2 * User-space Probes (UProbes) for x86
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2011
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
33 /* Post-execution fixups. */
35 /* Adjust IP back to vicinity of actual insn */
36 #define UPROBE_FIX_IP 0x01
38 /* Adjust the return address of a call insn */
39 #define UPROBE_FIX_CALL 0x02
41 /* Instruction will modify TF, don't change it */
42 #define UPROBE_FIX_SETF 0x04
44 #define UPROBE_FIX_RIP_SI 0x08
45 #define UPROBE_FIX_RIP_DI 0x10
46 #define UPROBE_FIX_RIP_BX 0x20
47 #define UPROBE_FIX_RIP_MASK \
48 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
50 #define UPROBE_TRAP_NR UINT_MAX
52 /* Adaptations for mhiramat x86 decoder v14. */
53 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
54 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
55 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
56 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
58 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
59 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
60 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
61 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
62 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 * Good-instruction tables for 32-bit apps. This is non-const and volatile
67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
68 * some versions of gcc to think only *(unsigned long*) is used.
70 * Opcodes we'll probably never support:
71 * 6c-6f - ins,outs. SEGVs if used in userspace
72 * e4-e7 - in,out imm. SEGVs if used in userspace
73 * ec-ef - in,out acc. SEGVs if used in userspace
74 * cc - int3. SIGTRAP if used in userspace
75 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
76 * (why we support bound (62) then? it's similar, and similarly unused...)
77 * f1 - int1. SIGTRAP if used in userspace
78 * f4 - hlt. SEGVs if used in userspace
79 * fa - cli. SEGVs if used in userspace
80 * fb - sti. SEGVs if used in userspace
82 * Opcodes which need some work to be supported:
83 * 07,17,1f - pop es/ss/ds
84 * Normally not used in userspace, but would execute if used.
85 * Can cause GP or stack exception if tries to load wrong segment descriptor.
86 * We hesitate to run them under single step since kernel's handling
87 * of userspace single-stepping (TF flag) is fragile.
88 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
89 * on the same grounds that they are never used.
91 * Used by userspace for "int 80" syscall entry. (Other "int N"
92 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
93 * Not supported since kernel's handling of userspace single-stepping
94 * (TF flag) is fragile.
95 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
97 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
98 static volatile u32 good_insns_32
[256 / 32] = {
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
100 /* ---------------------------------------------- */
101 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
102 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
103 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
104 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
105 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
106 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
107 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
108 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
109 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
110 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
111 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
112 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
113 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
114 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
115 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
116 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
117 /* ---------------------------------------------- */
118 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
121 #define good_insns_32 NULL
124 /* Good-instruction tables for 64-bit apps.
126 * Genuinely invalid opcodes:
127 * 06,07 - formerly push/pop es
128 * 0e - formerly push cs
129 * 16,17 - formerly push/pop ss
130 * 1e,1f - formerly push/pop ds
131 * 27,2f,37,3f - formerly daa/das/aaa/aas
132 * 60,61 - formerly pusha/popa
133 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
134 * 82 - formerly redundant encoding of Group1
135 * 9a - formerly call seg:ofs
137 * d4,d5 - formerly aam/aad
138 * d6 - formerly undocumented salc
139 * ea - formerly jmp seg:ofs
141 * Opcodes we'll probably never support:
142 * 6c-6f - ins,outs. SEGVs if used in userspace
143 * e4-e7 - in,out imm. SEGVs if used in userspace
144 * ec-ef - in,out acc. SEGVs if used in userspace
145 * cc - int3. SIGTRAP if used in userspace
146 * f1 - int1. SIGTRAP if used in userspace
147 * f4 - hlt. SEGVs if used in userspace
148 * fa - cli. SEGVs if used in userspace
149 * fb - sti. SEGVs if used in userspace
151 * Opcodes which need some work to be supported:
153 * Used by userspace for "int 80" syscall entry. (Other "int N"
154 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
155 * Not supported since kernel's handling of userspace single-stepping
156 * (TF flag) is fragile.
157 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
159 #if defined(CONFIG_X86_64)
160 static volatile u32 good_insns_64
[256 / 32] = {
161 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
162 /* ---------------------------------------------- */
163 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
164 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
165 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
166 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
167 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
168 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
169 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
170 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
171 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
172 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
173 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
174 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
175 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
176 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
177 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
178 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
179 /* ---------------------------------------------- */
180 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
183 #define good_insns_64 NULL
186 /* Using this for both 64-bit and 32-bit apps.
