1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
7 #include <linux/mm_types.h>
9 #include <linux/errno.h>
11 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
13 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
17 * On almost all architectures and configurations, 0 can be used as the
18 * upper ceiling to free_pgtables(): on many architectures it has the same
19 * effect as using TASK_SIZE. However, there is one configuration which
20 * must impose a more careful limit, to avoid freeing kernel pgtables.
22 #ifndef USER_PGTABLES_CEILING
23 #define USER_PGTABLES_CEILING 0UL
26 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
28 unsigned long address
, pte_t
*ptep
,
29 pte_t entry
, int dirty
);
32 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
34 unsigned long address
, pmd_t
*pmdp
,
35 pmd_t entry
, int dirty
);
38 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
39 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
40 unsigned long address
,
48 set_pte_at(vma
->vm_mm
, address
, ptep
, pte_mkold(pte
));
53 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
55 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
56 unsigned long address
,
64 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd_mkold(pmd
));
67 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
68 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
69 unsigned long address
,
75 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
78 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
79 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
80 unsigned long address
, pte_t
*ptep
);
83 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
85 unsigned long address
, pmd_t
*pmdp
);
88 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
89 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
90 unsigned long address
,
94 pte_clear(mm
, address
, ptep
);
99 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
101 static inline pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
102 unsigned long address
,
109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
112 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
114 static inline pmd_t
pmdp_get_and_clear_full(struct mm_struct
*mm
,
115 unsigned long address
, pmd_t
*pmdp
,
118 return pmdp_get_and_clear(mm
, address
, pmdp
);
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
124 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
125 unsigned long address
, pte_t
*ptep
,
129 pte
= ptep_get_and_clear(mm
, address
, ptep
);
135 * Some architectures may be able to avoid expensive synchronization
136 * primitives when modifications are made to PTE's which are already
137 * not present, or in the process of an address space destruction.
139 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
140 static inline void pte_clear_not_present_full(struct mm_struct
*mm
,
141 unsigned long address
,
145 pte_clear(mm
, address
, ptep
);
149 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
150 extern pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
151 unsigned long address
,
155 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
156 extern pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
,
157 unsigned long address
,
161 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
163 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
165 pte_t old_pte
= *ptep
;
166 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
170 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
172 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
173 unsigned long address
, pmd_t
*pmdp
)
175 pmd_t old_pmd
= *pmdp
;
176 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(old_pmd
));
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
179 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
180 unsigned long address
, pmd_t
*pmdp
)
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
187 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
188 extern void pmdp_splitting_flush(struct vm_area_struct
*vma
,
189 unsigned long address
, pmd_t
*pmdp
);
192 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
193 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
197 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
198 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
201 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
202 extern void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
206 #ifndef __HAVE_ARCH_PTE_SAME
207 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
209 return pte_val(pte_a
) == pte_val(pte_b
);
213 #ifndef __HAVE_ARCH_PTE_UNUSED
215 * Some architectures provide facilities to virtualization guests
216 * so that they can flag allocated pages as unused. This allows the
217 * host to transparently reclaim unused pages. This function returns
218 * whether the pte's page is unused.
220 static inline int pte_unused(pte_t pte
)
226 #ifndef __HAVE_ARCH_PMD_SAME
227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
228 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
230 return pmd_val(pmd_a
) == pmd_val(pmd_b
);
232 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
233 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
241 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
242 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
245 #ifndef __HAVE_ARCH_MOVE_PTE
246 #define move_pte(pte, prot, old_addr, new_addr) (pte)
249 #ifndef pte_accessible
250 # define pte_accessible(mm, pte) ((void)(pte), 1)
253 #ifndef flush_tlb_fix_spurious_fault
254 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
257 #ifndef pgprot_noncached
258 #define pgprot_noncached(prot) (prot)
261 #ifndef pgprot_writecombine
262 #define pgprot_writecombine pgprot_noncached
265 #ifndef pgprot_device
266 #define pgprot_device pgprot_noncached
269 #ifndef pgprot_modify
270 #define pgprot_modify pgprot_modify
271 static inline pgprot_t
pgprot_modify(pgprot_t oldprot
, pgprot_t newprot
)
273 if (pgprot_val(oldprot
) == pgprot_val(pgprot_noncached(oldprot
)))
274 newprot
= pgprot_noncached(newprot
);
275 if (pgprot_val(oldprot
) == pgprot_val(pgprot_writecombine(oldprot
)))
276 newprot
= pgprot_writecombine(newprot
);
277 if (pgprot_val(oldprot
) == pgprot_val(pgprot_device(oldprot
)))
278 newprot
= pgprot_device(newprot
);
284 * When walking page tables, get the address of the next boundary,
285 * or the end address of the range if that comes earlier. Although no
286 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
289 #define pgd_addr_end(addr, end) \
290 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
291 (__boundary - 1 < (end) - 1)? __boundary: (end); \
295 #define pud_addr_end(addr, end) \
296 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
297 (__boundary - 1 < (end) - 1)? __boundary: (end); \
302 #define pmd_addr_end(addr, end) \
303 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
304 (__boundary - 1 < (end) - 1)? __boundary: (end); \
309 * When walking page tables, we usually want to skip any p?d_none entries;
310 * and any p?d_bad entries - reporting the error before resetting to none.
