Linux 4.1.18
[linux/fpc-iii.git] / block / blk-mq.c
blob2dc1fd6c5bdb5eb92f68635717cda70a020f7170
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !q->mq_freeze_depth || blk_queue_dying(q));
93 if (blk_queue_dying(q))
94 return -ENODEV;
95 if (ret)
96 return ret;
100 static void blk_mq_queue_exit(struct request_queue *q)
102 percpu_ref_put(&q->mq_usage_counter);
105 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 struct request_queue *q =
108 container_of(ref, struct request_queue, mq_usage_counter);
110 wake_up_all(&q->mq_freeze_wq);
113 void blk_mq_freeze_queue_start(struct request_queue *q)
115 bool freeze;
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_hw_queues(q, false);
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
128 static void blk_mq_freeze_queue_wait(struct request_queue *q)
130 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
134 * Guarantee no request is in use, so we can change any data structure of
135 * the queue afterward.
137 void blk_mq_freeze_queue(struct request_queue *q)
139 blk_mq_freeze_queue_start(q);
140 blk_mq_freeze_queue_wait(q);
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
144 void blk_mq_unfreeze_queue(struct request_queue *q)
146 bool wake;
148 spin_lock_irq(q->queue_lock);
149 wake = !--q->mq_freeze_depth;
150 WARN_ON_ONCE(q->mq_freeze_depth < 0);
151 spin_unlock_irq(q->queue_lock);
152 if (wake) {
153 percpu_ref_reinit(&q->mq_usage_counter);
154 wake_up_all(&q->mq_freeze_wq);
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
159 void blk_mq_wake_waiters(struct request_queue *q)
161 struct blk_mq_hw_ctx *hctx;
162 unsigned int i;
164 queue_for_each_hw_ctx(q, hctx, i)
165 if (blk_mq_hw_queue_mapped(hctx))
166 blk_mq_tag_wakeup_all(hctx->tags, true);
169 * If we are called because the queue has now been marked as
170 * dying, we need to ensure that processes currently waiting on
171 * the queue are notified as well.
173 wake_up_all(&q->mq_freeze_wq);
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178 return blk_mq_has_free_tags(hctx->tags);
180 EXPORT_SYMBOL(blk_mq_can_queue);
182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183 struct request *rq, unsigned int rw_flags)
185 if (blk_queue_io_stat(q))
186 rw_flags |= REQ_IO_STAT;
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags |= rw_flags;
193 /* do not touch atomic flags, it needs atomic ops against the timer */
194 rq->cpu = -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->rq_disk = NULL;
198 rq->part = NULL;
199 rq->start_time = jiffies;
200 #ifdef CONFIG_BLK_CGROUP
201 rq->rl = NULL;
202 set_start_time_ns(rq);
203 rq->io_start_time_ns = 0;
204 #endif
205 rq->nr_phys_segments = 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 rq->nr_integrity_segments = 0;
208 #endif
209 rq->special = NULL;
210 /* tag was already set */
211 rq->errors = 0;
213 rq->cmd = rq->__cmd;
215 rq->extra_len = 0;
216 rq->sense_len = 0;
217 rq->resid_len = 0;
218 rq->sense = NULL;
220 INIT_LIST_HEAD(&rq->timeout_list);
221 rq->timeout = 0;
223 rq->end_io = NULL;
224 rq->end_io_data = NULL;
225 rq->next_rq = NULL;
227 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
230 static struct request *
231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
233 struct request *rq;
234 unsigned int tag;
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 rq = data->hctx->tags->rqs[tag];
240 if (blk_mq_tag_busy(data->hctx)) {
241 rq->cmd_flags = REQ_MQ_INFLIGHT;
242 atomic_inc(&data->hctx->nr_active);
245 rq->tag = tag;
246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247 return rq;
250 return NULL;
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254 bool reserved)
256 struct blk_mq_ctx *ctx;
257 struct blk_mq_hw_ctx *hctx;
258 struct request *rq;
259 struct blk_mq_alloc_data alloc_data;
260 int ret;
262 ret = blk_mq_queue_enter(q, gfp);
263 if (ret)
264 return ERR_PTR(ret);
266 ctx = blk_mq_get_ctx(q);
267 hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269 reserved, ctx, hctx);
271 rq = __blk_mq_alloc_request(&alloc_data, rw);
272 if (!rq && (gfp & __GFP_WAIT)) {
273 __blk_mq_run_hw_queue(hctx);
274 blk_mq_put_ctx(ctx);
276 ctx = blk_mq_get_ctx(q);
277 hctx = q->mq_ops->map_queue(q, ctx->cpu);
278 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279 hctx);
280 rq = __blk_mq_alloc_request(&alloc_data, rw);
281 ctx = alloc_data.ctx;
283 blk_mq_put_ctx(ctx);
284 if (!rq) {
285 blk_mq_queue_exit(q);
286 return ERR_PTR(-EWOULDBLOCK);
288 return rq;
290 EXPORT_SYMBOL(blk_mq_alloc_request);
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293 struct blk_mq_ctx *ctx, struct request *rq)
295 const int tag = rq->tag;
296 struct request_queue *q = rq->q;
298 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299 atomic_dec(&hctx->nr_active);
300 rq->cmd_flags = 0;
302 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304 blk_mq_queue_exit(q);
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 struct blk_mq_ctx *ctx = rq->mq_ctx;
311 ctx->rq_completed[rq_is_sync(rq)]++;
312 __blk_mq_free_request(hctx, ctx, rq);
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
317 void blk_mq_free_request(struct request *rq)
319 struct blk_mq_hw_ctx *hctx;
320 struct request_queue *q = rq->q;
322 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323 blk_mq_free_hctx_request(hctx, rq);
325 EXPORT_SYMBOL_GPL(blk_mq_free_request);
327 inline void __blk_mq_end_request(struct request *rq, int error)
329 blk_account_io_done(rq);
331 if (rq->end_io) {
332 rq->end_io(rq, error);
333 } else {
334 if (unlikely(blk_bidi_rq(rq)))
335 blk_mq_free_request(rq->next_rq);
336 blk_mq_free_request(rq);
339 EXPORT_SYMBOL(__blk_mq_end_request);
341 void blk_mq_end_request(struct request *rq, int error)
343 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 BUG();
345 __blk_mq_end_request(rq, error);
347 EXPORT_SYMBOL(blk_mq_end_request);
349 static void __blk_mq_complete_request_remote(void *data)
351 struct request *rq = data;
353 rq->q->softirq_done_fn(rq);
356 static void blk_mq_ipi_complete_request(struct request *rq)
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
359 bool shared = false;
360 int cpu;
362 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363 rq->q->softirq_done_fn(rq);
364 return;
367 cpu = get_cpu();
368 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369 shared = cpus_share_cache(cpu, ctx->cpu);
371 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372 rq->csd.func = __blk_mq_complete_request_remote;
373 rq->csd.info = rq;
374 rq->csd.flags = 0;
375 smp_call_function_single_async(ctx->cpu, &rq->csd);
376 } else {
377 rq->q->softirq_done_fn(rq);
379 put_cpu();
382 void __blk_mq_complete_request(struct request *rq)
384 struct request_queue *q = rq->q;
386 if (!q->softirq_done_fn)
387 blk_mq_end_request(rq, rq->errors);
388 else
389 blk_mq_ipi_complete_request(rq);
393 * blk_mq_complete_request - end I/O on a request
394 * @rq: the request being processed
396 * Description:
397 * Ends all I/O on a request. It does not handle partial completions.
