Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.h
blob0ada65ecddcf27ca619269d92435012c3f19790a
1 #ifndef __KVM_X86_MMU_H
2 #define __KVM_X86_MMU_H
4 #include <linux/kvm_host.h>
5 #include "kvm_cache_regs.h"
7 #define PT64_PT_BITS 9
8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9 #define PT32_PT_BITS 10
10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12 #define PT_WRITABLE_SHIFT 1
14 #define PT_PRESENT_MASK (1ULL << 0)
15 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16 #define PT_USER_MASK (1ULL << 2)
17 #define PT_PWT_MASK (1ULL << 3)
18 #define PT_PCD_MASK (1ULL << 4)
19 #define PT_ACCESSED_SHIFT 5
20 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21 #define PT_DIRTY_SHIFT 6
22 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
23 #define PT_PAGE_SIZE_SHIFT 7
24 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
25 #define PT_PAT_MASK (1ULL << 7)
26 #define PT_GLOBAL_MASK (1ULL << 8)
27 #define PT64_NX_SHIFT 63
28 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30 #define PT_PAT_SHIFT 7
31 #define PT_DIR_PAT_SHIFT 12
32 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34 #define PT32_DIR_PSE36_SIZE 4
35 #define PT32_DIR_PSE36_SHIFT 13
36 #define PT32_DIR_PSE36_MASK \
37 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
39 #define PT64_ROOT_LEVEL 4
40 #define PT32_ROOT_LEVEL 2
41 #define PT32E_ROOT_LEVEL 3
43 #define PT_PDPE_LEVEL 3
44 #define PT_DIRECTORY_LEVEL 2
45 #define PT_PAGE_TABLE_LEVEL 1
47 static inline u64 rsvd_bits(int s, int e)
49 return ((1ULL << (e - s + 1)) - 1) << s;
52 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
53 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
56 * Return values of handle_mmio_page_fault_common:
57 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
58 * directly.
59 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
60 * fault path update the mmio spte.
61 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
62 * RET_MMIO_PF_BUG: bug is detected.
64 enum {
65 RET_MMIO_PF_EMULATE = 1,
66 RET_MMIO_PF_INVALID = 2,
67 RET_MMIO_PF_RETRY = 0,
68 RET_MMIO_PF_BUG = -1
71 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
72 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
73 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
75 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
77 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
78 return kvm->arch.n_max_mmu_pages -
79 kvm->arch.n_used_mmu_pages;
81 return 0;
84 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
86 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
87 return 0;
89 return kvm_mmu_load(vcpu);
92 static inline int is_present_gpte(unsigned long pte)
94 return pte & PT_PRESENT_MASK;
98 * Currently, we have two sorts of write-protection, a) the first one
99 * write-protects guest page to sync the guest modification, b) another one is
100 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
101 * between these two sorts are:
102 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
103 * 2) the first case requires flushing tlb immediately avoiding corrupting
104 * shadow page table between all vcpus so it should be in the protection of
105 * mmu-lock. And the another case does not need to flush tlb until returning
106 * the dirty bitmap to userspace since it only write-protects the page
107 * logged in the bitmap, that means the page in the dirty bitmap is not
108 * missed, so it can flush tlb out of mmu-lock.
110 * So, there is the problem: the first case can meet the corrupted tlb caused
111 * by another case which write-protects pages but without flush tlb
112 * immediately. In order to making the first case be aware this problem we let
113 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
114 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
116 * Anyway, whenever a spte is updated (only permission and status bits are
117 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
118 * readonly, if that happens, we need to flush tlb. Fortunately,
119 * mmu_spte_update() has already handled it perfectly.
121 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
122 * - if we want to see if it has writable tlb entry or if the spte can be
123 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
124 * case, otherwise
125 * - if we fix page fault on the spte or do write-protection by dirty logging,
126 * check PT_WRITABLE_MASK.
128 * TODO: introduce APIs to split these two cases.
130 static inline int is_writable_pte(unsigned long pte)
132 return pte & PT_WRITABLE_MASK;
135 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
137 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
141 * Will a fault with a given page-fault error code (pfec) cause a permission
142 * fault with the given access (in ACC_* format)?
144 static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
145 unsigned pte_access, unsigned pfec)
147 int cpl = kvm_x86_ops->get_cpl(vcpu);
148 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
151 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
153 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
154 * (these are implicit supervisor accesses) regardless of the value
155 * of EFLAGS.AC.
157 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
158 * the result in X86_EFLAGS_AC. We then insert it in place of
159 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
160 * but it will be one in index if SMAP checks are being overridden.
161 * It is important to keep this branchless.
163 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
164 int index = (pfec >> 1) +
165 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
167 WARN_ON(pfec & PFERR_RSVD_MASK);
169 return (mmu->permissions[index] >> pte_access) & 1;
172 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
173 #endif