311 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
313 void pgd_clear_bad(pgd_t
*);
314 void pud_clear_bad(pud_t
*);
315 void pmd_clear_bad(pmd_t
*);
317 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
321 if (unlikely(pgd_bad(*pgd
))) {
328 static inline int pud_none_or_clear_bad(pud_t
*pud
)
332 if (unlikely(pud_bad(*pud
))) {
339 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
343 if (unlikely(pmd_bad(*pmd
))) {
350 static inline pte_t
__ptep_modify_prot_start(struct mm_struct
*mm
,
355 * Get the current pte state, but zero it out to make it
356 * non-present, preventing the hardware from asynchronously
359 return ptep_get_and_clear(mm
, addr
, ptep
);
362 static inline void __ptep_modify_prot_commit(struct mm_struct
*mm
,
364 pte_t
*ptep
, pte_t pte
)
367 * The pte is non-present, so there's no hardware state to
370 set_pte_at(mm
, addr
, ptep
, pte
);
373 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
375 * Start a pte protection read-modify-write transaction, which
376 * protects against asynchronous hardware modifications to the pte.
377 * The intention is not to prevent the hardware from making pte
378 * updates, but to prevent any updates it may make from being lost.
380 * This does not protect against other software modifications of the
381 * pte; the appropriate pte lock must be held over the transation.
383 * Note that this interface is intended to be batchable, meaning that
384 * ptep_modify_prot_commit may not actually update the pte, but merely
385 * queue the update to be done at some later time. The update must be
386 * actually committed before the pte lock is released, however.
388 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
392 return __ptep_modify_prot_start(mm
, addr
, ptep
);
396 * Commit an update to a pte, leaving any hardware-controlled bits in
397 * the PTE unmodified.
399 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
401 pte_t
*ptep
, pte_t pte
)
403 __ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
405 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
406 #endif /* CONFIG_MMU */
409 * A facility to provide lazy MMU batching. This allows PTE updates and
410 * page invalidations to be delayed until a call to leave lazy MMU mode
411 * is issued. Some architectures may benefit from doing this, and it is
412 * beneficial for both shadow and direct mode hypervisors, which may batch
413 * the PTE updates which happen during this window. Note that using this
414 * interface requires that read hazards be removed from the code. A read
415 * hazard could result in the direct mode hypervisor case, since the actual
416 * write to the page tables may not yet have taken place, so reads though
417 * a raw PTE pointer after it has been modified are not guaranteed to be
418 * up to date. This mode can only be entered and left under the protection of
419 * the page table locks for all page tables which may be modified. In the UP
420 * case, this is required so that preemption is disabled, and in the SMP case,
421 * it must synchronize the delayed page table writes properly on other CPUs.
423 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
424 #define arch_enter_lazy_mmu_mode() do {} while (0)
425 #define arch_leave_lazy_mmu_mode() do {} while (0)
426 #define arch_flush_lazy_mmu_mode() do {} while (0)
430 * A facility to provide batching of the reload of page tables and
431 * other process state with the actual context switch code for
432 * paravirtualized guests. By convention, only one of the batched
433 * update (lazy) modes (CPU, MMU) should be active at any given time,
434 * entry should never be nested, and entry and exits should always be
435 * paired. This is for sanity of maintaining and reasoning about the
436 * kernel code. In this case, the exit (end of the context switch) is
437 * in architecture-specific code, and so doesn't need a generic
440 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
441 #define arch_start_context_switch(prev) do {} while (0)
444 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
445 static inline int pte_soft_dirty(pte_t pte
)
450 static inline int pmd_soft_dirty(pmd_t pmd
)
455 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
460 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
465 static inline pte_t
pte_swp_mksoft_dirty(pte_t pte
)
470 static inline int pte_swp_soft_dirty(pte_t pte
)
475 static inline pte_t
pte_swp_clear_soft_dirty(pte_t pte
)
481 #ifndef __HAVE_PFNMAP_TRACKING
483 * Interfaces that can be used by architecture code to keep track of
484 * memory type of pfn mappings specified by the remap_pfn_range,
489 * track_pfn_remap is called when a _new_ pfn mapping is being established
490 * by remap_pfn_range() for physical range indicated by pfn and size.
492 static inline int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
493 unsigned long pfn
, unsigned long addr
,
500 * track_pfn_insert is called when a _new_ single pfn is established
501 * by vm_insert_pfn().
503 static inline int track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
510 * track_pfn_copy is called when vma that is covering the pfnmap gets
511 * copied through copy_page_range().
513 static inline int track_pfn_copy(struct vm_area_struct
*vma
)
519 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
520 * untrack can be called for a specific region indicated by pfn and size or
521 * can be for the entire vma (in which case pfn, size are zero).
