Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / xen / enlighten.c
bloba10ed8915bf49bfc2f9b04c21bca7b385ed6b295
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
36 #ifdef CONFIG_KEXEC
37 #include <linux/kexec.h>
38 #endif
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/pat.h>
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
92 EXPORT_SYMBOL_GPL(hypercall_page);
95 * Pointer to the xen_vcpu_info structure or
96 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
97 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
98 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
99 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
100 * acknowledge pending events.
101 * Also more subtly it is used by the patched version of irq enable/disable
102 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104 * The desire to be able to do those mask/unmask operations as a single
105 * instruction by using the per-cpu offset held in %gs is the real reason
106 * vcpu info is in a per-cpu pointer and the original reason for this
107 * hypercall.
110 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
113 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
114 * hypercall. This can be used both in PV and PVHVM mode. The structure
115 * overrides the default per_cpu(xen_vcpu, cpu) value.
117 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119 enum xen_domain_type xen_domain_type = XEN_NATIVE;
120 EXPORT_SYMBOL_GPL(xen_domain_type);
122 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
123 EXPORT_SYMBOL(machine_to_phys_mapping);
124 unsigned long machine_to_phys_nr;
125 EXPORT_SYMBOL(machine_to_phys_nr);
127 struct start_info *xen_start_info;
128 EXPORT_SYMBOL_GPL(xen_start_info);
130 struct shared_info xen_dummy_shared_info;
132 void *xen_initial_gdt;
134 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
135 __read_mostly int xen_have_vector_callback;
136 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
139 * Point at some empty memory to start with. We map the real shared_info
140 * page as soon as fixmap is up and running.
142 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
145 * Flag to determine whether vcpu info placement is available on all
146 * VCPUs. We assume it is to start with, and then set it to zero on
147 * the first failure. This is because it can succeed on some VCPUs
148 * and not others, since it can involve hypervisor memory allocation,
149 * or because the guest failed to guarantee all the appropriate
150 * constraints on all VCPUs (ie buffer can't cross a page boundary).
152 * Note that any particular CPU may be using a placed vcpu structure,
153 * but we can only optimise if the all are.
155 * 0: not available, 1: available
157 static int have_vcpu_info_placement = 1;
159 struct tls_descs {
160 struct desc_struct desc[3];
164 * Updating the 3 TLS descriptors in the GDT on every task switch is
165 * surprisingly expensive so we avoid updating them if they haven't
166 * changed. Since Xen writes different descriptors than the one
167 * passed in the update_descriptor hypercall we keep shadow copies to
168 * compare against.
170 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
172 static void clamp_max_cpus(void)
174 #ifdef CONFIG_SMP
175 if (setup_max_cpus > MAX_VIRT_CPUS)
176 setup_max_cpus = MAX_VIRT_CPUS;
177 #endif
180 static void xen_vcpu_setup(int cpu)
182 struct vcpu_register_vcpu_info info;
183 int err;
184 struct vcpu_info *vcpup;
186 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
189 * This path is called twice on PVHVM - first during bootup via
190 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
191 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
192 * As we can only do the VCPUOP_register_vcpu_info once lets
193 * not over-write its result.
195 * For PV it is called during restore (xen_vcpu_restore) and bootup
196 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
197 * use this function.
199 if (xen_hvm_domain()) {
200 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
201 return;
203 if (cpu < MAX_VIRT_CPUS)
204 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
206 if (!have_vcpu_info_placement) {
207 if (cpu >= MAX_VIRT_CPUS)
208 clamp_max_cpus();
209 return;
212 vcpup = &per_cpu(xen_vcpu_info, cpu);
213 info.mfn = arbitrary_virt_to_mfn(vcpup);
214 info.offset = offset_in_page(vcpup);
216 /* Check to see if the hypervisor will put the vcpu_info
217 structure where we want it, which allows direct access via
218 a percpu-variable.
219 N.B. This hypercall can _only_ be called once per CPU. Subsequent
220 calls will error out with -EINVAL. This is due to the fact that
221 hypervisor has no unregister variant and this hypercall does not
222 allow to over-write info.mfn and info.offset.
224 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
226 if (err) {
227 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
228 have_vcpu_info_placement = 0;
229 clamp_max_cpus();
230 } else {
231 /* This cpu is using the registered vcpu info, even if
232 later ones fail to. */
233 per_cpu(xen_vcpu, cpu) = vcpup;
238 * On restore, set the vcpu placement up again.
239 * If it fails, then we're in a bad state, since
240 * we can't back out from using it...
242 void xen_vcpu_restore(void)
244 int cpu;
246 for_each_possible_cpu(cpu) {
247 bool other_cpu = (cpu != smp_processor_id());
248 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
250 if (other_cpu && is_up &&
251 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
252 BUG();
254 xen_setup_runstate_info(cpu);
256 if (have_vcpu_info_placement)
257 xen_vcpu_setup(cpu);
259 if (other_cpu && is_up &&
260 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
261 BUG();
265 static void __init xen_banner(void)
267 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
268 struct xen_extraversion extra;
269 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
271 pr_info("Booting paravirtualized kernel %son %s\n",
272 xen_feature(XENFEAT_auto_translated_physmap) ?
273 "with PVH extensions " : "", pv_info.name);
274 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
275 version >> 16, version & 0xffff, extra.extraversion,
276 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
278 /* Check if running on Xen version (major, minor) or later */
279 bool
280 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
282 unsigned int version;
284 if (!xen_domain())
285 return false;
287 version = HYPERVISOR_xen_version(XENVER_version, NULL);
288 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
289 ((version >> 16) > major))
290 return true;
291 return false;
294 #define CPUID_THERM_POWER_LEAF 6
295 #define APERFMPERF_PRESENT 0
297 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
298 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
300 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
301 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
302 static __read_mostly unsigned int cpuid_leaf5_edx_val;
304 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
305 unsigned int *cx, unsigned int *dx)
307 unsigned maskebx = ~0;
308 unsigned maskecx = ~0;
309 unsigned maskedx = ~0;
310 unsigned setecx = 0;
312 * Mask out inconvenient features, to try and disable as many
313 * unsupported kernel subsystems as possible.
