Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / kernel / kprobes / core.c
blob1deffe6cc87367631fe23b4c5d4b6be697ff4b0e
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
61 #include "common.h"
63 void jprobe_return_end(void);
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
81 * *(unsigned long*) is used.
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
105 #undef W
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
115 static nokprobe_inline void
116 __synthesize_relative_insn(void *from, void *to, u8 op)
118 struct __arch_relative_insn {
119 u8 op;
120 s32 raddr;
121 } __packed *insn;
123 insn = (struct __arch_relative_insn *)from;
124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 insn->op = op;
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
129 void synthesize_reljump(void *from, void *to)
131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
133 NOKPROBE_SYMBOL(synthesize_reljump);
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
136 void synthesize_relcall(void *from, void *to)
138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
140 NOKPROBE_SYMBOL(synthesize_relcall);
143 * Skip the prefixes of the instruction.
145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
147 insn_attr_t attr;
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 while (inat_is_legacy_prefix(attr)) {
151 insn++;
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 #ifdef CONFIG_X86_64
155 if (inat_is_rex_prefix(attr))
156 insn++;
157 #endif
158 return insn;
160 NOKPROBE_SYMBOL(skip_prefixes);
163 * Returns non-zero if opcode is boostable.
164 * RIP relative instructions are adjusted at copying time in 64 bits mode
166 int can_boost(kprobe_opcode_t *opcodes)
168 kprobe_opcode_t opcode;
169 kprobe_opcode_t *orig_opcodes = opcodes;
171 if (search_exception_tables((unsigned long)opcodes))
172 return 0; /* Page fault may occur on this address. */
174 retry:
175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 return 0;
177 opcode = *(opcodes++);
179 /* 2nd-byte opcode */
180 if (opcode == 0x0f) {
181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 return 0;
183 return test_bit(*opcodes,
184 (unsigned long *)twobyte_is_boostable);
187 switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 case 0x40:
190 goto retry; /* REX prefix is boostable */
191 #endif
192 case 0x60:
193 if (0x63 < opcode && opcode < 0x67)
194 goto retry; /* prefixes */
195 /* can't boost Address-size override and bound */
196 return (opcode != 0x62 && opcode != 0x67);
197 case 0x70:
198 return 0; /* can't boost conditional jump */
199 case 0xc0:
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 case 0xd0:
203 /* can boost AA* and XLAT */
204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 case 0xe0:
206 /* can boost in/out and absolute jmps */
207 return ((opcode & 0x04) || opcode == 0xea);
208 case 0xf0:
209 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 goto retry; /* lock/rep(ne) prefix */
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
214 /* segment override prefixes are boostable */
215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 goto retry; /* prefixes */
217 /* CS override prefix and call are not boostable */
218 return (opcode != 0x2e && opcode != 0x9a);
222 static unsigned long
223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
225 struct kprobe *kp;
226 unsigned long faddr;
228 kp = get_kprobe((void *)addr);
229 faddr = ftrace_location(addr);
231 * Addresses inside the ftrace location are refused by
232 * arch_check_ftrace_location(). Something went terribly wrong
233 * if such an address is checked here.
235 if (WARN_ON(faddr && faddr != addr))
236 return 0UL;
238 * Use the current code if it is not modified by Kprobe
239 * and it cannot be modified by ftrace.
241 if (!kp && !faddr)
242 return addr;
245 * Basically, kp->ainsn.insn has an original instruction.
246 * However, RIP-relative instruction can not do single-stepping
247 * at different place, __copy_instruction() tweaks the displacement of
248 * that instruction. In that case, we can't recover the instruction
249 * from the kp->ainsn.insn.
251 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
252 * of the first byte of the probed instruction, which is overwritten
253 * by int3. And the instruction at kp->addr is not modified by kprobes
254 * except for the first byte, we can recover the original instruction
255 * from it and kp->opcode.
257 * In case of Kprobes using ftrace, we do not have a copy of
258 * the original instruction. In fact, the ftrace location might
259 * be modified at anytime and even could be in an inconsistent state.
260 * Fortunately, we know that the original code is the ideal 5-byte
261 * long NOP.