398 * The actual completion happens out-of-order, through a IPI handler.
400 void blk_mq_complete_request(struct request *rq)
402 struct request_queue *q = rq->q;
404 if (unlikely(blk_should_fake_timeout(q)))
405 return;
406 if (!blk_mark_rq_complete(rq))
407 __blk_mq_complete_request(rq);
409 EXPORT_SYMBOL(blk_mq_complete_request);
411 int blk_mq_request_started(struct request *rq)
413 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
417 void blk_mq_start_request(struct request *rq)
419 struct request_queue *q = rq->q;
421 trace_block_rq_issue(q, rq);
423 rq->resid_len = blk_rq_bytes(rq);
424 if (unlikely(blk_bidi_rq(rq)))
425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
427 blk_add_timer(rq);
430 * Ensure that ->deadline is visible before set the started
431 * flag and clear the completed flag.
433 smp_mb__before_atomic();
436 * Mark us as started and clear complete. Complete might have been
437 * set if requeue raced with timeout, which then marked it as
438 * complete. So be sure to clear complete again when we start
439 * the request, otherwise we'll ignore the completion event.
441 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
446 if (q->dma_drain_size && blk_rq_bytes(rq)) {
448 * Make sure space for the drain appears. We know we can do
449 * this because max_hw_segments has been adjusted to be one
450 * fewer than the device can handle.
452 rq->nr_phys_segments++;
455 EXPORT_SYMBOL(blk_mq_start_request);
457 static void __blk_mq_requeue_request(struct request *rq)
459 struct request_queue *q = rq->q;
461 trace_block_rq_requeue(q, rq);
463 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 if (q->dma_drain_size && blk_rq_bytes(rq))
465 rq->nr_phys_segments--;
469 void blk_mq_requeue_request(struct request *rq)
471 __blk_mq_requeue_request(rq);
473 BUG_ON(blk_queued_rq(rq));
474 blk_mq_add_to_requeue_list(rq, true);
476 EXPORT_SYMBOL(blk_mq_requeue_request);
478 static void blk_mq_requeue_work(struct work_struct *work)
480 struct request_queue *q =
481 container_of(work, struct request_queue, requeue_work);
482 LIST_HEAD(rq_list);
483 struct request *rq, *next;
484 unsigned long flags;
486 spin_lock_irqsave(&q->requeue_lock, flags);
487 list_splice_init(&q->requeue_list, &rq_list);
488 spin_unlock_irqrestore(&q->requeue_lock, flags);
490 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492 continue;
494 rq->cmd_flags &= ~REQ_SOFTBARRIER;
495 list_del_init(&rq->queuelist);
496 blk_mq_insert_request(rq, true, false, false);
499 while (!list_empty(&rq_list)) {
500 rq = list_entry(rq_list.next, struct request, queuelist);
501 list_del_init(&rq->queuelist);
502 blk_mq_insert_request(rq, false, false, false);
506 * Use the start variant of queue running here, so that running
507 * the requeue work will kick stopped queues.
509 blk_mq_start_hw_queues(q);
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
514 struct request_queue *q = rq->q;
515 unsigned long flags;
518 * We abuse this flag that is otherwise used by the I/O scheduler to
519 * request head insertation from the workqueue.
521 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
523 spin_lock_irqsave(&q->requeue_lock, flags);
524 if (at_head) {
525 rq->cmd_flags |= REQ_SOFTBARRIER;
526 list_add(&rq->queuelist, &q->requeue_list);
527 } else {
528 list_add_tail(&rq->queuelist, &q->requeue_list);
530 spin_unlock_irqrestore(&q->requeue_lock, flags);
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
536 cancel_work_sync(&q->requeue_work);
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
540 void blk_mq_kick_requeue_list(struct request_queue *q)
542 kblockd_schedule_work(&q->requeue_work);
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
546 void blk_mq_abort_requeue_list(struct request_queue *q)
548 unsigned long flags;
549 LIST_HEAD(rq_list);
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
555 while (!list_empty(&rq_list)) {
556 struct request *rq;
558 rq = list_first_entry(&rq_list, struct request, queuelist);
559 list_del_init(&rq->queuelist);
560 rq->errors = -EIO;
561 blk_mq_end_request(rq, rq->errors);
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
566 static inline bool is_flush_request(struct request *rq,
567 struct blk_flush_queue *fq, unsigned int tag)
569 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570 fq->flush_rq->tag == tag);
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
575 struct request *rq = tags->rqs[tag];
576 /* mq_ctx of flush rq is always cloned from the corresponding req */
577 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
579 if (!is_flush_request(rq, fq, tag))
580 return rq;
582 return fq->flush_rq;
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
586 struct blk_mq_timeout_data {
587 unsigned long next;
588 unsigned int next_set;
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
593 struct blk_mq_ops *ops = req->q->mq_ops;
594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 return;
608 if (ops->timeout)
609 ret = ops->timeout(req, reserved);
611 switch (ret) {
612 case BLK_EH_HANDLED:
613 __blk_mq_complete_request(req);
614 break;
615 case BLK_EH_RESET_TIMER:
616 blk_add_timer(req);
617 blk_clear_rq_complete(req);
618 break;
619 case BLK_EH_NOT_HANDLED:
620 break;
621 default:
622 printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 break;
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 struct request *rq, void *priv, bool reserved)
630 struct blk_mq_timeout_data *data = priv;
632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
637 if (unlikely(blk_queue_dying(rq->q))) {
638 rq->errors = -EIO;
639 blk_mq_complete_request(rq);
641 return;
643 if (rq->cmd_flags & REQ_NO_TIMEOUT)
644 return;
646 if (time_after_eq(jiffies, rq->deadline)) {
647 if (!blk_mark_rq_complete(rq))
648 blk_mq_rq_timed_out(rq, reserved);
649 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
650 data->next = rq->deadline;
651 data->next_set = 1;
655 static void blk_mq_rq_timer(unsigned long priv)
657 struct request_queue *q = (struct request_queue *)priv;
658 struct blk_mq_timeout_data data = {
659 .next = 0,
660 .next_set = 0,
662 struct blk_mq_hw_ctx *hctx;
663 int i;
665 queue_for_each_hw_ctx(q, hctx, i) {
667 * If not software queues are currently mapped to this
668 * hardware queue, there's nothing to check
670 if (!blk_mq_hw_queue_mapped(hctx))
671 continue;
673 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
676 if (data.next_set) {
677 data.next = blk_rq_timeout(round_jiffies_up(data.next));
678 mod_timer(&q->timeout, data.next);
679 } else {
680 queue_for_each_hw_ctx(q, hctx, i) {
681 /* the hctx may be unmapped, so check it here */
682 if (blk_mq_hw_queue_mapped(hctx))
683 blk_mq_tag_idle(hctx);
689 * Reverse check our software queue for entries that we could potentially
690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691 * too much time checking for merges.
