2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
75 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
);
79 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
84 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock
*sk
, const char *msg
, ...)
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
114 wait_queue_head_t wq
;
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map
;
130 typedef __u32 __bitwise __portpair
;
131 typedef __u64 __bitwise __addrpair
;
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
163 __addrpair skc_addrpair
;
166 __be32 skc_rcv_saddr
;
170 unsigned int skc_hash
;
171 __u16 skc_u16hashes
[2];
173 /* skc_dport && skc_num must be grouped as well */
175 __portpair skc_portpair
;
182 unsigned short skc_family
;
183 volatile unsigned char skc_state
;
184 unsigned char skc_reuse
:4;
185 unsigned char skc_reuseport
:1;
186 unsigned char skc_ipv6only
:1;
187 int skc_bound_dev_if
;
189 struct hlist_node skc_bind_node
;
190 struct hlist_nulls_node skc_portaddr_node
;
192 struct proto
*skc_prot
;
193 possible_net_t skc_net
;
195 #if IS_ENABLED(CONFIG_IPV6)
196 struct in6_addr skc_v6_daddr
;
197 struct in6_addr skc_v6_rcv_saddr
;
200 atomic64_t skc_cookie
;
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
207 int skc_dontcopy_begin
[0];
210 struct hlist_node skc_node
;
211 struct hlist_nulls_node skc_nulls_node
;
213 int skc_tx_queue_mapping
;
216 int skc_dontcopy_end
[0];
222 * struct sock - network layer representation of sockets
223 * @__sk_common: shared layout with inet_timewait_sock
224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226 * @sk_lock: synchronizer
227 * @sk_rcvbuf: size of receive buffer in bytes
228 * @sk_wq: sock wait queue and async head
229 * @sk_rx_dst: receive input route used by early demux
230 * @sk_dst_cache: destination cache
231 * @sk_dst_lock: destination cache lock
232 * @sk_policy: flow policy
233 * @sk_receive_queue: incoming packets
234 * @sk_wmem_alloc: transmit queue bytes committed
235 * @sk_write_queue: Packet sending queue
236 * @sk_omem_alloc: "o" is "option" or "other"
237 * @sk_wmem_queued: persistent queue size
238 * @sk_forward_alloc: space allocated forward
239 * @sk_napi_id: id of the last napi context to receive data for sk
240 * @sk_ll_usec: usecs to busypoll when there is no data
241 * @sk_allocation: allocation mode
242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244 * @sk_sndbuf: size of send buffer in bytes
245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248 * @sk_no_check_rx: allow zero checksum in RX packets
249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252 * @sk_gso_max_size: Maximum GSO segment size to build
253 * @sk_gso_max_segs: Maximum number of GSO segments
254 * @sk_lingertime: %SO_LINGER l_linger setting
255 * @sk_backlog: always used with the per-socket spinlock held
256 * @sk_callback_lock: used with the callbacks in the end of this struct
257 * @sk_error_queue: rarely used
258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259 * IPV6_ADDRFORM for instance)
260 * @sk_err: last error
261 * @sk_err_soft: errors that don't cause failure but are the cause of a
262 * persistent failure not just 'timed out'
263 * @sk_drops: raw/udp drops counter
264 * @sk_ack_backlog: current listen backlog
265 * @sk_max_ack_backlog: listen backlog set in listen()
266 * @sk_priority: %SO_PRIORITY setting
267 * @sk_cgrp_prioidx: socket group's priority map index
268 * @sk_type: socket type (%SOCK_STREAM, etc)
269 * @sk_protocol: which protocol this socket belongs in this network family
270 * @sk_peer_pid: &struct pid for this socket's peer
271 * @sk_peer_cred: %SO_PEERCRED setting
272 * @sk_rcvlowat: %SO_RCVLOWAT setting
273 * @sk_rcvtimeo: %SO_RCVTIMEO setting
274 * @sk_sndtimeo: %SO_SNDTIMEO setting
275 * @sk_rxhash: flow hash received from netif layer
276 * @sk_incoming_cpu: record cpu processing incoming packets
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
306 struct sock_common __sk_common
;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
332 #define sk_cookie __sk_common.skc_cookie
334 socket_lock_t sk_lock
;
335 struct sk_buff_head sk_receive_queue
;
337 * The backlog queue is special, it is always used with
338 * the per-socket spinlock held and requires low latency
339 * access. Therefore we special case it's implementation.
340 * Note : rmem_alloc is in this structure to fill a hole
341 * on 64bit arches, not because its logically part of
347 struct sk_buff
*head
;
348 struct sk_buff
*tail
;
350 #define sk_rmem_alloc sk_backlog.rmem_alloc
351 int sk_forward_alloc
;
357 * Warned : sk_incoming_cpu can be set from softirq,
358 * Do not use this hole without fully understanding possible issues.