263 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
264 if (faddr)
265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 else
267 buf[0] = kp->opcode;
268 return (unsigned long)buf;
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
275 * Returns zero if the instruction can not get recovered.
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
279 unsigned long __addr;
281 __addr = __recover_optprobed_insn(buf, addr);
282 if (__addr != addr)
283 return __addr;
285 return __recover_probed_insn(buf, addr);
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
291 unsigned long addr, __addr, offset = 0;
292 struct insn insn;
293 kprobe_opcode_t buf[MAX_INSN_SIZE];
295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 return 0;
298 /* Decode instructions */
299 addr = paddr - offset;
300 while (addr < paddr) {
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
309 __addr = recover_probed_instruction(buf, addr);
310 if (!__addr)
311 return 0;
312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 insn_get_length(&insn);
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 return 0;
321 addr += insn.length;
324 return (addr == paddr);
328 * Returns non-zero if opcode modifies the interrupt flag.
330 static int is_IF_modifier(kprobe_opcode_t *insn)
332 /* Skip prefixes */
333 insn = skip_prefixes(insn);
335 switch (*insn) {
336 case 0xfa: /* cli */
337 case 0xfb: /* sti */
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
340 return 1;
343 return 0;
347 * Copy an instruction and adjust the displacement if the instruction
348 * uses the %rip-relative addressing mode.
349 * If it does, Return the address of the 32-bit displacement word.
350 * If not, return null.
351 * Only applicable to 64-bit x86.
353 int __copy_instruction(u8 *dest, u8 *src)
355 struct insn insn;
356 kprobe_opcode_t buf[MAX_INSN_SIZE];
357 int length;
358 unsigned long recovered_insn =
359 recover_probed_instruction(buf, (unsigned long)src);
361 if (!recovered_insn)
362 return 0;
363 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
364 insn_get_length(&insn);
365 length = insn.length;
367 /* Another subsystem puts a breakpoint, failed to recover */
368 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
369 return 0;
370 memcpy(dest, insn.kaddr, length);
372 #ifdef CONFIG_X86_64
373 if (insn_rip_relative(&insn)) {
374 s64 newdisp;
375 u8 *disp;
376 kernel_insn_init(&insn, dest, length);
377 insn_get_displacement(&insn);
379 * The copied instruction uses the %rip-relative addressing
380 * mode. Adjust the displacement for the difference between
381 * the original location of this instruction and the location
382 * of the copy that will actually be run. The tricky bit here
383 * is making sure that the sign extension happens correctly in
384 * this calculation, since we need a signed 32-bit result to
385 * be sign-extended to 64 bits when it's added to the %rip
386 * value and yield the same 64-bit result that the sign-
387 * extension of the original signed 32-bit displacement would
388 * have given.
390 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
391 if ((s64) (s32) newdisp != newdisp) {
392 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
393 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
394 return 0;
396 disp = (u8 *) dest + insn_offset_displacement(&insn);
397 *(s32 *) disp = (s32) newdisp;
399 #endif
400 return length;
403 static int arch_copy_kprobe(struct kprobe *p)
405 int ret;
407 /* Copy an instruction with recovering if other optprobe modifies it.*/
408 ret = __copy_instruction(p->ainsn.insn, p->addr);
409 if (!ret)
410 return -EINVAL;
413 * __copy_instruction can modify the displacement of the instruction,
414 * but it doesn't affect boostable check.