315 switch (*ax) {
316 case 1:
317 maskecx = cpuid_leaf1_ecx_mask;
318 setecx = cpuid_leaf1_ecx_set_mask;
319 maskedx = cpuid_leaf1_edx_mask;
320 break;
322 case CPUID_MWAIT_LEAF:
323 /* Synthesize the values.. */
324 *ax = 0;
325 *bx = 0;
326 *cx = cpuid_leaf5_ecx_val;
327 *dx = cpuid_leaf5_edx_val;
328 return;
330 case CPUID_THERM_POWER_LEAF:
331 /* Disabling APERFMPERF for kernel usage */
332 maskecx = ~(1 << APERFMPERF_PRESENT);
333 break;
335 case 0xb:
336 /* Suppress extended topology stuff */
337 maskebx = 0;
338 break;
341 asm(XEN_EMULATE_PREFIX "cpuid"
342 : "=a" (*ax),
343 "=b" (*bx),
344 "=c" (*cx),
345 "=d" (*dx)
346 : "0" (*ax), "2" (*cx));
348 *bx &= maskebx;
349 *cx &= maskecx;
350 *cx |= setecx;
351 *dx &= maskedx;
355 static bool __init xen_check_mwait(void)
357 #ifdef CONFIG_ACPI
358 struct xen_platform_op op = {
359 .cmd = XENPF_set_processor_pminfo,
360 .u.set_pminfo.id = -1,
361 .u.set_pminfo.type = XEN_PM_PDC,
363 uint32_t buf[3];
364 unsigned int ax, bx, cx, dx;
365 unsigned int mwait_mask;
367 /* We need to determine whether it is OK to expose the MWAIT
368 * capability to the kernel to harvest deeper than C3 states from ACPI
369 * _CST using the processor_harvest_xen.c module. For this to work, we
370 * need to gather the MWAIT_LEAF values (which the cstate.c code
371 * checks against). The hypervisor won't expose the MWAIT flag because
372 * it would break backwards compatibility; so we will find out directly
373 * from the hardware and hypercall.
375 if (!xen_initial_domain())
376 return false;
379 * When running under platform earlier than Xen4.2, do not expose
380 * mwait, to avoid the risk of loading native acpi pad driver
382 if (!xen_running_on_version_or_later(4, 2))
383 return false;
385 ax = 1;
386 cx = 0;
388 native_cpuid(&ax, &bx, &cx, &dx);
390 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
391 (1 << (X86_FEATURE_MWAIT % 32));
393 if ((cx & mwait_mask) != mwait_mask)
394 return false;
396 /* We need to emulate the MWAIT_LEAF and for that we need both
397 * ecx and edx. The hypercall provides only partial information.
400 ax = CPUID_MWAIT_LEAF;
401 bx = 0;
402 cx = 0;
403 dx = 0;
405 native_cpuid(&ax, &bx, &cx, &dx);
407 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
408 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
410 buf[0] = ACPI_PDC_REVISION_ID;
411 buf[1] = 1;
412 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
414 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
416 if ((HYPERVISOR_dom0_op(&op) == 0) &&
417 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
418 cpuid_leaf5_ecx_val = cx;
419 cpuid_leaf5_edx_val = dx;
421 return true;
422 #else
423 return false;
424 #endif
426 static void __init xen_init_cpuid_mask(void)
428 unsigned int ax, bx, cx, dx;
429 unsigned int xsave_mask;
431 cpuid_leaf1_edx_mask =
432 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
433 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
435 if (!xen_initial_domain())
436 cpuid_leaf1_edx_mask &=
437 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
439 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
441 ax = 1;
442 cx = 0;
443 cpuid(1, &ax, &bx, &cx, &dx);
445 xsave_mask =
446 (1 << (X86_FEATURE_XSAVE % 32)) |
447 (1 << (X86_FEATURE_OSXSAVE % 32));
449 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
450 if ((cx & xsave_mask) != xsave_mask)
451 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
452 if (xen_check_mwait())
453 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
456 static void xen_set_debugreg(int reg, unsigned long val)
458 HYPERVISOR_set_debugreg(reg, val);
461 static unsigned long xen_get_debugreg(int reg)
463 return HYPERVISOR_get_debugreg(reg);
466 static void xen_end_context_switch(struct task_struct *next)
468 xen_mc_flush();
469 paravirt_end_context_switch(next);
472 static unsigned long xen_store_tr(void)
474 return 0;
478 * Set the page permissions for a particular virtual address. If the
479 * address is a vmalloc mapping (or other non-linear mapping), then
480 * find the linear mapping of the page and also set its protections to
481 * match.
483 static void set_aliased_prot(void *v, pgprot_t prot)
485 int level;
486 pte_t *ptep;
487 pte_t pte;
488 unsigned long pfn;
489 struct page *page;
490 unsigned char dummy;
492 ptep = lookup_address((unsigned long)v, &level);
493 BUG_ON(ptep == NULL);
495 pfn = pte_pfn(*ptep);
496 page = pfn_to_page(pfn);
498 pte = pfn_pte(pfn, prot);
501 * Careful: update_va_mapping() will fail if the virtual address
502 * we're poking isn't populated in the page tables. We don't
503 * need to worry about the direct map (that's always in the page
504 * tables), but we need to be careful about vmap space. In
505 * particular, the top level page table can lazily propagate
506 * entries between processes, so if we've switched mms since we
507 * vmapped the target in the first place, we might not have the
508 * top-level page table entry populated.
510 * We disable preemption because we want the same mm active when
511 * we probe the target and when we issue the hypercall. We'll
512 * have the same nominal mm, but if we're a kernel thread, lazy
513 * mm dropping could change our pgd.
515 * Out of an abundance of caution, this uses __get_user() to fault
516 * in the target address just in case there's some obscure case
517 * in which the target address isn't readable.