362 #ifdef CONFIG_NET_RX_BUSY_POLL
363 unsigned int sk_napi_id
;
364 unsigned int sk_ll_usec
;
369 struct sk_filter __rcu
*sk_filter
;
370 struct socket_wq __rcu
*sk_wq
;
373 struct xfrm_policy
*sk_policy
[2];
375 unsigned long sk_flags
;
376 struct dst_entry
*sk_rx_dst
;
377 struct dst_entry __rcu
*sk_dst_cache
;
378 spinlock_t sk_dst_lock
;
379 atomic_t sk_wmem_alloc
;
380 atomic_t sk_omem_alloc
;
382 struct sk_buff_head sk_write_queue
;
383 kmemcheck_bitfield_begin(flags
);
384 unsigned int sk_shutdown
: 2,
389 #define SK_PROTOCOL_MAX U8_MAX
391 kmemcheck_bitfield_end(flags
);
394 u32 sk_pacing_rate
; /* bytes per second */
395 u32 sk_max_pacing_rate
;
396 netdev_features_t sk_route_caps
;
397 netdev_features_t sk_route_nocaps
;
399 unsigned int sk_gso_max_size
;
402 unsigned long sk_lingertime
;
403 struct sk_buff_head sk_error_queue
;
404 struct proto
*sk_prot_creator
;
405 rwlock_t sk_callback_lock
;
409 u32 sk_max_ack_backlog
;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 __u32 sk_cgrp_prioidx
;
414 struct pid
*sk_peer_pid
;
415 const struct cred
*sk_peer_cred
;
419 struct timer_list sk_timer
;
423 struct socket
*sk_socket
;
425 struct page_frag sk_frag
;
426 struct sk_buff
*sk_send_head
;
428 int sk_write_pending
;
429 #ifdef CONFIG_SECURITY
434 struct cg_proto
*sk_cgrp
;
435 void (*sk_state_change
)(struct sock
*sk
);
436 void (*sk_data_ready
)(struct sock
*sk
);
437 void (*sk_write_space
)(struct sock
*sk
);
438 void (*sk_error_report
)(struct sock
*sk
);
439 int (*sk_backlog_rcv
)(struct sock
*sk
,
440 struct sk_buff
*skb
);
441 void (*sk_destruct
)(struct sock
*sk
);
444 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
446 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
447 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
450 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452 * on a socket means that the socket will reuse everybody else's port
453 * without looking at the other's sk_reuse value.
456 #define SK_NO_REUSE 0
457 #define SK_CAN_REUSE 1
458 #define SK_FORCE_REUSE 2
460 static inline int sk_peek_offset(struct sock
*sk
, int flags
)
462 if ((flags
& MSG_PEEK
) && (sk
->sk_peek_off
>= 0))
463 return sk
->sk_peek_off
;
468 static inline void sk_peek_offset_bwd(struct sock
*sk
, int val
)
470 if (sk
->sk_peek_off
>= 0) {
471 if (sk
->sk_peek_off
>= val
)
472 sk
->sk_peek_off
-= val
;
478 static inline void sk_peek_offset_fwd(struct sock
*sk
, int val
)
480 if (sk
->sk_peek_off
>= 0)
481 sk
->sk_peek_off
+= val
;
485 * Hashed lists helper routines
487 static inline struct sock
*sk_entry(const struct hlist_node
*node
)
489 return hlist_entry(node
, struct sock
, sk_node
);
492 static inline struct sock
*__sk_head(const struct hlist_head
*head
)
494 return hlist_entry(head
->first
, struct sock
, sk_node
);
497 static inline struct sock
*sk_head(const struct hlist_head
*head
)
499 return hlist_empty(head
) ? NULL
: __sk_head(head
);
502 static inline struct sock
*__sk_nulls_head(const struct hlist_nulls_head
*head
)
504 return hlist_nulls_entry(head
->first
, struct sock
, sk_nulls_node
);
507 static inline struct sock
*sk_nulls_head(const struct hlist_nulls_head
*head
)
509 return hlist_nulls_empty(head
) ? NULL
: __sk_nulls_head(head
);
512 static inline struct sock
*sk_next(const struct sock
*sk
)
514 return sk
->sk_node
.next
?
515 hlist_entry(sk
->sk_node
.next
, struct sock
, sk_node
) : NULL
;
518 static inline struct sock
*sk_nulls_next(const struct sock
*sk
)
520 return (!is_a_nulls(sk
->sk_nulls_node
.next
)) ?
521 hlist_nulls_entry(sk
->sk_nulls_node
.next
,
522 struct sock
, sk_nulls_node
) :
526 static inline bool sk_unhashed(const struct sock
*sk
)
528 return hlist_unhashed(&sk
->sk_node
);
531 static inline bool sk_hashed(const struct sock
*sk
)
533 return !sk_unhashed(sk
);
536 static inline void sk_node_init(struct hlist_node
*node
)
541 static inline void sk_nulls_node_init(struct hlist_nulls_node
*node
)
546 static inline void __sk_del_node(struct sock
*sk
)
548 __hlist_del(&sk
->sk_node
);
551 /* NB: equivalent to hlist_del_init_rcu */
552 static inline bool __sk_del_node_init(struct sock
*sk
)
556 sk_node_init(&sk
->sk_node
);
562 /* Grab socket reference count. This operation is valid only
563 when sk is ALREADY grabbed f.e. it is found in hash table
564 or a list and the lookup is made under lock preventing hash table
568 static inline void sock_hold(struct sock
*sk
)
570 atomic_inc(&sk
->sk_refcnt
);
573 /* Ungrab socket in the context, which assumes that socket refcnt
574 cannot hit zero, f.e. it is true in context of any socketcall.