416 if (can_boost(p->ainsn.insn))
417 p->ainsn.boostable = 0;
418 else
419 p->ainsn.boostable = -1;
421 /* Check whether the instruction modifies Interrupt Flag or not */
422 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
424 /* Also, displacement change doesn't affect the first byte */
425 p->opcode = p->ainsn.insn[0];
427 return 0;
430 int arch_prepare_kprobe(struct kprobe *p)
432 if (alternatives_text_reserved(p->addr, p->addr))
433 return -EINVAL;
435 if (!can_probe((unsigned long)p->addr))
436 return -EILSEQ;
437 /* insn: must be on special executable page on x86. */
438 p->ainsn.insn = get_insn_slot();
439 if (!p->ainsn.insn)
440 return -ENOMEM;
442 return arch_copy_kprobe(p);
445 void arch_arm_kprobe(struct kprobe *p)
447 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
450 void arch_disarm_kprobe(struct kprobe *p)
452 text_poke(p->addr, &p->opcode, 1);
455 void arch_remove_kprobe(struct kprobe *p)
457 if (p->ainsn.insn) {
458 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
459 p->ainsn.insn = NULL;
463 static nokprobe_inline void
464 save_previous_kprobe(struct kprobe_ctlblk *kcb)
466 kcb->prev_kprobe.kp = kprobe_running();
467 kcb->prev_kprobe.status = kcb->kprobe_status;
468 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
469 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
472 static nokprobe_inline void
473 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
475 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
476 kcb->kprobe_status = kcb->prev_kprobe.status;
477 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
478 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
481 static nokprobe_inline void
482 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
483 struct kprobe_ctlblk *kcb)
485 __this_cpu_write(current_kprobe, p);
486 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
487 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
488 if (p->ainsn.if_modifier)
489 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
492 static nokprobe_inline void clear_btf(void)
494 if (test_thread_flag(TIF_BLOCKSTEP)) {
495 unsigned long debugctl = get_debugctlmsr();
497 debugctl &= ~DEBUGCTLMSR_BTF;
498 update_debugctlmsr(debugctl);
502 static nokprobe_inline void restore_btf(void)
504 if (test_thread_flag(TIF_BLOCKSTEP)) {
505 unsigned long debugctl = get_debugctlmsr();
507 debugctl |= DEBUGCTLMSR_BTF;
508 update_debugctlmsr(debugctl);
512 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
514 unsigned long *sara = stack_addr(regs);
516 ri->ret_addr = (kprobe_opcode_t *) *sara;
518 /* Replace the return addr with trampoline addr */
519 *sara = (unsigned long) &kretprobe_trampoline;
521 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
523 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
524 struct kprobe_ctlblk *kcb, int reenter)
526 if (setup_detour_execution(p, regs, reenter))
527 return;
529 #if !defined(CONFIG_PREEMPT)
530 if (p->ainsn.boostable == 1 && !p->post_handler) {
531 /* Boost up -- we can execute copied instructions directly */
532 if (!reenter)
533 reset_current_kprobe();
535 * Reentering boosted probe doesn't reset current_kprobe,
536 * nor set current_kprobe, because it doesn't use single
537 * stepping.
539 regs->ip = (unsigned long)p->ainsn.insn;
540 preempt_enable_no_resched();
541 return;
543 #endif
544 if (reenter) {
545 save_previous_kprobe(kcb);
546 set_current_kprobe(p, regs, kcb);
547 kcb->kprobe_status = KPROBE_REENTER;
548 } else
549 kcb->kprobe_status = KPROBE_HIT_SS;
550 /* Prepare real single stepping */
551 clear_btf();
552 regs->flags |= X86_EFLAGS_TF;
553 regs->flags &= ~X86_EFLAGS_IF;
554 /* single step inline if the instruction is an int3 */
555 if (p->opcode == BREAKPOINT_INSTRUCTION)
556 regs->ip = (unsigned long)p->addr;
557 else
558 regs->ip = (unsigned long)p->ainsn.insn;
560 NOKPROBE_SYMBOL(setup_singlestep);
563 * We have reentered the kprobe_handler(), since another probe was hit while
564 * within the handler. We save the original kprobes variables and just single
565 * step on the instruction of the new probe without calling any user handlers.
567 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
568 struct kprobe_ctlblk *kcb)
570 switch (kcb->kprobe_status) {
571 case KPROBE_HIT_SSDONE:
572 case KPROBE_HIT_ACTIVE:
573 case KPROBE_HIT_SS:
574 kprobes_inc_nmissed_count(p);
575 setup_singlestep(p, regs, kcb, 1);
576 break;
577 case KPROBE_REENTER:
578 /* A probe has been hit in the codepath leading up to, or just
579 * after, single-stepping of a probed instruction. This entire
580 * codepath should strictly reside in .kprobes.text section.