520 preempt_disable();
522 pagefault_disable(); /* Avoid warnings due to being atomic. */
523 __get_user(dummy, (unsigned char __user __force *)v);
524 pagefault_enable();
526 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
527 BUG();
529 if (!PageHighMem(page)) {
530 void *av = __va(PFN_PHYS(pfn));
532 if (av != v)
533 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
534 BUG();
535 } else
536 kmap_flush_unused();
538 preempt_enable();
541 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
543 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
544 int i;
547 * We need to mark the all aliases of the LDT pages RO. We
548 * don't need to call vm_flush_aliases(), though, since that's
549 * only responsible for flushing aliases out the TLBs, not the
550 * page tables, and Xen will flush the TLB for us if needed.
552 * To avoid confusing future readers: none of this is necessary
553 * to load the LDT. The hypervisor only checks this when the
554 * LDT is faulted in due to subsequent descriptor access.
557 for(i = 0; i < entries; i += entries_per_page)
558 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
561 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
563 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
564 int i;
566 for(i = 0; i < entries; i += entries_per_page)
567 set_aliased_prot(ldt + i, PAGE_KERNEL);
570 static void xen_set_ldt(const void *addr, unsigned entries)
572 struct mmuext_op *op;
573 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
575 trace_xen_cpu_set_ldt(addr, entries);
577 op = mcs.args;
578 op->cmd = MMUEXT_SET_LDT;
579 op->arg1.linear_addr = (unsigned long)addr;
580 op->arg2.nr_ents = entries;
582 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
584 xen_mc_issue(PARAVIRT_LAZY_CPU);
587 static void xen_load_gdt(const struct desc_ptr *dtr)
589 unsigned long va = dtr->address;
590 unsigned int size = dtr->size + 1;
591 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
592 unsigned long frames[pages];
593 int f;
596 * A GDT can be up to 64k in size, which corresponds to 8192
597 * 8-byte entries, or 16 4k pages..
600 BUG_ON(size > 65536);
601 BUG_ON(va & ~PAGE_MASK);
603 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
604 int level;
605 pte_t *ptep;
606 unsigned long pfn, mfn;
607 void *virt;
610 * The GDT is per-cpu and is in the percpu data area.
611 * That can be virtually mapped, so we need to do a
612 * page-walk to get the underlying MFN for the
613 * hypercall. The page can also be in the kernel's
614 * linear range, so we need to RO that mapping too.
616 ptep = lookup_address(va, &level);
617 BUG_ON(ptep == NULL);
619 pfn = pte_pfn(*ptep);
620 mfn = pfn_to_mfn(pfn);
621 virt = __va(PFN_PHYS(pfn));
623 frames[f] = mfn;
625 make_lowmem_page_readonly((void *)va);
626 make_lowmem_page_readonly(virt);
629 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
630 BUG();
634 * load_gdt for early boot, when the gdt is only mapped once
636 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
638 unsigned long va = dtr->address;
639 unsigned int size = dtr->size + 1;
640 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
641 unsigned long frames[pages];
642 int f;
645 * A GDT can be up to 64k in size, which corresponds to 8192
646 * 8-byte entries, or 16 4k pages..
649 BUG_ON(size > 65536);
650 BUG_ON(va & ~PAGE_MASK);
652 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
653 pte_t pte;
654 unsigned long pfn, mfn;
656 pfn = virt_to_pfn(va);
657 mfn = pfn_to_mfn(pfn);
659 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
661 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
662 BUG();
664 frames[f] = mfn;
667 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
668 BUG();
671 static inline bool desc_equal(const struct desc_struct *d1,
672 const struct desc_struct *d2)
674 return d1->a == d2->a && d1->b == d2->b;
677 static void load_TLS_descriptor(struct thread_struct *t,
678 unsigned int cpu, unsigned int i)
680 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
681 struct desc_struct *gdt;
682 xmaddr_t maddr;
683 struct multicall_space mc;
685 if (desc_equal(shadow, &t->tls_array[i]))
686 return;
688 *shadow = t->tls_array[i];
690 gdt = get_cpu_gdt_table(cpu);
691 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
692 mc = __xen_mc_entry(0);
694 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
697 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
700 * XXX sleazy hack: If we're being called in a lazy-cpu zone
701 * and lazy gs handling is enabled, it means we're in a
702 * context switch, and %gs has just been saved. This means we
703 * can zero it out to prevent faults on exit from the
704 * hypervisor if the next process has no %gs. Either way, it
705 * has been saved, and the new value will get loaded properly.
706 * This will go away as soon as Xen has been modified to not
707 * save/restore %gs for normal hypercalls.
709 * On x86_64, this hack is not used for %gs, because gs points
710 * to KERNEL_GS_BASE (and uses it for PDA references), so we
711 * must not zero %gs on x86_64
713 * For x86_64, we need to zero %fs, otherwise we may get an
714 * exception between the new %fs descriptor being loaded and
715 * %fs being effectively cleared at __switch_to().
717 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
718 #ifdef CONFIG_X86_32
719 lazy_load_gs(0);
720 #else
721 loadsegment(fs, 0);
722 #endif
725 xen_mc_batch();
727 load_TLS_descriptor(t, cpu, 0);
728 load_TLS_descriptor(t, cpu, 1);
729 load_TLS_descriptor(t, cpu, 2);
731 xen_mc_issue(PARAVIRT_LAZY_CPU);
734 #ifdef CONFIG_X86_64
735 static void xen_load_gs_index(unsigned int idx)
737 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
738 BUG();
740 #endif
742 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
743 const void *ptr)
745 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
746 u64 entry = *(u64 *)ptr;
748 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
750 preempt_disable();
752 xen_mc_flush();
753 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
754 BUG();
756 preempt_enable();
759 static int cvt_gate_to_trap(int vector, const gate_desc *val,
760 struct trap_info *info)
762 unsigned long addr;
764 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
765 return 0;
767 info->vector = vector;
769 addr = gate_offset(*val);
770 #ifdef CONFIG_X86_64
772 * Look for known traps using IST, and substitute them
773 * appropriately. The debugger ones are the only ones we care
774 * about. Xen will handle faults like double_fault,
775 * so we should never see them. Warn if
776 * there's an unexpected IST-using fault handler.