576 static inline void __sock_put(struct sock
*sk
)
578 atomic_dec(&sk
->sk_refcnt
);
581 static inline bool sk_del_node_init(struct sock
*sk
)
583 bool rc
= __sk_del_node_init(sk
);
586 /* paranoid for a while -acme */
587 WARN_ON(atomic_read(&sk
->sk_refcnt
) == 1);
592 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
594 static inline bool __sk_nulls_del_node_init_rcu(struct sock
*sk
)
597 hlist_nulls_del_init_rcu(&sk
->sk_nulls_node
);
603 static inline bool sk_nulls_del_node_init_rcu(struct sock
*sk
)
605 bool rc
= __sk_nulls_del_node_init_rcu(sk
);
608 /* paranoid for a while -acme */
609 WARN_ON(atomic_read(&sk
->sk_refcnt
) == 1);
615 static inline void __sk_add_node(struct sock
*sk
, struct hlist_head
*list
)
617 hlist_add_head(&sk
->sk_node
, list
);
620 static inline void sk_add_node(struct sock
*sk
, struct hlist_head
*list
)
623 __sk_add_node(sk
, list
);
626 static inline void sk_add_node_rcu(struct sock
*sk
, struct hlist_head
*list
)
629 hlist_add_head_rcu(&sk
->sk_node
, list
);
632 static inline void __sk_nulls_add_node_rcu(struct sock
*sk
, struct hlist_nulls_head
*list
)
634 hlist_nulls_add_head_rcu(&sk
->sk_nulls_node
, list
);
637 static inline void sk_nulls_add_node_rcu(struct sock
*sk
, struct hlist_nulls_head
*list
)
640 __sk_nulls_add_node_rcu(sk
, list
);
643 static inline void __sk_del_bind_node(struct sock
*sk
)
645 __hlist_del(&sk
->sk_bind_node
);
648 static inline void sk_add_bind_node(struct sock
*sk
,
649 struct hlist_head
*list
)
651 hlist_add_head(&sk
->sk_bind_node
, list
);
654 #define sk_for_each(__sk, list) \
655 hlist_for_each_entry(__sk, list, sk_node)
656 #define sk_for_each_rcu(__sk, list) \
657 hlist_for_each_entry_rcu(__sk, list, sk_node)
658 #define sk_nulls_for_each(__sk, node, list) \
659 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
660 #define sk_nulls_for_each_rcu(__sk, node, list) \
661 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
662 #define sk_for_each_from(__sk) \
663 hlist_for_each_entry_from(__sk, sk_node)
664 #define sk_nulls_for_each_from(__sk, node) \
665 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
666 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
667 #define sk_for_each_safe(__sk, tmp, list) \
668 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
669 #define sk_for_each_bound(__sk, list) \
670 hlist_for_each_entry(__sk, list, sk_bind_node)
673 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
674 * @tpos: the type * to use as a loop cursor.
675 * @pos: the &struct hlist_node to use as a loop cursor.
676 * @head: the head for your list.
677 * @offset: offset of hlist_node within the struct.
680 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
681 for (pos = (head)->first; \
682 (!is_a_nulls(pos)) && \
683 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
686 static inline struct user_namespace
*sk_user_ns(struct sock
*sk
)
688 /* Careful only use this in a context where these parameters
689 * can not change and must all be valid, such as recvmsg from
692 return sk
->sk_socket
->file
->f_cred
->user_ns
;
706 SOCK_USE_WRITE_QUEUE
, /* whether to call sk->sk_write_space in sock_wfree */
707 SOCK_DBG
, /* %SO_DEBUG setting */
708 SOCK_RCVTSTAMP
, /* %SO_TIMESTAMP setting */
709 SOCK_RCVTSTAMPNS
, /* %SO_TIMESTAMPNS setting */
710 SOCK_LOCALROUTE
, /* route locally only, %SO_DONTROUTE setting */
711 SOCK_QUEUE_SHRUNK
, /* write queue has been shrunk recently */
712 SOCK_MEMALLOC
, /* VM depends on this socket for swapping */
713 SOCK_TIMESTAMPING_RX_SOFTWARE
, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
714 SOCK_FASYNC
, /* fasync() active */
716 SOCK_ZEROCOPY
, /* buffers from userspace */
717 SOCK_WIFI_STATUS
, /* push wifi status to userspace */
718 SOCK_NOFCS
, /* Tell NIC not to do the Ethernet FCS.
719 * Will use last 4 bytes of packet sent from
720 * user-space instead.
722 SOCK_FILTER_LOCKED
, /* Filter cannot be changed anymore */
723 SOCK_SELECT_ERR_QUEUE
, /* Wake select on error queue */
726 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
728 static inline void sock_copy_flags(struct sock
*nsk
, struct sock
*osk
)
730 nsk
->sk_flags
= osk
->sk_flags
;
733 static inline void sock_set_flag(struct sock
*sk
, enum sock_flags flag
)
735 __set_bit(flag
, &sk
->sk_flags
);
738 static inline void sock_reset_flag(struct sock
*sk
, enum sock_flags flag
)
740 __clear_bit(flag
, &sk
->sk_flags
);
743 static inline bool sock_flag(const struct sock
*sk
, enum sock_flags flag
)
745 return test_bit(flag
, &sk
->sk_flags
);
749 extern struct static_key memalloc_socks
;
750 static inline int sk_memalloc_socks(void)
752 return static_key_false(&memalloc_socks
);
756 static inline int sk_memalloc_socks(void)
763 static inline gfp_t
sk_gfp_atomic(struct sock
*sk
, gfp_t gfp_mask
)
765 return GFP_ATOMIC
| (sk
->sk_allocation
& __GFP_MEMALLOC
);
768 static inline void sk_acceptq_removed(struct sock
*sk
)
770 sk
->sk_ack_backlog
--;
773 static inline void sk_acceptq_added(struct sock
*sk
)
775 sk
->sk_ack_backlog
++;
778 static inline bool sk_acceptq_is_full(const struct sock
*sk
)
780 return sk
->sk_ack_backlog
> sk
->sk_max_ack_backlog
;
784 * Compute minimal free write space needed to queue new packets.