693 static bool blk_mq_attempt_merge(struct request_queue *q,
694 struct blk_mq_ctx *ctx, struct bio *bio)
696 struct request *rq;
697 int checked = 8;
699 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700 int el_ret;
702 if (!checked--)
703 break;
705 if (!blk_rq_merge_ok(rq, bio))
706 continue;
708 el_ret = blk_try_merge(rq, bio);
709 if (el_ret == ELEVATOR_BACK_MERGE) {
710 if (bio_attempt_back_merge(q, rq, bio)) {
711 ctx->rq_merged++;
712 return true;
714 break;
715 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
716 if (bio_attempt_front_merge(q, rq, bio)) {
717 ctx->rq_merged++;
718 return true;
720 break;
724 return false;
728 * Process software queues that have been marked busy, splicing them
729 * to the for-dispatch
731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
733 struct blk_mq_ctx *ctx;
734 int i;
736 for (i = 0; i < hctx->ctx_map.size; i++) {
737 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
738 unsigned int off, bit;
740 if (!bm->word)
741 continue;
743 bit = 0;
744 off = i * hctx->ctx_map.bits_per_word;
745 do {
746 bit = find_next_bit(&bm->word, bm->depth, bit);
747 if (bit >= bm->depth)
748 break;
750 ctx = hctx->ctxs[bit + off];
751 clear_bit(bit, &bm->word);
752 spin_lock(&ctx->lock);
753 list_splice_tail_init(&ctx->rq_list, list);
754 spin_unlock(&ctx->lock);
756 bit++;
757 } while (1);
762 * Run this hardware queue, pulling any software queues mapped to it in.
763 * Note that this function currently has various problems around ordering
764 * of IO. In particular, we'd like FIFO behaviour on handling existing
765 * items on the hctx->dispatch list. Ignore that for now.
767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
769 struct request_queue *q = hctx->queue;
770 struct request *rq;
771 LIST_HEAD(rq_list);
772 LIST_HEAD(driver_list);
773 struct list_head *dptr;
774 int queued;
776 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
778 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
779 return;
781 hctx->run++;
784 * Touch any software queue that has pending entries.
786 flush_busy_ctxs(hctx, &rq_list);
789 * If we have previous entries on our dispatch list, grab them
790 * and stuff them at the front for more fair dispatch.
792 if (!list_empty_careful(&hctx->dispatch)) {
793 spin_lock(&hctx->lock);
794 if (!list_empty(&hctx->dispatch))
795 list_splice_init(&hctx->dispatch, &rq_list);
796 spin_unlock(&hctx->lock);
800 * Start off with dptr being NULL, so we start the first request
801 * immediately, even if we have more pending.
803 dptr = NULL;
806 * Now process all the entries, sending them to the driver.
808 queued = 0;
809 while (!list_empty(&rq_list)) {
810 struct blk_mq_queue_data bd;
811 int ret;
813 rq = list_first_entry(&rq_list, struct request, queuelist);
814 list_del_init(&rq->queuelist);
816 bd.rq = rq;
817 bd.list = dptr;
818 bd.last = list_empty(&rq_list);
820 ret = q->mq_ops->queue_rq(hctx, &bd);
821 switch (ret) {
822 case BLK_MQ_RQ_QUEUE_OK:
823 queued++;
824 continue;
825 case BLK_MQ_RQ_QUEUE_BUSY:
826 list_add(&rq->queuelist, &rq_list);
827 __blk_mq_requeue_request(rq);
828 break;
829 default:
830 pr_err("blk-mq: bad return on queue: %d\n", ret);
831 case BLK_MQ_RQ_QUEUE_ERROR:
832 rq->errors = -EIO;
833 blk_mq_end_request(rq, rq->errors);
834 break;
837 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
838 break;
841 * We've done the first request. If we have more than 1
842 * left in the list, set dptr to defer issue.
844 if (!dptr && rq_list.next != rq_list.prev)
845 dptr = &driver_list;
848 if (!queued)
849 hctx->dispatched[0]++;
850 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
851 hctx->dispatched[ilog2(queued) + 1]++;
854 * Any items that need requeuing? Stuff them into hctx->dispatch,
855 * that is where we will continue on next queue run.
857 if (!list_empty(&rq_list)) {
858 spin_lock(&hctx->lock);
859 list_splice(&rq_list, &hctx->dispatch);
860 spin_unlock(&hctx->lock);
862 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
863 * it's possible the queue is stopped and restarted again
864 * before this. Queue restart will dispatch requests. And since
865 * requests in rq_list aren't added into hctx->dispatch yet,
866 * the requests in rq_list might get lost.
868 * blk_mq_run_hw_queue() already checks the STOPPED bit
870 blk_mq_run_hw_queue(hctx, true);
875 * It'd be great if the workqueue API had a way to pass
876 * in a mask and had some smarts for more clever placement.
877 * For now we just round-robin here, switching for every
878 * BLK_MQ_CPU_WORK_BATCH queued items.