778 if (addr == (unsigned long)debug)
779 addr = (unsigned long)xen_debug;
780 else if (addr == (unsigned long)int3)
781 addr = (unsigned long)xen_int3;
782 else if (addr == (unsigned long)stack_segment)
783 addr = (unsigned long)xen_stack_segment;
784 else if (addr == (unsigned long)double_fault) {
785 /* Don't need to handle these */
786 return 0;
787 #ifdef CONFIG_X86_MCE
788 } else if (addr == (unsigned long)machine_check) {
790 * when xen hypervisor inject vMCE to guest,
791 * use native mce handler to handle it
794 #endif
795 } else if (addr == (unsigned long)nmi)
797 * Use the native version as well.
800 else {
801 /* Some other trap using IST? */
802 if (WARN_ON(val->ist != 0))
803 return 0;
805 #endif /* CONFIG_X86_64 */
806 info->address = addr;
808 info->cs = gate_segment(*val);
809 info->flags = val->dpl;
810 /* interrupt gates clear IF */
811 if (val->type == GATE_INTERRUPT)
812 info->flags |= 1 << 2;
814 return 1;
817 /* Locations of each CPU's IDT */
818 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
820 /* Set an IDT entry. If the entry is part of the current IDT, then
821 also update Xen. */
822 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
824 unsigned long p = (unsigned long)&dt[entrynum];
825 unsigned long start, end;
827 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
829 preempt_disable();
831 start = __this_cpu_read(idt_desc.address);
832 end = start + __this_cpu_read(idt_desc.size) + 1;
834 xen_mc_flush();
836 native_write_idt_entry(dt, entrynum, g);
838 if (p >= start && (p + 8) <= end) {
839 struct trap_info info[2];
841 info[1].address = 0;
843 if (cvt_gate_to_trap(entrynum, g, &info[0]))
844 if (HYPERVISOR_set_trap_table(info))
845 BUG();
848 preempt_enable();
851 static void xen_convert_trap_info(const struct desc_ptr *desc,
852 struct trap_info *traps)
854 unsigned in, out, count;
856 count = (desc->size+1) / sizeof(gate_desc);
857 BUG_ON(count > 256);
859 for (in = out = 0; in < count; in++) {
860 gate_desc *entry = (gate_desc*)(desc->address) + in;
862 if (cvt_gate_to_trap(in, entry, &traps[out]))
863 out++;
865 traps[out].address = 0;
868 void xen_copy_trap_info(struct trap_info *traps)
870 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
872 xen_convert_trap_info(desc, traps);
875 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
876 hold a spinlock to protect the static traps[] array (static because
877 it avoids allocation, and saves stack space). */
878 static void xen_load_idt(const struct desc_ptr *desc)
880 static DEFINE_SPINLOCK(lock);
881 static struct trap_info traps[257];
883 trace_xen_cpu_load_idt(desc);
885 spin_lock(&lock);
887 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
889 xen_convert_trap_info(desc, traps);
891 xen_mc_flush();
892 if (HYPERVISOR_set_trap_table(traps))
893 BUG();
895 spin_unlock(&lock);
898 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
899 they're handled differently. */
900 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
901 const void *desc, int type)
903 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
905 preempt_disable();
907 switch (type) {
908 case DESC_LDT:
909 case DESC_TSS:
910 /* ignore */
911 break;
913 default: {
914 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
916 xen_mc_flush();
917 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
918 BUG();
923 preempt_enable();
927 * Version of write_gdt_entry for use at early boot-time needed to
928 * update an entry as simply as possible.
930 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
931 const void *desc, int type)
933 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
935 switch (type) {
936 case DESC_LDT:
937 case DESC_TSS:
938 /* ignore */
939 break;
941 default: {
942 xmaddr_t maddr = virt_to_machine(&dt[entry]);
944 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
945 dt[entry] = *(struct desc_struct *)desc;
951 static void xen_load_sp0(struct tss_struct *tss,
952 struct thread_struct *thread)
954 struct multicall_space mcs;
956 mcs = xen_mc_entry(0);
957 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
958 xen_mc_issue(PARAVIRT_LAZY_CPU);
959 tss->x86_tss.sp0 = thread->sp0;
962 static void xen_set_iopl_mask(unsigned mask)
964 struct physdev_set_iopl set_iopl;
966 /* Force the change at ring 0. */
967 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
968 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
971 static void xen_io_delay(void)
975 static void xen_clts(void)
977 struct multicall_space mcs;
979 mcs = xen_mc_entry(0);
981 MULTI_fpu_taskswitch(mcs.mc, 0);
983 xen_mc_issue(PARAVIRT_LAZY_CPU);
986 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
988 static unsigned long xen_read_cr0(void)
990 unsigned long cr0 = this_cpu_read(xen_cr0_value);
992 if (unlikely(cr0 == 0)) {
993 cr0 = native_read_cr0();
994 this_cpu_write(xen_cr0_value, cr0);
997 return cr0;
1000 static void xen_write_cr0(unsigned long cr0)
1002 struct multicall_space mcs;
1004 this_cpu_write(xen_cr0_value, cr0);
1006 /* Only pay attention to cr0.TS; everything else is
1007 ignored. */
1008 mcs = xen_mc_entry(0);
1010 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1012 xen_mc_issue(PARAVIRT_LAZY_CPU);
1015 static void xen_write_cr4(unsigned long cr4)
1017 cr4 &= ~X86_CR4_PGE;
1018 cr4 &= ~X86_CR4_PSE;
1020 native_write_cr4(cr4);
1022 #ifdef CONFIG_X86_64
1023 static inline unsigned long xen_read_cr8(void)
