1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
26 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz
);
29 unsigned int __read_mostly tsc_khz
;
30 EXPORT_SYMBOL(tsc_khz
);
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
35 static int __read_mostly tsc_unstable
;
37 /* native_sched_clock() is called before tsc_init(), so
38 we must start with the TSC soft disabled to prevent
39 erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled
= -1;
42 static struct static_key __use_tsc
= STATIC_KEY_INIT
;
44 int tsc_clocksource_reliable
;
47 * Use a ring-buffer like data structure, where a writer advances the head by
48 * writing a new data entry and a reader advances the tail when it observes a
51 * Writers are made to wait on readers until there's space to write a new
54 * This means that we can always use an {offset, mul} pair to compute a ns
55 * value that is 'roughly' in the right direction, even if we're writing a new
56 * {offset, mul} pair during the clock read.
58 * The down-side is that we can no longer guarantee strict monotonicity anymore
59 * (assuming the TSC was that to begin with), because while we compute the
60 * intersection point of the two clock slopes and make sure the time is
61 * continuous at the point of switching; we can no longer guarantee a reader is
62 * strictly before or after the switch point.
64 * It does mean a reader no longer needs to disable IRQs in order to avoid
65 * CPU-Freq updates messing with his times, and similarly an NMI reader will
66 * no longer run the risk of hitting half-written state.
70 struct cyc2ns_data data
[2]; /* 0 + 2*24 = 48 */
71 struct cyc2ns_data
*head
; /* 48 + 8 = 56 */
72 struct cyc2ns_data
*tail
; /* 56 + 8 = 64 */
73 }; /* exactly fits one cacheline */
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns
, cyc2ns
);
77 struct cyc2ns_data
*cyc2ns_read_begin(void)
79 struct cyc2ns_data
*head
;
83 head
= this_cpu_read(cyc2ns
.head
);
85 * Ensure we observe the entry when we observe the pointer to it.
86 * matches the wmb from cyc2ns_write_end().
88 smp_read_barrier_depends();
95 void cyc2ns_read_end(struct cyc2ns_data
*head
)
99 * If we're the outer most nested read; update the tail pointer
100 * when we're done. This notifies possible pending writers
101 * that we've observed the head pointer and that the other
104 if (!--head
->__count
) {
106 * x86-TSO does not reorder writes with older reads;
107 * therefore once this write becomes visible to another
108 * cpu, we must be finished reading the cyc2ns_data.
110 * matches with cyc2ns_write_begin().
112 this_cpu_write(cyc2ns
.tail
, head
);
118 * Begin writing a new @data entry for @cpu.
120 * Assumes some sort of write side lock; currently 'provided' by the assumption
121 * that cpufreq will call its notifiers sequentially.
123 static struct cyc2ns_data
*cyc2ns_write_begin(int cpu
)
125 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
126 struct cyc2ns_data
*data
= c2n
->data
;
128 if (data
== c2n
->head
)
131 /* XXX send an IPI to @cpu in order to guarantee a read? */
134 * When we observe the tail write from cyc2ns_read_end(),
135 * the cpu must be done with that entry and its safe
136 * to start writing to it.
138 while (c2n
->tail
== data
)
144 static void cyc2ns_write_end(int cpu
, struct cyc2ns_data
*data
)
146 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
149 * Ensure the @data writes are visible before we publish the
150 * entry. Matches the data-depencency in cyc2ns_read_begin().