581 * Raise a BUG or we'll continue in an endless reentering loop
582 * and eventually a stack overflow.
584 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
585 p->addr);
586 dump_kprobe(p);
587 BUG();
588 default:
589 /* impossible cases */
590 WARN_ON(1);
591 return 0;
594 return 1;
596 NOKPROBE_SYMBOL(reenter_kprobe);
599 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
600 * remain disabled throughout this function.
602 int kprobe_int3_handler(struct pt_regs *regs)
604 kprobe_opcode_t *addr;
605 struct kprobe *p;
606 struct kprobe_ctlblk *kcb;
608 if (user_mode(regs))
609 return 0;
611 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
613 * We don't want to be preempted for the entire
614 * duration of kprobe processing. We conditionally
615 * re-enable preemption at the end of this function,
616 * and also in reenter_kprobe() and setup_singlestep().
618 preempt_disable();
620 kcb = get_kprobe_ctlblk();
621 p = get_kprobe(addr);
623 if (p) {
624 if (kprobe_running()) {
625 if (reenter_kprobe(p, regs, kcb))
626 return 1;
627 } else {
628 set_current_kprobe(p, regs, kcb);
629 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
632 * If we have no pre-handler or it returned 0, we
633 * continue with normal processing. If we have a
634 * pre-handler and it returned non-zero, it prepped
635 * for calling the break_handler below on re-entry
636 * for jprobe processing, so get out doing nothing
637 * more here.
639 if (!p->pre_handler || !p->pre_handler(p, regs))
640 setup_singlestep(p, regs, kcb, 0);
641 return 1;
643 } else if (*addr != BREAKPOINT_INSTRUCTION) {
645 * The breakpoint instruction was removed right
646 * after we hit it. Another cpu has removed
647 * either a probepoint or a debugger breakpoint
648 * at this address. In either case, no further
649 * handling of this interrupt is appropriate.
650 * Back up over the (now missing) int3 and run
651 * the original instruction.
653 regs->ip = (unsigned long)addr;
654 preempt_enable_no_resched();
655 return 1;
656 } else if (kprobe_running()) {
657 p = __this_cpu_read(current_kprobe);
658 if (p->break_handler && p->break_handler(p, regs)) {
659 if (!skip_singlestep(p, regs, kcb))
660 setup_singlestep(p, regs, kcb, 0);
661 return 1;
663 } /* else: not a kprobe fault; let the kernel handle it */
665 preempt_enable_no_resched();
666 return 0;
668 NOKPROBE_SYMBOL(kprobe_int3_handler);
671 * When a retprobed function returns, this code saves registers and
672 * calls trampoline_handler() runs, which calls the kretprobe's handler.
674 static void __used kretprobe_trampoline_holder(void)
676 asm volatile (
677 ".global kretprobe_trampoline\n"
678 "kretprobe_trampoline: \n"
679 #ifdef CONFIG_X86_64
680 /* We don't bother saving the ss register */
681 " pushq %rsp\n"
682 " pushfq\n"
683 SAVE_REGS_STRING
684 " movq %rsp, %rdi\n"
685 " call trampoline_handler\n"
686 /* Replace saved sp with true return address. */
687 " movq %rax, 152(%rsp)\n"
688 RESTORE_REGS_STRING
689 " popfq\n"
690 #else
691 " pushf\n"
692 SAVE_REGS_STRING
693 " movl %esp, %eax\n"
694 " call trampoline_handler\n"
695 /* Move flags to cs */
696 " movl 56(%esp), %edx\n"
697 " movl %edx, 52(%esp)\n"
698 /* Replace saved flags with true return address. */
699 " movl %eax, 56(%esp)\n"
700 RESTORE_REGS_STRING
701 " popf\n"
702 #endif
703 " ret\n");
705 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
706 NOKPROBE_SYMBOL(kretprobe_trampoline);
709 * Called from kretprobe_trampoline
711 __visible __used void *trampoline_handler(struct pt_regs *regs)
713 struct kretprobe_instance *ri = NULL;
714 struct hlist_head *head, empty_rp;
715 struct hlist_node *tmp;
716 unsigned long flags, orig_ret_address = 0;
717 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
718 kprobe_opcode_t *correct_ret_addr = NULL;
720 INIT_HLIST_HEAD(&empty_rp);
721 kretprobe_hash_lock(current, &head, &flags);
722 /* fixup registers */
723 #ifdef CONFIG_X86_64
724 regs->cs = __KERNEL_CS;
725 #else
726 regs->cs = __KERNEL_CS | get_kernel_rpl();
727 regs->gs = 0;
728 #endif
729 regs->ip = trampoline_address;
730 regs->orig_ax = ~0UL;
733 * It is possible to have multiple instances associated with a given
734 * task either because multiple functions in the call path have
735 * return probes installed on them, and/or more than one
736 * return probe was registered for a target function.