1025 return 0;
1027 static inline void xen_write_cr8(unsigned long val)
1029 BUG_ON(val);
1031 #endif
1033 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1035 u64 val;
1037 val = native_read_msr_safe(msr, err);
1038 switch (msr) {
1039 case MSR_IA32_APICBASE:
1040 #ifdef CONFIG_X86_X2APIC
1041 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1042 #endif
1043 val &= ~X2APIC_ENABLE;
1044 break;
1046 return val;
1049 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1051 int ret;
1053 ret = 0;
1055 switch (msr) {
1056 #ifdef CONFIG_X86_64
1057 unsigned which;
1058 u64 base;
1060 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1061 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1062 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1064 set:
1065 base = ((u64)high << 32) | low;
1066 if (HYPERVISOR_set_segment_base(which, base) != 0)
1067 ret = -EIO;
1068 break;
1069 #endif
1071 case MSR_STAR:
1072 case MSR_CSTAR:
1073 case MSR_LSTAR:
1074 case MSR_SYSCALL_MASK:
1075 case MSR_IA32_SYSENTER_CS:
1076 case MSR_IA32_SYSENTER_ESP:
1077 case MSR_IA32_SYSENTER_EIP:
1078 /* Fast syscall setup is all done in hypercalls, so
1079 these are all ignored. Stub them out here to stop
1080 Xen console noise. */
1082 default:
1083 ret = native_write_msr_safe(msr, low, high);
1086 return ret;
1089 void xen_setup_shared_info(void)
1091 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1092 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1093 xen_start_info->shared_info);
1095 HYPERVISOR_shared_info =
1096 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1097 } else
1098 HYPERVISOR_shared_info =
1099 (struct shared_info *)__va(xen_start_info->shared_info);
1101 #ifndef CONFIG_SMP
1102 /* In UP this is as good a place as any to set up shared info */
1103 xen_setup_vcpu_info_placement();
1104 #endif
1106 xen_setup_mfn_list_list();
1109 /* This is called once we have the cpu_possible_mask */
1110 void xen_setup_vcpu_info_placement(void)
1112 int cpu;
1114 for_each_possible_cpu(cpu)
1115 xen_vcpu_setup(cpu);
1117 /* xen_vcpu_setup managed to place the vcpu_info within the
1118 * percpu area for all cpus, so make use of it. Note that for
1119 * PVH we want to use native IRQ mechanism. */
1120 if (have_vcpu_info_placement && !xen_pvh_domain()) {
1121 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1122 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1123 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1124 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1125 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1129 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1130 unsigned long addr, unsigned len)
1132 char *start, *end, *reloc;
1133 unsigned ret;
1135 start = end = reloc = NULL;
1137 #define SITE(op, x) \
1138 case PARAVIRT_PATCH(op.x): \
1139 if (have_vcpu_info_placement) { \
1140 start = (char *)xen_##x##_direct; \
1141 end = xen_##x##_direct_end; \
1142 reloc = xen_##x##_direct_reloc; \
1144 goto patch_site
1146 switch (type) {
1147 SITE(pv_irq_ops, irq_enable);
1148 SITE(pv_irq_ops, irq_disable);
1149 SITE(pv_irq_ops, save_fl);
1150 SITE(pv_irq_ops, restore_fl);
1151 #undef SITE
1153 patch_site:
1154 if (start == NULL || (end-start) > len)
1155 goto default_patch;
1157 ret = paravirt_patch_insns(insnbuf, len, start, end);
1159 /* Note: because reloc is assigned from something that
1160 appears to be an array, gcc assumes it's non-null,
1161 but doesn't know its relationship with start and
1162 end. */
1163 if (reloc > start && reloc < end) {
1164 int reloc_off = reloc - start;
1165 long *relocp = (long *)(insnbuf + reloc_off);
1166 long delta = start - (char *)addr;
1168 *relocp += delta;
1170 break;
1172 default_patch:
1173 default:
1174 ret = paravirt_patch_default(type, clobbers, insnbuf,
1175 addr, len);
1176 break;
1179 return ret;
1182 static const struct pv_info xen_info __initconst = {
1183 .paravirt_enabled = 1,
1184 .shared_kernel_pmd = 0,
1186 #ifdef CONFIG_X86_64
1187 .extra_user_64bit_cs = FLAT_USER_CS64,
1188 #endif
1190 .name = "Xen",
1193 static const struct pv_init_ops xen_init_ops __initconst = {
1194 .patch = xen_patch,
1197 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1198 .cpuid = xen_cpuid,
1200 .set_debugreg = xen_set_debugreg,
1201 .get_debugreg = xen_get_debugreg,
1203 .clts = xen_clts,
1205 .read_cr0 = xen_read_cr0,
1206 .write_cr0 = xen_write_cr0,
1208 .read_cr4 = native_read_cr4,
1209 .read_cr4_safe = native_read_cr4_safe,
1210 .write_cr4 = xen_write_cr4,
1212 #ifdef CONFIG_X86_64
1213 .read_cr8 = xen_read_cr8,
1214 .write_cr8 = xen_write_cr8,
1215 #endif
1217 .wbinvd = native_wbinvd,
1219 .read_msr = xen_read_msr_safe,
1220 .write_msr = xen_write_msr_safe,
1222 .read_tsc = native_read_tsc,
1223 .read_pmc = native_read_pmc,
1225 .read_tscp = native_read_tscp,
1227 .iret = xen_iret,
1228 .irq_enable_sysexit = xen_sysexit,
1229 #ifdef CONFIG_X86_64
1230 .usergs_sysret32 = xen_sysret32,
1231 .usergs_sysret64 = xen_sysret64,
1232 #endif
1234 .load_tr_desc = paravirt_nop,
1235 .set_ldt = xen_set_ldt,
1236 .load_gdt = xen_load_gdt,
1237 .load_idt = xen_load_idt,
1238 .load_tls = xen_load_tls,
1239 #ifdef CONFIG_X86_64
1240 .load_gs_index = xen_load_gs_index,
1241 #endif
1243 .alloc_ldt = xen_alloc_ldt,
1244 .free_ldt = xen_free_ldt,
1246 .store_idt = native_store_idt,
1247 .store_tr = xen_store_tr,
1249 .write_ldt_entry = xen_write_ldt_entry,