187 * Opcodes we don't support:
188 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
189 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
190 * Also encodes tons of other system insns if mod=11.
191 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
193 * 0f 06 - clts (CPL0 insn)
195 * 0f 08 - invd (CPL0 insn)
196 * 0f 09 - wbinvd (CPL0 insn)
198 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
202 * 0f 78 - vmread (Intel VMX. CPL0 insn)
203 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
204 * Note: with prefixes, these two opcodes are
205 * extrq/insertq/AVX512 convert vector ops.
206 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
207 * {rd,wr}{fs,gs}base,{s,l,m}fence.
208 * Why? They are all user-executable.
210 static volatile u32 good_2byte_insns
[256 / 32] = {
211 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
212 /* ---------------------------------------------- */
213 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
214 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
215 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
216 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
217 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
218 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
219 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
220 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
221 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
222 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
223 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
224 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
225 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
226 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
227 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
228 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
229 /* ---------------------------------------------- */
230 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
235 * opcodes we may need to refine support for:
237 * 0f - 2-byte instructions: For many of these instructions, the validity
238 * depends on the prefix and/or the reg field. On such instructions, we
239 * just consider the opcode combination valid if it corresponds to any
242 * 8f - Group 1 - only reg = 0 is OK
243 * c6-c7 - Group 11 - only reg = 0 is OK
244 * d9-df - fpu insns with some illegal encodings
245 * f2, f3 - repnz, repz prefixes. These are also the first byte for
246 * certain floating-point instructions, such as addsd.
248 * fe - Group 4 - only reg = 0 or 1 is OK
249 * ff - Group 5 - only reg = 0-6 is OK
251 * others -- Do we need to support these?
253 * 0f - (floating-point?) prefetch instructions
254 * 07, 17, 1f - pop es, pop ss, pop ds
255 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
256 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
264 * - Where necessary, examine the modrm byte and allow only valid instructions
265 * in the different Groups and fpu instructions.
268 static bool is_prefix_bad(struct insn
*insn
)
272 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
273 switch (insn
->prefixes
.bytes
[i
]) {
274 case 0x26: /* INAT_PFX_ES */
275 case 0x2E: /* INAT_PFX_CS */
276 case 0x36: /* INAT_PFX_DS */
277 case 0x3E: /* INAT_PFX_SS */
278 case 0xF0: /* INAT_PFX_LOCK */
285 static int uprobe_init_insn(struct arch_uprobe
*auprobe
, struct insn
*insn
, bool x86_64
)
287 u32
volatile *good_insns
;
289 insn_init(insn
, auprobe
->insn
, sizeof(auprobe
->insn
), x86_64
);
290 /* has the side-effect of processing the entire instruction */
291 insn_get_length(insn
);
292 if (WARN_ON_ONCE(!insn_complete(insn
)))
295 if (is_prefix_bad(insn
))
299 good_insns
= good_insns_64
;
301 good_insns
= good_insns_32
;
303 if (test_bit(OPCODE1(insn
), (unsigned long *)good_insns
))
306 if (insn
->opcode
.nbytes
== 2) {
307 if (test_bit(OPCODE2(insn
), (unsigned long *)good_2byte_insns
))
315 static inline bool is_64bit_mm(struct mm_struct
*mm
)
317 return !config_enabled(CONFIG_IA32_EMULATION
) ||
318 !(mm
->context
.ia32_compat
== TIF_IA32
);
321 * If arch_uprobe->insn doesn't use rip-relative addressing, return
322 * immediately. Otherwise, rewrite the instruction so that it accesses
323 * its memory operand indirectly through a scratch register. Set
324 * defparam->fixups accordingly. (The contents of the scratch register
325 * will be saved before we single-step the modified instruction,
326 * and restored afterward).
328 * We do this because a rip-relative instruction can access only a
329 * relatively small area (+/- 2 GB from the instruction), and the XOL
330 * area typically lies beyond that area. At least for instructions
331 * that store to memory, we can't execute the original instruction
332 * and "fix things up" later, because the misdirected store could be
335 * Some useful facts about rip-relative instructions:
337 * - There's always a modrm byte with bit layout "00 reg 101".
338 * - There's never a SIB byte.
339 * - The displacement is always 4 bytes.
340 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
341 * has no effect on rip-relative mode. It doesn't make modrm byte
342 * with r/m=101 refer to register 1101 = R13.