154 ACCESS_ONCE(c2n
->head
) = data
;
158 * Accelerators for sched_clock()
159 * convert from cycles(64bits) => nanoseconds (64bits)
161 * ns = cycles / (freq / ns_per_sec)
162 * ns = cycles * (ns_per_sec / freq)
163 * ns = cycles * (10^9 / (cpu_khz * 10^3))
164 * ns = cycles * (10^6 / cpu_khz)
166 * Then we use scaling math (suggested by george@mvista.com) to get:
167 * ns = cycles * (10^6 * SC / cpu_khz) / SC
168 * ns = cycles * cyc2ns_scale / SC
170 * And since SC is a constant power of two, we can convert the div
173 * We can use khz divisor instead of mhz to keep a better precision, since
174 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
175 * (mathieu.desnoyers@polymtl.ca)
177 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
180 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
182 static void cyc2ns_data_init(struct cyc2ns_data
*data
)
184 data
->cyc2ns_mul
= 0;
185 data
->cyc2ns_shift
= CYC2NS_SCALE_FACTOR
;
186 data
->cyc2ns_offset
= 0;
190 static void cyc2ns_init(int cpu
)
192 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
194 cyc2ns_data_init(&c2n
->data
[0]);
195 cyc2ns_data_init(&c2n
->data
[1]);
197 c2n
->head
= c2n
->data
;
198 c2n
->tail
= c2n
->data
;
201 static inline unsigned long long cycles_2_ns(unsigned long long cyc
)
203 struct cyc2ns_data
*data
, *tail
;
204 unsigned long long ns
;
207 * See cyc2ns_read_*() for details; replicated in order to avoid
208 * an extra few instructions that came with the abstraction.
209 * Notable, it allows us to only do the __count and tail update
210 * dance when its actually needed.
213 preempt_disable_notrace();
214 data
= this_cpu_read(cyc2ns
.head
);
215 tail
= this_cpu_read(cyc2ns
.tail
);
217 if (likely(data
== tail
)) {
218 ns
= data
->cyc2ns_offset
;
219 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
225 ns
= data
->cyc2ns_offset
;
226 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
230 if (!--data
->__count
)
231 this_cpu_write(cyc2ns
.tail
, data
);
233 preempt_enable_notrace();
238 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
240 unsigned long long tsc_now
, ns_now
;
241 struct cyc2ns_data
*data
;
244 local_irq_save(flags
);
245 sched_clock_idle_sleep_event();
250 data
= cyc2ns_write_begin(cpu
);
253 ns_now
= cycles_2_ns(tsc_now
);
256 * Compute a new multiplier as per the above comment and ensure our
257 * time function is continuous; see the comment near struct
261 DIV_ROUND_CLOSEST(NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
,
263 data
->cyc2ns_shift
= CYC2NS_SCALE_FACTOR
;
264 data
->cyc2ns_offset
= ns_now
-
265 mul_u64_u32_shr(tsc_now
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
267 cyc2ns_write_end(cpu
, data
);
270 sched_clock_idle_wakeup_event(0);
271 local_irq_restore(flags
);
274 * Scheduler clock - returns current time in nanosec units.
276 u64
native_sched_clock(void)
281 * Fall back to jiffies if there's no TSC available:
282 * ( But note that we still use it if the TSC is marked
283 * unstable. We do this because unlike Time Of Day,
284 * the scheduler clock tolerates small errors and it's
285 * very important for it to be as fast as the platform
288 if (!static_key_false(&__use_tsc
)) {
289 /* No locking but a rare wrong value is not a big deal: */
290 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
293 /* read the Time Stamp Counter: */
296 /* return the value in ns */
297 return cycles_2_ns(tsc_now
);
300 /* We need to define a real function for sched_clock, to override the
301 weak default version */
302 #ifdef CONFIG_PARAVIRT
303 unsigned long long sched_clock(void)
305 return paravirt_sched_clock();
309 sched_clock(void) __attribute__((alias("native_sched_clock")));
312 unsigned long long native_read_tsc(void)
314 return __native_read_tsc();
316 EXPORT_SYMBOL(native_read_tsc
);
318 int check_tsc_unstable(void)
322 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
324 int check_tsc_disabled(void)
328 EXPORT_SYMBOL_GPL(check_tsc_disabled
);
330 #ifdef CONFIG_X86_TSC
331 int __init
notsc_setup(char *str
)
333 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
342 int __init
notsc_setup(char *str
)
344 setup_clear_cpu_cap(X86_FEATURE_TSC
);
349 __setup("notsc", notsc_setup
);
351 static int no_sched_irq_time
;
353 static int __init