1250 .write_gdt_entry = xen_write_gdt_entry,
1251 .write_idt_entry = xen_write_idt_entry,
1252 .load_sp0 = xen_load_sp0,
1254 .set_iopl_mask = xen_set_iopl_mask,
1255 .io_delay = xen_io_delay,
1257 /* Xen takes care of %gs when switching to usermode for us */
1258 .swapgs = paravirt_nop,
1260 .start_context_switch = paravirt_start_context_switch,
1261 .end_context_switch = xen_end_context_switch,
1264 static const struct pv_apic_ops xen_apic_ops __initconst = {
1265 #ifdef CONFIG_X86_LOCAL_APIC
1266 .startup_ipi_hook = paravirt_nop,
1267 #endif
1270 static void xen_reboot(int reason)
1272 struct sched_shutdown r = { .reason = reason };
1274 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1275 BUG();
1278 static void xen_restart(char *msg)
1280 xen_reboot(SHUTDOWN_reboot);
1283 static void xen_emergency_restart(void)
1285 xen_reboot(SHUTDOWN_reboot);
1288 static void xen_machine_halt(void)
1290 xen_reboot(SHUTDOWN_poweroff);
1293 static void xen_machine_power_off(void)
1295 if (pm_power_off)
1296 pm_power_off();
1297 xen_reboot(SHUTDOWN_poweroff);
1300 static void xen_crash_shutdown(struct pt_regs *regs)
1302 xen_reboot(SHUTDOWN_crash);
1305 static int
1306 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1308 xen_reboot(SHUTDOWN_crash);
1309 return NOTIFY_DONE;
1312 static struct notifier_block xen_panic_block = {
1313 .notifier_call= xen_panic_event,
1314 .priority = INT_MIN
1317 int xen_panic_handler_init(void)
1319 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1320 return 0;
1323 static const struct machine_ops xen_machine_ops __initconst = {
1324 .restart = xen_restart,
1325 .halt = xen_machine_halt,
1326 .power_off = xen_machine_power_off,
1327 .shutdown = xen_machine_halt,
1328 .crash_shutdown = xen_crash_shutdown,
1329 .emergency_restart = xen_emergency_restart,
1332 static unsigned char xen_get_nmi_reason(void)
1334 unsigned char reason = 0;
1336 /* Construct a value which looks like it came from port 0x61. */
1337 if (test_bit(_XEN_NMIREASON_io_error,
1338 &HYPERVISOR_shared_info->arch.nmi_reason))
1339 reason |= NMI_REASON_IOCHK;
1340 if (test_bit(_XEN_NMIREASON_pci_serr,
1341 &HYPERVISOR_shared_info->arch.nmi_reason))
1342 reason |= NMI_REASON_SERR;
1344 return reason;
1347 static void __init xen_boot_params_init_edd(void)
1349 #if IS_ENABLED(CONFIG_EDD)
1350 struct xen_platform_op op;
1351 struct edd_info *edd_info;
1352 u32 *mbr_signature;
1353 unsigned nr;
1354 int ret;
1356 edd_info = boot_params.eddbuf;
1357 mbr_signature = boot_params.edd_mbr_sig_buffer;
1359 op.cmd = XENPF_firmware_info;
1361 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1362 for (nr = 0; nr < EDDMAXNR; nr++) {
1363 struct edd_info *info = edd_info + nr;
1365 op.u.firmware_info.index = nr;
1366 info->params.length = sizeof(info->params);
1367 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1368 &info->params);
1369 ret = HYPERVISOR_dom0_op(&op);
1370 if (ret)
1371 break;
1373 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1374 C(device);
1375 C(version);
1376 C(interface_support);
1377 C(legacy_max_cylinder);
1378 C(legacy_max_head);
1379 C(legacy_sectors_per_track);
1380 #undef C
1382 boot_params.eddbuf_entries = nr;
1384 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1385 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1386 op.u.firmware_info.index = nr;
1387 ret = HYPERVISOR_dom0_op(&op);
1388 if (ret)
1389 break;
1390 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1392 boot_params.edd_mbr_sig_buf_entries = nr;
1393 #endif
1397 * Set up the GDT and segment registers for -fstack-protector. Until
1398 * we do this, we have to be careful not to call any stack-protected
1399 * function, which is most of the kernel.
1401 * Note, that it is __ref because the only caller of this after init
1402 * is PVH which is not going to use xen_load_gdt_boot or other
1403 * __init functions.
1405 static void __ref xen_setup_gdt(int cpu)
1407 if (xen_feature(XENFEAT_auto_translated_physmap)) {
1408 #ifdef CONFIG_X86_64
1409 unsigned long dummy;
1411 load_percpu_segment(cpu); /* We need to access per-cpu area */
1412 switch_to_new_gdt(cpu); /* GDT and GS set */
1414 /* We are switching of the Xen provided GDT to our HVM mode
1415 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1416 * and we are jumping to reload it.
1418 asm volatile ("pushq %0\n"
1419 "leaq 1f(%%rip),%0\n"
1420 "pushq %0\n"
1421 "lretq\n"
1422 "1:\n"
1423 : "=&r" (dummy) : "0" (__KERNEL_CS));
1426 * While not needed, we also set the %es, %ds, and %fs
1427 * to zero. We don't care about %ss as it is NULL.
1428 * Strictly speaking this is not needed as Xen zeros those
1429 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1431 * Linux zeros them in cpu_init() and in secondary_startup_64
1432 * (for BSP).
1434 loadsegment(es, 0);
1435 loadsegment(ds, 0);
1436 loadsegment(fs, 0);
1437 #else
1438 /* PVH: TODO Implement. */
1439 BUG();
1440 #endif
1441 return; /* PVH does not need any PV GDT ops. */
1443 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1444 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1446 setup_stack_canary_segment(0);
1447 switch_to_new_gdt(0);
1449 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1450 pv_cpu_ops.load_gdt = xen_load_gdt;
1453 #ifdef CONFIG_XEN_PVH
1455 * A PV guest starts with default flags that are not set for PVH, set them
1456 * here asap.
