Linux 4.1.18
[linux/fpc-iii.git] / include / net / sock.h
blob4c4b21c00828073eee17037b38f2686a5db404be
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
81 return 0;
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 #endif
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 #endif
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
126 struct sock;
127 struct proto;
128 struct net;
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 int skc_bound_dev_if;
188 union {
189 struct hlist_node skc_bind_node;
190 struct hlist_nulls_node skc_portaddr_node;
192 struct proto *skc_prot;
193 possible_net_t skc_net;
195 #if IS_ENABLED(CONFIG_IPV6)
196 struct in6_addr skc_v6_daddr;
197 struct in6_addr skc_v6_rcv_saddr;
198 #endif
200 atomic64_t skc_cookie;
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
213 int skc_tx_queue_mapping;
214 atomic_t skc_refcnt;
215 /* private: */
216 int skc_dontcopy_end[0];
217 /* public: */
220 struct cg_proto;
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_omem_alloc: "o" is "option" or "other"
237 * @sk_wmem_queued: persistent queue size
238 * @sk_forward_alloc: space allocated forward
239 * @sk_napi_id: id of the last napi context to receive data for sk
240 * @sk_ll_usec: usecs to busypoll when there is no data
241 * @sk_allocation: allocation mode
242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244 * @sk_sndbuf: size of send buffer in bytes
245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248 * @sk_no_check_rx: allow zero checksum in RX packets
249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252 * @sk_gso_max_size: Maximum GSO segment size to build
253 * @sk_gso_max_segs: Maximum number of GSO segments
254 * @sk_lingertime: %SO_LINGER l_linger setting
255 * @sk_backlog: always used with the per-socket spinlock held
256 * @sk_callback_lock: used with the callbacks in the end of this struct
257 * @sk_error_queue: rarely used
258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259 * IPV6_ADDRFORM for instance)
260 * @sk_err: last error
261 * @sk_err_soft: errors that don't cause failure but are the cause of a
262 * persistent failure not just 'timed out'
263 * @sk_drops: raw/udp drops counter
264 * @sk_ack_backlog: current listen backlog
265 * @sk_max_ack_backlog: listen backlog set in listen()
266 * @sk_priority: %SO_PRIORITY setting
267 * @sk_cgrp_prioidx: socket group's priority map index
268 * @sk_type: socket type (%SOCK_STREAM, etc)
269 * @sk_protocol: which protocol this socket belongs in this network family
270 * @sk_peer_pid: &struct pid for this socket's peer
271 * @sk_peer_cred: %SO_PEERCRED setting
272 * @sk_rcvlowat: %SO_RCVLOWAT setting
273 * @sk_rcvtimeo: %SO_RCVTIMEO setting
274 * @sk_sndtimeo: %SO_SNDTIMEO setting
275 * @sk_rxhash: flow hash received from netif layer
276 * @sk_incoming_cpu: record cpu processing incoming packets
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
301 struct sock {
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
332 #define sk_cookie __sk_common.skc_cookie
334 socket_lock_t sk_lock;
335 struct sk_buff_head sk_receive_queue;
337 * The backlog queue is special, it is always used with
338 * the per-socket spinlock held and requires low latency
339 * access. Therefore we special case it's implementation.
340 * Note : rmem_alloc is in this structure to fill a hole
341 * on 64bit arches, not because its logically part of
342 * backlog.
344 struct {
345 atomic_t rmem_alloc;
346 int len;
347 struct sk_buff *head;
348 struct sk_buff *tail;
349 } sk_backlog;
350 #define sk_rmem_alloc sk_backlog.rmem_alloc
351 int sk_forward_alloc;
352 #ifdef CONFIG_RPS
353 __u32 sk_rxhash;
354 #endif
355 u16 sk_incoming_cpu;
356 /* 16bit hole
357 * Warned : sk_incoming_cpu can be set from softirq,
358 * Do not use this hole without fully understanding possible issues.
361 __u32 sk_txhash;
362 #ifdef CONFIG_NET_RX_BUSY_POLL
363 unsigned int sk_napi_id;
364 unsigned int sk_ll_usec;
365 #endif
366 atomic_t sk_drops;
367 int sk_rcvbuf;
369 struct sk_filter __rcu *sk_filter;
370 struct socket_wq __rcu *sk_wq;
372 #ifdef CONFIG_XFRM
373 struct xfrm_policy *sk_policy[2];
374 #endif
375 unsigned long sk_flags;
376 struct dst_entry *sk_rx_dst;
377 struct dst_entry __rcu *sk_dst_cache;
378 spinlock_t sk_dst_lock;
379 atomic_t sk_wmem_alloc;
380 atomic_t sk_omem_alloc;
381 int sk_sndbuf;
382 struct sk_buff_head sk_write_queue;
383 kmemcheck_bitfield_begin(flags);
384 unsigned int sk_shutdown : 2,
385 sk_no_check_tx : 1,
386 sk_no_check_rx : 1,
387 sk_userlocks : 4,
388 sk_protocol : 8,
389 #define SK_PROTOCOL_MAX U8_MAX
390 sk_type : 16;
391 kmemcheck_bitfield_end(flags);
392 int sk_wmem_queued;
393 gfp_t sk_allocation;
394 u32 sk_pacing_rate; /* bytes per second */
395 u32 sk_max_pacing_rate;
396 netdev_features_t sk_route_caps;
397 netdev_features_t sk_route_nocaps;
398 int sk_gso_type;
399 unsigned int sk_gso_max_size;
400 u16 sk_gso_max_segs;
401 int sk_rcvlowat;
402 unsigned long sk_lingertime;
403 struct sk_buff_head sk_error_queue;
404 struct proto *sk_prot_creator;
405 rwlock_t sk_callback_lock;
406 int sk_err,
407 sk_err_soft;
408 u32 sk_ack_backlog;
409 u32 sk_max_ack_backlog;
410 __u32 sk_priority;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 __u32 sk_cgrp_prioidx;
413 #endif
414 struct pid *sk_peer_pid;
415 const struct cred *sk_peer_cred;
416 long sk_rcvtimeo;
417 long sk_sndtimeo;
418 void *sk_protinfo;
419 struct timer_list sk_timer;
420 ktime_t sk_stamp;
421 u16 sk_tsflags;
422 u32 sk_tskey;
423 struct socket *sk_socket;
424 void *sk_user_data;
425 struct page_frag sk_frag;
426 struct sk_buff *sk_send_head;
427 __s32 sk_peek_off;
428 int sk_write_pending;
429 #ifdef CONFIG_SECURITY
430 void *sk_security;
431 #endif
432 __u32 sk_mark;
433 u32 sk_classid;
434 struct cg_proto *sk_cgrp;
435 void (*sk_state_change)(struct sock *sk);
436 void (*sk_data_ready)(struct sock *sk);
437 void (*sk_write_space)(struct sock *sk);
438 void (*sk_error_report)(struct sock *sk);
439 int (*sk_backlog_rcv)(struct sock *sk,
440 struct sk_buff *skb);
441 void (*sk_destruct)(struct sock *sk);
444 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
446 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
447 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
450 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452 * on a socket means that the socket will reuse everybody else's port
453 * without looking at the other's sk_reuse value.