tsc_setup(char *str
)
355 if (!strcmp(str
, "reliable"))
356 tsc_clocksource_reliable
= 1;
357 if (!strncmp(str
, "noirqtime", 9))
358 no_sched_irq_time
= 1;
362 __setup("tsc=", tsc_setup
);
364 #define MAX_RETRIES 5
365 #define SMI_TRESHOLD 50000
368 * Read TSC and the reference counters. Take care of SMI disturbance
370 static u64
tsc_read_refs(u64
*p
, int hpet
)
375 for (i
= 0; i
< MAX_RETRIES
; i
++) {
378 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
380 *p
= acpi_pm_read_early();
382 if ((t2
- t1
) < SMI_TRESHOLD
)
389 * Calculate the TSC frequency from HPET reference
391 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
396 hpet2
+= 0x100000000ULL
;
398 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
399 do_div(tmp
, 1000000);
400 do_div(deltatsc
, tmp
);
402 return (unsigned long) deltatsc
;
406 * Calculate the TSC frequency from PMTimer reference
408 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
416 pm2
+= (u64
)ACPI_PM_OVRRUN
;
418 tmp
= pm2
* 1000000000LL;
419 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
420 do_div(deltatsc
, tmp
);
422 return (unsigned long) deltatsc
;
426 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
427 #define CAL_PIT_LOOPS 1000
430 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
431 #define CAL2_PIT_LOOPS 5000
435 * Try to calibrate the TSC against the Programmable
436 * Interrupt Timer and return the frequency of the TSC
439 * Return ULONG_MAX on failure to calibrate.
441 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
443 u64 tsc
, t1
, t2
, delta
;
444 unsigned long tscmin
, tscmax
;
447 /* Set the Gate high, disable speaker */
448 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
451 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452 * count mode), binary count. Set the latch register to 50ms
453 * (LSB then MSB) to begin countdown.
456 outb(latch
& 0xff, 0x42);
457 outb(latch
>> 8, 0x42);
459 tsc
= t1
= t2
= get_cycles();
464 while ((inb(0x61) & 0x20) == 0) {
468 if ((unsigned long) delta
< tscmin
)
469 tscmin
= (unsigned int) delta
;
470 if ((unsigned long) delta
> tscmax
)
471 tscmax
= (unsigned int) delta
;
478 * If we were not able to read the PIT more than loopmin
479 * times, then we have been hit by a massive SMI
481 * If the maximum is 10 times larger than the minimum,
482 * then we got hit by an SMI as well.
484 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
487 /* Calculate the PIT value */
494 * This reads the current MSB of the PIT counter, and
495 * checks if we are running on sufficiently fast and
496 * non-virtualized hardware.
498 * Our expectations are:
500 * - the PIT is running at roughly 1.19MHz
502 * - each IO is going to take about 1us on real hardware,
503 * but we allow it to be much faster (by a factor of 10) or
504 * _slightly_ slower (ie we allow up to a 2us read+counter
505 * update - anything else implies a unacceptably slow CPU
506 * or PIT for the fast calibration to work.
508 * - with 256 PIT ticks to read the value, we have 214us to
509 * see the same MSB (and overhead like doing a single TSC
510 * read per MSB value etc).
512 * - We're doing 2 reads per loop (LSB, MSB), and we expect
513 * them each to take about a microsecond on real hardware.
514 * So we expect a count value of around 100. But we'll be
515 * generous, and accept anything over 50.
517 * - if the PIT is stuck, and we see *many* more reads, we
518 * return early (and the next caller of pit_expect_msb()
519 * then consider it a failure when they don't see the
520 * next expected value).
522 * These expectations mean that we know that we have seen the
523 * transition from one expected value to another with a fairly
524 * high accuracy, and we didn't miss any events. We can thus
525 * use the TSC value at the transitions to calculate a pretty
526 * good value for the TSC frequencty.
528 static inline int pit_verify_msb(unsigned char val
)
532 return inb(0x42) == val
;
535 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
538 u64 tsc
= 0, prev_tsc
= 0;
540 for (count
= 0; count
< 50000; count
++) {
541 if (!pit_verify_msb(val
))
546 *deltap
= get_cycles() - prev_tsc
;
550 * We require _some_ success, but the quality control
551 * will be based on the error terms on the TSC values.