1458 static void xen_pvh_set_cr_flags(int cpu)
1461 /* Some of these are setup in 'secondary_startup_64'. The others:
1462 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1463 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1464 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1466 if (!cpu)
1467 return;
1469 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1470 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1472 if (cpu_has_pse)
1473 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1475 if (cpu_has_pge)
1476 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1480 * Note, that it is ref - because the only caller of this after init
1481 * is PVH which is not going to use xen_load_gdt_boot or other
1482 * __init functions.
1484 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1486 xen_setup_gdt(cpu);
1487 xen_pvh_set_cr_flags(cpu);
1490 static void __init xen_pvh_early_guest_init(void)
1492 if (!xen_feature(XENFEAT_auto_translated_physmap))
1493 return;
1495 if (!xen_feature(XENFEAT_hvm_callback_vector))
1496 return;
1498 xen_have_vector_callback = 1;
1500 xen_pvh_early_cpu_init(0, false);
1501 xen_pvh_set_cr_flags(0);
1503 #ifdef CONFIG_X86_32
1504 BUG(); /* PVH: Implement proper support. */
1505 #endif
1507 #endif /* CONFIG_XEN_PVH */
1509 /* First C function to be called on Xen boot */
1510 asmlinkage __visible void __init xen_start_kernel(void)
1512 struct physdev_set_iopl set_iopl;
1513 unsigned long initrd_start = 0;
1514 int rc;
1516 if (!xen_start_info)
1517 return;
1519 xen_domain_type = XEN_PV_DOMAIN;
1521 xen_setup_features();
1522 #ifdef CONFIG_XEN_PVH
1523 xen_pvh_early_guest_init();
1524 #endif
1525 xen_setup_machphys_mapping();
1527 /* Install Xen paravirt ops */
1528 pv_info = xen_info;
1529 pv_init_ops = xen_init_ops;
1530 pv_apic_ops = xen_apic_ops;
1531 if (!xen_pvh_domain()) {
1532 pv_cpu_ops = xen_cpu_ops;
1534 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1537 if (xen_feature(XENFEAT_auto_translated_physmap))
1538 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1539 else
1540 x86_init.resources.memory_setup = xen_memory_setup;
1541 x86_init.oem.arch_setup = xen_arch_setup;
1542 x86_init.oem.banner = xen_banner;
1544 xen_init_time_ops();
1547 * Set up some pagetable state before starting to set any ptes.
1550 xen_init_mmu_ops();
1552 /* Prevent unwanted bits from being set in PTEs. */
1553 __supported_pte_mask &= ~_PAGE_GLOBAL;
1556 * Prevent page tables from being allocated in highmem, even
1557 * if CONFIG_HIGHPTE is enabled.
1559 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1561 /* Work out if we support NX */
1562 x86_configure_nx();
1564 /* Get mfn list */
1565 xen_build_dynamic_phys_to_machine();
1568 * Set up kernel GDT and segment registers, mainly so that
1569 * -fstack-protector code can be executed.
1571 xen_setup_gdt(0);
1573 xen_init_irq_ops();
1574 xen_init_cpuid_mask();
1576 #ifdef CONFIG_X86_LOCAL_APIC
1578 * set up the basic apic ops.
1580 xen_init_apic();
1581 #endif
1583 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1584 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1585 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1588 machine_ops = xen_machine_ops;
1591 * The only reliable way to retain the initial address of the
1592 * percpu gdt_page is to remember it here, so we can go and
1593 * mark it RW later, when the initial percpu area is freed.
1595 xen_initial_gdt = &per_cpu(gdt_page, 0);
1597 xen_smp_init();
1599 #ifdef CONFIG_ACPI_NUMA
1601 * The pages we from Xen are not related to machine pages, so
1602 * any NUMA information the kernel tries to get from ACPI will
1603 * be meaningless. Prevent it from trying.
1605 acpi_numa = -1;
1606 #endif
1607 /* Don't do the full vcpu_info placement stuff until we have a
1608 possible map and a non-dummy shared_info. */
1609 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1611 local_irq_disable();
1612 early_boot_irqs_disabled = true;
1614 xen_raw_console_write("mapping kernel into physical memory\n");
1615 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1618 * Modify the cache mode translation tables to match Xen's PAT
1619 * configuration.
1622 pat_init_cache_modes();
1624 /* keep using Xen gdt for now; no urgent need to change it */
1626 #ifdef CONFIG_X86_32
1627 pv_info.kernel_rpl = 1;
1628 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1629 pv_info.kernel_rpl = 0;
1630 #else
1631 pv_info.kernel_rpl = 0;
1632 #endif
1633 /* set the limit of our address space */
1634 xen_reserve_top();
1636 /* PVH: runs at default kernel iopl of 0 */
1637 if (!xen_pvh_domain()) {
1639 * We used to do this in xen_arch_setup, but that is too late
1640 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1641 * early_amd_init which pokes 0xcf8 port.