880 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
882 if (hctx->queue->nr_hw_queues == 1)
883 return WORK_CPU_UNBOUND;
885 if (--hctx->next_cpu_batch <= 0) {
886 int cpu = hctx->next_cpu, next_cpu;
888 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
889 if (next_cpu >= nr_cpu_ids)
890 next_cpu = cpumask_first(hctx->cpumask);
892 hctx->next_cpu = next_cpu;
893 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
895 return cpu;
898 return hctx->next_cpu;
901 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
903 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
904 !blk_mq_hw_queue_mapped(hctx)))
905 return;
907 if (!async) {
908 int cpu = get_cpu();
909 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
910 __blk_mq_run_hw_queue(hctx);
911 put_cpu();
912 return;
915 put_cpu();
918 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
919 &hctx->run_work, 0);
922 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
924 struct blk_mq_hw_ctx *hctx;
925 int i;
927 queue_for_each_hw_ctx(q, hctx, i) {
928 if ((!blk_mq_hctx_has_pending(hctx) &&
929 list_empty_careful(&hctx->dispatch)) ||
930 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
931 continue;
933 blk_mq_run_hw_queue(hctx, async);
936 EXPORT_SYMBOL(blk_mq_run_hw_queues);
938 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
940 cancel_delayed_work(&hctx->run_work);
941 cancel_delayed_work(&hctx->delay_work);
942 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
944 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
946 void blk_mq_stop_hw_queues(struct request_queue *q)
948 struct blk_mq_hw_ctx *hctx;
949 int i;
951 queue_for_each_hw_ctx(q, hctx, i)
952 blk_mq_stop_hw_queue(hctx);
954 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
956 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
958 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
960 blk_mq_run_hw_queue(hctx, false);
962 EXPORT_SYMBOL(blk_mq_start_hw_queue);
964 void blk_mq_start_hw_queues(struct request_queue *q)
966 struct blk_mq_hw_ctx *hctx;
967 int i;
969 queue_for_each_hw_ctx(q, hctx, i)
970 blk_mq_start_hw_queue(hctx);
972 EXPORT_SYMBOL(blk_mq_start_hw_queues);
974 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
976 struct blk_mq_hw_ctx *hctx;
977 int i;
979 queue_for_each_hw_ctx(q, hctx, i) {
980 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
981 continue;
983 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
984 blk_mq_run_hw_queue(hctx, async);
987 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
989 static void blk_mq_run_work_fn(struct work_struct *work)
991 struct blk_mq_hw_ctx *hctx;
993 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
995 __blk_mq_run_hw_queue(hctx);
998 static void blk_mq_delay_work_fn(struct work_struct *work)
1000 struct blk_mq_hw_ctx *hctx;
1002 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1004 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1005 __blk_mq_run_hw_queue(hctx);
1008 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1010 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1011 return;
1013 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1014 &hctx->delay_work, msecs_to_jiffies(msecs));
1016 EXPORT_SYMBOL(blk_mq_delay_queue);
1018 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1019 struct request *rq, bool at_head)
1021 struct blk_mq_ctx *ctx = rq->mq_ctx;
1023 trace_block_rq_insert(hctx->queue, rq);
1025 if (at_head)
1026 list_add(&rq->queuelist, &ctx->rq_list);
1027 else
1028 list_add_tail(&rq->queuelist, &ctx->rq_list);
1030 blk_mq_hctx_mark_pending(hctx, ctx);
1033 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1034 bool async)
1036 struct request_queue *q = rq->q;
1037 struct blk_mq_hw_ctx *hctx;
1038 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1040 current_ctx = blk_mq_get_ctx(q);
1041 if (!cpu_online(ctx->cpu))
1042 rq->mq_ctx = ctx = current_ctx;
1044 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1046 spin_lock(&ctx->lock);
1047 __blk_mq_insert_request(hctx, rq, at_head);
1048 spin_unlock(&ctx->lock);
1050 if (run_queue)
1051 blk_mq_run_hw_queue(hctx, async);
1053 blk_mq_put_ctx(current_ctx);
1056 static void blk_mq_insert_requests(struct request_queue *q,
1057 struct blk_mq_ctx *ctx,
1058 struct list_head *list,
1059 int depth,
1060 bool from_schedule)
1063 struct blk_mq_hw_ctx *hctx;
1064 struct blk_mq_ctx *current_ctx;
1066 trace_block_unplug(q, depth, !from_schedule);
1068 current_ctx = blk_mq_get_ctx(q);
1070 if (!cpu_online(ctx->cpu))
1071 ctx = current_ctx;
1072 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1075 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1076 * offline now
1078 spin_lock(&ctx->lock);
1079 while (!list_empty(list)) {
1080 struct request *rq;
1082 rq = list_first_entry(list, struct request, queuelist);
1083 list_del_init(&rq->queuelist);
1084 rq->mq_ctx = ctx;
1085 __blk_mq_insert_request(hctx, rq, false);
1087 spin_unlock(&ctx->lock);
1089 blk_mq_run_hw_queue(hctx, from_schedule);
1090 blk_mq_put_ctx(current_ctx);
1093 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1095 struct request *rqa = container_of(a, struct request, queuelist);
1096 struct request *rqb = container_of(b, struct request, queuelist);
1098 return !(rqa->mq_ctx < rqb->mq_ctx ||
1099 (rqa->mq_ctx == rqb->mq_ctx &&
1100 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1103 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1105 struct blk_mq_ctx *this_ctx;
1106 struct request_queue *this_q;
1107 struct request *rq;
1108 LIST_HEAD(list);
1109 LIST_HEAD(ctx_list);
1110 unsigned int depth;
1112 list_splice_init(&plug->mq_list, &list);
1114 list_sort(NULL, &list, plug_ctx_cmp);
1116 this_q = NULL;
1117 this_ctx = NULL;
1118 depth = 0;
1120 while (!list_empty(&list)) {
1121 rq = list_entry_rq(list.next);
1122 list_del_init(&rq->queuelist);
1123 BUG_ON(!rq->q);
1124 if (rq->mq_ctx != this_ctx) {
1125 if (this_ctx) {
1126 blk_mq_insert_requests(this_q, this_ctx,
1127 &ctx_list, depth,
1128 from_schedule);
1131 this_ctx = rq->mq_ctx;
1132 this_q = rq->q;
1133 depth = 0;
1136 depth++;
1137 list_add_tail(&rq->queuelist, &ctx_list);
1141 * If 'this_ctx' is set, we know we have entries to complete
1142 * on 'ctx_list'. Do those.
1144 if (this_ctx) {
1145 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1146 from_schedule);
1150 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1152 init_request_from_bio(rq, bio);
1154 if (blk_do_io_stat(rq))
1155 blk_account_io_start(rq, 1);
1158 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1160 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1161 !blk_queue_nomerges(hctx->queue);
1164 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1165 struct blk_mq_ctx *ctx,
1166 struct request *rq, struct bio *bio)
1168 if (!hctx_allow_merges(hctx)) {
1169 blk_mq_bio_to_request(rq, bio);
1170 spin_lock(&ctx->lock);
1171 insert_rq:
1172 __blk_mq_insert_request(hctx, rq, false);
1173 spin_unlock(&ctx->lock);
1174 return false;
1175 } else {
1176 struct request_queue *q = hctx->queue;
1178 spin_lock(&ctx->lock);
1179 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1180 blk_mq_bio_to_request(rq, bio);
1181 goto insert_rq;
1184 spin_unlock(&ctx->lock);
1185 __blk_mq_free_request(hctx, ctx, rq);
1186 return true;
1190 struct blk_map_ctx {
1191 struct blk_mq_hw_ctx *hctx;
1192 struct blk_mq_ctx *ctx;
1195 static struct request *blk_mq_map_request(struct request_queue *q,
1196 struct bio *bio,
1197 struct blk_map_ctx *data)
1199 struct blk_mq_hw_ctx *hctx;
1200 struct blk_mq_ctx *ctx;
1201 struct request *rq;
1202 int rw = bio_data_dir(bio);
1203 struct blk_mq_alloc_data alloc_data;
1205 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1206 bio_endio(bio, -EIO);
1207 return NULL;
1210 ctx = blk_mq_get_ctx(q);
1211 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1213 if (rw_is_sync(bio->bi_rw))
1214 rw |= REQ_SYNC;
1216 trace_block_getrq(q, bio, rw);
1217 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1218 hctx);
1219 rq = __blk_mq_alloc_request(&alloc_data, rw);
1220 if (unlikely(!rq)) {
1221 __blk_mq_run_hw_queue(hctx);
1222 blk_mq_put_ctx(ctx);
1223 trace_block_sleeprq(q, bio, rw);
1225 ctx = blk_mq_get_ctx(q);
1226 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1227 blk_mq_set_alloc_data(&alloc_data, q,
1228 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1229 rq = __blk_mq_alloc_request(&alloc_data, rw);
1230 ctx = alloc_data.ctx;
1231 hctx = alloc_data.hctx;
1234 hctx->queued++;
1235 data->hctx = hctx;
1236 data->ctx = ctx;
1237 return rq;
1241 * Multiple hardware queue variant. This will not use per-process plugs,
1242 * but will attempt to bypass the hctx queueing if we can go straight to
1243 * hardware for SYNC IO.