786 static inline int sk_stream_min_wspace(const struct sock
*sk
)
788 return sk
->sk_wmem_queued
>> 1;
791 static inline int sk_stream_wspace(const struct sock
*sk
)
793 return sk
->sk_sndbuf
- sk
->sk_wmem_queued
;
796 void sk_stream_write_space(struct sock
*sk
);
798 /* OOB backlog add */
799 static inline void __sk_add_backlog(struct sock
*sk
, struct sk_buff
*skb
)
801 /* dont let skb dst not refcounted, we are going to leave rcu lock */
802 skb_dst_force_safe(skb
);
804 if (!sk
->sk_backlog
.tail
)
805 sk
->sk_backlog
.head
= skb
;
807 sk
->sk_backlog
.tail
->next
= skb
;
809 sk
->sk_backlog
.tail
= skb
;
814 * Take into account size of receive queue and backlog queue
815 * Do not take into account this skb truesize,
816 * to allow even a single big packet to come.
818 static inline bool sk_rcvqueues_full(const struct sock
*sk
, unsigned int limit
)
820 unsigned int qsize
= sk
->sk_backlog
.len
+ atomic_read(&sk
->sk_rmem_alloc
);
822 return qsize
> limit
;
825 /* The per-socket spinlock must be held here. */
826 static inline __must_check
int sk_add_backlog(struct sock
*sk
, struct sk_buff
*skb
,
829 if (sk_rcvqueues_full(sk
, limit
))
833 * If the skb was allocated from pfmemalloc reserves, only
834 * allow SOCK_MEMALLOC sockets to use it as this socket is
835 * helping free memory
837 if (skb_pfmemalloc(skb
) && !sock_flag(sk
, SOCK_MEMALLOC
))
840 __sk_add_backlog(sk
, skb
);
841 sk
->sk_backlog
.len
+= skb
->truesize
;
845 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
);
847 static inline int sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
849 if (sk_memalloc_socks() && skb_pfmemalloc(skb
))
850 return __sk_backlog_rcv(sk
, skb
);
852 return sk
->sk_backlog_rcv(sk
, skb
);
855 static inline void sk_incoming_cpu_update(struct sock
*sk
)
857 sk
->sk_incoming_cpu
= raw_smp_processor_id();
860 static inline void sock_rps_record_flow_hash(__u32 hash
)
863 struct rps_sock_flow_table
*sock_flow_table
;
866 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
867 rps_record_sock_flow(sock_flow_table
, hash
);
872 static inline void sock_rps_record_flow(const struct sock
*sk
)
875 sock_rps_record_flow_hash(sk
->sk_rxhash
);
879 static inline void sock_rps_save_rxhash(struct sock
*sk
,
880 const struct sk_buff
*skb
)
883 if (unlikely(sk
->sk_rxhash
!= skb
->hash
))
884 sk
->sk_rxhash
= skb
->hash
;
888 static inline void sock_rps_reset_rxhash(struct sock
*sk
)
895 #define sk_wait_event(__sk, __timeo, __condition) \
897 release_sock(__sk); \
898 __rc = __condition; \
900 *(__timeo) = schedule_timeout(*(__timeo)); \
902 sched_annotate_sleep(); \
904 __rc = __condition; \
908 int sk_stream_wait_connect(struct sock
*sk
, long *timeo_p
);
909 int sk_stream_wait_memory(struct sock
*sk
, long *timeo_p
);
910 void sk_stream_wait_close(struct sock
*sk
, long timeo_p
);
911 int sk_stream_error(struct sock
*sk
, int flags
, int err
);
912 void sk_stream_kill_queues(struct sock
*sk
);
913 void sk_set_memalloc(struct sock
*sk
);
914 void sk_clear_memalloc(struct sock
*sk
);
916 int sk_wait_data(struct sock
*sk
, long *timeo
);
918 struct request_sock_ops
;
919 struct timewait_sock_ops
;
920 struct inet_hashinfo
;
925 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
926 * un-modified. Special care is taken when initializing object to zero.
928 static inline void sk_prot_clear_nulls(struct sock
*sk
, int size
)
930 if (offsetof(struct sock
, sk_node
.next
) != 0)
931 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
932 memset(&sk
->sk_node
.pprev
, 0,
933 size
- offsetof(struct sock
, sk_node
.pprev
));
936 /* Networking protocol blocks we attach to sockets.