456 #define SK_NO_REUSE 0
457 #define SK_CAN_REUSE 1
458 #define SK_FORCE_REUSE 2
460 static inline int sk_peek_offset(struct sock *sk, int flags)
462 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
463 return sk->sk_peek_off;
464 else
465 return 0;
468 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
470 if (sk->sk_peek_off >= 0) {
471 if (sk->sk_peek_off >= val)
472 sk->sk_peek_off -= val;
473 else
474 sk->sk_peek_off = 0;
478 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
480 if (sk->sk_peek_off >= 0)
481 sk->sk_peek_off += val;
485 * Hashed lists helper routines
487 static inline struct sock *sk_entry(const struct hlist_node *node)
489 return hlist_entry(node, struct sock, sk_node);
492 static inline struct sock *__sk_head(const struct hlist_head *head)
494 return hlist_entry(head->first, struct sock, sk_node);
497 static inline struct sock *sk_head(const struct hlist_head *head)
499 return hlist_empty(head) ? NULL : __sk_head(head);
502 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
504 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
507 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
509 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
512 static inline struct sock *sk_next(const struct sock *sk)
514 return sk->sk_node.next ?
515 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
518 static inline struct sock *sk_nulls_next(const struct sock *sk)
520 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
521 hlist_nulls_entry(sk->sk_nulls_node.next,
522 struct sock, sk_nulls_node) :
523 NULL;
526 static inline bool sk_unhashed(const struct sock *sk)
528 return hlist_unhashed(&sk->sk_node);
531 static inline bool sk_hashed(const struct sock *sk)
533 return !sk_unhashed(sk);
536 static inline void sk_node_init(struct hlist_node *node)
538 node->pprev = NULL;
541 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
543 node->pprev = NULL;
546 static inline void __sk_del_node(struct sock *sk)
548 __hlist_del(&sk->sk_node);
551 /* NB: equivalent to hlist_del_init_rcu */
552 static inline bool __sk_del_node_init(struct sock *sk)
554 if (sk_hashed(sk)) {
555 __sk_del_node(sk);
556 sk_node_init(&sk->sk_node);
557 return true;
559 return false;
562 /* Grab socket reference count. This operation is valid only
563 when sk is ALREADY grabbed f.e. it is found in hash table
564 or a list and the lookup is made under lock preventing hash table
565 modifications.
568 static inline void sock_hold(struct sock *sk)
570 atomic_inc(&sk->sk_refcnt);
573 /* Ungrab socket in the context, which assumes that socket refcnt
574 cannot hit zero, f.e. it is true in context of any socketcall.
576 static inline void __sock_put(struct sock *sk)
578 atomic_dec(&sk->sk_refcnt);
581 static inline bool sk_del_node_init(struct sock *sk)
583 bool rc = __sk_del_node_init(sk);
585 if (rc) {
586 /* paranoid for a while -acme */
587 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
588 __sock_put(sk);
590 return rc;
592 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
594 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
596 if (sk_hashed(sk)) {
597 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
598 return true;
600 return false;
603 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
605 bool rc = __sk_nulls_del_node_init_rcu(sk);
607 if (rc) {
608 /* paranoid for a while -acme */
609 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
610 __sock_put(sk);
612 return rc;
615 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
617 hlist_add_head(&sk->sk_node, list);
620 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
622 sock_hold(sk);
623 __sk_add_node(sk, list);
626 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
628 sock_hold(sk);
629 hlist_add_head_rcu(&sk->sk_node, list);
632 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
634 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
637 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
639 sock_hold(sk);
640 __sk_nulls_add_node_rcu(sk, list);
643 static inline void __sk_del_bind_node(struct sock *sk)
645 __hlist_del(&sk->sk_bind_node);
648 static inline void sk_add_bind_node(struct sock *sk,
649 struct hlist_head *list)
651 hlist_add_head(&sk->sk_bind_node, list);
654 #define sk_for_each(__sk, list) \
655 hlist_for_each_entry(__sk, list, sk_node)
656 #define sk_for_each_rcu(__sk, list) \
657 hlist_for_each_entry_rcu(__sk, list, sk_node)
658 #define sk_nulls_for_each(__sk, node, list) \
659 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
660 #define sk_nulls_for_each_rcu(__sk, node, list) \
661 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
662 #define sk_for_each_from(__sk) \
663 hlist_for_each_entry_from(__sk, sk_node)
664 #define sk_nulls_for_each_from(__sk, node) \
665 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
666 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
667 #define sk_for_each_safe(__sk, tmp, list) \
668 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
669 #define sk_for_each_bound(__sk, list) \
670 hlist_for_each_entry(__sk, list, sk_bind_node)
673 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
674 * @tpos: the type * to use as a loop cursor.
675 * @pos: the &struct hlist_node to use as a loop cursor.
676 * @head: the head for your list.
677 * @offset: offset of hlist_node within the struct.
680 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
681 for (pos = (head)->first; \
682 (!is_a_nulls(pos)) && \
683 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
684 pos = pos->next)
686 static inline struct user_namespace *sk_user_ns(struct sock *sk)
688 /* Careful only use this in a context where these parameters
689 * can not change and must all be valid, such as recvmsg from
690 * userspace.
692 return sk->sk_socket->file->f_cred->user_ns;
695 /* Sock flags */
696 enum sock_flags {
697 SOCK_DEAD,
698 SOCK_DONE,
699 SOCK_URGINLINE,
700 SOCK_KEEPOPEN,
701 SOCK_LINGER,
702 SOCK_DESTROY,
703 SOCK_BROADCAST,
704 SOCK_TIMESTAMP,
705 SOCK_ZAPPED,
706 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
707 SOCK_DBG, /* %SO_DEBUG setting */
708 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
709 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
710 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
711 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
712 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
713 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
714 SOCK_FASYNC, /* fasync() active */
715 SOCK_RXQ_OVFL,
716 SOCK_ZEROCOPY, /* buffers from userspace */
717 SOCK_WIFI_STATUS, /* push wifi status to userspace */
718 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
719 * Will use last 4 bytes of packet sent from
720 * user-space instead.
