: " fmt
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
26 #include <asm/processor.h>
27 #include <asm/hardirq.h>
28 #include <asm/nmi.h>
29 #include <asm/hw_irq.h>
30 #include <asm/apic.h>
31 #include <asm/io_apic.h>
32 #include <asm/hpet.h>
33 #include <linux/kdebug.h>
34 #include <asm/cpu.h>
35 #include <asm/reboot.h>
36 #include <asm/virtext.h>
38 /* Alignment required for elf header segment */
39 #define ELF_CORE_HEADER_ALIGN 4096
41 /* This primarily represents number of split ranges due to exclusion */
42 #define CRASH_MAX_RANGES 16
44 struct crash_mem_range {
45 u64 start, end;
48 struct crash_mem {
49 unsigned int nr_ranges;
50 struct crash_mem_range ranges[CRASH_MAX_RANGES];
53 /* Misc data about ram ranges needed to prepare elf headers */
54 struct crash_elf_data {
55 struct kimage *image;
57 * Total number of ram ranges we have after various adjustments for
58 * GART, crash reserved region etc.
60 unsigned int max_nr_ranges;
61 unsigned long gart_start, gart_end;
63 /* Pointer to elf header */
64 void *ehdr;
65 /* Pointer to next phdr */
66 void *bufp;
67 struct crash_mem mem;
70 /* Used while preparing memory map entries for second kernel */
71 struct crash_memmap_data {
72 struct boot_params *params;
73 /* Type of memory */
74 unsigned int type;
77 int in_crash_kexec;
80 * This is used to VMCLEAR all VMCSs loaded on the
81 * processor. And when loading kvm_intel module, the
82 * callback function pointer will be assigned.
84 * protected by rcu.
86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
88 unsigned long crash_zero_bytes;
90 static inline void cpu_crash_vmclear_loaded_vmcss(void)
92 crash_vmclear_fn *do_vmclear_operation = NULL;
94 rcu_read_lock();
95 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
96 if (do_vmclear_operation)
97 do_vmclear_operation();
98 rcu_read_unlock();
101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
105 #ifdef CONFIG_X86_32
106 struct pt_regs fixed_regs;
108 if (!user_mode(regs)) {
109 crash_fixup_ss_esp(&fixed_regs, regs);
110 regs = &fixed_regs;
112 #endif
113 crash_save_cpu(regs, cpu);
116 * VMCLEAR VMCSs loaded on all cpus if needed.
118 cpu_crash_vmclear_loaded_vmcss();
120 /* Disable VMX or SVM if needed.
122 * We need to disable virtualization on all CPUs.
123 * Having VMX or SVM enabled on any CPU may break rebooting
124 * after the kdump kernel has finished its task.
126 cpu_emergency_vmxoff();
127 cpu_emergency_svm_disable();
129 disable_local_APIC();
132 static void kdump_nmi_shootdown_cpus(void)
134 in_crash_kexec = 1;
135 nmi_shootdown_cpus(kdump_nmi_callback);
137 disable_local_APIC();
140 #else
141 static void kdump_nmi_shootdown_cpus(void)
143 /* There are no cpus to shootdown */
145 #endif
147 void native_machine_crash_shutdown(struct pt_regs *regs)
149 /* This function is only called after the system
150 * has panicked or is otherwise in a critical state.
151 * The minimum amount of code to allow a kexec'd kernel
152 * to run successfully needs to happen here.
154 * In practice this means shooting down the other cpus in
155 * an SMP system.
157 /* The kernel is broken so disable interrupts */
158 local_irq_disable();
160 kdump_nmi_shootdown_cpus();
163 * VMCLEAR VMCSs loaded on this cpu if needed.
165 cpu_crash_vmclear_loaded_vmcss();
167 /* Booting kdump kernel with VMX or SVM enabled won't work,
168 * because (among other limitations) we can't disable paging
169 * with the virt flags.
171 cpu_emergency_vmxoff();
172 cpu_emergency_svm_disable();
174 #ifdef CONFIG_X86_IO_APIC
175 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
176 ioapic_zap_locks();
177 disable_IO_APIC();
178 #endif
179 lapic_shutdown();
180 #ifdef CONFIG_HPET_TIMER
181 hpet_disable();
182 #endif
183 crash_save_cpu(regs, safe_smp_processor_id());
186 #ifdef CONFIG_KEXEC_FILE
187 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
189 unsigned int *nr_ranges = arg;
191 (*nr_ranges)++;
192 return 0;
195 static int get_gart_ranges_callback(u64 start, u64 end, void *arg)
197 struct crash_elf_data *ced = arg;
199 ced->gart_start = start;
200 ced->gart_end = end;
202 /* Not expecting more than 1 gart aperture */
203 return 1;
207 /* Gather all the required information to prepare elf headers for ram regions */
208 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
209 struct kimage *image)
211 unsigned int nr_ranges = 0;
213 ced->image = image;
215 walk_system_ram_res(0, -1, &nr_ranges,
216 get_nr_ram_ranges_callback);
218 ced->max_nr_ranges = nr_ranges;
221 * We don't create ELF headers for GART aperture as an attempt
222 * to dump this memory in second kernel leads to hang/crash.