738 * We can handle this because:
739 * - instances are always pushed into the head of the list
740 * - when multiple return probes are registered for the same
741 * function, the (chronologically) first instance's ret_addr
742 * will be the real return address, and all the rest will
743 * point to kretprobe_trampoline.
745 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
746 if (ri->task != current)
747 /* another task is sharing our hash bucket */
748 continue;
750 orig_ret_address = (unsigned long)ri->ret_addr;
752 if (orig_ret_address != trampoline_address)
754 * This is the real return address. Any other
755 * instances associated with this task are for
756 * other calls deeper on the call stack
758 break;
761 kretprobe_assert(ri, orig_ret_address, trampoline_address);
763 correct_ret_addr = ri->ret_addr;
764 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
765 if (ri->task != current)
766 /* another task is sharing our hash bucket */
767 continue;
769 orig_ret_address = (unsigned long)ri->ret_addr;
770 if (ri->rp && ri->rp->handler) {
771 __this_cpu_write(current_kprobe, &ri->rp->kp);
772 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
773 ri->ret_addr = correct_ret_addr;
774 ri->rp->handler(ri, regs);
775 __this_cpu_write(current_kprobe, NULL);
778 recycle_rp_inst(ri, &empty_rp);
780 if (orig_ret_address != trampoline_address)
782 * This is the real return address. Any other
783 * instances associated with this task are for
784 * other calls deeper on the call stack
786 break;
789 kretprobe_hash_unlock(current, &flags);
791 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
792 hlist_del(&ri->hlist);
793 kfree(ri);
795 return (void *)orig_ret_address;
797 NOKPROBE_SYMBOL(trampoline_handler);
800 * Called after single-stepping. p->addr is the address of the
801 * instruction whose first byte has been replaced by the "int 3"
802 * instruction. To avoid the SMP problems that can occur when we
803 * temporarily put back the original opcode to single-step, we
804 * single-stepped a copy of the instruction. The address of this
805 * copy is p->ainsn.insn.
807 * This function prepares to return from the post-single-step
808 * interrupt. We have to fix up the stack as follows:
810 * 0) Except in the case of absolute or indirect jump or call instructions,
811 * the new ip is relative to the copied instruction. We need to make
812 * it relative to the original instruction.
814 * 1) If the single-stepped instruction was pushfl, then the TF and IF
815 * flags are set in the just-pushed flags, and may need to be cleared.
817 * 2) If the single-stepped instruction was a call, the return address
818 * that is atop the stack is the address following the copied instruction.
819 * We need to make it the address following the original instruction.
821 * If this is the first time we've single-stepped the instruction at
822 * this probepoint, and the instruction is boostable, boost it: add a
823 * jump instruction after the copied instruction, that jumps to the next
824 * instruction after the probepoint.