937 * socket layer -> transport layer interface
938 * transport -> network interface is defined by struct inet_proto
941 void (*close
)(struct sock
*sk
,
943 int (*connect
)(struct sock
*sk
,
944 struct sockaddr
*uaddr
,
946 int (*disconnect
)(struct sock
*sk
, int flags
);
948 struct sock
* (*accept
)(struct sock
*sk
, int flags
, int *err
);
950 int (*ioctl
)(struct sock
*sk
, int cmd
,
952 int (*init
)(struct sock
*sk
);
953 void (*destroy
)(struct sock
*sk
);
954 void (*shutdown
)(struct sock
*sk
, int how
);
955 int (*setsockopt
)(struct sock
*sk
, int level
,
956 int optname
, char __user
*optval
,
957 unsigned int optlen
);
958 int (*getsockopt
)(struct sock
*sk
, int level
,
959 int optname
, char __user
*optval
,
962 int (*compat_setsockopt
)(struct sock
*sk
,
964 int optname
, char __user
*optval
,
965 unsigned int optlen
);
966 int (*compat_getsockopt
)(struct sock
*sk
,
968 int optname
, char __user
*optval
,
970 int (*compat_ioctl
)(struct sock
*sk
,
971 unsigned int cmd
, unsigned long arg
);
973 int (*sendmsg
)(struct sock
*sk
, struct msghdr
*msg
,
975 int (*recvmsg
)(struct sock
*sk
, struct msghdr
*msg
,
976 size_t len
, int noblock
, int flags
,
978 int (*sendpage
)(struct sock
*sk
, struct page
*page
,
979 int offset
, size_t size
, int flags
);
980 int (*bind
)(struct sock
*sk
,
981 struct sockaddr
*uaddr
, int addr_len
);
983 int (*backlog_rcv
) (struct sock
*sk
,
984 struct sk_buff
*skb
);
986 void (*release_cb
)(struct sock
*sk
);
988 /* Keeping track of sk's, looking them up, and port selection methods. */
989 void (*hash
)(struct sock
*sk
);
990 void (*unhash
)(struct sock
*sk
);
991 void (*rehash
)(struct sock
*sk
);
992 int (*get_port
)(struct sock
*sk
, unsigned short snum
);
993 void (*clear_sk
)(struct sock
*sk
, int size
);
995 /* Keeping track of sockets in use */
996 #ifdef CONFIG_PROC_FS
997 unsigned int inuse_idx
;
1000 bool (*stream_memory_free
)(const struct sock
*sk
);
1001 /* Memory pressure */
1002 void (*enter_memory_pressure
)(struct sock
*sk
);
1003 atomic_long_t
*memory_allocated
; /* Current allocated memory. */
1004 struct percpu_counter
*sockets_allocated
; /* Current number of sockets. */
1006 * Pressure flag: try to collapse.
1007 * Technical note: it is used by multiple contexts non atomically.
1008 * All the __sk_mem_schedule() is of this nature: accounting
1009 * is strict, actions are advisory and have some latency.
1011 int *memory_pressure
;
1018 struct kmem_cache
*slab
;
1019 unsigned int obj_size
;
1022 struct percpu_counter
*orphan_count
;
1024 struct request_sock_ops
*rsk_prot
;
1025 struct timewait_sock_ops
*twsk_prot
;
1028 struct inet_hashinfo
*hashinfo
;
1029 struct udp_table
*udp_table
;
1030 struct raw_hashinfo
*raw_hash
;
1033 struct module
*owner
;
1037 struct list_head node
;
1038 #ifdef SOCK_REFCNT_DEBUG
1041 #ifdef CONFIG_MEMCG_KMEM
1043 * cgroup specific init/deinit functions. Called once for all
1044 * protocols that implement it, from cgroups populate function.
1045 * This function has to setup any files the protocol want to
1046 * appear in the kmem cgroup filesystem.
1048 int (*init_cgroup
)(struct mem_cgroup
*memcg
,
1049 struct cgroup_subsys
*ss
);
1050 void (*destroy_cgroup
)(struct mem_cgroup
*memcg
);
1051 struct cg_proto
*(*proto_cgroup
)(struct mem_cgroup
*memcg
);
1056 * Bits in struct cg_proto.flags
1058 enum cg_proto_flags
{
1059 /* Currently active and new sockets should be assigned to cgroups */
1061 /* It was ever activated; we must disarm static keys on destruction */
1062 MEMCG_SOCK_ACTIVATED
,
1066 struct page_counter memory_allocated
; /* Current allocated memory. */
1067 struct percpu_counter sockets_allocated
; /* Current number of sockets. */
1068 int memory_pressure
;
1070 unsigned long flags
;
1072 * memcg field is used to find which memcg we belong directly
1073 * Each memcg struct can hold more than one cg_proto, so container_of
1076 * The elegant solution would be having an inverse function to
1077 * proto_cgroup in struct proto, but that means polluting the structure
1078 * for everybody, instead of just for memcg users.
