Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / net / bpf_jit_comp.c
blobddeff4844a100de83b52ef9dae9f42974666dc23
1 /* bpf_jit_comp.c : BPF JIT compiler
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
11 #include <linux/netdevice.h>
12 #include <linux/filter.h>
13 #include <linux/if_vlan.h>
14 #include <asm/cacheflush.h>
16 int bpf_jit_enable __read_mostly;
19 * assembly code in arch/x86/net/bpf_jit.S
21 extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
22 extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
23 extern u8 sk_load_byte_positive_offset[];
24 extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
25 extern u8 sk_load_byte_negative_offset[];
27 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
29 if (len == 1)
30 *ptr = bytes;
31 else if (len == 2)
32 *(u16 *)ptr = bytes;
33 else {
34 *(u32 *)ptr = bytes;
35 barrier();
37 return ptr + len;
40 #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
42 #define EMIT1(b1) EMIT(b1, 1)
43 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
44 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
45 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
46 #define EMIT1_off32(b1, off) \
47 do {EMIT1(b1); EMIT(off, 4); } while (0)
48 #define EMIT2_off32(b1, b2, off) \
49 do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
50 #define EMIT3_off32(b1, b2, b3, off) \
51 do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
52 #define EMIT4_off32(b1, b2, b3, b4, off) \
53 do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
55 static bool is_imm8(int value)
57 return value <= 127 && value >= -128;
60 static bool is_simm32(s64 value)
62 return value == (s64) (s32) value;
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC) \
67 do {if (DST != SRC) \
68 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
69 } while (0)
71 static int bpf_size_to_x86_bytes(int bpf_size)
73 if (bpf_size == BPF_W)
74 return 4;
75 else if (bpf_size == BPF_H)
76 return 2;
77 else if (bpf_size == BPF_B)
78 return 1;
79 else if (bpf_size == BPF_DW)
80 return 4; /* imm32 */
81 else
82 return 0;
85 /* list of x86 cond jumps opcodes (. + s8)
86 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
88 #define X86_JB 0x72
89 #define X86_JAE 0x73
90 #define X86_JE 0x74
91 #define X86_JNE 0x75
92 #define X86_JBE 0x76
93 #define X86_JA 0x77
94 #define X86_JGE 0x7D
95 #define X86_JG 0x7F
97 static void bpf_flush_icache(void *start, void *end)
99 mm_segment_t old_fs = get_fs();
101 set_fs(KERNEL_DS);
102 smp_wmb();
103 flush_icache_range((unsigned long)start, (unsigned long)end);
104 set_fs(old_fs);
107 #define CHOOSE_LOAD_FUNC(K, func) \
108 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
110 /* pick a register outside of BPF range for JIT internal work */
111 #define AUX_REG (MAX_BPF_REG + 1)
113 /* the following table maps BPF registers to x64 registers.
114 * x64 register r12 is unused, since if used as base address register
115 * in load/store instructions, it always needs an extra byte of encoding
117 static const int reg2hex[] = {
118 [BPF_REG_0] = 0, /* rax */
119 [BPF_REG_1] = 7, /* rdi */
120 [BPF_REG_2] = 6, /* rsi */
121 [BPF_REG_3] = 2, /* rdx */
122 [BPF_REG_4] = 1, /* rcx */
123 [BPF_REG_5] = 0, /* r8 */
124 [BPF_REG_6] = 3, /* rbx callee saved */
125 [BPF_REG_7] = 5, /* r13 callee saved */
126 [BPF_REG_8] = 6, /* r14 callee saved */
127 [BPF_REG_9] = 7, /* r15 callee saved */
128 [BPF_REG_FP] = 5, /* rbp readonly */
129 [AUX_REG] = 3, /* r11 temp register */
132 /* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
133 * which need extra byte of encoding.