344 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
350 if (!insn_rip_relative(insn
))
354 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
355 * Clear REX.b bit (extension of MODRM.rm field):
356 * we want to encode low numbered reg, not r8+.
358 if (insn
->rex_prefix
.nbytes
) {
359 cursor
= auprobe
->insn
+ insn_offset_rex_prefix(insn
);
360 /* REX byte has 0100wrxb layout, clearing REX.b bit */
364 * Similar treatment for VEX3 prefix.
365 * TODO: add XOP/EVEX treatment when insn decoder supports them
367 if (insn
->vex_prefix
.nbytes
== 3) {
369 * vex2: c5 rvvvvLpp (has no b bit)
370 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
371 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
372 * (evex will need setting of both b and x since
373 * in non-sib encoding evex.x is 4th bit of MODRM.rm)
374 * Setting VEX3.b (setting because it has inverted meaning):
376 cursor
= auprobe
->insn
+ insn_offset_vex_prefix(insn
) + 1;
381 * Convert from rip-relative addressing to register-relative addressing
382 * via a scratch register.
384 * This is tricky since there are insns with modrm byte
385 * which also use registers not encoded in modrm byte:
386 * [i]div/[i]mul: implicitly use dx:ax
387 * shift ops: implicitly use cx
388 * cmpxchg: implicitly uses ax
389 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
390 * Encoding: 0f c7/1 modrm
391 * The code below thinks that reg=1 (cx), chooses si as scratch.
392 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
393 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
394 * Example where none of bx,cx,dx can be used as scratch reg:
395 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
396 * [v]pcmpistri: implicitly uses cx, xmm0
397 * [v]pcmpistrm: implicitly uses xmm0
398 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
399 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
400 * Evil SSE4.2 string comparison ops from hell.
401 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
402 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
403 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
404 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
405 * and that it can have only register operands, not mem
406 * (its modrm byte must have mode=11).
407 * If these restrictions will ever be lifted,
408 * we'll need code to prevent selection of di as scratch reg!
410 * Summary: I don't know any insns with modrm byte which
411 * use SI register implicitly. DI register is used only
412 * by one insn (maskmovq) and BX register is used
413 * only by one too (cmpxchg8b).
414 * BP is stack-segment based (may be a problem?).
415 * AX, DX, CX are off-limits (many implicit users).
416 * SP is unusable (it's stack pointer - think about "pop mem";
417 * also, rsp+disp32 needs sib encoding -> insn length change).
420 reg
= MODRM_REG(insn
); /* Fetch modrm.reg */
421 reg2
= 0xff; /* Fetch vex.vvvv */
422 if (insn
->vex_prefix
.nbytes
== 2)
423 reg2
= insn
->vex_prefix
.bytes
[1];
424 else if (insn
->vex_prefix
.nbytes
== 3)
425 reg2
= insn
->vex_prefix
.bytes
[2];
427 * TODO: add XOP, EXEV vvvv reading.
429 * vex.vvvv field is in bits 6-3, bits are inverted.
430 * But in 32-bit mode, high-order bit may be ignored.
431 * Therefore, let's consider only 3 low-order bits.
433 reg2
= ((reg2
>> 3) & 0x7) ^ 0x7;
435 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
437 * Choose scratch reg. Order is important: must not select bx
438 * if we can use si (cmpxchg8b case!)
440 if (reg
!= 6 && reg2
!= 6) {
442 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_SI
;
443 } else if (reg
!= 7 && reg2
!= 7) {
445 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_DI
;
446 /* TODO (paranoia): force maskmovq to not use di */
449 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_BX
;
452 * Point cursor at the modrm byte. The next 4 bytes are the
453 * displacement. Beyond the displacement, for some instructions,
454 * is the immediate operand.
456 cursor
= auprobe
->insn
+ insn_offset_modrm(insn
);
458 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
459 * 89 05 disp32 mov %eax,disp32(%rip) becomes
460 * 89 86 disp32 mov %eax,disp32(%rsi)
462 *cursor
= 0x80 | (reg
<< 3) | reg2
;
465 static inline unsigned long *
466 scratch_reg(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
468 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_SI
)
470 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_DI
)
476 * If we're emulating a rip-relative instruction, save the contents
477 * of the scratch register and store the target address in that register.