722 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
723 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
726 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
728 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
730 nsk->sk_flags = osk->sk_flags;
733 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
735 __set_bit(flag, &sk->sk_flags);
738 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
740 __clear_bit(flag, &sk->sk_flags);
743 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
745 return test_bit(flag, &sk->sk_flags);
748 #ifdef CONFIG_NET
749 extern struct static_key memalloc_socks;
750 static inline int sk_memalloc_socks(void)
752 return static_key_false(&memalloc_socks);
754 #else
756 static inline int sk_memalloc_socks(void)
758 return 0;
761 #endif
763 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
765 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
768 static inline void sk_acceptq_removed(struct sock *sk)
770 sk->sk_ack_backlog--;
773 static inline void sk_acceptq_added(struct sock *sk)
775 sk->sk_ack_backlog++;
778 static inline bool sk_acceptq_is_full(const struct sock *sk)
780 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
784 * Compute minimal free write space needed to queue new packets.
786 static inline int sk_stream_min_wspace(const struct sock *sk)
788 return sk->sk_wmem_queued >> 1;
791 static inline int sk_stream_wspace(const struct sock *sk)
793 return sk->sk_sndbuf - sk->sk_wmem_queued;
796 void sk_stream_write_space(struct sock *sk);
798 /* OOB backlog add */
799 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
801 /* dont let skb dst not refcounted, we are going to leave rcu lock */
802 skb_dst_force_safe(skb);
804 if (!sk->sk_backlog.tail)
805 sk->sk_backlog.head = skb;
806 else
807 sk->sk_backlog.tail->next = skb;
809 sk->sk_backlog.tail = skb;
810 skb->next = NULL;
814 * Take into account size of receive queue and backlog queue
815 * Do not take into account this skb truesize,
816 * to allow even a single big packet to come.
818 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
820 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
822 return qsize > limit;
825 /* The per-socket spinlock must be held here. */
826 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
827 unsigned int limit)
829 if (sk_rcvqueues_full(sk, limit))
830 return -ENOBUFS;
833 * If the skb was allocated from pfmemalloc reserves, only
834 * allow SOCK_MEMALLOC sockets to use it as this socket is
835 * helping free memory
837 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
838 return -ENOMEM;
840 __sk_add_backlog(sk, skb);
841 sk->sk_backlog.len += skb->truesize;
842 return 0;
845 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
847 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
849 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
850 return __sk_backlog_rcv(sk, skb);
852 return sk->sk_backlog_rcv(sk, skb);
855 static inline void sk_incoming_cpu_update(struct sock *sk)
857 sk->sk_incoming_cpu = raw_smp_processor_id();
860 static inline void sock_rps_record_flow_hash(__u32 hash)
862 #ifdef CONFIG_RPS
863 struct rps_sock_flow_table *sock_flow_table;
865 rcu_read_lock();
866 sock_flow_table = rcu_dereference(rps_sock_flow_table);
867 rps_record_sock_flow(sock_flow_table, hash);
868 rcu_read_unlock();
869 #endif
872 static inline void sock_rps_record_flow(const struct sock *sk)
874 #ifdef CONFIG_RPS
875 sock_rps_record_flow_hash(sk->sk_rxhash);
876 #endif
879 static inline void sock_rps_save_rxhash(struct sock *sk,
880 const struct sk_buff *skb)
882 #ifdef CONFIG_RPS
883 if (unlikely(sk->sk_rxhash != skb->hash))
884 sk->sk_rxhash = skb->hash;
885 #endif
888 static inline void sock_rps_reset_rxhash(struct sock *sk)
890 #ifdef CONFIG_RPS
891 sk->sk_rxhash = 0;
892 #endif
895 #define sk_wait_event(__sk, __timeo, __condition) \
896 ({ int __rc; \
897 release_sock(__sk); \
898 __rc = __condition; \
899 if (!__rc) { \
900 *(__timeo) = schedule_timeout(*(__timeo)); \
902 sched_annotate_sleep(); \
903 lock_sock(__sk); \
904 __rc = __condition; \
905 __rc; \
908 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
909 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
910 void sk_stream_wait_close(struct sock *sk, long timeo_p);
911 int sk_stream_error(struct sock *sk, int flags, int err);
912 void sk_stream_kill_queues(struct sock *sk);
913 void sk_set_memalloc(struct sock *sk);
914 void sk_clear_memalloc(struct sock *sk);
916 int sk_wait_data(struct sock *sk, long *timeo);
918 struct request_sock_ops;
919 struct timewait_sock_ops;
920 struct inet_hashinfo;
921 struct raw_hashinfo;
922 struct module;
925 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
926 * un-modified. Special care is taken when initializing object to zero.
928 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
930 if (offsetof(struct sock, sk_node.next) != 0)
931 memset(sk, 0, offsetof(struct sock, sk_node.next));
932 memset(&sk->sk_node.pprev, 0,
933 size - offsetof(struct sock, sk_node.pprev));
936 /* Networking protocol blocks we attach to sockets.