134 * rax,rcx,...,rbp have simpler encoding
136 static bool is_ereg(u32 reg)
138 return (1 << reg) & (BIT(BPF_REG_5) |
139 BIT(AUX_REG) |
140 BIT(BPF_REG_7) |
141 BIT(BPF_REG_8) |
142 BIT(BPF_REG_9));
145 /* add modifiers if 'reg' maps to x64 registers r8..r15 */
146 static u8 add_1mod(u8 byte, u32 reg)
148 if (is_ereg(reg))
149 byte |= 1;
150 return byte;
153 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
155 if (is_ereg(r1))
156 byte |= 1;
157 if (is_ereg(r2))
158 byte |= 4;
159 return byte;
162 /* encode 'dst_reg' register into x64 opcode 'byte' */
163 static u8 add_1reg(u8 byte, u32 dst_reg)
165 return byte + reg2hex[dst_reg];
168 /* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
169 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
171 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
174 static void jit_fill_hole(void *area, unsigned int size)
176 /* fill whole space with int3 instructions */
177 memset(area, 0xcc, size);
180 struct jit_context {
181 int cleanup_addr; /* epilogue code offset */
182 bool seen_ld_abs;
185 /* maximum number of bytes emitted while JITing one eBPF insn */
186 #define BPF_MAX_INSN_SIZE 128
187 #define BPF_INSN_SAFETY 64
189 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
190 int oldproglen, struct jit_context *ctx)
192 struct bpf_insn *insn = bpf_prog->insnsi;
193 int insn_cnt = bpf_prog->len;
194 bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
195 bool seen_exit = false;
196 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
197 int i;
198 int proglen = 0;
199 u8 *prog = temp;
200 int stacksize = MAX_BPF_STACK +
201 32 /* space for rbx, r13, r14, r15 */ +
202 8 /* space for skb_copy_bits() buffer */;
204 EMIT1(0x55); /* push rbp */
205 EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
207 /* sub rsp, stacksize */
208 EMIT3_off32(0x48, 0x81, 0xEC, stacksize);
210 /* all classic BPF filters use R6(rbx) save it */
212 /* mov qword ptr [rbp-X],rbx */
213 EMIT3_off32(0x48, 0x89, 0x9D, -stacksize);
215 /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
216 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
217 * R8(r14). R9(r15) spill could be made conditional, but there is only
218 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
219 * The overhead of extra spill is negligible for any filter other
220 * than synthetic ones. Therefore not worth adding complexity.
223 /* mov qword ptr [rbp-X],r13 */
224 EMIT3_off32(0x4C, 0x89, 0xAD, -stacksize + 8);
225 /* mov qword ptr [rbp-X],r14 */
226 EMIT3_off32(0x4C, 0x89, 0xB5, -stacksize + 16);
227 /* mov qword ptr [rbp-X],r15 */
228 EMIT3_off32(0x4C, 0x89, 0xBD, -stacksize + 24);
230 /* clear A and X registers */
231 EMIT2(0x31, 0xc0); /* xor eax, eax */
232 EMIT3(0x4D, 0x31, 0xED); /* xor r13, r13 */
234 if (seen_ld_abs) {
235 /* r9d : skb->len - skb->data_len (headlen)
236 * r10 : skb->data
238 if (is_imm8(offsetof(struct sk_buff, len)))
239 /* mov %r9d, off8(%rdi) */
240 EMIT4(0x44, 0x8b, 0x4f,
241 offsetof(struct sk_buff, len));
242 else
243 /* mov %r9d, off32(%rdi) */
244 EMIT3_off32(0x44, 0x8b, 0x8f,
245 offsetof(struct sk_buff, len));
247 if (is_imm8(offsetof(struct sk_buff, data_len)))
248 /* sub %r9d, off8(%rdi) */
249 EMIT4(0x44, 0x2b, 0x4f,
250 offsetof(struct sk_buff, data_len));
251 else
252 EMIT3_off32(0x44, 0x2b, 0x8f,
253 offsetof(struct sk_buff, data_len));
255 if (is_imm8(offsetof(struct sk_buff, data)))