479 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
481 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
482 struct uprobe_task
*utask
= current
->utask
;
483 unsigned long *sr
= scratch_reg(auprobe
, regs
);
485 utask
->autask
.saved_scratch_register
= *sr
;
486 *sr
= utask
->vaddr
+ auprobe
->defparam
.ilen
;
490 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
492 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
493 struct uprobe_task
*utask
= current
->utask
;
494 unsigned long *sr
= scratch_reg(auprobe
, regs
);
496 *sr
= utask
->autask
.saved_scratch_register
;
500 static inline bool is_64bit_mm(struct mm_struct
*mm
)
505 * No RIP-relative addressing on 32-bit
507 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
510 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
513 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
516 #endif /* CONFIG_X86_64 */
518 struct uprobe_xol_ops
{
519 bool (*emulate
)(struct arch_uprobe
*, struct pt_regs
*);
520 int (*pre_xol
)(struct arch_uprobe
*, struct pt_regs
*);
521 int (*post_xol
)(struct arch_uprobe
*, struct pt_regs
*);
522 void (*abort
)(struct arch_uprobe
*, struct pt_regs
*);
525 static inline int sizeof_long(void)
527 return is_ia32_task() ? 4 : 8;
530 static int default_pre_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
532 riprel_pre_xol(auprobe
, regs
);
536 static int push_ret_address(struct pt_regs
*regs
, unsigned long ip
)
538 unsigned long new_sp
= regs
->sp
- sizeof_long();
540 if (copy_to_user((void __user
*)new_sp
, &ip
, sizeof_long()))
548 * We have to fix things up as follows:
550 * Typically, the new ip is relative to the copied instruction. We need
551 * to make it relative to the original instruction (FIX_IP). Exceptions
552 * are return instructions and absolute or indirect jump or call instructions.
554 * If the single-stepped instruction was a call, the return address that
555 * is atop the stack is the address following the copied instruction. We
556 * need to make it the address following the original instruction (FIX_CALL).
558 * If the original instruction was a rip-relative instruction such as
559 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
560 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
561 * We need to restore the contents of the scratch register
564 static int default_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
566 struct uprobe_task
*utask
= current
->utask
;
568 riprel_post_xol(auprobe
, regs
);
569 if (auprobe
->defparam
.fixups
& UPROBE_FIX_IP
) {
570 long correction
= utask
->vaddr
- utask
->xol_vaddr
;
571 regs
->ip
+= correction
;
572 } else if (auprobe
->defparam
.fixups
& UPROBE_FIX_CALL
) {
573 regs
->sp
+= sizeof_long(); /* Pop incorrect return address */
574 if (push_ret_address(regs
, utask
->vaddr
+ auprobe
->defparam
.ilen
))
577 /* popf; tell the caller to not touch TF */
578 if (auprobe
->defparam
.fixups
& UPROBE_FIX_SETF
)
579 utask
->autask
.saved_tf
= true;
584 static void default_abort_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
586 riprel_post_xol(auprobe
, regs
);
589 static struct uprobe_xol_ops default_xol_ops
= {
590 .pre_xol
= default_pre_xol_op
,
591 .post_xol
= default_post_xol_op
,
592 .abort
= default_abort_op
,
595 static bool branch_is_call(struct arch_uprobe
*auprobe
)
597 return auprobe
->branch
.opc1
== 0xe8;
601 COND(70, 71, XF(OF)) \
602 COND(72, 73, XF(CF)) \
603 COND(74, 75, XF(ZF)) \
604 COND(78, 79, XF(SF)) \
605 COND(7a, 7b, XF(PF)) \
606 COND(76, 77, XF(CF) || XF(ZF)) \
607 COND(7c, 7d, XF(SF) != XF(OF)) \
608 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
610 #define COND(op_y, op_n, expr) \
611 case 0x ## op_y: DO((expr) != 0) \
612 case 0x ## op_n: DO((expr) == 0)
614 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
616 static bool is_cond_jmp_opcode(u8 opcode
)
629 static bool check_jmp_cond(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
631 unsigned long flags
= regs
->flags
;
633 switch (auprobe
->branch
.opc1
) {
639 default: /* not a conditional jmp */
648 static bool branch_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
650 unsigned long new_ip
= regs
->ip
+= auprobe
->branch
.ilen
;
651 unsigned long offs
= (long)auprobe
->branch
.offs
;
653 if (branch_is_call(auprobe
)) {
655 * If it fails we execute this (mangled, see the comment in
656 * branch_clear_offset) insn out-of-line. In the likely case
657 * this should trigger the trap, and the probed application
658 * should die or restart the same insn after it handles the
659 * signal, arch_uprobe_post_xol() won't be even called.