1080 struct mem_cgroup
*memcg
;
1083 int proto_register(struct proto
*prot
, int alloc_slab
);
1084 void proto_unregister(struct proto
*prot
);
1086 static inline bool memcg_proto_active(struct cg_proto
*cg_proto
)
1088 return test_bit(MEMCG_SOCK_ACTIVE
, &cg_proto
->flags
);
1091 #ifdef SOCK_REFCNT_DEBUG
1092 static inline void sk_refcnt_debug_inc(struct sock
*sk
)
1094 atomic_inc(&sk
->sk_prot
->socks
);
1097 static inline void sk_refcnt_debug_dec(struct sock
*sk
)
1099 atomic_dec(&sk
->sk_prot
->socks
);
1100 printk(KERN_DEBUG
"%s socket %p released, %d are still alive\n",
1101 sk
->sk_prot
->name
, sk
, atomic_read(&sk
->sk_prot
->socks
));
1104 static inline void sk_refcnt_debug_release(const struct sock
*sk
)
1106 if (atomic_read(&sk
->sk_refcnt
) != 1)
1107 printk(KERN_DEBUG
"Destruction of the %s socket %p delayed, refcnt=%d\n",
1108 sk
->sk_prot
->name
, sk
, atomic_read(&sk
->sk_refcnt
));
1110 #else /* SOCK_REFCNT_DEBUG */
1111 #define sk_refcnt_debug_inc(sk) do { } while (0)
1112 #define sk_refcnt_debug_dec(sk) do { } while (0)
1113 #define sk_refcnt_debug_release(sk) do { } while (0)
1114 #endif /* SOCK_REFCNT_DEBUG */
1116 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1117 extern struct static_key memcg_socket_limit_enabled
;
1118 static inline struct cg_proto
*parent_cg_proto(struct proto
*proto
,
1119 struct cg_proto
*cg_proto
)
1121 return proto
->proto_cgroup(parent_mem_cgroup(cg_proto
->memcg
));
1123 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1125 #define mem_cgroup_sockets_enabled 0
1126 static inline struct cg_proto
*parent_cg_proto(struct proto
*proto
,
1127 struct cg_proto
*cg_proto
)
1133 static inline bool sk_stream_memory_free(const struct sock
*sk
)
1135 if (sk
->sk_wmem_queued
>= sk
->sk_sndbuf
)
1138 return sk
->sk_prot
->stream_memory_free
?
1139 sk
->sk_prot
->stream_memory_free(sk
) : true;
1142 static inline bool sk_stream_is_writeable(const struct sock
*sk
)
1144 return sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
) &&
1145 sk_stream_memory_free(sk
);
1149 static inline bool sk_has_memory_pressure(const struct sock
*sk
)
1151 return sk
->sk_prot
->memory_pressure
!= NULL
;
1154 static inline bool sk_under_memory_pressure(const struct sock
*sk
)
1156 if (!sk
->sk_prot
->memory_pressure
)
1159 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1160 return !!sk
->sk_cgrp
->memory_pressure
;
1162 return !!*sk
->sk_prot
->memory_pressure
;
1165 static inline void sk_leave_memory_pressure(struct sock
*sk
)
1167 int *memory_pressure
= sk
->sk_prot
->memory_pressure
;
1169 if (!memory_pressure
)
1172 if (*memory_pressure
)
1173 *memory_pressure
= 0;
1175 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
1176 struct cg_proto
*cg_proto
= sk
->sk_cgrp
;
1177 struct proto
*prot
= sk
->sk_prot
;
1179 for (; cg_proto
; cg_proto
= parent_cg_proto(prot
, cg_proto
))
1180 cg_proto
->memory_pressure
= 0;
1185 static inline void sk_enter_memory_pressure(struct sock
*sk
)
1187 if (!sk
->sk_prot
->enter_memory_pressure
)
1190 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
1191 struct cg_proto
*cg_proto
= sk
->sk_cgrp
;
1192 struct proto
*prot
= sk
->sk_prot
;
1194 for (; cg_proto
; cg_proto
= parent_cg_proto(prot
, cg_proto
))
1195 cg_proto
->memory_pressure
= 1;
1198 sk
->sk_prot
->enter_memory_pressure(sk
);
1201 static inline long sk_prot_mem_limits(const struct sock
*sk
, int index
)
1203 long *prot
= sk
->sk_prot
->sysctl_mem
;
1204 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1205 prot
= sk
->sk_cgrp
->sysctl_mem
;
1209 static inline void memcg_memory_allocated_add(struct cg_proto
*prot
,
1213 page_counter_charge(&prot
->memory_allocated
, amt
);
1215 if (page_counter_read(&prot
->memory_allocated
) >
1216 prot
->memory_allocated
.limit
)
1217 *parent_status
= OVER_LIMIT
;
1220 static inline void memcg_memory_allocated_sub(struct cg_proto
*prot
,
1223 page_counter_uncharge(&prot
->memory_allocated
, amt
);
1227 sk_memory_allocated(const struct sock
*sk
)
1229 struct proto
*prot
= sk
->sk_prot
;
1231 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1232 return page_counter_read(&sk
->sk_cgrp
->memory_allocated
);
1234 return atomic_long_read(prot
->memory_allocated
);
1238 sk_memory_allocated_add(struct sock
*sk
, int amt
, int *parent_status
)
1240 struct proto
*prot
= sk
->sk_prot
;
1242 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
1243 memcg_memory_allocated_add(sk
->sk_cgrp
, amt
, parent_status
);
1244 /* update the root cgroup regardless */
1245 atomic_long_add_return(amt
, prot
->memory_allocated
);
1246 return page_counter_read(&sk
->sk_cgrp
->memory_allocated
);
1249 return atomic_long_add_return(amt
, prot
->memory_allocated
);
1253 sk_memory_allocated_sub(struct sock
*sk
, int amt
)
1255 struct proto
*prot
= sk
->sk_prot
;
1257 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1258 memcg_memory_allocated_sub(sk
->sk_cgrp
, amt
);
1260 atomic_long_sub(amt
, prot