557 * How many MSB values do we want to see? We aim for
558 * a maximum error rate of 500ppm (in practice the
559 * real error is much smaller), but refuse to spend
560 * more than 50ms on it.
562 #define MAX_QUICK_PIT_MS 50
563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
565 static unsigned long quick_pit_calibrate(void)
569 unsigned long d1
, d2
;
571 /* Set the Gate high, disable speaker */
572 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
575 * Counter 2, mode 0 (one-shot), binary count
577 * NOTE! Mode 2 decrements by two (and then the
578 * output is flipped each time, giving the same
579 * final output frequency as a decrement-by-one),
580 * so mode 0 is much better when looking at the
585 /* Start at 0xffff */
590 * The PIT starts counting at the next edge, so we
591 * need to delay for a microsecond. The easiest way
592 * to do that is to just read back the 16-bit counter
597 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
598 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
599 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
603 * Iterate until the error is less than 500 ppm
606 if (d1
+d2
>= delta
>> 11)
610 * Check the PIT one more time to verify that
611 * all TSC reads were stable wrt the PIT.
613 * This also guarantees serialization of the
614 * last cycle read ('d2') in pit_expect_msb.
616 if (!pit_verify_msb(0xfe - i
))
621 pr_info("Fast TSC calibration failed\n");
626 * Ok, if we get here, then we've seen the
627 * MSB of the PIT decrement 'i' times, and the
628 * error has shrunk to less than 500 ppm.
630 * As a result, we can depend on there not being
631 * any odd delays anywhere, and the TSC reads are
632 * reliable (within the error).
634 * kHz = ticks / time-in-seconds / 1000;
635 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
636 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
638 delta
*= PIT_TICK_RATE
;
639 do_div(delta
, i
*256*1000);
640 pr_info("Fast TSC calibration using PIT\n");
645 * native_calibrate_tsc - calibrate the tsc on boot
647 unsigned long native_calibrate_tsc(void)
649 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
650 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
651 unsigned long flags
, latch
, ms
, fast_calibrate
;
652 int hpet
= is_hpet_enabled(), i
, loopmin
;
654 /* Calibrate TSC using MSR for Intel Atom SoCs */
655 local_irq_save(flags
);
656 fast_calibrate
= try_msr_calibrate_tsc();
657 local_irq_restore(flags
);
659 return fast_calibrate
;
661 local_irq_save(flags
);
662 fast_calibrate
= quick_pit_calibrate();
663 local_irq_restore(flags
);
665 return fast_calibrate
;
668 * Run 5 calibration loops to get the lowest frequency value
669 * (the best estimate). We use two different calibration modes
672 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
673 * load a timeout of 50ms. We read the time right after we
674 * started the timer and wait until the PIT count down reaches
675 * zero. In each wait loop iteration we read the TSC and check
676 * the delta to the previous read. We keep track of the min
677 * and max values of that delta. The delta is mostly defined
678 * by the IO time of the PIT access, so we can detect when a
679 * SMI/SMM disturbance happened between the two reads. If the
680 * maximum time is significantly larger than the minimum time,
681 * then we discard the result and have another try.
683 * 2) Reference counter. If available we use the HPET or the
684 * PMTIMER as a reference to check the sanity of that value.
685 * We use separate TSC readouts and check inside of the
686 * reference read for a SMI/SMM disturbance. We dicard
687 * disturbed values here as well. We do that around the PIT
688 * calibration delay loop as we have to wait for a certain
689 * amount of time anyway.
692 /* Preset PIT loop values */
695 loopmin
= CAL_PIT_LOOPS
;
697 for (i
= 0; i
< 3; i
++) {
698 unsigned long tsc_pit_khz
;
701 * Read the start value and the reference count of
702 * hpet/pmtimer when available. Then do the PIT
703 * calibration, which will take at least 50ms, and
704 * read the end value.