661 * But there is corner case, see the comment in ->post_xol().
663 if (push_ret_address(regs
, new_ip
))
665 } else if (!check_jmp_cond(auprobe
, regs
)) {
669 regs
->ip
= new_ip
+ offs
;
673 static int branch_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
675 BUG_ON(!branch_is_call(auprobe
));
677 * We can only get here if branch_emulate_op() failed to push the ret
678 * address _and_ another thread expanded our stack before the (mangled)
679 * "call" insn was executed out-of-line. Just restore ->sp and restart.
680 * We could also restore ->ip and try to call branch_emulate_op() again.
682 regs
->sp
+= sizeof_long();
686 static void branch_clear_offset(struct arch_uprobe
*auprobe
, struct insn
*insn
)
689 * Turn this insn into "call 1f; 1:", this is what we will execute
690 * out-of-line if ->emulate() fails. We only need this to generate
691 * a trap, so that the probed task receives the correct signal with
692 * the properly filled siginfo.
694 * But see the comment in ->post_xol(), in the unlikely case it can
695 * succeed. So we need to ensure that the new ->ip can not fall into
696 * the non-canonical area and trigger #GP.
698 * We could turn it into (say) "pushf", but then we would need to
699 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
700 * of ->insn[] for set_orig_insn().
702 memset(auprobe
->insn
+ insn_offset_immediate(insn
),
703 0, insn
->immediate
.nbytes
);
706 static struct uprobe_xol_ops branch_xol_ops
= {
707 .emulate
= branch_emulate_op
,
708 .post_xol
= branch_post_xol_op
,
711 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712 static int branch_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
714 u8 opc1
= OPCODE1(insn
);
718 case 0xeb: /* jmp 8 */
719 case 0xe9: /* jmp 32 */
720 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
723 case 0xe8: /* call relative */
724 branch_clear_offset(auprobe
, insn
);
728 if (insn
->opcode
.nbytes
!= 2)
731 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
732 * OPCODE1() of the "short" jmp which checks the same condition.
734 opc1
= OPCODE2(insn
) - 0x10;
736 if (!is_cond_jmp_opcode(opc1
))
741 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
742 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
743 * No one uses these insns, reject any branch insns with such prefix.
745 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
746 if (insn
->prefixes
.bytes
[i
] == 0x66)
750 auprobe
->branch
.opc1
= opc1
;
751 auprobe
->branch
.ilen
= insn
->length
;
752 auprobe
->branch
.offs
= insn
->immediate
.value
;
754 auprobe
->ops
= &branch_xol_ops
;
759 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
760 * @mm: the probed address space.
761 * @arch_uprobe: the probepoint information.
762 * @addr: virtual address at which to install the probepoint
763 * Return 0 on success or a -ve number on error.
765 int arch_uprobe_analyze_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long addr
)
768 u8 fix_ip_or_call
= UPROBE_FIX_IP
;
771 ret
= uprobe_init_insn(auprobe
, &insn
, is_64bit_mm(mm
));
775 ret
= branch_setup_xol_ops(auprobe
, &insn
);
780 * Figure out which fixups default_post_xol_op() will need to perform,
781 * and annotate defparam->fixups accordingly.
783 switch (OPCODE1(&insn
)) {
784 case 0x9d: /* popf */
785 auprobe
->defparam
.fixups
|= UPROBE_FIX_SETF
;
787 case 0xc3: /* ret or lret -- ip is correct */
791 case 0xea: /* jmp absolute -- ip is correct */
794 case 0x9a: /* call absolute - Fix return addr, not ip */
795 fix_ip_or_call
= UPROBE_FIX_CALL
;
798 switch (MODRM_REG(&insn
)) {
799 case 2: case 3: /* call or lcall, indirect */
800 fix_ip_or_call
= UPROBE_FIX_CALL
;
802 case 4: case 5: /* jmp or ljmp, indirect */
808 riprel_analyze(auprobe
, &insn
);
811 auprobe
->defparam
.ilen
= insn
.length
;
812 auprobe
->defparam
.fixups
|= fix_ip_or_call
;
814 auprobe
->ops
= &default_xol_ops
;
819 * arch_uprobe_pre_xol - prepare to execute out of line.
820 * @auprobe: the probepoint information.
821 * @regs: reflects the saved user state of current task.