826 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
827 struct kprobe_ctlblk *kcb)
829 unsigned long *tos = stack_addr(regs);
830 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
831 unsigned long orig_ip = (unsigned long)p->addr;
832 kprobe_opcode_t *insn = p->ainsn.insn;
834 /* Skip prefixes */
835 insn = skip_prefixes(insn);
837 regs->flags &= ~X86_EFLAGS_TF;
838 switch (*insn) {
839 case 0x9c: /* pushfl */
840 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
841 *tos |= kcb->kprobe_old_flags;
842 break;
843 case 0xc2: /* iret/ret/lret */
844 case 0xc3:
845 case 0xca:
846 case 0xcb:
847 case 0xcf:
848 case 0xea: /* jmp absolute -- ip is correct */
849 /* ip is already adjusted, no more changes required */
850 p->ainsn.boostable = 1;
851 goto no_change;
852 case 0xe8: /* call relative - Fix return addr */
853 *tos = orig_ip + (*tos - copy_ip);
854 break;
855 #ifdef CONFIG_X86_32
856 case 0x9a: /* call absolute -- same as call absolute, indirect */
857 *tos = orig_ip + (*tos - copy_ip);
858 goto no_change;
859 #endif
860 case 0xff:
861 if ((insn[1] & 0x30) == 0x10) {
863 * call absolute, indirect
864 * Fix return addr; ip is correct.
865 * But this is not boostable
867 *tos = orig_ip + (*tos - copy_ip);
868 goto no_change;
869 } else if (((insn[1] & 0x31) == 0x20) ||
870 ((insn[1] & 0x31) == 0x21)) {
872 * jmp near and far, absolute indirect
873 * ip is correct. And this is boostable
875 p->ainsn.boostable = 1;
876 goto no_change;
878 default:
879 break;
882 if (p->ainsn.boostable == 0) {
883 if ((regs->ip > copy_ip) &&
884 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
886 * These instructions can be executed directly if it
887 * jumps back to correct address.
889 synthesize_reljump((void *)regs->ip,
890 (void *)orig_ip + (regs->ip - copy_ip));
891 p->ainsn.boostable = 1;
892 } else {
893 p->ainsn.boostable = -1;
897 regs->ip += orig_ip - copy_ip;
899 no_change:
900 restore_btf();
902 NOKPROBE_SYMBOL(resume_execution);
905 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
906 * remain disabled throughout this function.
908 int kprobe_debug_handler(struct pt_regs *regs)
910 struct kprobe *cur = kprobe_running();
911 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
913 if (!cur)
914 return 0;
916 resume_execution(cur, regs, kcb);
917 regs->flags |= kcb->kprobe_saved_flags;
919 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
920 kcb->kprobe_status = KPROBE_HIT_SSDONE;
921 cur->post_handler(cur, regs, 0);
924 /* Restore back the original saved kprobes variables and continue. */
925 if (kcb->kprobe_status == KPROBE_REENTER) {
926 restore_previous_kprobe(kcb);
927 goto out;
929 reset_current_kprobe();
930 out:
931 preempt_enable_no_resched();
934 * if somebody else is singlestepping across a probe point, flags
935 * will have TF set, in which case, continue the remaining processing
936 * of do_debug, as if this is not a probe hit.
938 if (regs->flags & X86_EFLAGS_TF)
939 return 0;
941 return 1;
943 NOKPROBE_SYMBOL(kprobe_debug_handler);
945 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
947 struct kprobe *cur = kprobe_running();
948 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
950 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
951 /* This must happen on single-stepping */
952 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
953 kcb->kprobe_status != KPROBE_REENTER);
955 * We are here because the instruction being single
956 * stepped caused a page fault. We reset the current
957 * kprobe and the ip points back to the probe address
958 * and allow the page fault handler to continue as a
959 * normal page fault.
961 regs->ip = (unsigned long)cur->addr;
962 regs->flags |= kcb->kprobe_old_flags;
963 if (kcb->kprobe_status == KPROBE_REENTER)
964 restore_previous_kprobe(kcb);
965 else
966 reset_current_kprobe();
967 preempt_enable_no_resched();
968 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
969 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
971 * We increment the nmissed count for accounting,
972 * we can also use npre/npostfault count for accounting
973 * these specific fault cases.
975 kprobes_inc_nmissed_count(cur);
978 * We come here because instructions in the pre/post
979 * handler caused the page_fault, this could happen
980 * if handler tries to access user space by
981 * copy_from_user(), get_user() etc. Let the
982 * user-specified handler try to fix it first.
984 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
985 return 1;
988 * In case the user-specified fault handler returned
989 * zero, try to fix up.