937 * socket layer -> transport layer interface
938 * transport -> network interface is defined by struct inet_proto
940 struct proto {
941 void (*close)(struct sock *sk,
942 long timeout);
943 int (*connect)(struct sock *sk,
944 struct sockaddr *uaddr,
945 int addr_len);
946 int (*disconnect)(struct sock *sk, int flags);
948 struct sock * (*accept)(struct sock *sk, int flags, int *err);
950 int (*ioctl)(struct sock *sk, int cmd,
951 unsigned long arg);
952 int (*init)(struct sock *sk);
953 void (*destroy)(struct sock *sk);
954 void (*shutdown)(struct sock *sk, int how);
955 int (*setsockopt)(struct sock *sk, int level,
956 int optname, char __user *optval,
957 unsigned int optlen);
958 int (*getsockopt)(struct sock *sk, int level,
959 int optname, char __user *optval,
960 int __user *option);
961 #ifdef CONFIG_COMPAT
962 int (*compat_setsockopt)(struct sock *sk,
963 int level,
964 int optname, char __user *optval,
965 unsigned int optlen);
966 int (*compat_getsockopt)(struct sock *sk,
967 int level,
968 int optname, char __user *optval,
969 int __user *option);
970 int (*compat_ioctl)(struct sock *sk,
971 unsigned int cmd, unsigned long arg);
972 #endif
973 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
974 size_t len);
975 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
976 size_t len, int noblock, int flags,
977 int *addr_len);
978 int (*sendpage)(struct sock *sk, struct page *page,
979 int offset, size_t size, int flags);
980 int (*bind)(struct sock *sk,
981 struct sockaddr *uaddr, int addr_len);
983 int (*backlog_rcv) (struct sock *sk,
984 struct sk_buff *skb);
986 void (*release_cb)(struct sock *sk);
988 /* Keeping track of sk's, looking them up, and port selection methods. */
989 void (*hash)(struct sock *sk);
990 void (*unhash)(struct sock *sk);
991 void (*rehash)(struct sock *sk);
992 int (*get_port)(struct sock *sk, unsigned short snum);
993 void (*clear_sk)(struct sock *sk, int size);
995 /* Keeping track of sockets in use */
996 #ifdef CONFIG_PROC_FS
997 unsigned int inuse_idx;
998 #endif
1000 bool (*stream_memory_free)(const struct sock *sk);
1001 /* Memory pressure */
1002 void (*enter_memory_pressure)(struct sock *sk);
1003 atomic_long_t *memory_allocated; /* Current allocated memory. */
1004 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1006 * Pressure flag: try to collapse.
1007 * Technical note: it is used by multiple contexts non atomically.
1008 * All the __sk_mem_schedule() is of this nature: accounting
1009 * is strict, actions are advisory and have some latency.
1011 int *memory_pressure;
1012 long *sysctl_mem;
1013 int *sysctl_wmem;
1014 int *sysctl_rmem;
1015 int max_header;
1016 bool no_autobind;
1018 struct kmem_cache *slab;
1019 unsigned int obj_size;
1020 int slab_flags;
1022 struct percpu_counter *orphan_count;
1024 struct request_sock_ops *rsk_prot;
1025 struct timewait_sock_ops *twsk_prot;
1027 union {
1028 struct inet_hashinfo *hashinfo;
1029 struct udp_table *udp_table;
1030 struct raw_hashinfo *raw_hash;
1031 } h;
1033 struct module *owner;
1035 char name[32];
1037 struct list_head node;
1038 #ifdef SOCK_REFCNT_DEBUG
1039 atomic_t socks;
1040 #endif
1041 #ifdef CONFIG_MEMCG_KMEM
1043 * cgroup specific init/deinit functions. Called once for all
1044 * protocols that implement it, from cgroups populate function.
1045 * This function has to setup any files the protocol want to
1046 * appear in the kmem cgroup filesystem.
1048 int (*init_cgroup)(struct mem_cgroup *memcg,
1049 struct cgroup_subsys *ss);
1050 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1051 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1052 #endif
1056 * Bits in struct cg_proto.flags
1058 enum cg_proto_flags {
1059 /* Currently active and new sockets should be assigned to cgroups */
1060 MEMCG_SOCK_ACTIVE,
1061 /* It was ever activated; we must disarm static keys on destruction */
1062 MEMCG_SOCK_ACTIVATED,
1065 struct cg_proto {
1066 struct page_counter memory_allocated; /* Current allocated memory. */
1067 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1068 int memory_pressure;
1069 long sysctl_mem[3];
1070 unsigned long flags;
1072 * memcg field is used to find which memcg we belong directly
1073 * Each memcg struct can hold more than one cg_proto, so container_of
1074 * won't really cut.
1076 * The elegant solution would be having an inverse function to
1077 * proto_cgroup in struct proto, but that means polluting the structure
1078 * for everybody, instead of just for memcg users.
1080 struct mem_cgroup *memcg;
1083 int proto_register(struct proto *prot, int alloc_slab);
1084 void proto_unregister(struct proto *prot);
1086 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1088 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1091 #ifdef SOCK_REFCNT_DEBUG
1092 static inline void sk_refcnt_debug_inc(struct sock *sk)
1094 atomic_inc(&sk->sk_prot->socks);
1097 static inline void sk_refcnt_debug_dec(struct sock *sk)
1099 atomic_dec(&sk->sk_prot->socks);
1100 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1101 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1104 static inline void sk_refcnt_debug_release(const struct sock *sk)
1106 if (atomic_read(&sk->sk_refcnt) != 1)
1107 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1108 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1110 #else /* SOCK_REFCNT_DEBUG */
1111 #define sk_refcnt_debug_inc(sk) do { } while (0)
1112 #define sk_refcnt_debug_dec(sk) do { } while (0)
1113 #define sk_refcnt_debug_release(sk) do { } while (0)
1114 #endif /* SOCK_REFCNT_DEBUG */
1116 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1117 extern struct static_key memcg_socket_limit_enabled;
1118 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1119 struct cg_proto *cg_proto)
1121 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1123 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1124 #else
1125 #define mem_cgroup_sockets_enabled 0
1126 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1127 struct cg_proto *cg_proto)
1129 return NULL;
1131 #endif
1133 static inline bool sk_stream_memory_free(const struct sock *sk)
1135 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1136 return false;
1138 return sk->sk_prot->stream_memory_free ?