256 /* mov %r10, off8(%rdi) */
257 EMIT4(0x4c, 0x8b, 0x57,
258 offsetof(struct sk_buff, data));
259 else
260 /* mov %r10, off32(%rdi) */
261 EMIT3_off32(0x4c, 0x8b, 0x97,
262 offsetof(struct sk_buff, data));
265 for (i = 0; i < insn_cnt; i++, insn++) {
266 const s32 imm32 = insn->imm;
267 u32 dst_reg = insn->dst_reg;
268 u32 src_reg = insn->src_reg;
269 u8 b1 = 0, b2 = 0, b3 = 0;
270 s64 jmp_offset;
271 u8 jmp_cond;
272 int ilen;
273 u8 *func;
275 switch (insn->code) {
276 /* ALU */
277 case BPF_ALU | BPF_ADD | BPF_X:
278 case BPF_ALU | BPF_SUB | BPF_X:
279 case BPF_ALU | BPF_AND | BPF_X:
280 case BPF_ALU | BPF_OR | BPF_X:
281 case BPF_ALU | BPF_XOR | BPF_X:
282 case BPF_ALU64 | BPF_ADD | BPF_X:
283 case BPF_ALU64 | BPF_SUB | BPF_X:
284 case BPF_ALU64 | BPF_AND | BPF_X:
285 case BPF_ALU64 | BPF_OR | BPF_X:
286 case BPF_ALU64 | BPF_XOR | BPF_X:
287 switch (BPF_OP(insn->code)) {
288 case BPF_ADD: b2 = 0x01; break;
289 case BPF_SUB: b2 = 0x29; break;
290 case BPF_AND: b2 = 0x21; break;
291 case BPF_OR: b2 = 0x09; break;
292 case BPF_XOR: b2 = 0x31; break;
294 if (BPF_CLASS(insn->code) == BPF_ALU64)
295 EMIT1(add_2mod(0x48, dst_reg, src_reg));
296 else if (is_ereg(dst_reg) || is_ereg(src_reg))
297 EMIT1(add_2mod(0x40, dst_reg, src_reg));
298 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
299 break;
301 /* mov dst, src */
302 case BPF_ALU64 | BPF_MOV | BPF_X:
303 EMIT_mov(dst_reg, src_reg);
304 break;
306 /* mov32 dst, src */
307 case BPF_ALU | BPF_MOV | BPF_X:
308 if (is_ereg(dst_reg) || is_ereg(src_reg))
309 EMIT1(add_2mod(0x40, dst_reg, src_reg));
310 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
311 break;
313 /* neg dst */
314 case BPF_ALU | BPF_NEG:
315 case BPF_ALU64 | BPF_NEG:
316 if (BPF_CLASS(insn->code) == BPF_ALU64)
317 EMIT1(add_1mod(0x48, dst_reg));
318 else if (is_ereg(dst_reg))
319 EMIT1(add_1mod(0x40, dst_reg));
320 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
321 break;
323 case BPF_ALU | BPF_ADD | BPF_K:
324 case BPF_ALU | BPF_SUB | BPF_K:
325 case BPF_ALU | BPF_AND | BPF_K:
326 case BPF_ALU | BPF_OR | BPF_K:
327 case BPF_ALU | BPF_XOR | BPF_K:
328 case BPF_ALU64 | BPF_ADD | BPF_K:
329 case BPF_ALU64 | BPF_SUB | BPF_K:
330 case BPF_ALU64 | BPF_AND | BPF_K:
331 case BPF_ALU64 | BPF_OR | BPF_K:
332 case BPF_ALU64 | BPF_XOR | BPF_K:
333 if (BPF_CLASS(insn->code) == BPF_ALU64)
334 EMIT1(add_1mod(0x48, dst_reg));
335 else if (is_ereg(dst_reg))
336 EMIT1(add_1mod(0x40, dst_reg));
338 switch (BPF_OP(insn->code)) {
339 case BPF_ADD: b3 = 0xC0; break;
340 case BPF_SUB: b3 = 0xE8; break;
341 case BPF_AND: b3 = 0xE0; break;
342 case BPF_OR: b3 = 0xC8; break;
343 case BPF_XOR: b3 = 0xF0; break;
346 if (is_imm8(imm32))
347 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
348 else
349 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
350 break;
352 case BPF_ALU64 | BPF_MOV | BPF_K:
353 /* optimization: if imm32 is positive,
354 * use 'mov eax, imm32' (which zero-extends imm32)
355 * to save 2 bytes
357 if (imm32 < 0) {
358 /* 'mov rax, imm32' sign extends imm32 */
359 b1 = add_1mod(0x48, dst_reg);
360 b2 = 0xC7;
361 b3 = 0xC0;
362 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
363 break;
366 case BPF_ALU | BPF_MOV | BPF_K:
367 /* mov %eax, imm32 */
368 if (is_ereg(dst_reg))
369 EMIT1(add_1mod(0x40, dst_reg));
370 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