706 local_irq_save(flags
);
707 tsc1
= tsc_read_refs(&ref1
, hpet
);
708 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
709 tsc2
= tsc_read_refs(&ref2
, hpet
);
710 local_irq_restore(flags
);
712 /* Pick the lowest PIT TSC calibration so far */
713 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
715 /* hpet or pmtimer available ? */
719 /* Check, whether the sampling was disturbed by an SMI */
720 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
723 tsc2
= (tsc2
- tsc1
) * 1000000LL;
725 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
727 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
729 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
731 /* Check the reference deviation */
732 delta
= ((u64
) tsc_pit_min
) * 100;
733 do_div(delta
, tsc_ref_min
);
736 * If both calibration results are inside a 10% window
737 * then we can be sure, that the calibration
738 * succeeded. We break out of the loop right away. We
739 * use the reference value, as it is more precise.
741 if (delta
>= 90 && delta
<= 110) {
742 pr_info("PIT calibration matches %s. %d loops\n",
743 hpet
? "HPET" : "PMTIMER", i
+ 1);
748 * Check whether PIT failed more than once. This
749 * happens in virtualized environments. We need to
750 * give the virtual PC a slightly longer timeframe for
751 * the HPET/PMTIMER to make the result precise.
753 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
756 loopmin
= CAL2_PIT_LOOPS
;
761 * Now check the results.
763 if (tsc_pit_min
== ULONG_MAX
) {
764 /* PIT gave no useful value */
765 pr_warn("Unable to calibrate against PIT\n");
767 /* We don't have an alternative source, disable TSC */
768 if (!hpet
&& !ref1
&& !ref2
) {
769 pr_notice("No reference (HPET/PMTIMER) available\n");
773 /* The alternative source failed as well, disable TSC */
774 if (tsc_ref_min
== ULONG_MAX
) {
775 pr_warn("HPET/PMTIMER calibration failed\n");
779 /* Use the alternative source */
780 pr_info("using %s reference calibration\n",
781 hpet
? "HPET" : "PMTIMER");
786 /* We don't have an alternative source, use the PIT calibration value */
787 if (!hpet
&& !ref1
&& !ref2
) {
788 pr_info("Using PIT calibration value\n");
792 /* The alternative source failed, use the PIT calibration value */
793 if (tsc_ref_min
== ULONG_MAX
) {
794 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
799 * The calibration values differ too much. In doubt, we use
800 * the PIT value as we know that there are PMTIMERs around
801 * running at double speed. At least we let the user know:
803 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
804 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
805 pr_info("Using PIT calibration value\n");
809 int recalibrate_cpu_khz(void)
812 unsigned long cpu_khz_old
= cpu_khz
;
815 tsc_khz
= x86_platform
.calibrate_tsc();
817 cpu_data(0).loops_per_jiffy
=
818 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
819 cpu_khz_old
, cpu_khz
);
828 EXPORT_SYMBOL(recalibrate_cpu_khz
);
831 static unsigned long long cyc2ns_suspend
;
833 void tsc_save_sched_clock_state(void)
835 if (!sched_clock_stable())
838 cyc2ns_suspend
= sched_clock();
842 * Even on processors with invariant TSC, TSC gets reset in some the
843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
846 * that sched_clock() continues from the point where it was left off during
849 void tsc_restore_sched_clock_state(void)
851 unsigned long long offset
;
855 if (!sched_clock_stable())
858 local_irq_save(flags
);
861 * We're comming out of suspend, there's no concurrency yet; don't
862 * bother being nice about the RCU stuff, just write to both
866 this_cpu_write(cyc2ns
.data
[0].cyc2ns_offset
, 0);
867 this_cpu_write(cyc2ns
.data
[1].cyc2ns_offset
, 0);
869 offset
= cyc2ns_suspend
- sched_clock();
871 for_each_possible_cpu(cpu
) {
872 per_cpu(cyc2ns
.data
[0].cyc2ns_offset
, cpu
) = offset
;
873 per_cpu(cyc2ns
.data
[1].cyc2ns_offset
, cpu
) = offset
;
876 local_irq_restore(flags
);
879 #ifdef CONFIG_CPU_FREQ
881 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
884 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
885 * not that important because current Opteron setups do not support
886 * scaling on SMP anyroads.