1139 sk->sk_prot->stream_memory_free(sk) : true;
1142 static inline bool sk_stream_is_writeable(const struct sock *sk)
1144 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1145 sk_stream_memory_free(sk);
1149 static inline bool sk_has_memory_pressure(const struct sock *sk)
1151 return sk->sk_prot->memory_pressure != NULL;
1154 static inline bool sk_under_memory_pressure(const struct sock *sk)
1156 if (!sk->sk_prot->memory_pressure)
1157 return false;
1159 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1160 return !!sk->sk_cgrp->memory_pressure;
1162 return !!*sk->sk_prot->memory_pressure;
1165 static inline void sk_leave_memory_pressure(struct sock *sk)
1167 int *memory_pressure = sk->sk_prot->memory_pressure;
1169 if (!memory_pressure)
1170 return;
1172 if (*memory_pressure)
1173 *memory_pressure = 0;
1175 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1176 struct cg_proto *cg_proto = sk->sk_cgrp;
1177 struct proto *prot = sk->sk_prot;
1179 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1180 cg_proto->memory_pressure = 0;
1185 static inline void sk_enter_memory_pressure(struct sock *sk)
1187 if (!sk->sk_prot->enter_memory_pressure)
1188 return;
1190 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1191 struct cg_proto *cg_proto = sk->sk_cgrp;
1192 struct proto *prot = sk->sk_prot;
1194 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1195 cg_proto->memory_pressure = 1;
1198 sk->sk_prot->enter_memory_pressure(sk);
1201 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1203 long *prot = sk->sk_prot->sysctl_mem;
1204 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1205 prot = sk->sk_cgrp->sysctl_mem;
1206 return prot[index];
1209 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1210 unsigned long amt,
1211 int *parent_status)
1213 page_counter_charge(&prot->memory_allocated, amt);
1215 if (page_counter_read(&prot->memory_allocated) >
1216 prot->memory_allocated.limit)
1217 *parent_status = OVER_LIMIT;
1220 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1221 unsigned long amt)
1223 page_counter_uncharge(&prot->memory_allocated, amt);
1226 static inline long
1227 sk_memory_allocated(const struct sock *sk)
1229 struct proto *prot = sk->sk_prot;
1231 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1232 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1234 return atomic_long_read(prot->memory_allocated);
1237 static inline long
1238 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1240 struct proto *prot = sk->sk_prot;
1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1243 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1244 /* update the root cgroup regardless */
1245 atomic_long_add_return(amt, prot->memory_allocated);
1246 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1249 return atomic_long_add_return(amt, prot->memory_allocated);
1252 static inline void
1253 sk_memory_allocated_sub(struct sock *sk, int amt)
1255 struct proto *prot = sk->sk_prot;
1257 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1258 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1260 atomic_long_sub(amt, prot->memory_allocated);
1263 static inline void sk_sockets_allocated_dec(struct sock *sk)
1265 struct proto *prot = sk->sk_prot;
1267 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1268 struct cg_proto *cg_proto = sk->sk_cgrp;
1270 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1271 percpu_counter_dec(&cg_proto->sockets_allocated);
1274 percpu_counter_dec(prot->sockets_allocated);
1277 static inline void sk_sockets_allocated_inc(struct sock *sk)
1279 struct proto *prot = sk->sk_prot;
1281 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1282 struct cg_proto *cg_proto = sk->sk_cgrp;
1284 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1285 percpu_counter_inc(&cg_proto->sockets_allocated);
1288 percpu_counter_inc(prot->sockets_allocated);
1291 static inline int
1292 sk_sockets_allocated_read_positive(struct sock *sk)
1294 struct proto *prot = sk->sk_prot;
1296 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1297 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1299 return percpu_counter_read_positive(prot->sockets_allocated);
1302 static inline int
1303 proto_sockets_allocated_sum_positive(struct proto *prot)
1305 return percpu_counter_sum_positive(prot->sockets_allocated);
1308 static inline long
1309 proto_memory_allocated(struct proto *prot)
1311 return atomic_long_read(prot->memory_allocated);
1314 static inline bool
1315 proto_memory_pressure(struct proto *prot)
1317 if (!prot->memory_pressure)
1318 return false;
1319 return !!*prot->memory_pressure;
1323 #ifdef CONFIG_PROC_FS
1324 /* Called with local bh disabled */
1325 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1326 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1327 #else
1328 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1329 int inc)
1332 #endif
1335 /* With per-bucket locks this operation is not-atomic, so that
1336 * this version is not worse.
1338 static inline void __sk_prot_rehash(struct sock *sk)
1340 sk->sk_prot->unhash(sk);
1341 sk->sk_prot->hash(sk);
1344 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1346 /* About 10 seconds */
1347 #define SOCK_DESTROY_TIME (10*HZ)
1349 /* Sockets 0-1023 can't be bound to unless you are superuser */
1350 #define PROT_SOCK 1024
1352 #define SHUTDOWN_MASK 3
1353 #define RCV_SHUTDOWN 1
1354 #define SEND_SHUTDOWN 2
1356 #define SOCK_SNDBUF_LOCK 1
1357 #define SOCK_RCVBUF_LOCK 2
1358 #define SOCK_BINDADDR_LOCK 4
1359 #define SOCK_BINDPORT_LOCK 8
1361 struct socket_alloc {
1362 struct socket socket;
1363 struct inode vfs_inode;
1366 static inline struct socket *SOCKET_I(struct inode *inode)
1368 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1371 static inline struct inode *SOCK_INODE(struct socket *socket)
1373 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1377 * Functions for memory accounting
1379 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1380 void __sk_mem_reclaim(struct sock *sk);
1382 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1383 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1384 #define SK_MEM_SEND 0
1385 #define SK_MEM_RECV 1
1387 static inline int sk_mem_pages(int amt)
1389 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1392 static inline bool sk_has_account(struct sock *sk)
1394 /* return true if protocol supports memory accounting */
1395 return !!sk->sk_prot->memory_allocated;
1398 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1400 if (!sk_has_account(sk))
1401 return true;
1402 return size <= sk->sk_forward_alloc ||
1403 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1406 static inline bool
1407 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1409 if (!sk_has_account(sk))
1410 return true;
1411 return size<= sk->sk_forward_alloc ||
1412 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1413 skb_pfmemalloc(skb);
1416 static inline void sk_mem_reclaim(struct sock *sk)
1418 if (!sk_has_account(sk))
1419 return;
1420 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1421 __sk_mem_reclaim(sk);
1424 static inline void sk_mem_reclaim_partial(struct sock *sk)
1426 if (!sk_has_account(sk))
1427 return;
1428 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1429 __sk_mem_reclaim(sk);
1432 static inline void sk_mem_charge(struct sock *sk, int size)
1434 if (!sk_has_account(sk))
1435 return;
1436 sk->sk_forward_alloc -= size;
1439 static inline void sk_mem_uncharge(struct sock *sk, int size)
1441 if (!sk_has_account(sk))
1442 return;
1443 sk->sk_forward_alloc += size;
1446 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1448 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1449 sk->sk_wmem_queued -= skb->truesize;
1450 sk_mem_uncharge(sk, skb->truesize);
1451 __kfree_skb(skb);
1454 /* Used by processes to "lock" a socket state, so that
1455 * interrupts and bottom half handlers won't change it
1456 * from under us. It essentially blocks any incoming
1457 * packets, so that we won't get any new data or any
1458 * packets that change the state of the socket.
1460 * While locked, BH processing will add new packets to
1461 * the backlog queue. This queue is processed by the
1462 * owner of the socket lock right before it is released.
1464 * Since ~2.3.5 it is also exclusive sleep lock serializing
1465 * accesses from user process context.