371 break;
373 case BPF_LD | BPF_IMM | BPF_DW:
374 if (insn[1].code != 0 || insn[1].src_reg != 0 ||
375 insn[1].dst_reg != 0 || insn[1].off != 0) {
376 /* verifier must catch invalid insns */
377 pr_err("invalid BPF_LD_IMM64 insn\n");
378 return -EINVAL;
381 /* movabsq %rax, imm64 */
382 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
383 EMIT(insn[0].imm, 4);
384 EMIT(insn[1].imm, 4);
386 insn++;
387 i++;
388 break;
390 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
391 case BPF_ALU | BPF_MOD | BPF_X:
392 case BPF_ALU | BPF_DIV | BPF_X:
393 case BPF_ALU | BPF_MOD | BPF_K:
394 case BPF_ALU | BPF_DIV | BPF_K:
395 case BPF_ALU64 | BPF_MOD | BPF_X:
396 case BPF_ALU64 | BPF_DIV | BPF_X:
397 case BPF_ALU64 | BPF_MOD | BPF_K:
398 case BPF_ALU64 | BPF_DIV | BPF_K:
399 EMIT1(0x50); /* push rax */
400 EMIT1(0x52); /* push rdx */
402 if (BPF_SRC(insn->code) == BPF_X)
403 /* mov r11, src_reg */
404 EMIT_mov(AUX_REG, src_reg);
405 else
406 /* mov r11, imm32 */
407 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
409 /* mov rax, dst_reg */
410 EMIT_mov(BPF_REG_0, dst_reg);
412 /* xor edx, edx
413 * equivalent to 'xor rdx, rdx', but one byte less
415 EMIT2(0x31, 0xd2);
417 if (BPF_SRC(insn->code) == BPF_X) {
418 /* if (src_reg == 0) return 0 */
420 /* cmp r11, 0 */
421 EMIT4(0x49, 0x83, 0xFB, 0x00);
423 /* jne .+9 (skip over pop, pop, xor and jmp) */
424 EMIT2(X86_JNE, 1 + 1 + 2 + 5);
425 EMIT1(0x5A); /* pop rdx */
426 EMIT1(0x58); /* pop rax */
427 EMIT2(0x31, 0xc0); /* xor eax, eax */
429 /* jmp cleanup_addr
430 * addrs[i] - 11, because there are 11 bytes
431 * after this insn: div, mov, pop, pop, mov
433 jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
434 EMIT1_off32(0xE9, jmp_offset);
437 if (BPF_CLASS(insn->code) == BPF_ALU64)
438 /* div r11 */
439 EMIT3(0x49, 0xF7, 0xF3);
440 else
441 /* div r11d */
442 EMIT3(0x41, 0xF7, 0xF3);
444 if (BPF_OP(insn->code) == BPF_MOD)
445 /* mov r11, rdx */
446 EMIT3(0x49, 0x89, 0xD3);
447 else
448 /* mov r11, rax */
449 EMIT3(0x49, 0x89, 0xC3);
451 EMIT1(0x5A); /* pop rdx */
452 EMIT1(0x58); /* pop rax */
454 /* mov dst_reg, r11 */
455 EMIT_mov(dst_reg, AUX_REG);
456 break;
458 case BPF_ALU | BPF_MUL | BPF_K:
459 case BPF_ALU | BPF_MUL | BPF_X:
460 case BPF_ALU64 | BPF_MUL | BPF_K:
461 case BPF_ALU64 | BPF_MUL | BPF_X:
462 EMIT1(0x50); /* push rax */
463 EMIT1(0x52); /* push rdx */
465 /* mov r11, dst_reg */
466 EMIT_mov(AUX_REG, dst_reg);
468 if (BPF_SRC(insn->code) == BPF_X)
469 /* mov rax, src_reg */
470 EMIT_mov(BPF_REG_0, src_reg);
471 else
472 /* mov rax, imm32 */
473 EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
475 if (BPF_CLASS(insn->code) == BPF_ALU64)
476 EMIT1(add_1mod(0x48, AUX_REG));
477 else if (is_ereg(AUX_REG))
478 EMIT1(add_1mod(0x40, AUX_REG));
479 /* mul(q) r11 */
480 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
482 /* mov r11, rax */
483 EMIT_mov(AUX_REG, BPF_REG_0);
485 EMIT1(0x5A); /* pop rdx */
486 EMIT1(0x58); /* pop rax */
488 /* mov dst_reg, r11 */
489 EMIT_mov(dst_reg, AUX_REG);
490 break;
492 /* shifts */
493 case BPF_ALU | BPF_LSH | BPF_K:
494 case BPF_ALU | BPF_RSH | BPF_K:
495 case BPF_ALU | BPF_ARSH | BPF_K:
496 case BPF_ALU64 | BPF_LSH | BPF_K:
497 case BPF_ALU64 | BPF_RSH | BPF_K:
498 case BPF_ALU64 | BPF_ARSH | BPF_K:
499 if (BPF_CLASS(insn->code) == BPF_ALU64)
500 EMIT1(add_1mod(0x48, dst_reg));
501 else if (is_ereg(dst_reg))