->memory_allocated
);
1263 static inline void sk_sockets_allocated_dec(struct sock
*sk
)
1265 struct proto
*prot
= sk
->sk_prot
;
1267 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
1268 struct cg_proto
*cg_proto
= sk
->sk_cgrp
;
1270 for (; cg_proto
; cg_proto
= parent_cg_proto(prot
, cg_proto
))
1271 percpu_counter_dec(&cg_proto
->sockets_allocated
);
1274 percpu_counter_dec(prot
->sockets_allocated
);
1277 static inline void sk_sockets_allocated_inc(struct sock
*sk
)
1279 struct proto
*prot
= sk
->sk_prot
;
1281 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
1282 struct cg_proto
*cg_proto
= sk
->sk_cgrp
;
1284 for (; cg_proto
; cg_proto
= parent_cg_proto(prot
, cg_proto
))
1285 percpu_counter_inc(&cg_proto
->sockets_allocated
);
1288 percpu_counter_inc(prot
->sockets_allocated
);
1292 sk_sockets_allocated_read_positive(struct sock
*sk
)
1294 struct proto
*prot
= sk
->sk_prot
;
1296 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1297 return percpu_counter_read_positive(&sk
->sk_cgrp
->sockets_allocated
);
1299 return percpu_counter_read_positive(prot
->sockets_allocated
);
1303 proto_sockets_allocated_sum_positive(struct proto
*prot
)
1305 return percpu_counter_sum_positive(prot
->sockets_allocated
);
1309 proto_memory_allocated(struct proto
*prot
)
1311 return atomic_long_read(prot
->memory_allocated
);
1315 proto_memory_pressure(struct proto
*prot
)
1317 if (!prot
->memory_pressure
)
1319 return !!*prot
->memory_pressure
;
1323 #ifdef CONFIG_PROC_FS
1324 /* Called with local bh disabled */
1325 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int inc
);
1326 int sock_prot_inuse_get(struct net
*net
, struct proto
*proto
);
1328 static inline void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
,
1335 /* With per-bucket locks this operation is not-atomic, so that
1336 * this version is not worse.
1338 static inline void __sk_prot_rehash(struct sock
*sk
)
1340 sk
->sk_prot
->unhash(sk
);
1341 sk
->sk_prot
->hash(sk
);
1344 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
);
1346 /* About 10 seconds */
1347 #define SOCK_DESTROY_TIME (10*HZ)
1349 /* Sockets 0-1023 can't be bound to unless you are superuser */
1350 #define PROT_SOCK 1024
1352 #define SHUTDOWN_MASK 3
1353 #define RCV_SHUTDOWN 1
1354 #define SEND_SHUTDOWN 2
1356 #define SOCK_SNDBUF_LOCK 1
1357 #define SOCK_RCVBUF_LOCK 2
1358 #define SOCK_BINDADDR_LOCK 4
1359 #define SOCK_BINDPORT_LOCK 8
1361 struct socket_alloc
{
1362 struct socket socket
;
1363 struct inode vfs_inode
;
1366 static inline struct socket
*SOCKET_I(struct inode
*inode
)
1368 return &container_of(inode
, struct socket_alloc
, vfs_inode
)->socket
;
1371 static inline struct inode
*SOCK_INODE(struct socket
*socket
)
1373 return &container_of(socket
, struct socket_alloc
, socket
)->vfs_inode
;
1377 * Functions for memory accounting
1379 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
);
1380 void __sk_mem_reclaim(struct sock
*sk
);
1382 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1383 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1384 #define SK_MEM_SEND 0
1385 #define SK_MEM_RECV 1
1387 static inline int sk_mem_pages(int amt
)
1389 return (amt
+ SK_MEM_QUANTUM
- 1) >> SK_MEM_QUANTUM_SHIFT
;
1392 static inline bool sk_has_account(struct sock
*sk
)
1394 /* return true if protocol supports memory accounting */
1395 return !!sk
->sk_prot
->memory_allocated
;
1398 static inline bool sk_wmem_schedule(struct sock
*sk
, int size
)
1400 if (!sk_has_account(sk
))
1402 return size
<= sk
->sk_forward_alloc
||
1403 __sk_mem_schedule(sk
, size
, SK_MEM_SEND
);
1407 sk_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
, int size
)
1409 if (!sk_has_account(sk
))
1411 return size
<= sk
->sk_forward_alloc
||
1412 __sk_mem_schedule(sk
, size
, SK_MEM_RECV
) ||
1413 skb_pfmemalloc(skb
);
1416 static inline void sk_mem_reclaim(struct sock
*sk
)
1418 if (!sk_has_account(sk
))
1420 if (sk
->sk_forward_alloc
>= SK_MEM_QUANTUM
)
1421 __sk_mem_reclaim(sk
);
1424 static inline void sk_mem_reclaim_partial(struct sock
*sk
)
1426 if (!sk_has_account(sk
))
1428 if (sk
->sk_forward_alloc
> SK_MEM_QUANTUM
)
1429 __sk_mem_reclaim(sk
);
1432 static inline void sk_mem_charge(struct sock
*sk
, int size
)
1434 if (!sk_has_account(sk
))
1436 sk
->sk_forward_alloc
-= size
;
1439 static inline void sk_mem_uncharge(struct sock
*sk
, int size
)
1441 if (!sk_has_account(sk
))
1443 sk
->sk_forward_alloc
+= size
;
1446 static inline void sk_wmem_free_skb(struct sock
*sk
, struct sk_buff
*skb
)
1448 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1449 sk
->sk_wmem_queued
-= skb
->truesize
;
1450 sk_mem_uncharge(sk
, skb
->truesize
);
1454 /* Used by processes to "lock" a socket state, so that
1455 * interrupts and bottom half handlers won't change it
1456 * from under us. It essentially blocks any incoming
1457 * packets, so that we won't get any new data or any
1458 * packets that change the state of the socket.