823 int arch_uprobe_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
825 struct uprobe_task
*utask
= current
->utask
;
827 if (auprobe
->ops
->pre_xol
) {
828 int err
= auprobe
->ops
->pre_xol(auprobe
, regs
);
833 regs
->ip
= utask
->xol_vaddr
;
834 utask
->autask
.saved_trap_nr
= current
->thread
.trap_nr
;
835 current
->thread
.trap_nr
= UPROBE_TRAP_NR
;
837 utask
->autask
.saved_tf
= !!(regs
->flags
& X86_EFLAGS_TF
);
838 regs
->flags
|= X86_EFLAGS_TF
;
839 if (test_tsk_thread_flag(current
, TIF_BLOCKSTEP
))
840 set_task_blockstep(current
, false);
846 * If xol insn itself traps and generates a signal(Say,
847 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
848 * instruction jumps back to its own address. It is assumed that anything
849 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
851 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
852 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
853 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
855 bool arch_uprobe_xol_was_trapped(struct task_struct
*t
)
857 if (t
->thread
.trap_nr
!= UPROBE_TRAP_NR
)
864 * Called after single-stepping. To avoid the SMP problems that can
865 * occur when we temporarily put back the original opcode to
866 * single-step, we single-stepped a copy of the instruction.
868 * This function prepares to resume execution after the single-step.
870 int arch_uprobe_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
872 struct uprobe_task
*utask
= current
->utask
;
873 bool send_sigtrap
= utask
->autask
.saved_tf
;
876 WARN_ON_ONCE(current
->thread
.trap_nr
!= UPROBE_TRAP_NR
);
877 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
879 if (auprobe
->ops
->post_xol
) {
880 err
= auprobe
->ops
->post_xol(auprobe
, regs
);
883 * Restore ->ip for restart or post mortem analysis.
884 * ->post_xol() must not return -ERESTART unless this
885 * is really possible.
887 regs
->ip
= utask
->vaddr
;
888 if (err
== -ERESTART
)
890 send_sigtrap
= false;
894 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
895 * so we can get an extra SIGTRAP if we do not clear TF. We need
896 * to examine the opcode to make it right.
899 send_sig(SIGTRAP
, current
, 0);
901 if (!utask
->autask
.saved_tf
)
902 regs
->flags
&= ~X86_EFLAGS_TF
;
907 /* callback routine for handling exceptions. */
908 int arch_uprobe_exception_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
910 struct die_args
*args
= data
;
911 struct pt_regs
*regs
= args
->regs
;
912 int ret
= NOTIFY_DONE
;
914 /* We are only interested in userspace traps */
915 if (regs
&& !user_mode(regs
))
920 if (uprobe_pre_sstep_notifier(regs
))
926 if (uprobe_post_sstep_notifier(regs
))
937 * This function gets called when XOL instruction either gets trapped or
938 * the thread has a fatal signal. Reset the instruction pointer to its
939 * probed address for the potential restart or for post mortem analysis.
941 void arch_uprobe_abort_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
943 struct uprobe_task
*utask
= current
->utask
;
945 if (auprobe
->ops
->abort
)
946 auprobe
->ops
->abort(auprobe
, regs
);
948 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
949 regs
->ip
= utask
->vaddr
;
950 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
951 if (!utask
->autask
.saved_tf
)
952 regs
->flags
&= ~X86_EFLAGS_TF
;
955 static bool __skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
957 if (auprobe
->ops
->emulate
)
958 return auprobe
->ops
->emulate(auprobe
, regs
);
962 bool arch_uprobe_skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
964 bool ret
= __skip_sstep(auprobe
, regs
);
965 if (ret
&& (regs
->flags
& X86_EFLAGS_TF
))
966 send_sig(SIGTRAP
, current
, 0);
971 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr
, struct pt_regs
*regs
)
973 int rasize
= sizeof_long(), nleft
;
974 unsigned long orig_ret_vaddr
= 0; /* clear high bits for 32-bit apps */
976 if (copy_from_user(&orig_ret_vaddr
, (void __user
*)regs
->sp
, rasize
))
979 /* check whether address has been already hijacked */
980 if (orig_ret_vaddr
== trampoline_vaddr
)
981 return orig_ret_vaddr
;
983 nleft
= copy_to_user((void __user
*)regs
->sp
, &trampoline_vaddr
, rasize
);
985 return orig_ret_vaddr
;
987 if (nleft
!= rasize
) {
988 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
989 "%%ip=%#lx\n", current
->pid
, regs
->sp
, regs
->ip
);
991 force_sig_info(SIGSEGV
, SEND_SIG_FORCED
, current
);