502 EMIT1(add_1mod(0x40, dst_reg));
504 switch (BPF_OP(insn->code)) {
505 case BPF_LSH: b3 = 0xE0; break;
506 case BPF_RSH: b3 = 0xE8; break;
507 case BPF_ARSH: b3 = 0xF8; break;
509 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
510 break;
512 case BPF_ALU | BPF_LSH | BPF_X:
513 case BPF_ALU | BPF_RSH | BPF_X:
514 case BPF_ALU | BPF_ARSH | BPF_X:
515 case BPF_ALU64 | BPF_LSH | BPF_X:
516 case BPF_ALU64 | BPF_RSH | BPF_X:
517 case BPF_ALU64 | BPF_ARSH | BPF_X:
519 /* check for bad case when dst_reg == rcx */
520 if (dst_reg == BPF_REG_4) {
521 /* mov r11, dst_reg */
522 EMIT_mov(AUX_REG, dst_reg);
523 dst_reg = AUX_REG;
526 if (src_reg != BPF_REG_4) { /* common case */
527 EMIT1(0x51); /* push rcx */
529 /* mov rcx, src_reg */
530 EMIT_mov(BPF_REG_4, src_reg);
533 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
534 if (BPF_CLASS(insn->code) == BPF_ALU64)
535 EMIT1(add_1mod(0x48, dst_reg));
536 else if (is_ereg(dst_reg))
537 EMIT1(add_1mod(0x40, dst_reg));
539 switch (BPF_OP(insn->code)) {
540 case BPF_LSH: b3 = 0xE0; break;
541 case BPF_RSH: b3 = 0xE8; break;
542 case BPF_ARSH: b3 = 0xF8; break;
544 EMIT2(0xD3, add_1reg(b3, dst_reg));
546 if (src_reg != BPF_REG_4)
547 EMIT1(0x59); /* pop rcx */
549 if (insn->dst_reg == BPF_REG_4)
550 /* mov dst_reg, r11 */
551 EMIT_mov(insn->dst_reg, AUX_REG);
552 break;
554 case BPF_ALU | BPF_END | BPF_FROM_BE:
555 switch (imm32) {
556 case 16:
557 /* emit 'ror %ax, 8' to swap lower 2 bytes */
558 EMIT1(0x66);
559 if (is_ereg(dst_reg))
560 EMIT1(0x41);
561 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
563 /* emit 'movzwl eax, ax' */
564 if (is_ereg(dst_reg))
565 EMIT3(0x45, 0x0F, 0xB7);
566 else
567 EMIT2(0x0F, 0xB7);
568 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
569 break;
570 case 32:
571 /* emit 'bswap eax' to swap lower 4 bytes */
572 if (is_ereg(dst_reg))
573 EMIT2(0x41, 0x0F);
574 else
575 EMIT1(0x0F);
576 EMIT1(add_1reg(0xC8, dst_reg));
577 break;
578 case 64:
579 /* emit 'bswap rax' to swap 8 bytes */
580 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
581 add_1reg(0xC8, dst_reg));
582 break;
584 break;
586 case BPF_ALU | BPF_END | BPF_FROM_LE:
587 switch (imm32) {
588 case 16:
589 /* emit 'movzwl eax, ax' to zero extend 16-bit
590 * into 64 bit
592 if (is_ereg(dst_reg))
593 EMIT3(0x45, 0x0F, 0xB7);
594 else
595 EMIT2(0x0F, 0xB7);
596 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
597 break;
598 case 32:
599 /* emit 'mov eax, eax' to clear upper 32-bits */
600 if (is_ereg(dst_reg))
601 EMIT1(0x45);
602 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
603 break;
604 case 64:
605 /* nop */
606 break;
608 break;
610 /* ST: *(u8*)(dst_reg + off) = imm */
611 case BPF_ST | BPF_MEM | BPF_B:
612 if (is_ereg(dst_reg))
613 EMIT2(0x41, 0xC6);
614 else
615 EMIT1(0xC6);
616 goto st;
617 case BPF_ST | BPF_MEM | BPF_H:
618 if (is_ereg(dst_reg))
619 EMIT3(0x66, 0x41, 0xC7);
620 else
621 EMIT2(0x66, 0xC7);
622 goto st;
623 case BPF_ST | BPF_MEM | BPF_W:
624 if (is_ereg(dst_reg))
625 EMIT2(0x41, 0xC7);
626 else
627 EMIT1(0xC7);
628 goto st;
629 case BPF_ST | BPF_MEM | BPF_DW:
630 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
632 st: if (is_imm8(insn->off))
633 EMIT2(add_1reg(0x40, dst_reg), insn->off);
634 else
635 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
637 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
638 break;