1467 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1469 static inline void sock_release_ownership(struct sock *sk)
1471 sk->sk_lock.owned = 0;
1475 * Macro so as to not evaluate some arguments when
1476 * lockdep is not enabled.
1478 * Mark both the sk_lock and the sk_lock.slock as a
1479 * per-address-family lock class.
1481 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1482 do { \
1483 sk->sk_lock.owned = 0; \
1484 init_waitqueue_head(&sk->sk_lock.wq); \
1485 spin_lock_init(&(sk)->sk_lock.slock); \
1486 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1487 sizeof((sk)->sk_lock)); \
1488 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1489 (skey), (sname)); \
1490 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1491 } while (0)
1493 void lock_sock_nested(struct sock *sk, int subclass);
1495 static inline void lock_sock(struct sock *sk)
1497 lock_sock_nested(sk, 0);
1500 void release_sock(struct sock *sk);
1502 /* BH context may only use the following locking interface. */
1503 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1504 #define bh_lock_sock_nested(__sk) \
1505 spin_lock_nested(&((__sk)->sk_lock.slock), \
1506 SINGLE_DEPTH_NESTING)
1507 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1509 bool lock_sock_fast(struct sock *sk);
1511 * unlock_sock_fast - complement of lock_sock_fast
1512 * @sk: socket
1513 * @slow: slow mode
1515 * fast unlock socket for user context.
1516 * If slow mode is on, we call regular release_sock()
1518 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1520 if (slow)
1521 release_sock(sk);
1522 else
1523 spin_unlock_bh(&sk->sk_lock.slock);
1527 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1528 struct proto *prot);
1529 void sk_free(struct sock *sk);
1530 void sk_release_kernel(struct sock *sk);
1531 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1533 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1534 gfp_t priority);
1535 void sock_wfree(struct sk_buff *skb);
1536 void skb_orphan_partial(struct sk_buff *skb);
1537 void sock_rfree(struct sk_buff *skb);
1538 void sock_efree(struct sk_buff *skb);
1539 #ifdef CONFIG_INET
1540 void sock_edemux(struct sk_buff *skb);
1541 #else
1542 #define sock_edemux(skb) sock_efree(skb)
1543 #endif
1545 int sock_setsockopt(struct socket *sock, int level, int op,
1546 char __user *optval, unsigned int optlen);
1548 int sock_getsockopt(struct socket *sock, int level, int op,
1549 char __user *optval, int __user *optlen);
1550 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551 int noblock, int *errcode);
1552 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553 unsigned long data_len, int noblock,
1554 int *errcode, int max_page_order);
1555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556 void sock_kfree_s(struct sock *sk, void *mem, int size);
1557 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1558 void sk_send_sigurg(struct sock *sk);
1561 * Functions to fill in entries in struct proto_ops when a protocol
1562 * does not implement a particular function.
1564 int sock_no_bind(struct socket *, struct sockaddr *, int);
1565 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1566 int sock_no_socketpair(struct socket *, struct socket *);
1567 int sock_no_accept(struct socket *, struct socket *, int);
1568 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1569 unsigned int sock_no_poll(struct file *, struct socket *,
1570 struct poll_table_struct *);
1571 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1572 int sock_no_listen(struct socket *, int);
1573 int sock_no_shutdown(struct socket *, int);
1574 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1575 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1576 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1577 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1578 int sock_no_mmap(struct file *file, struct socket *sock,
1579 struct vm_area_struct *vma);
1580 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1581 size_t size, int flags);
1584 * Functions to fill in entries in struct proto_ops when a protocol
1585 * uses the inet style.
1587 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1588 char __user *optval, int __user *optlen);
1589 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1590 int flags);
1591 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1592 char __user *optval, unsigned int optlen);
1593 int compat_sock_common_getsockopt(struct socket *sock, int level,
1594 int optname, char __user *optval, int __user *optlen);
1595 int compat_sock_common_setsockopt(struct socket *sock, int level,
1596 int optname, char __user *optval, unsigned int optlen);
1598 void sk_common_release(struct sock *sk);
1601 * Default socket callbacks and setup code
1604 /* Initialise core socket variables */
1605 void sock_init_data(struct socket *sock, struct sock *sk);
1608 * Socket reference counting postulates.
1610 * * Each user of socket SHOULD hold a reference count.
1611 * * Each access point to socket (an hash table bucket, reference from a list,
1612 * running timer, skb in flight MUST hold a reference count.
1613 * * When reference count hits 0, it means it will never increase back.
1614 * * When reference count hits 0, it means that no references from
1615 * outside exist to this socket and current process on current CPU
1616 * is last user and may/should destroy this socket.
1617 * * sk_free is called from any context: process, BH, IRQ. When
1618 * it is called, socket has no references from outside -> sk_free
1619 * may release descendant resources allocated by the socket, but
1620 * to the time when it is called, socket is NOT referenced by any
1621 * hash tables, lists etc.
1622 * * Packets, delivered from outside (from network or from another process)
1623 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1624 * when they sit in queue. Otherwise, packets will leak to hole, when
1625 * socket is looked up by one cpu and unhasing is made by another CPU.
1626 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1627 * (leak to backlog). Packet socket does all the processing inside
1628 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1629 * use separate SMP lock, so that they are prone too.
1632 /* Ungrab socket and destroy it, if it was the last reference. */
1633 static inline void sock_put(struct sock *sk)
1635 if (atomic_dec_and_test(&sk->sk_refcnt))
1636 sk_free(sk);
1638 /* Generic version of sock_put(), dealing with all sockets
1639 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1641 void sock_gen_put(struct sock *sk);
1643 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1645 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1647 sk->sk_tx_queue_mapping = tx_queue;
1650 static inline void sk_tx_queue_clear(struct sock *sk)
1652 sk->sk_tx_queue_mapping = -1;
1655 static inline int sk_tx_queue_get(const struct sock *sk)
1657 return sk ? sk->sk_tx_queue_mapping : -1;
1660 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1662 sk_tx_queue_clear(sk);
1663 sk->sk_socket = sock;
1666 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1668 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1669 return &rcu_dereference_raw(sk->sk_wq)->wait;
1671 /* Detach socket from process context.
1672 * Announce socket dead, detach it from wait queue and inode.
1673 * Note that parent inode held reference count on this struct sock,
1674 * we do not release it in this function, because protocol
1675 * probably wants some additional cleanups or even continuing
1676 * to work with this socket (TCP).