1245 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1247 const int is_sync = rw_is_sync(bio->bi_rw);
1248 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249 struct blk_map_ctx data;
1250 struct request *rq;
1252 blk_queue_bounce(q, &bio);
1254 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255 bio_endio(bio, -EIO);
1256 return;
1259 rq = blk_mq_map_request(q, bio, &data);
1260 if (unlikely(!rq))
1261 return;
1263 if (unlikely(is_flush_fua)) {
1264 blk_mq_bio_to_request(rq, bio);
1265 blk_insert_flush(rq);
1266 goto run_queue;
1270 * If the driver supports defer issued based on 'last', then
1271 * queue it up like normal since we can potentially save some
1272 * CPU this way.
1274 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1275 struct blk_mq_queue_data bd = {
1276 .rq = rq,
1277 .list = NULL,
1278 .last = 1
1280 int ret;
1282 blk_mq_bio_to_request(rq, bio);
1285 * For OK queue, we are done. For error, kill it. Any other
1286 * error (busy), just add it to our list as we previously
1287 * would have done
1289 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1290 if (ret == BLK_MQ_RQ_QUEUE_OK)
1291 goto done;
1292 else {
1293 __blk_mq_requeue_request(rq);
1295 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1296 rq->errors = -EIO;
1297 blk_mq_end_request(rq, rq->errors);
1298 goto done;
1303 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1305 * For a SYNC request, send it to the hardware immediately. For
1306 * an ASYNC request, just ensure that we run it later on. The
1307 * latter allows for merging opportunities and more efficient
1308 * dispatching.
1310 run_queue:
1311 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1313 done:
1314 blk_mq_put_ctx(data.ctx);
1318 * Single hardware queue variant. This will attempt to use any per-process
1319 * plug for merging and IO deferral.
1321 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1323 const int is_sync = rw_is_sync(bio->bi_rw);
1324 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1325 unsigned int use_plug, request_count = 0;
1326 struct blk_map_ctx data;
1327 struct request *rq;
1330 * If we have multiple hardware queues, just go directly to
1331 * one of those for sync IO.
1333 use_plug = !is_flush_fua && !is_sync;
1335 blk_queue_bounce(q, &bio);
1337 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1338 bio_endio(bio, -EIO);
1339 return;
1342 if (use_plug && !blk_queue_nomerges(q) &&
1343 blk_attempt_plug_merge(q, bio, &request_count))
1344 return;
1346 rq = blk_mq_map_request(q, bio, &data);
1347 if (unlikely(!rq))
1348 return;
1350 if (unlikely(is_flush_fua)) {
1351 blk_mq_bio_to_request(rq, bio);
1352 blk_insert_flush(rq);
1353 goto run_queue;
1357 * A task plug currently exists. Since this is completely lockless,
1358 * utilize that to temporarily store requests until the task is
1359 * either done or scheduled away.
1361 if (use_plug) {
1362 struct blk_plug *plug = current->plug;
1364 if (plug) {
1365 blk_mq_bio_to_request(rq, bio);
1366 if (list_empty(&plug->mq_list))
1367 trace_block_plug(q);
1368 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1369 blk_flush_plug_list(plug, false);
1370 trace_block_plug(q);
1372 list_add_tail(&rq->queuelist, &plug->mq_list);
1373 blk_mq_put_ctx(data.ctx);
1374 return;
1378 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1380 * For a SYNC request, send it to the hardware immediately. For
1381 * an ASYNC request, just ensure that we run it later on. The
1382 * latter allows for merging opportunities and more efficient
1383 * dispatching.
1385 run_queue:
1386 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1389 blk_mq_put_ctx(data.ctx);
1393 * Default mapping to a software queue, since we use one per CPU.
1395 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1397 return q->queue_hw_ctx[q->mq_map[cpu]];
1399 EXPORT_SYMBOL(blk_mq_map_queue);
1401 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1402 struct blk_mq_tags *tags, unsigned int hctx_idx)
1404 struct page *page;
1406 if (tags->rqs && set->ops->exit_request) {
1407 int i;
1409 for (i = 0; i < tags->nr_tags; i++) {
1410 if (!tags->rqs[i])
1411 continue;
1412 set->ops->exit_request(set->driver_data, tags->rqs[i],
1413 hctx_idx, i);
1414 tags->rqs[i] = NULL;
1418 while (!list_empty(&tags->page_list)) {
1419 page = list_first_entry(&tags->page_list, struct page, lru);
1420 list_del_init(&page->lru);
1421 __free_pages(page, page->private);
1424 kfree(tags->rqs);
1426 blk_mq_free_tags(tags);
1429 static size_t order_to_size(unsigned int order)
1431 return (size_t)PAGE_SIZE << order;
1434 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1435 unsigned int hctx_idx)
1437 struct blk_mq_tags *tags;
1438 unsigned int i, j, entries_per_page, max_order = 4;
1439 size_t rq_size, left;
1441 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1442 set->numa_node,
1443 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1444 if (!tags)
1445 return NULL;
1447 INIT_LIST_HEAD(&tags->page_list);
1449 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1450 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1451 set->numa_node);
1452 if (!tags->rqs) {
1453 blk_mq_free_tags(tags);
1454 return NULL;
1458 * rq_size is the size of the request plus driver payload, rounded
1459 * to the cacheline size
1461 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1462 cache_line_size());
1463 left = rq_size * set->queue_depth;
1465 for (i = 0; i < set->queue_depth; ) {
1466 int this_order = max_order;
1467 struct page *page;
1468 int to_do;
1469 void *p;
1471 while (left < order_to_size(this_order - 1) && this_order)
1472 this_order--;
1474 do {
1475 page = alloc_pages_node(set->numa_node,
1476 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1477 this_order);
1478 if (page)
1479 break;
1480 if (!this_order--)
1481 break;
1482 if (order_to_size(this_order) < rq_size)
1483 break;
1484 } while (1);
1486 if (!page)
1487 goto fail;
1489 page->private = this_order;
1490 list_add_tail(&page->lru, &tags->page_list);
1492 p = page_address(page);
1493 entries_per_page = order_to_size(this_order) / rq_size;
1494 to_do = min(entries_per_page, set->queue_depth - i);
1495 left -= to_do * rq_size;
1496 for (j = 0; j < to_do; j++) {
1497 tags->rqs[i] = p;
1498 if (set->ops->init_request) {
1499 if (set->ops->init_request(set->driver_data,
1500 tags->rqs[i], hctx_idx, i,
1501 set->numa_node)) {
1502 tags->rqs[i] = NULL;
1503 goto fail;
1507 p += rq_size;
1508 i++;
1512 return tags;
1514 fail:
1515 blk_mq_free_rq_map(set, tags, hctx_idx);
1516 return NULL;
1519 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1521 kfree(bitmap->map);
1524 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1526 unsigned int bpw = 8, total, num_maps, i;
1528 bitmap->bits_per_word = bpw;
1530 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1531 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1532 GFP_KERNEL, node);
1533 if (!bitmap->map)
1534 return -ENOMEM;
1536 total = nr_cpu_ids;
1537 for (i = 0; i < num_maps; i++) {
1538 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1539 total -= bitmap->map[i].depth;
1542 return 0;
1545 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1547 struct request_queue *q = hctx->queue;
1548 struct blk_mq_ctx *ctx;
1549 LIST_HEAD(tmp);
1552 * Move ctx entries to new CPU, if this one is going away.