640 /* STX: *(u8*)(dst_reg + off) = src_reg */
641 case BPF_STX | BPF_MEM | BPF_B:
642 /* emit 'mov byte ptr [rax + off], al' */
643 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
644 /* have to add extra byte for x86 SIL, DIL regs */
645 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
646 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
647 else
648 EMIT1(0x88);
649 goto stx;
650 case BPF_STX | BPF_MEM | BPF_H:
651 if (is_ereg(dst_reg) || is_ereg(src_reg))
652 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
653 else
654 EMIT2(0x66, 0x89);
655 goto stx;
656 case BPF_STX | BPF_MEM | BPF_W:
657 if (is_ereg(dst_reg) || is_ereg(src_reg))
658 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
659 else
660 EMIT1(0x89);
661 goto stx;
662 case BPF_STX | BPF_MEM | BPF_DW:
663 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
664 stx: if (is_imm8(insn->off))
665 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
666 else
667 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
668 insn->off);
669 break;
671 /* LDX: dst_reg = *(u8*)(src_reg + off) */
672 case BPF_LDX | BPF_MEM | BPF_B:
673 /* emit 'movzx rax, byte ptr [rax + off]' */
674 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
675 goto ldx;
676 case BPF_LDX | BPF_MEM | BPF_H:
677 /* emit 'movzx rax, word ptr [rax + off]' */
678 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
679 goto ldx;
680 case BPF_LDX | BPF_MEM | BPF_W:
681 /* emit 'mov eax, dword ptr [rax+0x14]' */
682 if (is_ereg(dst_reg) || is_ereg(src_reg))
683 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
684 else
685 EMIT1(0x8B);
686 goto ldx;
687 case BPF_LDX | BPF_MEM | BPF_DW:
688 /* emit 'mov rax, qword ptr [rax+0x14]' */
689 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
690 ldx: /* if insn->off == 0 we can save one extra byte, but
691 * special case of x86 r13 which always needs an offset
692 * is not worth the hassle
694 if (is_imm8(insn->off))
695 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
696 else
697 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
698 insn->off);
699 break;
701 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
702 case BPF_STX | BPF_XADD | BPF_W:
703 /* emit 'lock add dword ptr [rax + off], eax' */
704 if (is_ereg(dst_reg) || is_ereg(src_reg))
705 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
706 else
707 EMIT2(0xF0, 0x01);
708 goto xadd;
709 case BPF_STX | BPF_XADD | BPF_DW:
710 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
711 xadd: if (is_imm8(insn->off))
712 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
713 else
714 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
715 insn->off);
716 break;
718 /* call */
719 case BPF_JMP | BPF_CALL:
720 func = (u8 *) __bpf_call_base + imm32;
721 jmp_offset = func - (image + addrs[i]);
722 if (seen_ld_abs) {
723 EMIT2(0x41, 0x52); /* push %r10 */
724 EMIT2(0x41, 0x51); /* push %r9 */
725 /* need to adjust jmp offset, since
726 * pop %r9, pop %r10 take 4 bytes after call insn
728 jmp_offset += 4;
730 if (!imm32 || !is_simm32(jmp_offset)) {
731 pr_err("unsupported bpf func %d addr %p image %p\n",
732 imm32, func, image);
733 return -EINVAL;
735 EMIT1_off32(0xE8, jmp_offset);
736 if (seen_ld_abs) {
737 EMIT2(0x41, 0x59); /* pop %r9 */
738 EMIT2(0x41, 0x5A); /* pop %r10 */
740 break;
742 /* cond jump */
743 case BPF_JMP | BPF_JEQ | BPF_X:
744 case BPF_JMP | BPF_JNE | BPF_X:
745 case BPF_JMP | BPF_JGT | BPF_X:
746 case BPF_JMP | BPF_JGE | BPF_X:
747 case BPF_JMP | BPF_JSGT | BPF_X:
748 case BPF_JMP | BPF_JSGE | BPF_X:
749 /* cmp dst_reg, src_reg */
750 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
751 add_2reg(0xC0, dst_reg, src_reg));
752 goto emit_cond_jmp;
754 case BPF_JMP | BPF_JSET | BPF_X:
755 /* test dst_reg, src_reg */
756 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
757 add_2reg(0xC0, dst_reg, src_reg));
758 goto emit_cond_jmp;
760 case BPF_JMP | BPF_JSET | BPF_K:
761 /* test dst_reg, imm32 */
762 EMIT1(add_1mod(0x48, dst_reg));
763 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
764 goto emit_cond_jmp;
766 case BPF_JMP | BPF_JEQ | BPF_K:
767 case BPF_JMP | BPF_JNE | BPF_K:
768 case BPF_JMP | BPF_JGT | BPF_K:
769 case BPF_JMP | BPF_JGE | BPF_K:
770 case BPF_JMP | BPF_JSGT | BPF_K:
771 case BPF_JMP | BPF_JSGE | BPF_K:
772 /* cmp dst_reg, imm8/32 */
773 EMIT1(add_1mod(0x48, dst_reg));
775 if (is_imm8(imm32))
776 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
777 else
778 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
780 emit_cond_jmp: /* convert BPF opcode to x86 */
781 switch (BPF_OP(insn->code)) {
782 case BPF_JEQ:
783 jmp_cond = X86_JE;
784 break;
785 case BPF_JSET:
786 case BPF_JNE:
787 jmp_cond = X86_JNE;
788 break;
789 case BPF_JGT:
790 /* GT is unsigned '>', JA in x86 */
791 jmp_cond = X86_JA;
792 break;
793 case BPF_JGE:
794 /* GE is unsigned '>=', JAE in x86 */
795 jmp_cond = X86_JAE;
796 break;
797 case BPF_JSGT:
798 /* signed '>', GT in x86 */
799 jmp_cond = X86_JG;
800 break;
801 case BPF_JSGE:
802 /* signed '>=', GE in x86 */
803 jmp_cond = X86_JGE;
804 break;
805 default: /* to silence gcc warning */
806 return -EFAULT;
808 jmp_offset = addrs[i + insn->off] - addrs[i];
809 if (is_imm8(jmp_offset)) {
810 EMIT2(jmp_cond, jmp_offset);
811 } else if (is_simm32(jmp_offset)) {
812 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
813 } else {
814 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
815 return -EFAULT;
818 break;
820 case BPF_JMP | BPF_JA:
821 jmp_offset = addrs[i + insn->off] - addrs[i];
822 if (!jmp_offset)
823 /* optimize out nop jumps */
824 break;
825 emit_jmp:
826 if (is_imm8(jmp_offset)) {
827 EMIT2(0xEB, jmp_offset);
828 } else if (is_simm32(jmp_offset)) {
829 EMIT1_off32(0xE9, jmp_offset);
830 } else {
831 pr_err("jmp gen bug %llx\n", jmp_offset);
832 return -EFAULT;
834 break;
836 case BPF_LD | BPF_IND | BPF_W:
837 func = sk_load_word;
838 goto common_load;
839 case BPF_LD | BPF_ABS | BPF_W:
840 func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
841 common_load:
842 ctx->seen_ld_abs = seen_ld_abs = true;
843 jmp_offset = func - (image + addrs[i]);
844 if (!func || !is_simm32(jmp_offset)) {
845 pr_err("unsupported bpf func %d addr %p image %p\n",
846 imm32, func, image);
847 return -EINVAL;
849 if (BPF_MODE(insn->code) == BPF_ABS) {
850 /* mov %esi, imm32 */
851 EMIT1_off32(0xBE, imm32);
852 } else {
853 /* mov %rsi, src_reg */
854 EMIT_mov(BPF_REG_2, src_reg);
855 if (imm32) {
856 if (is_imm8(imm32))
857 /* add %esi, imm8 */
858 EMIT3(0x83, 0xC6, imm32);
859 else
860 /* add %esi, imm32 */
861 EMIT2_off32(0x81, 0xC6, imm32);
864 /* skb pointer is in R6 (%rbx), it will be copied into
865 * %rdi if skb_copy_bits() call is necessary.
866 * sk_load_* helpers also use %r10 and %r9d.