888 * Should fix up last_tsc too. Currently gettimeofday in the
889 * first tick after the change will be slightly wrong.
892 static unsigned int ref_freq
;
893 static unsigned long loops_per_jiffy_ref
;
894 static unsigned long tsc_khz_ref
;
896 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
899 struct cpufreq_freqs
*freq
= data
;
902 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
905 lpj
= &boot_cpu_data
.loops_per_jiffy
;
907 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
908 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
912 ref_freq
= freq
->old
;
913 loops_per_jiffy_ref
= *lpj
;
914 tsc_khz_ref
= tsc_khz
;
916 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
917 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new)) {
918 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
920 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
921 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
922 mark_tsc_unstable("cpufreq changes");
924 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
930 static struct notifier_block time_cpufreq_notifier_block
= {
931 .notifier_call
= time_cpufreq_notifier
934 static int __init
cpufreq_tsc(void)
938 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
940 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
941 CPUFREQ_TRANSITION_NOTIFIER
);
945 core_initcall(cpufreq_tsc
);
947 #endif /* CONFIG_CPU_FREQ */
949 /* clocksource code */
951 static struct clocksource clocksource_tsc
;
954 * We used to compare the TSC to the cycle_last value in the clocksource
955 * structure to avoid a nasty time-warp. This can be observed in a
956 * very small window right after one CPU updated cycle_last under
957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
958 * is smaller than the cycle_last reference value due to a TSC which
959 * is slighty behind. This delta is nowhere else observable, but in
960 * that case it results in a forward time jump in the range of hours
961 * due to the unsigned delta calculation of the time keeping core
962 * code, which is necessary to support wrapping clocksources like pm
965 * This sanity check is now done in the core timekeeping code.
966 * checking the result of read_tsc() - cycle_last for being negative.
967 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
969 static cycle_t
read_tsc(struct clocksource
*cs
)
971 return (cycle_t
)get_cycles();
975 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
977 static struct clocksource clocksource_tsc
= {
981 .mask
= CLOCKSOURCE_MASK(64),
982 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
983 CLOCK_SOURCE_MUST_VERIFY
,
984 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
987 void mark_tsc_unstable(char *reason
)
991 clear_sched_clock_stable();
992 disable_sched_clock_irqtime();
993 pr_info("Marking TSC unstable due to %s\n", reason
);
994 /* Change only the rating, when not registered */
995 if (clocksource_tsc
.mult
)
996 clocksource_mark_unstable(&clocksource_tsc
);
998 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
999 clocksource_tsc
.rating
= 0;
1004 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
1006 static void __init
check_system_tsc_reliable(void)
1008 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1009 if (is_geode_lx()) {
1010 /* RTSC counts during suspend */
1011 #define RTSC_SUSP 0x100
1012 unsigned long res_low
, res_high
;
1014 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
1015 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1016 if (res_low
& RTSC_SUSP
)
1017 tsc_clocksource_reliable
= 1;
1020 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
1021 tsc_clocksource_reliable
= 1;
1025 * Make an educated guess if the TSC is trustworthy and synchronized
1028 int unsynchronized_tsc(void)
1030 if (!cpu_has_tsc
|| tsc_unstable
)
1034 if (apic_is_clustered_box())
1038 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1041 if (tsc_clocksource_reliable
)
1044 * Intel systems are normally all synchronized.
1045 * Exceptions must mark TSC as unstable:
1047 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
1048 /* assume multi socket systems are not synchronized: */
1049 if (num_possible_cpus() > 1)
1057 static void tsc_refine_calibration_work(struct work_struct
*work
);
1058 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
1060 * tsc_refine_calibration_work - Further refine tsc freq calibration
1063 * This functions uses delayed work over a period of a
1064 * second to further refine the TSC freq value. Since this is
1065 * timer based, instead of loop based, we don't block the boot
1066 * process while this longer calibration is done.