1554 ctx = __blk_mq_get_ctx(q, cpu);
1556 spin_lock(&ctx->lock);
1557 if (!list_empty(&ctx->rq_list)) {
1558 list_splice_init(&ctx->rq_list, &tmp);
1559 blk_mq_hctx_clear_pending(hctx, ctx);
1561 spin_unlock(&ctx->lock);
1563 if (list_empty(&tmp))
1564 return NOTIFY_OK;
1566 ctx = blk_mq_get_ctx(q);
1567 spin_lock(&ctx->lock);
1569 while (!list_empty(&tmp)) {
1570 struct request *rq;
1572 rq = list_first_entry(&tmp, struct request, queuelist);
1573 rq->mq_ctx = ctx;
1574 list_move_tail(&rq->queuelist, &ctx->rq_list);
1577 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1578 blk_mq_hctx_mark_pending(hctx, ctx);
1580 spin_unlock(&ctx->lock);
1582 blk_mq_run_hw_queue(hctx, true);
1583 blk_mq_put_ctx(ctx);
1584 return NOTIFY_OK;
1587 static int blk_mq_hctx_notify(void *data, unsigned long action,
1588 unsigned int cpu)
1590 struct blk_mq_hw_ctx *hctx = data;
1592 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1593 return blk_mq_hctx_cpu_offline(hctx, cpu);
1596 * In case of CPU online, tags may be reallocated
1597 * in blk_mq_map_swqueue() after mapping is updated.
1600 return NOTIFY_OK;
1603 /* hctx->ctxs will be freed in queue's release handler */
1604 static void blk_mq_exit_hctx(struct request_queue *q,
1605 struct blk_mq_tag_set *set,
1606 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1608 unsigned flush_start_tag = set->queue_depth;
1610 blk_mq_tag_idle(hctx);
1612 if (set->ops->exit_request)
1613 set->ops->exit_request(set->driver_data,
1614 hctx->fq->flush_rq, hctx_idx,
1615 flush_start_tag + hctx_idx);
1617 if (set->ops->exit_hctx)
1618 set->ops->exit_hctx(hctx, hctx_idx);
1620 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1621 blk_free_flush_queue(hctx->fq);
1622 blk_mq_free_bitmap(&hctx->ctx_map);
1625 static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 struct blk_mq_tag_set *set, int nr_queue)
1628 struct blk_mq_hw_ctx *hctx;
1629 unsigned int i;
1631 queue_for_each_hw_ctx(q, hctx, i) {
1632 if (i == nr_queue)
1633 break;
1634 blk_mq_exit_hctx(q, set, hctx, i);
1638 static void blk_mq_free_hw_queues(struct request_queue *q,
1639 struct blk_mq_tag_set *set)
1641 struct blk_mq_hw_ctx *hctx;
1642 unsigned int i;
1644 queue_for_each_hw_ctx(q, hctx, i)
1645 free_cpumask_var(hctx->cpumask);
1648 static int blk_mq_init_hctx(struct request_queue *q,
1649 struct blk_mq_tag_set *set,
1650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1652 int node;
1653 unsigned flush_start_tag = set->queue_depth;
1655 node = hctx->numa_node;
1656 if (node == NUMA_NO_NODE)
1657 node = hctx->numa_node = set->numa_node;
1659 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 spin_lock_init(&hctx->lock);
1662 INIT_LIST_HEAD(&hctx->dispatch);
1663 hctx->queue = q;
1664 hctx->queue_num = hctx_idx;
1665 hctx->flags = set->flags;
1667 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 blk_mq_hctx_notify, hctx);
1669 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1671 hctx->tags = set->tags[hctx_idx];
1674 * Allocate space for all possible cpus to avoid allocation at
1675 * runtime
1677 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 GFP_KERNEL, node);
1679 if (!hctx->ctxs)
1680 goto unregister_cpu_notifier;
1682 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 goto free_ctxs;
1685 hctx->nr_ctx = 0;
1687 if (set->ops->init_hctx &&
1688 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 goto free_bitmap;
1691 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 if (!hctx->fq)
1693 goto exit_hctx;
1695 if (set->ops->init_request &&
1696 set->ops->init_request(set->driver_data,
1697 hctx->fq->flush_rq, hctx_idx,
1698 flush_start_tag + hctx_idx, node))
1699 goto free_fq;
1701 return 0;
1703 free_fq:
1704 kfree(hctx->fq);
1705 exit_hctx:
1706 if (set->ops->exit_hctx)
1707 set->ops->exit_hctx(hctx, hctx_idx);
1708 free_bitmap:
1709 blk_mq_free_bitmap(&hctx->ctx_map);
1710 free_ctxs:
1711 kfree(hctx->ctxs);
1712 unregister_cpu_notifier:
1713 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1715 return -1;
1718 static int blk_mq_init_hw_queues(struct request_queue *q,
1719 struct blk_mq_tag_set *set)
1721 struct blk_mq_hw_ctx *hctx;
1722 unsigned int i;
1725 * Initialize hardware queues
1727 queue_for_each_hw_ctx(q, hctx, i) {
1728 if (blk_mq_init_hctx(q, set, hctx, i))
1729 break;
1732 if (i == q->nr_hw_queues)
1733 return 0;
1736 * Init failed
1738 blk_mq_exit_hw_queues(q, set, i);
1740 return 1;
1743 static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 unsigned int nr_hw_queues)
1746 unsigned int i;
1748 for_each_possible_cpu(i) {
1749 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 struct blk_mq_hw_ctx *hctx;
1752 memset(__ctx, 0, sizeof(*__ctx));
1753 __ctx->cpu = i;
1754 spin_lock_init(&__ctx->lock);
1755 INIT_LIST_HEAD(&__ctx->rq_list);
1756 __ctx->queue = q;
1758 /* If the cpu isn't online, the cpu is mapped to first hctx */
1759 if (!cpu_online(i))
1760 continue;
1762 hctx = q->mq_ops->map_queue(q, i);
1765 * Set local node, IFF we have more than one hw queue. If
1766 * not, we remain on the home node of the device
1768 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769 hctx->numa_node = cpu_to_node(i);
1773 static void blk_mq_map_swqueue(struct request_queue *q)
1775 unsigned int i;
1776 struct blk_mq_hw_ctx *hctx;
1777 struct blk_mq_ctx *ctx;
1778 struct blk_mq_tag_set *set = q->tag_set;
1780 queue_for_each_hw_ctx(q, hctx, i) {
1781 cpumask_clear(hctx->cpumask);
1782 hctx->nr_ctx = 0;
1786 * Map software to hardware queues
1788 queue_for_each_ctx(q, ctx, i) {
1789 /* If the cpu isn't online, the cpu is mapped to first hctx */
1790 if (!cpu_online(i))
1791 continue;
1793 hctx = q->mq_ops->map_queue(q, i);
1794 cpumask_set_cpu(i, hctx->cpumask);
1795 ctx->index_hw = hctx->nr_ctx;
1796 hctx->ctxs[hctx->nr_ctx++] = ctx;
1799 queue_for_each_hw_ctx(q, hctx, i) {
1800 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1803 * If no software queues are mapped to this hardware queue,
1804 * disable it and free the request entries.