1643 set_iopl.iopl = 1;
1644 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1645 if (rc != 0)
1646 xen_raw_printk("physdev_op failed %d\n", rc);
1649 #ifdef CONFIG_X86_32
1650 /* set up basic CPUID stuff */
1651 cpu_detect(&new_cpu_data);
1652 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1653 new_cpu_data.wp_works_ok = 1;
1654 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1655 #endif
1657 if (xen_start_info->mod_start) {
1658 if (xen_start_info->flags & SIF_MOD_START_PFN)
1659 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1660 else
1661 initrd_start = __pa(xen_start_info->mod_start);
1664 /* Poke various useful things into boot_params */
1665 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1666 boot_params.hdr.ramdisk_image = initrd_start;
1667 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1668 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1670 if (!xen_initial_domain()) {
1671 add_preferred_console("xenboot", 0, NULL);
1672 add_preferred_console("tty", 0, NULL);
1673 add_preferred_console("hvc", 0, NULL);
1674 if (pci_xen)
1675 x86_init.pci.arch_init = pci_xen_init;
1676 } else {
1677 const struct dom0_vga_console_info *info =
1678 (void *)((char *)xen_start_info +
1679 xen_start_info->console.dom0.info_off);
1680 struct xen_platform_op op = {
1681 .cmd = XENPF_firmware_info,
1682 .interface_version = XENPF_INTERFACE_VERSION,
1683 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1686 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1687 xen_start_info->console.domU.mfn = 0;
1688 xen_start_info->console.domU.evtchn = 0;
1690 if (HYPERVISOR_dom0_op(&op) == 0)
1691 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1693 /* Make sure ACS will be enabled */
1694 pci_request_acs();
1696 xen_acpi_sleep_register();
1698 /* Avoid searching for BIOS MP tables */
1699 x86_init.mpparse.find_smp_config = x86_init_noop;
1700 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1702 xen_boot_params_init_edd();
1704 #ifdef CONFIG_PCI
1705 /* PCI BIOS service won't work from a PV guest. */
1706 pci_probe &= ~PCI_PROBE_BIOS;
1707 #endif
1708 xen_raw_console_write("about to get started...\n");
1710 xen_setup_runstate_info(0);
1712 xen_efi_init();
1714 /* Start the world */
1715 #ifdef CONFIG_X86_32
1716 i386_start_kernel();
1717 #else
1718 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1719 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1720 #endif
1723 void __ref xen_hvm_init_shared_info(void)
1725 int cpu;
1726 struct xen_add_to_physmap xatp;
1727 static struct shared_info *shared_info_page = 0;
1729 if (!shared_info_page)
1730 shared_info_page = (struct shared_info *)
1731 extend_brk(PAGE_SIZE, PAGE_SIZE);
1732 xatp.domid = DOMID_SELF;
1733 xatp.idx = 0;
1734 xatp.space = XENMAPSPACE_shared_info;
1735 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1736 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1737 BUG();
1739 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1741 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1742 * page, we use it in the event channel upcall and in some pvclock
1743 * related functions. We don't need the vcpu_info placement
1744 * optimizations because we don't use any pv_mmu or pv_irq op on
1745 * HVM.
1746 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1747 * online but xen_hvm_init_shared_info is run at resume time too and
1748 * in that case multiple vcpus might be online. */
1749 for_each_online_cpu(cpu) {
1750 /* Leave it to be NULL. */
1751 if (cpu >= MAX_VIRT_CPUS)
1752 continue;
1753 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1757 #ifdef CONFIG_XEN_PVHVM
1758 static void __init init_hvm_pv_info(void)
1760 int major, minor;
1761 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1762 u64 pfn;
1764 base = xen_cpuid_base();
1765 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1767 major = eax >> 16;
1768 minor = eax & 0xffff;
1769 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1771 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1773 pfn = __pa(hypercall_page);
1774 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1776 xen_setup_features();
1778 pv_info.name = "Xen HVM";
1780 xen_domain_type = XEN_HVM_DOMAIN;
1783 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1784 void *hcpu)
1786 int cpu = (long)hcpu;
1787 switch (action) {
1788 case CPU_UP_PREPARE:
1789 xen_vcpu_setup(cpu);
1790 if (xen_have_vector_callback) {
1791 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1792 xen_setup_timer(cpu);
1794 break;
1795 default:
1796 break;
1798 return NOTIFY_OK;
1801 static struct notifier_block xen_hvm_cpu_notifier = {
1802 .notifier_call = xen_hvm_cpu_notify,
1805 #ifdef CONFIG_KEXEC
1806 static void xen_hvm_shutdown(void)
1808 native_machine_shutdown();
1809 if (kexec_in_progress)
1810 xen_reboot(SHUTDOWN_soft_reset);
1813 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1815 native_machine_crash_shutdown(regs);
1816 xen_reboot(SHUTDOWN_soft_reset);
1818 #endif
1820 static void __init xen_hvm_guest_init(void)
1822 if (xen_pv_domain())
1823 return;
1825 init_hvm_pv_info();
1827 xen_hvm_init_shared_info();
1829 xen_panic_handler_init();
1831 if (xen_feature(XENFEAT_hvm_callback_vector))
1832 xen_have_vector_callback = 1;
1833 xen_hvm_smp_init();
1834 register_cpu_notifier(&xen_hvm_cpu_notifier);
1835 xen_unplug_emulated_devices();
1836 x86_init.irqs.intr_init = xen_init_IRQ;
1837 xen_hvm_init_time_ops();
1838 xen_hvm_init_mmu_ops();
1839 #ifdef CONFIG_KEXEC
1840 machine_ops.shutdown = xen_hvm_shutdown;
1841 machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1842 #endif
1844 #endif
1846 static bool xen_nopv = false;
1847 static __init int xen_parse_nopv(char *arg)
1849 xen_nopv = true;
1850 return 0;
1852 early_param("xen_nopv", xen_parse_nopv);
1854 static uint32_t __init xen_platform(void)
1856 if (xen_nopv)
1857 return 0;
1859 return xen_cpuid_base();
1862 bool xen_hvm_need_lapic(void)
1864 if (xen_nopv)
1865 return false;
1866 if (xen_pv_domain())
1867 return false;
1868 if (!xen_hvm_domain())
1869 return false;
1870 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1871 return false;
1872 return true;
1874 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1876 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1878 if (xen_pv_domain())
1879 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1882 const struct hypervisor_x86 x86_hyper_xen = {
1883 .name = "Xen",
1884 .detect = xen_platform,
1885 #ifdef CONFIG_XEN_PVHVM
1886 .init_platform = xen_hvm_guest_init,
1887 #endif
1888 .x2apic_available = xen_x2apic_para_available,
1889 .set_cpu_features = xen_set_cpu_features,
1891 EXPORT_SYMBOL(x86_hyper_xen);