223 * If gart aperture is present, one needs to exclude that region
224 * and that could lead to need of extra phdr.
226 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1,
227 ced, get_gart_ranges_callback);
230 * If we have gart region, excluding that could potentially split
231 * a memory range, resulting in extra header. Account for that.
233 if (ced->gart_end)
234 ced->max_nr_ranges++;
236 /* Exclusion of crash region could split memory ranges */
237 ced->max_nr_ranges++;
239 /* If crashk_low_res is not 0, another range split possible */
240 if (crashk_low_res.end)
241 ced->max_nr_ranges++;
244 static int exclude_mem_range(struct crash_mem *mem,
245 unsigned long long mstart, unsigned long long mend)
247 int i, j;
248 unsigned long long start, end;
249 struct crash_mem_range temp_range = {0, 0};
251 for (i = 0; i < mem->nr_ranges; i++) {
252 start = mem->ranges[i].start;
253 end = mem->ranges[i].end;
255 if (mstart > end || mend < start)
256 continue;
258 /* Truncate any area outside of range */
259 if (mstart < start)
260 mstart = start;
261 if (mend > end)
262 mend = end;
264 /* Found completely overlapping range */
265 if (mstart == start && mend == end) {
266 mem->ranges[i].start = 0;
267 mem->ranges[i].end = 0;
268 if (i < mem->nr_ranges - 1) {
269 /* Shift rest of the ranges to left */
270 for (j = i; j < mem->nr_ranges - 1; j++) {
271 mem->ranges[j].start =
272 mem->ranges[j+1].start;
273 mem->ranges[j].end =
274 mem->ranges[j+1].end;
277 mem->nr_ranges--;
278 return 0;
281 if (mstart > start && mend < end) {
282 /* Split original range */
283 mem->ranges[i].end = mstart - 1;
284 temp_range.start = mend + 1;
285 temp_range.end = end;
286 } else if (mstart != start)
287 mem->ranges[i].end = mstart - 1;
288 else
289 mem->ranges[i].start = mend + 1;
290 break;
293 /* If a split happend, add the split to array */
294 if (!temp_range.end)
295 return 0;
297 /* Split happened */
298 if (i == CRASH_MAX_RANGES - 1) {
299 pr_err("Too many crash ranges after split\n");
300 return -ENOMEM;
303 /* Location where new range should go */
304 j = i + 1;
305 if (j < mem->nr_ranges) {
306 /* Move over all ranges one slot towards the end */
307 for (i = mem->nr_ranges - 1; i >= j; i--)
308 mem->ranges[i + 1] = mem->ranges[i];
311 mem->ranges[j].start = temp_range.start;
312 mem->ranges[j].end = temp_range.end;
313 mem->nr_ranges++;
314 return 0;
318 * Look for any unwanted ranges between mstart, mend and remove them. This
319 * might lead to split and split ranges are put in ced->mem.ranges[] array
321 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
322 unsigned long long mstart, unsigned long long mend)
324 struct crash_mem *cmem = &ced->mem;
325 int ret = 0;
327 memset(cmem->ranges, 0, sizeof(cmem->ranges));
329 cmem->ranges[0].start = mstart;
330 cmem->ranges[0].end = mend;
331 cmem->nr_ranges = 1;
333 /* Exclude crashkernel region */
334 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
335 if (ret)
336 return ret;
338 if (crashk_low_res.end) {
339 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
340 if (ret)
341 return ret;
344 /* Exclude GART region */
345 if (ced->gart_end) {
346 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end);
347 if (ret)
348 return ret;
351 return ret;
354 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
356 struct crash_elf_data *ced = arg;
357 Elf64_Ehdr *ehdr;
358 Elf64_Phdr *phdr;
359 unsigned long mstart, mend;
360 struct kimage *image = ced->image;
361 struct crash_mem *cmem;
362 int ret, i;
364 ehdr = ced->ehdr;
366 /* Exclude unwanted mem ranges */
367 ret = elf_header_exclude_ranges(ced, start, end);
368 if (ret)
369 return ret;
371 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
372 cmem = &ced->mem;
374 for (i = 0; i < cmem->nr_ranges; i++) {
375 mstart = cmem->ranges[i].start;
376 mend = cmem->ranges[i].end;
378 phdr = ced->bufp;
379 ced->bufp += sizeof(Elf64_Phdr);
381 phdr->p_type = PT_LOAD;
382 phdr->p_flags = PF_R|PF_W|PF_X;
383 phdr->p_offset = mstart;
386 * If a range matches backup region, adjust offset to backup
387 * segment.