1806 if (!hctx->nr_ctx) {
1807 if (set->tags[i]) {
1808 blk_mq_free_rq_map(set, set->tags[i], i);
1809 set->tags[i] = NULL;
1811 hctx->tags = NULL;
1812 continue;
1815 /* unmapped hw queue can be remapped after CPU topo changed */
1816 if (!set->tags[i])
1817 set->tags[i] = blk_mq_init_rq_map(set, i);
1818 hctx->tags = set->tags[i];
1819 WARN_ON(!hctx->tags);
1822 * Set the map size to the number of mapped software queues.
1823 * This is more accurate and more efficient than looping
1824 * over all possibly mapped software queues.
1826 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1829 * Initialize batch roundrobin counts
1831 hctx->next_cpu = cpumask_first(hctx->cpumask);
1832 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1836 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1838 struct blk_mq_hw_ctx *hctx;
1839 struct request_queue *q;
1840 bool shared;
1841 int i;
1843 if (set->tag_list.next == set->tag_list.prev)
1844 shared = false;
1845 else
1846 shared = true;
1848 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1849 blk_mq_freeze_queue(q);
1851 queue_for_each_hw_ctx(q, hctx, i) {
1852 if (shared)
1853 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1854 else
1855 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1857 blk_mq_unfreeze_queue(q);
1861 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1863 struct blk_mq_tag_set *set = q->tag_set;
1865 mutex_lock(&set->tag_list_lock);
1866 list_del_init(&q->tag_set_list);
1867 blk_mq_update_tag_set_depth(set);
1868 mutex_unlock(&set->tag_list_lock);
1871 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1872 struct request_queue *q)
1874 q->tag_set = set;
1876 mutex_lock(&set->tag_list_lock);
1877 list_add_tail(&q->tag_set_list, &set->tag_list);
1878 blk_mq_update_tag_set_depth(set);
1879 mutex_unlock(&set->tag_list_lock);
1883 * It is the actual release handler for mq, but we do it from
1884 * request queue's release handler for avoiding use-after-free
1885 * and headache because q->mq_kobj shouldn't have been introduced,
1886 * but we can't group ctx/kctx kobj without it.
1888 void blk_mq_release(struct request_queue *q)
1890 struct blk_mq_hw_ctx *hctx;
1891 unsigned int i;
1893 /* hctx kobj stays in hctx */
1894 queue_for_each_hw_ctx(q, hctx, i) {
1895 if (!hctx)
1896 continue;
1897 kfree(hctx->ctxs);
1898 kfree(hctx);
1901 kfree(q->queue_hw_ctx);
1903 /* ctx kobj stays in queue_ctx */
1904 free_percpu(q->queue_ctx);
1907 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1909 struct request_queue *uninit_q, *q;
1911 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1912 if (!uninit_q)
1913 return ERR_PTR(-ENOMEM);
1915 q = blk_mq_init_allocated_queue(set, uninit_q);
1916 if (IS_ERR(q))
1917 blk_cleanup_queue(uninit_q);
1919 return q;
1921 EXPORT_SYMBOL(blk_mq_init_queue);
1923 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1924 struct request_queue *q)
1926 struct blk_mq_hw_ctx **hctxs;
1927 struct blk_mq_ctx __percpu *ctx;
1928 unsigned int *map;
1929 int i;
1931 ctx = alloc_percpu(struct blk_mq_ctx);
1932 if (!ctx)
1933 return ERR_PTR(-ENOMEM);
1935 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1936 set->numa_node);
1938 if (!hctxs)
1939 goto err_percpu;
1941 map = blk_mq_make_queue_map(set);
1942 if (!map)
1943 goto err_map;
1945 for (i = 0; i < set->nr_hw_queues; i++) {
1946 int node = blk_mq_hw_queue_to_node(map, i);
1948 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1949 GFP_KERNEL, node);
1950 if (!hctxs[i])
1951 goto err_hctxs;
1953 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1954 node))
1955 goto err_hctxs;
1957 atomic_set(&hctxs[i]->nr_active, 0);
1958 hctxs[i]->numa_node = node;
1959 hctxs[i]->queue_num = i;
1963 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1964 * See blk_register_queue() for details.
1966 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1967 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1968 goto err_hctxs;
1970 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1971 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1973 q->nr_queues = nr_cpu_ids;
1974 q->nr_hw_queues = set->nr_hw_queues;
1975 q->mq_map = map;
1977 q->queue_ctx = ctx;
1978 q->queue_hw_ctx = hctxs;
1980 q->mq_ops = set->ops;
1981 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1983 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1984 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1986 q->sg_reserved_size = INT_MAX;
1988 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1989 INIT_LIST_HEAD(&q->requeue_list);
1990 spin_lock_init(&q->requeue_lock);
1992 if (q->nr_hw_queues > 1)
1993 blk_queue_make_request(q, blk_mq_make_request);
1994 else
1995 blk_queue_make_request(q, blk_sq_make_request);
1998 * Do this after blk_queue_make_request() overrides it...