1068 * If there are any calibration anomalies (too many SMIs, etc),
1069 * or the refined calibration is off by 1% of the fast early
1070 * calibration, we throw out the new calibration and use the
1071 * early calibration.
1073 static void tsc_refine_calibration_work(struct work_struct
*work
)
1075 static u64 tsc_start
= -1, ref_start
;
1077 u64 tsc_stop
, ref_stop
, delta
;
1080 /* Don't bother refining TSC on unstable systems */
1081 if (check_tsc_unstable())
1085 * Since the work is started early in boot, we may be
1086 * delayed the first time we expire. So set the workqueue
1087 * again once we know timers are working.
1089 if (tsc_start
== -1) {
1091 * Only set hpet once, to avoid mixing hardware
1092 * if the hpet becomes enabled later.
1094 hpet
= is_hpet_enabled();
1095 schedule_delayed_work(&tsc_irqwork
, HZ
);
1096 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
1100 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
1102 /* hpet or pmtimer available ? */
1103 if (ref_start
== ref_stop
)
1106 /* Check, whether the sampling was disturbed by an SMI */
1107 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
1110 delta
= tsc_stop
- tsc_start
;
1113 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
1115 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
1117 /* Make sure we're within 1% */
1118 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
1122 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1123 (unsigned long)tsc_khz
/ 1000,
1124 (unsigned long)tsc_khz
% 1000);
1127 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1131 static int __init
init_tsc_clocksource(void)
1133 if (!cpu_has_tsc
|| tsc_disabled
> 0 || !tsc_khz
)
1136 if (tsc_clocksource_reliable
)
1137 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
1138 /* lower the rating if we already know its unstable: */
1139 if (check_tsc_unstable()) {
1140 clocksource_tsc
.rating
= 0;
1141 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
1144 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3
))
1145 clocksource_tsc
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1148 * Trust the results of the earlier calibration on systems
1149 * exporting a reliable TSC.
1151 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
)) {
1152 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1156 schedule_delayed_work(&tsc_irqwork
, 0);
1160 * We use device_initcall here, to ensure we run after the hpet
1161 * is fully initialized, which may occur at fs_initcall time.
1163 device_initcall(init_tsc_clocksource
);
1165 void __init
tsc_init(void)
1170 x86_init
.timers
.tsc_pre_init();
1173 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1177 tsc_khz
= x86_platform
.calibrate_tsc();
1181 mark_tsc_unstable("could not calculate TSC khz");
1182 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1186 pr_info("Detected %lu.%03lu MHz processor\n",
1187 (unsigned long)cpu_khz
/ 1000,
1188 (unsigned long)cpu_khz
% 1000);
1191 * Secondary CPUs do not run through tsc_init(), so set up
1192 * all the scale factors for all CPUs, assuming the same
1193 * speed as the bootup CPU. (cpufreq notifiers will fix this
1194 * up if their speed diverges)
1196 for_each_possible_cpu(cpu
) {
1198 set_cyc2ns_scale(cpu_khz
, cpu
);
1201 if (tsc_disabled
> 0)
1204 /* now allow native_sched_clock() to use rdtsc */
1207 static_key_slow_inc(&__use_tsc
);
1209 if (!no_sched_irq_time
)
1210 enable_sched_clock_irqtime();
1212 lpj
= ((u64
)tsc_khz
* 1000);
1218 if (unsynchronized_tsc())
1219 mark_tsc_unstable("TSCs unsynchronized");
1221 check_system_tsc_reliable();
1226 * If we have a constant TSC and are using the TSC for the delay loop,
1227 * we can skip clock calibration if another cpu in the same socket has already
1228 * been calibrated. This assumes that CONSTANT_TSC applies to all
1229 * cpus in the socket - this should be a safe assumption.
1231 unsigned long calibrate_delay_is_known(void)
1233 int i
, cpu
= smp_processor_id();
1235 if (!tsc_disabled
&& !cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
))
1238 for_each_online_cpu(i
)
1239 if (cpu_data(i
).phys_proc_id
== cpu_data(cpu
).phys_proc_id
)
1240 return cpu_data(i
).loops_per_jiffy
;