389 if (mstart == image->arch.backup_src_start &&
390 (mend - mstart + 1) == image->arch.backup_src_sz)
391 phdr->p_offset = image->arch.backup_load_addr;
393 phdr->p_paddr = mstart;
394 phdr->p_vaddr = (unsigned long long) __va(mstart);
395 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
396 phdr->p_align = 0;
397 ehdr->e_phnum++;
398 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
399 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
400 ehdr->e_phnum, phdr->p_offset);
403 return ret;
406 static int prepare_elf64_headers(struct crash_elf_data *ced,
407 void **addr, unsigned long *sz)
409 Elf64_Ehdr *ehdr;
410 Elf64_Phdr *phdr;
411 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
412 unsigned char *buf, *bufp;
413 unsigned int cpu;
414 unsigned long long notes_addr;
415 int ret;
417 /* extra phdr for vmcoreinfo elf note */
418 nr_phdr = nr_cpus + 1;
419 nr_phdr += ced->max_nr_ranges;
422 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
423 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
424 * I think this is required by tools like gdb. So same physical
425 * memory will be mapped in two elf headers. One will contain kernel
426 * text virtual addresses and other will have __va(physical) addresses.
429 nr_phdr++;
430 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
431 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
433 buf = vzalloc(elf_sz);
434 if (!buf)
435 return -ENOMEM;
437 bufp = buf;
438 ehdr = (Elf64_Ehdr *)bufp;
439 bufp += sizeof(Elf64_Ehdr);
440 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
441 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
442 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
443 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
444 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
445 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
446 ehdr->e_type = ET_CORE;
447 ehdr->e_machine = ELF_ARCH;
448 ehdr->e_version = EV_CURRENT;
449 ehdr->e_phoff = sizeof(Elf64_Ehdr);
450 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
451 ehdr->e_phentsize = sizeof(Elf64_Phdr);
453 /* Prepare one phdr of type PT_NOTE for each present cpu */
454 for_each_present_cpu(cpu) {
455 phdr = (Elf64_Phdr *)bufp;
456 bufp += sizeof(Elf64_Phdr);
457 phdr->p_type = PT_NOTE;
458 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
459 phdr->p_offset = phdr->p_paddr = notes_addr;
460 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
461 (ehdr->e_phnum)++;
464 /* Prepare one PT_NOTE header for vmcoreinfo */
465 phdr = (Elf64_Phdr *)bufp;
466 bufp += sizeof(Elf64_Phdr);
467 phdr->p_type = PT_NOTE;
468 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
469 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
470 (ehdr->e_phnum)++;
472 #ifdef CONFIG_X86_64
473 /* Prepare PT_LOAD type program header for kernel text region */
474 phdr = (Elf64_Phdr *)bufp;
475 bufp += sizeof(Elf64_Phdr);
476 phdr->p_type = PT_LOAD;
477 phdr->p_flags = PF_R|PF_W|PF_X;
478 phdr->p_vaddr = (Elf64_Addr)_text;
479 phdr->p_filesz = phdr->p_memsz = _end - _text;
480 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
481 (ehdr->e_phnum)++;
482 #endif
484 /* Prepare PT_LOAD headers for system ram chunks. */
485 ced->ehdr = ehdr;
486 ced->bufp = bufp;
487 ret = walk_system_ram_res(0, -1, ced,
488 prepare_elf64_ram_headers_callback);
489 if (ret < 0)
490 return ret;
492 *addr = buf;
493 *sz = elf_sz;
494 return 0;
497 /* Prepare elf headers. Return addr and size */
498 static int prepare_elf_headers(struct kimage *image, void **addr,
499 unsigned long *sz)
501 struct crash_elf_data *ced;
502 int ret;
504 ced = kzalloc(sizeof(*ced), GFP_KERNEL);
505 if (!ced)
506 return -ENOMEM;
508 fill_up_crash_elf_data(ced, image);
510 /* By default prepare 64bit headers */
511 ret = prepare_elf64_headers(ced, addr, sz);
512 kfree(ced);
513 return ret;
516 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
518 unsigned int nr_e820_entries;
520 nr_e820_entries = params->e820_entries;
521 if (nr_e820_entries >= E820MAX)
522 return 1;
524 memcpy(&params->e820_map[nr_e820_entries], entry,
525 sizeof(struct e820entry));
526 params->e820_entries++;
527 return 0;
530 static int memmap_entry_callback(u64 start, u64 end, void *arg)
532 struct crash_memmap_data *cmd = arg;