1678 static inline void sock_orphan(struct sock *sk)
1680 write_lock_bh(&sk->sk_callback_lock);
1681 sock_set_flag(sk, SOCK_DEAD);
1682 sk_set_socket(sk, NULL);
1683 sk->sk_wq = NULL;
1684 write_unlock_bh(&sk->sk_callback_lock);
1687 static inline void sock_graft(struct sock *sk, struct socket *parent)
1689 write_lock_bh(&sk->sk_callback_lock);
1690 sk->sk_wq = parent->wq;
1691 parent->sk = sk;
1692 sk_set_socket(sk, parent);
1693 security_sock_graft(sk, parent);
1694 write_unlock_bh(&sk->sk_callback_lock);
1697 kuid_t sock_i_uid(struct sock *sk);
1698 unsigned long sock_i_ino(struct sock *sk);
1700 static inline struct dst_entry *
1701 __sk_dst_get(struct sock *sk)
1703 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1704 lockdep_is_held(&sk->sk_lock.slock));
1707 static inline struct dst_entry *
1708 sk_dst_get(struct sock *sk)
1710 struct dst_entry *dst;
1712 rcu_read_lock();
1713 dst = rcu_dereference(sk->sk_dst_cache);
1714 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1715 dst = NULL;
1716 rcu_read_unlock();
1717 return dst;
1720 static inline void dst_negative_advice(struct sock *sk)
1722 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1724 if (dst && dst->ops->negative_advice) {
1725 ndst = dst->ops->negative_advice(dst);
1727 if (ndst != dst) {
1728 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1729 sk_tx_queue_clear(sk);
1734 static inline void
1735 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1737 struct dst_entry *old_dst;
1739 sk_tx_queue_clear(sk);
1741 * This can be called while sk is owned by the caller only,
1742 * with no state that can be checked in a rcu_dereference_check() cond
1744 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1745 rcu_assign_pointer(sk->sk_dst_cache, dst);
1746 dst_release(old_dst);
1749 static inline void
1750 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1752 struct dst_entry *old_dst;
1754 sk_tx_queue_clear(sk);
1755 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1756 dst_release(old_dst);
1759 static inline void
1760 __sk_dst_reset(struct sock *sk)
1762 __sk_dst_set(sk, NULL);
1765 static inline void
1766 sk_dst_reset(struct sock *sk)
1768 sk_dst_set(sk, NULL);
1771 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1773 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1775 bool sk_mc_loop(struct sock *sk);
1777 static inline bool sk_can_gso(const struct sock *sk)
1779 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1782 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1784 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1786 sk->sk_route_nocaps |= flags;
1787 sk->sk_route_caps &= ~flags;
1790 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1791 struct iov_iter *from, char *to,
1792 int copy, int offset)
1794 if (skb->ip_summed == CHECKSUM_NONE) {
1795 __wsum csum = 0;
1796 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1797 return -EFAULT;
1798 skb->csum = csum_block_add(skb->csum, csum, offset);
1799 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1800 if (copy_from_iter_nocache(to, copy, from) != copy)
1801 return -EFAULT;
1802 } else if (copy_from_iter(to, copy, from) != copy)
1803 return -EFAULT;
1805 return 0;
1808 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1809 struct iov_iter *from, int copy)
1811 int err, offset = skb->len;
1813 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1814 copy, offset);
1815 if (err)
1816 __skb_trim(skb, offset);
1818 return err;
1821 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1822 struct sk_buff *skb,
1823 struct page *page,
1824 int off, int copy)
1826 int err;
1828 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1829 copy, skb->len);
1830 if (err)
1831 return err;
1833 skb->len += copy;
1834 skb->data_len += copy;
1835 skb->truesize += copy;
1836 sk->sk_wmem_queued += copy;
1837 sk_mem_charge(sk, copy);
1838 return 0;
1842 * sk_wmem_alloc_get - returns write allocations
1843 * @sk: socket
1845 * Returns sk_wmem_alloc minus initial offset of one
1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1849 return atomic_read(&sk->sk_wmem_alloc) - 1;
1853 * sk_rmem_alloc_get - returns read allocations
1854 * @sk: socket
1856 * Returns sk_rmem_alloc
1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1860 return atomic_read(&sk->sk_rmem_alloc);
1864 * sk_has_allocations - check if allocations are outstanding
1865 * @sk: socket
1867 * Returns true if socket has write or read allocations
1869 static inline bool sk_has_allocations(const struct sock *sk)
1871 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1875 * wq_has_sleeper - check if there are any waiting processes
1876 * @wq: struct socket_wq
1878 * Returns true if socket_wq has waiting processes
1880 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881 * barrier call. They were added due to the race found within the tcp code.
1883 * Consider following tcp code paths:
1885 * CPU1 CPU2
1887 * sys_select receive packet
1888 * ... ...
1889 * __add_wait_queue update tp->rcv_nxt
1890 * ... ...
1891 * tp->rcv_nxt check sock_def_readable
1892 * ... {
1893 * schedule rcu_read_lock();
1894 * wq = rcu_dereference(sk->sk_wq);
1895 * if (wq && waitqueue_active(&wq->wait))
1896 * wake_up_interruptible(&wq->wait)
1897 * ...
1900 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1902 * could then endup calling schedule and sleep forever if there are no more
1903 * data on the socket.
1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1908 /* We need to be sure we are in sync with the
1909 * add_wait_queue modifications to the wait queue.
1911 * This memory barrier is paired in the sock_poll_wait.
1913 smp_mb();
1914 return wq && waitqueue_active(&wq->wait);
1918 * sock_poll_wait - place memory barrier behind the poll_wait call.
1919 * @filp: file
1920 * @wait_address: socket wait queue
1921 * @p: poll_table
1923 * See the comments in the wq_has_sleeper function.
1925 static inline void sock_poll_wait(struct file *filp,
1926 wait_queue_head_t *wait_address, poll_table *p)
1928 if (!poll_does_not_wait(p) && wait_address) {
1929 poll_wait(filp, wait_address, p);
1930 /* We need to be sure we are in sync with the
1931 * socket flags modification.
1933 * This memory barrier is paired in the wq_has_sleeper.
1935 smp_mb();
1939 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1941 if (sk->sk_txhash) {
1942 skb->l4_hash = 1;
1943 skb->hash = sk->sk_txhash;
1948 * Queue a received datagram if it will fit. Stream and sequenced
1949 * protocols can't normally use this as they need to fit buffers in
1950 * and play with them.
1952 * Inlined as it's very short and called for pretty much every
1953 * packet ever received.