523 static inline void untrack_pfn(struct vm_area_struct
*vma
,
524 unsigned long pfn
, unsigned long size
)
528 extern int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
529 unsigned long pfn
, unsigned long addr
,
531 extern int track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
533 extern int track_pfn_copy(struct vm_area_struct
*vma
);
534 extern void untrack_pfn(struct vm_area_struct
*vma
, unsigned long pfn
,
538 #ifdef __HAVE_COLOR_ZERO_PAGE
539 static inline int is_zero_pfn(unsigned long pfn
)
541 extern unsigned long zero_pfn
;
542 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
543 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
546 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
549 static inline int is_zero_pfn(unsigned long pfn
)
551 extern unsigned long zero_pfn
;
552 return pfn
== zero_pfn
;
555 static inline unsigned long my_zero_pfn(unsigned long addr
)
557 extern unsigned long zero_pfn
;
564 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
565 static inline int pmd_trans_huge(pmd_t pmd
)
569 static inline int pmd_trans_splitting(pmd_t pmd
)
573 #ifndef __HAVE_ARCH_PMD_WRITE
574 static inline int pmd_write(pmd_t pmd
)
579 #endif /* __HAVE_ARCH_PMD_WRITE */
580 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
582 #ifndef pmd_read_atomic
583 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
586 * Depend on compiler for an atomic pmd read. NOTE: this is
587 * only going to work, if the pmdval_t isn't larger than
594 #ifndef pmd_move_must_withdraw
595 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
596 spinlock_t
*old_pmd_ptl
)
599 * With split pmd lock we also need to move preallocated
600 * PTE page table if new_pmd is on different PMD page table.
602 return new_pmd_ptl
!= old_pmd_ptl
;
607 * This function is meant to be used by sites walking pagetables with
608 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
609 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
610 * into a null pmd and the transhuge page fault can convert a null pmd
611 * into an hugepmd or into a regular pmd (if the hugepage allocation
612 * fails). While holding the mmap_sem in read mode the pmd becomes
613 * stable and stops changing under us only if it's not null and not a
614 * transhuge pmd. When those races occurs and this function makes a
615 * difference vs the standard pmd_none_or_clear_bad, the result is
616 * undefined so behaving like if the pmd was none is safe (because it
617 * can return none anyway). The compiler level barrier() is critically
618 * important to compute the two checks atomically on the same pmdval.
620 * For 32bit kernels with a 64bit large pmd_t this automatically takes
621 * care of reading the pmd atomically to avoid SMP race conditions
622 * against pmd_populate() when the mmap_sem is hold for reading by the
623 * caller (a special atomic read not done by "gcc" as in the generic
624 * version above, is also needed when THP is disabled because the page
625 * fault can populate the pmd from under us).
627 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd
)
629 pmd_t pmdval
= pmd_read_atomic(pmd
);
631 * The barrier will stabilize the pmdval in a register or on
632 * the stack so that it will stop changing under the code.
634 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
635 * pmd_read_atomic is allowed to return a not atomic pmdval
636 * (for example pointing to an hugepage that has never been
637 * mapped in the pmd). The below checks will only care about
638 * the low part of the pmd with 32bit PAE x86 anyway, with the
639 * exception of pmd_none(). So the important thing is that if
640 * the low part of the pmd is found null, the high part will
641 * be also null or the pmd_none() check below would be
644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 if (pmd_none(pmdval
) || pmd_trans_huge(pmdval
))
649 if (unlikely(pmd_bad(pmdval
))) {
657 * This is a noop if Transparent Hugepage Support is not built into
658 * the kernel. Otherwise it is equivalent to
659 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
660 * places that already verified the pmd is not none and they want to
661 * walk ptes while holding the mmap sem in read mode (write mode don't
662 * need this). If THP is not enabled, the pmd can't go away under the
663 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
664 * run a pmd_trans_unstable before walking the ptes after
665 * split_huge_page_pmd returns (because it may have run when the pmd
666 * become null, but then a page fault can map in a THP and not a
669 static inline int pmd_trans_unstable(pmd_t
*pmd
)
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 return pmd_none_or_trans_huge_or_clear_bad(pmd
);
678 #ifndef CONFIG_NUMA_BALANCING
680 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
681 * the only case the kernel cares is for NUMA balancing and is only ever set
682 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
683 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
684 * is the responsibility of the caller to distinguish between PROT_NONE
685 * protections and NUMA hinting fault protections.
687 static inline int pte_protnone(pte_t pte
)
692 static inline int pmd_protnone(pmd_t pmd
)
696 #endif /* CONFIG_NUMA_BALANCING */
698 #endif /* CONFIG_MMU */
700 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
701 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
);
702 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
);
703 int pud_clear_huge(pud_t
*pud
);
704 int pmd_clear_huge(pmd_t
*pmd
);
705 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
706 static inline int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
710 static inline int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
714 static inline int pud_clear_huge(pud_t
*pud
)
718 static inline int pmd_clear_huge(pmd_t
*pmd
)
722 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
724 #endif /* !__ASSEMBLY__ */
726 #ifndef io_remap_pfn_range
727 #define io_remap_pfn_range remap_pfn_range
730 #endif /* _ASM_GENERIC_PGTABLE_H */