867 * See bpf_jit.S
869 EMIT1_off32(0xE8, jmp_offset); /* call */
870 break;
872 case BPF_LD | BPF_IND | BPF_H:
873 func = sk_load_half;
874 goto common_load;
875 case BPF_LD | BPF_ABS | BPF_H:
876 func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
877 goto common_load;
878 case BPF_LD | BPF_IND | BPF_B:
879 func = sk_load_byte;
880 goto common_load;
881 case BPF_LD | BPF_ABS | BPF_B:
882 func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
883 goto common_load;
885 case BPF_JMP | BPF_EXIT:
886 if (seen_exit) {
887 jmp_offset = ctx->cleanup_addr - addrs[i];
888 goto emit_jmp;
890 seen_exit = true;
891 /* update cleanup_addr */
892 ctx->cleanup_addr = proglen;
893 /* mov rbx, qword ptr [rbp-X] */
894 EMIT3_off32(0x48, 0x8B, 0x9D, -stacksize);
895 /* mov r13, qword ptr [rbp-X] */
896 EMIT3_off32(0x4C, 0x8B, 0xAD, -stacksize + 8);
897 /* mov r14, qword ptr [rbp-X] */
898 EMIT3_off32(0x4C, 0x8B, 0xB5, -stacksize + 16);
899 /* mov r15, qword ptr [rbp-X] */
900 EMIT3_off32(0x4C, 0x8B, 0xBD, -stacksize + 24);
902 EMIT1(0xC9); /* leave */
903 EMIT1(0xC3); /* ret */
904 break;
906 default:
907 /* By design x64 JIT should support all BPF instructions
908 * This error will be seen if new instruction was added
909 * to interpreter, but not to JIT
910 * or if there is junk in bpf_prog
912 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
913 return -EINVAL;
916 ilen = prog - temp;
917 if (ilen > BPF_MAX_INSN_SIZE) {
918 pr_err("bpf_jit_compile fatal insn size error\n");
919 return -EFAULT;
922 if (image) {
923 if (unlikely(proglen + ilen > oldproglen)) {
924 pr_err("bpf_jit_compile fatal error\n");
925 return -EFAULT;
927 memcpy(image + proglen, temp, ilen);
929 proglen += ilen;
930 addrs[i] = proglen;
931 prog = temp;
933 return proglen;
936 void bpf_jit_compile(struct bpf_prog *prog)
940 void bpf_int_jit_compile(struct bpf_prog *prog)
942 struct bpf_binary_header *header = NULL;
943 int proglen, oldproglen = 0;
944 struct jit_context ctx = {};
945 u8 *image = NULL;
946 int *addrs;
947 int pass;
948 int i;
950 if (!bpf_jit_enable)
951 return;
953 if (!prog || !prog->len)
954 return;
956 addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
957 if (!addrs)
958 return;
960 /* Before first pass, make a rough estimation of addrs[]
961 * each bpf instruction is translated to less than 64 bytes
963 for (proglen = 0, i = 0; i < prog->len; i++) {
964 proglen += 64;
965 addrs[i] = proglen;
967 ctx.cleanup_addr = proglen;
969 /* JITed image shrinks with every pass and the loop iterates
970 * until the image stops shrinking. Very large bpf programs
971 * may converge on the last pass. In such case do one more
972 * pass to emit the final image
974 for (pass = 0; pass < 10 || image; pass++) {
975 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
976 if (proglen <= 0) {
977 image = NULL;
978 if (header)
979 bpf_jit_binary_free(header);
980 goto out;
982 if (image) {
983 if (proglen != oldproglen) {
984 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
985 proglen, oldproglen);
986 goto out;
988 break;
990 if (proglen == oldproglen) {
991 header = bpf_jit_binary_alloc(proglen, &image,
992 1, jit_fill_hole);
993 if (!header)
994 goto out;
996 oldproglen = proglen;
999 if (bpf_jit_enable > 1)
1000 bpf_jit_dump(prog->len, proglen, 0, image);
1002 if (image) {
1003 bpf_flush_icache(header, image + proglen);
1004 set_memory_ro((unsigned long)header, header->pages);
1005 prog->bpf_func = (void *)image;
1006 prog->jited = true;
1008 out:
1009 kfree(addrs);
1012 void bpf_jit_free(struct bpf_prog *fp)
1014 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1015 struct bpf_binary_header *header = (void *)addr;
1017 if (!fp->jited)
1018 goto free_filter;
1020 set_memory_rw(addr, header->pages);
1021 bpf_jit_binary_free(header);
1023 free_filter:
1024 bpf_prog_unlock_free(fp);