1956 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1958 skb_orphan(skb);
1959 skb->sk = sk;
1960 skb->destructor = sock_wfree;
1961 skb_set_hash_from_sk(skb, sk);
1963 * We used to take a refcount on sk, but following operation
1964 * is enough to guarantee sk_free() wont free this sock until
1965 * all in-flight packets are completed
1967 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1970 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1972 skb_orphan(skb);
1973 skb->sk = sk;
1974 skb->destructor = sock_rfree;
1975 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1976 sk_mem_charge(sk, skb->truesize);
1979 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1980 unsigned long expires);
1982 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1984 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1986 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1987 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1990 * Recover an error report and clear atomically
1993 static inline int sock_error(struct sock *sk)
1995 int err;
1996 if (likely(!sk->sk_err))
1997 return 0;
1998 err = xchg(&sk->sk_err, 0);
1999 return -err;
2002 static inline unsigned long sock_wspace(struct sock *sk)
2004 int amt = 0;
2006 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2007 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2008 if (amt < 0)
2009 amt = 0;
2011 return amt;
2014 static inline void sk_wake_async(struct sock *sk, int how, int band)
2016 if (sock_flag(sk, SOCK_FASYNC))
2017 sock_wake_async(sk->sk_socket, how, band);
2020 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022 * Note: for send buffers, TCP works better if we can build two skbs at
2023 * minimum.
2025 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2027 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2028 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2030 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2032 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2033 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2034 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2038 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2041 * sk_page_frag - return an appropriate page_frag
2042 * @sk: socket
2044 * If socket allocation mode allows current thread to sleep, it means its
2045 * safe to use the per task page_frag instead of the per socket one.
2047 static inline struct page_frag *sk_page_frag(struct sock *sk)
2049 if (sk->sk_allocation & __GFP_WAIT)
2050 return &current->task_frag;
2052 return &sk->sk_frag;
2055 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2058 * Default write policy as shown to user space via poll/select/SIGIO
2060 static inline bool sock_writeable(const struct sock *sk)
2062 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2065 static inline gfp_t gfp_any(void)
2067 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2070 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2072 return noblock ? 0 : sk->sk_rcvtimeo;
2075 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2077 return noblock ? 0 : sk->sk_sndtimeo;
2080 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2082 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2085 /* Alas, with timeout socket operations are not restartable.
2086 * Compare this to poll().
2088 static inline int sock_intr_errno(long timeo)
2090 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2093 struct sock_skb_cb {
2094 u32 dropcount;
2097 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2098 * using skb->cb[] would keep using it directly and utilize its
2099 * alignement guarantee.
2101 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2102 sizeof(struct sock_skb_cb)))
2104 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2105 SOCK_SKB_CB_OFFSET))
2107 #define sock_skb_cb_check_size(size) \
2108 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2110 static inline void
2111 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2113 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2116 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb);
2118 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2119 struct sk_buff *skb);
2121 static inline void
2122 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2124 ktime_t kt = skb->tstamp;
2125 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2128 * generate control messages if
2129 * - receive time stamping in software requested
2130 * - software time stamp available and wanted
2131 * - hardware time stamps available and wanted
2133 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2134 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2135 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2136 (hwtstamps->hwtstamp.tv64 &&
2137 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2138 __sock_recv_timestamp(msg, sk, skb);
2139 else
2140 sk->sk_stamp = kt;
2142 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2143 __sock_recv_wifi_status(msg, sk, skb);
2146 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2147 struct sk_buff *skb);
2149 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2150 struct sk_buff *skb)
2152 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2153 (1UL << SOCK_RCVTSTAMP))
2154 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2155 SOF_TIMESTAMPING_RAW_HARDWARE)
2157 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2158 __sock_recv_ts_and_drops(msg, sk, skb);
2159 else
2160 sk->sk_stamp = skb->tstamp;
2163 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2166 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2167 * @sk: socket sending this packet
2168 * @tx_flags: completed with instructions for time stamping
2170 * Note : callers should take care of initial *tx_flags value (usually 0)
2172 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2174 if (unlikely(sk->sk_tsflags))
2175 __sock_tx_timestamp(sk, tx_flags);
2176 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2177 *tx_flags |= SKBTX_WIFI_STATUS;
2181 * sk_eat_skb - Release a skb if it is no longer needed
2182 * @sk: socket to eat this skb from
2183 * @skb: socket buffer to eat
2185 * This routine must be called with interrupts disabled or with the socket
2186 * locked so that the sk_buff queue operation is ok.
2188 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2190 __skb_unlink(skb, &sk->sk_receive_queue);
2191 __kfree_skb(skb);
2194 static inline
2195 struct net *sock_net(const struct sock *sk)
2197 return read_pnet(&sk->sk_net);
2200 static inline
2201 void sock_net_set(struct sock *sk, struct net *net)
2203 write_pnet(&sk->sk_net, net);
2207 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2208 * They should not hold a reference to a namespace in order to allow
2209 * to stop it.
2210 * Sockets after sk_change_net should be released using sk_release_kernel
2212 static inline void sk_change_net(struct sock *sk, struct net *net)
2214 struct net *current_net = sock_net(sk);
2216 if (!net_eq(current_net, net)) {
2217 put_net(current_net);
2218 sock_net_set(sk, net);
2222 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2224 if (skb->sk) {
2225 struct sock *sk = skb->sk;
2227 skb->destructor = NULL;
2228 skb->sk = NULL;
2229 return sk;
2231 return NULL;
2234 /* This helper checks if a socket is a full socket,
2235 * ie _not_ a timewait or request socket.
2237 static inline bool sk_fullsock(const struct sock *sk)
2239 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2242 void sock_enable_timestamp(struct sock *sk, int flag);
2243 int sock_get_timestamp(struct sock *, struct timeval __user *);
2244 int sock_get_timestampns(struct sock *, struct timespec __user *);
2245 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2246 int type);
2248 bool sk_ns_capable(const struct sock *sk,
2249 struct user_namespace *user_ns, int cap);
2250 bool sk_capable(const struct sock *sk, int cap);
2251 bool sk_net_capable(const struct sock *sk, int cap);
2253 extern __u32 sysctl_wmem_max;
2254 extern __u32 sysctl_rmem_max;
2256 extern int sysctl_tstamp_allow_data;
2257 extern int sysctl_optmem_max;
2259 extern __u32 sysctl_wmem_default;
2260 extern __u32 sysctl_rmem_default;
2262 #endif /* _SOCK_H */