2000 q->nr_requests = set->queue_depth;
2002 if (set->ops->complete)
2003 blk_queue_softirq_done(q, set->ops->complete);
2005 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2007 if (blk_mq_init_hw_queues(q, set))
2008 goto err_hctxs;
2010 mutex_lock(&all_q_mutex);
2011 list_add_tail(&q->all_q_node, &all_q_list);
2012 mutex_unlock(&all_q_mutex);
2014 blk_mq_add_queue_tag_set(set, q);
2016 blk_mq_map_swqueue(q);
2018 return q;
2020 err_hctxs:
2021 kfree(map);
2022 for (i = 0; i < set->nr_hw_queues; i++) {
2023 if (!hctxs[i])
2024 break;
2025 free_cpumask_var(hctxs[i]->cpumask);
2026 kfree(hctxs[i]);
2028 err_map:
2029 kfree(hctxs);
2030 err_percpu:
2031 free_percpu(ctx);
2032 return ERR_PTR(-ENOMEM);
2034 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2036 void blk_mq_free_queue(struct request_queue *q)
2038 struct blk_mq_tag_set *set = q->tag_set;
2040 blk_mq_del_queue_tag_set(q);
2042 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2043 blk_mq_free_hw_queues(q, set);
2045 percpu_ref_exit(&q->mq_usage_counter);
2047 kfree(q->mq_map);
2049 q->mq_map = NULL;
2051 mutex_lock(&all_q_mutex);
2052 list_del_init(&q->all_q_node);
2053 mutex_unlock(&all_q_mutex);
2056 /* Basically redo blk_mq_init_queue with queue frozen */
2057 static void blk_mq_queue_reinit(struct request_queue *q)
2059 WARN_ON_ONCE(!q->mq_freeze_depth);
2061 blk_mq_sysfs_unregister(q);
2063 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2066 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2067 * we should change hctx numa_node according to new topology (this
2068 * involves free and re-allocate memory, worthy doing?)
2071 blk_mq_map_swqueue(q);
2073 blk_mq_sysfs_register(q);
2076 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2077 unsigned long action, void *hcpu)
2079 struct request_queue *q;
2082 * Before new mappings are established, hotadded cpu might already
2083 * start handling requests. This doesn't break anything as we map
2084 * offline CPUs to first hardware queue. We will re-init the queue
2085 * below to get optimal settings.
2087 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2088 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2089 return NOTIFY_OK;
2091 mutex_lock(&all_q_mutex);
2094 * We need to freeze and reinit all existing queues. Freezing
2095 * involves synchronous wait for an RCU grace period and doing it
2096 * one by one may take a long time. Start freezing all queues in
2097 * one swoop and then wait for the completions so that freezing can
2098 * take place in parallel.
2100 list_for_each_entry(q, &all_q_list, all_q_node)
2101 blk_mq_freeze_queue_start(q);
2102 list_for_each_entry(q, &all_q_list, all_q_node) {
2103 blk_mq_freeze_queue_wait(q);
2106 * timeout handler can't touch hw queue during the
2107 * reinitialization
2109 del_timer_sync(&q->timeout);
2112 list_for_each_entry(q, &all_q_list, all_q_node)
2113 blk_mq_queue_reinit(q);
2115 list_for_each_entry(q, &all_q_list, all_q_node)
2116 blk_mq_unfreeze_queue(q);
2118 mutex_unlock(&all_q_mutex);
2119 return NOTIFY_OK;
2122 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2124 int i;
2126 for (i = 0; i < set->nr_hw_queues; i++) {
2127 set->tags[i] = blk_mq_init_rq_map(set, i);
2128 if (!set->tags[i])
2129 goto out_unwind;
2132 return 0;
2134 out_unwind:
2135 while (--i >= 0)
2136 blk_mq_free_rq_map(set, set->tags[i], i);
2138 return -ENOMEM;
2142 * Allocate the request maps associated with this tag_set. Note that this
2143 * may reduce the depth asked for, if memory is tight. set->queue_depth
2144 * will be updated to reflect the allocated depth.
2146 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2148 unsigned int depth;
2149 int err;
2151 depth = set->queue_depth;
2152 do {
2153 err = __blk_mq_alloc_rq_maps(set);
2154 if (!err)
2155 break;
2157 set->queue_depth >>= 1;
2158 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2159 err = -ENOMEM;
2160 break;
2162 } while (set->queue_depth);
2164 if (!set->queue_depth || err) {
2165 pr_err("blk-mq: failed to allocate request map\n");
2166 return -ENOMEM;
2169 if (depth != set->queue_depth)
2170 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2171 depth, set->queue_depth);
2173 return 0;
2177 * Alloc a tag set to be associated with one or more request queues.
2178 * May fail with EINVAL for various error conditions. May adjust the
2179 * requested depth down, if if it too large. In that case, the set
2180 * value will be stored in set->queue_depth.
2182 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2184 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2186 if (!set->nr_hw_queues)
2187 return -EINVAL;
2188 if (!set->queue_depth)
2189 return -EINVAL;
2190 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2191 return -EINVAL;
2193 if (!set->ops->queue_rq || !set->ops->map_queue)
2194 return -EINVAL;
2196 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2197 pr_info("blk-mq: reduced tag depth to %u\n",
2198 BLK_MQ_MAX_DEPTH);
2199 set->queue_depth = BLK_MQ_MAX_DEPTH;
2203 * If a crashdump is active, then we are potentially in a very
2204 * memory constrained environment. Limit us to 1 queue and
2205 * 64 tags to prevent using too much memory.
2207 if (is_kdump_kernel()) {
2208 set->nr_hw_queues = 1;
2209 set->queue_depth = min(64U, set->queue_depth);
2212 set->tags = kmalloc_node(set->nr_hw_queues *
2213 sizeof(struct blk_mq_tags *),
2214 GFP_KERNEL, set->numa_node);
2215 if (!set->tags)
2216 return -ENOMEM;
2218 if (blk_mq_alloc_rq_maps(set))
2219 goto enomem;
2221 mutex_init(&set->tag_list_lock);
2222 INIT_LIST_HEAD(&set->tag_list);
2224 return 0;
2225 enomem:
2226 kfree(set->tags);
2227 set->tags = NULL;
2228 return -ENOMEM;
2230 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2232 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2234 int i;
2236 for (i = 0; i < set->nr_hw_queues; i++) {
2237 if (set->tags[i])
2238 blk_mq_free_rq_map(set, set->tags[i], i);
2241 kfree(set->tags);
2242 set->tags = NULL;
2244 EXPORT_SYMBOL(blk_mq_free_tag_set);
2246 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2248 struct blk_mq_tag_set *set = q->tag_set;
2249 struct blk_mq_hw_ctx *hctx;
2250 int i, ret;
2252 if (!set || nr > set->queue_depth)
2253 return -EINVAL;
2255 ret = 0;
2256 queue_for_each_hw_ctx(q, hctx, i) {
2257 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2258 if (ret)
2259 break;
2262 if (!ret)
2263 q->nr_requests = nr;
2265 return ret;
2268 void blk_mq_disable_hotplug(void)
2270 mutex_lock(&all_q_mutex);
2273 void blk_mq_enable_hotplug(void)
2275 mutex_unlock(&all_q_mutex);
2278 static int __init blk_mq_init(void)
2280 blk_mq_cpu_init();
2282 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2284 return 0;
2286 subsys_initcall(blk_mq_init);