991 if (fixup_exception(regs))
992 return 1;
995 * fixup routine could not handle it,
996 * Let do_page_fault() fix it.
1000 return 0;
1002 NOKPROBE_SYMBOL(kprobe_fault_handler);
1005 * Wrapper routine for handling exceptions.
1007 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1008 void *data)
1010 struct die_args *args = data;
1011 int ret = NOTIFY_DONE;
1013 if (args->regs && user_mode(args->regs))
1014 return ret;
1016 if (val == DIE_GPF) {
1018 * To be potentially processing a kprobe fault and to
1019 * trust the result from kprobe_running(), we have
1020 * be non-preemptible.
1022 if (!preemptible() && kprobe_running() &&
1023 kprobe_fault_handler(args->regs, args->trapnr))
1024 ret = NOTIFY_STOP;
1026 return ret;
1028 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1030 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1032 struct jprobe *jp = container_of(p, struct jprobe, kp);
1033 unsigned long addr;
1034 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1036 kcb->jprobe_saved_regs = *regs;
1037 kcb->jprobe_saved_sp = stack_addr(regs);
1038 addr = (unsigned long)(kcb->jprobe_saved_sp);
1041 * As Linus pointed out, gcc assumes that the callee
1042 * owns the argument space and could overwrite it, e.g.
1043 * tailcall optimization. So, to be absolutely safe
1044 * we also save and restore enough stack bytes to cover
1045 * the argument area.
1047 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1048 MIN_STACK_SIZE(addr));
1049 regs->flags &= ~X86_EFLAGS_IF;
1050 trace_hardirqs_off();
1051 regs->ip = (unsigned long)(jp->entry);
1054 * jprobes use jprobe_return() which skips the normal return
1055 * path of the function, and this messes up the accounting of the
1056 * function graph tracer to get messed up.
1058 * Pause function graph tracing while performing the jprobe function.
1060 pause_graph_tracing();
1061 return 1;
1063 NOKPROBE_SYMBOL(setjmp_pre_handler);
1065 void jprobe_return(void)
1067 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1069 asm volatile (
1070 #ifdef CONFIG_X86_64
1071 " xchg %%rbx,%%rsp \n"
1072 #else
1073 " xchgl %%ebx,%%esp \n"
1074 #endif
1075 " int3 \n"
1076 " .globl jprobe_return_end\n"
1077 " jprobe_return_end: \n"
1078 " nop \n"::"b"
1079 (kcb->jprobe_saved_sp):"memory");
1081 NOKPROBE_SYMBOL(jprobe_return);
1082 NOKPROBE_SYMBOL(jprobe_return_end);
1084 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1086 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1087 u8 *addr = (u8 *) (regs->ip - 1);
1088 struct jprobe *jp = container_of(p, struct jprobe, kp);
1089 void *saved_sp = kcb->jprobe_saved_sp;
1091 if ((addr > (u8 *) jprobe_return) &&
1092 (addr < (u8 *) jprobe_return_end)) {
1093 if (stack_addr(regs) != saved_sp) {
1094 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1095 printk(KERN_ERR
1096 "current sp %p does not match saved sp %p\n",
1097 stack_addr(regs), saved_sp);
1098 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1099 show_regs(saved_regs);
1100 printk(KERN_ERR "Current registers\n");
1101 show_regs(regs);
1102 BUG();
1104 /* It's OK to start function graph tracing again */
1105 unpause_graph_tracing();
1106 *regs = kcb->jprobe_saved_regs;
1107 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1108 preempt_enable_no_resched();
1109 return 1;
1111 return 0;
1113 NOKPROBE_SYMBOL(longjmp_break_handler);
1115 bool arch_within_kprobe_blacklist(unsigned long addr)
1117 return (addr >= (unsigned long)__kprobes_text_start &&
1118 addr < (unsigned long)__kprobes_text_end) ||
1119 (addr >= (unsigned long)__entry_text_start &&
1120 addr < (unsigned long)__entry_text_end);
1123 int __init arch_init_kprobes(void)
1125 return 0;
1128 int arch_trampoline_kprobe(struct kprobe *p)
1130 return 0;