533 struct boot_params *params = cmd->params;
534 struct e820entry ei;
536 ei.addr = start;
537 ei.size = end - start + 1;
538 ei.type = cmd->type;
539 add_e820_entry(params, &ei);
541 return 0;
544 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
545 unsigned long long mstart,
546 unsigned long long mend)
548 unsigned long start, end;
549 int ret = 0;
551 cmem->ranges[0].start = mstart;
552 cmem->ranges[0].end = mend;
553 cmem->nr_ranges = 1;
555 /* Exclude Backup region */
556 start = image->arch.backup_load_addr;
557 end = start + image->arch.backup_src_sz - 1;
558 ret = exclude_mem_range(cmem, start, end);
559 if (ret)
560 return ret;
562 /* Exclude elf header region */
563 start = image->arch.elf_load_addr;
564 end = start + image->arch.elf_headers_sz - 1;
565 return exclude_mem_range(cmem, start, end);
568 /* Prepare memory map for crash dump kernel */
569 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
571 int i, ret = 0;
572 unsigned long flags;
573 struct e820entry ei;
574 struct crash_memmap_data cmd;
575 struct crash_mem *cmem;
577 cmem = vzalloc(sizeof(struct crash_mem));
578 if (!cmem)
579 return -ENOMEM;
581 memset(&cmd, 0, sizeof(struct crash_memmap_data));
582 cmd.params = params;
584 /* Add first 640K segment */
585 ei.addr = image->arch.backup_src_start;
586 ei.size = image->arch.backup_src_sz;
587 ei.type = E820_RAM;
588 add_e820_entry(params, &ei);
590 /* Add ACPI tables */
591 cmd.type = E820_ACPI;
592 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
593 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd,
594 memmap_entry_callback);
596 /* Add ACPI Non-volatile Storage */
597 cmd.type = E820_NVS;
598 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd,
599 memmap_entry_callback);
601 /* Add crashk_low_res region */
602 if (crashk_low_res.end) {
603 ei.addr = crashk_low_res.start;
604 ei.size = crashk_low_res.end - crashk_low_res.start + 1;
605 ei.type = E820_RAM;
606 add_e820_entry(params, &ei);
609 /* Exclude some ranges from crashk_res and add rest to memmap */
610 ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
611 crashk_res.end);
612 if (ret)
613 goto out;
615 for (i = 0; i < cmem->nr_ranges; i++) {
616 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
618 /* If entry is less than a page, skip it */
619 if (ei.size < PAGE_SIZE)
620 continue;
621 ei.addr = cmem->ranges[i].start;
622 ei.type = E820_RAM;
623 add_e820_entry(params, &ei);
626 out:
627 vfree(cmem);
628 return ret;
631 static int determine_backup_region(u64 start, u64 end, void *arg)
633 struct kimage *image = arg;
635 image->arch.backup_src_start = start;
636 image->arch.backup_src_sz = end - start + 1;
638 /* Expecting only one range for backup region */
639 return 1;
642 int crash_load_segments(struct kimage *image)
644 unsigned long src_start, src_sz, elf_sz;
645 void *elf_addr;
646 int ret;
649 * Determine and load a segment for backup area. First 640K RAM
650 * region is backup source
653 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
654 image, determine_backup_region);
656 /* Zero or postive return values are ok */
657 if (ret < 0)
658 return ret;
660 src_start = image->arch.backup_src_start;
661 src_sz = image->arch.backup_src_sz;
663 /* Add backup segment. */
664 if (src_sz) {
666 * Ideally there is no source for backup segment. This is
667 * copied in purgatory after crash. Just add a zero filled
668 * segment for now to make sure checksum logic works fine.
670 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
671 sizeof(crash_zero_bytes), src_sz,
672 PAGE_SIZE, 0, -1, 0,
673 &image->arch.backup_load_addr);
674 if (ret)
675 return ret;
676 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
677 image->arch.backup_load_addr, src_start, src_sz);
680 /* Prepare elf headers and add a segment */
681 ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
682 if (ret)
683 return ret;
685 image->arch.elf_headers = elf_addr;
686 image->arch.elf_headers_sz = elf_sz;
688 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
689 ELF_CORE_HEADER_ALIGN, 0, -1, 0,
690 &image->arch.elf_load_addr);
691 if (ret) {
692 vfree((void *)image->arch.elf_headers);
693 return ret;
695 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
696 image->arch.elf_load_addr, elf_sz, elf_sz);
698 return ret;
700 #endif /* CONFIG_KEXEC_FILE */