1460 * While locked, BH processing will add new packets to
1461 * the backlog queue. This queue is processed by the
1462 * owner of the socket lock right before it is released.
1464 * Since ~2.3.5 it is also exclusive sleep lock serializing
1465 * accesses from user process context.
1467 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1469 static inline void sock_release_ownership(struct sock
*sk
)
1471 sk
->sk_lock
.owned
= 0;
1475 * Macro so as to not evaluate some arguments when
1476 * lockdep is not enabled.
1478 * Mark both the sk_lock and the sk_lock.slock as a
1479 * per-address-family lock class.
1481 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1483 sk->sk_lock.owned = 0; \
1484 init_waitqueue_head(&sk->sk_lock.wq); \
1485 spin_lock_init(&(sk)->sk_lock.slock); \
1486 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1487 sizeof((sk)->sk_lock)); \
1488 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1490 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1493 void lock_sock_nested(struct sock
*sk
, int subclass
);
1495 static inline void lock_sock(struct sock
*sk
)
1497 lock_sock_nested(sk
, 0);
1500 void release_sock(struct sock
*sk
);
1502 /* BH context may only use the following locking interface. */
1503 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1504 #define bh_lock_sock_nested(__sk) \
1505 spin_lock_nested(&((__sk)->sk_lock.slock), \
1506 SINGLE_DEPTH_NESTING)
1507 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1509 bool lock_sock_fast(struct sock
*sk
);
1511 * unlock_sock_fast - complement of lock_sock_fast
1515 * fast unlock socket for user context.
1516 * If slow mode is on, we call regular release_sock()
1518 static inline void unlock_sock_fast(struct sock
*sk
, bool slow
)
1523 spin_unlock_bh(&sk
->sk_lock
.slock
);
1527 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1528 struct proto
*prot
);
1529 void sk_free(struct sock
*sk
);
1530 void sk_release_kernel(struct sock
*sk
);
1531 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
);
1533 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1535 void sock_wfree(struct sk_buff
*skb
);
1536 void skb_orphan_partial(struct sk_buff
*skb
);
1537 void sock_rfree(struct sk_buff
*skb
);
1538 void sock_efree(struct sk_buff
*skb
);
1540 void sock_edemux(struct sk_buff
*skb
);
1542 #define sock_edemux(skb) sock_efree(skb)
1545 int sock_setsockopt(struct socket
*sock
, int level
, int op
,
1546 char __user
*optval
, unsigned int optlen
);
1548 int sock_getsockopt(struct socket
*sock
, int level
, int op
,
1549 char __user
*optval
, int __user
*optlen
);
1550 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1551 int noblock
, int *errcode
);
1552 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1553 unsigned long data_len
, int noblock
,
1554 int *errcode
, int max_page_order
);
1555 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
);
1556 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
);
1557 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
);
1558 void sk_send_sigurg(struct sock
*sk
);
1561 * Functions to fill in entries in struct proto_ops when a protocol
1562 * does not implement a particular function.
1564 int sock_no_bind(struct socket
*, struct sockaddr
*, int);
1565 int sock_no_connect(struct socket
*, struct sockaddr
*, int, int);
1566 int sock_no_socketpair(struct socket
*, struct socket
*);
1567 int sock_no_accept(struct socket
*, struct socket
*, int);
1568 int sock_no_getname(struct socket
*, struct sockaddr
*, int *, int);
1569 unsigned int sock_no_poll(struct file
*, struct socket
*,
1570 struct poll_table_struct
*);
1571 int sock_no_ioctl(struct socket
*, unsigned int, unsigned long);
1572 int sock_no_listen(struct socket
*, int);
1573 int sock_no_shutdown(struct socket
*, int);
1574 int sock_no_getsockopt(struct socket
*, int , int, char __user
*, int __user
*);
1575 int sock_no_setsockopt(struct socket
*, int, int, char __user
*, unsigned int);
1576 int sock_no_sendmsg(struct socket
*, struct msghdr
*, size_t);
1577 int sock_no_recvmsg(struct socket
*, struct msghdr
*, size_t, int);
1578 int sock_no_mmap(struct file
*file
, struct socket
*sock
,
1579 struct vm_area_struct
*vma
);
1580 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
1581 size_t size
, int flags
);
1584 * Functions to fill in entries in struct proto_ops when a protocol
1585 * uses the inet style.
1587 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
1588 char __user
*optval
, int __user
*optlen
);
1589 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
1591 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
1592 char __user
*optval
, unsigned int optlen
);
1593 int compat_sock_common_getsockopt(struct socket
*sock
, int level
,
1594 int optname
, char __user
*optval
, int __user
*optlen
);
1595 int compat_sock_common_setsockopt(struct socket
*sock
, int level
,
1596 int optname
, char __user
*optval
, unsigned int optlen
);
1598 void sk_common_release(struct sock
*sk
);
1601 * Default socket callbacks and setup code
1604 /* Initialise core socket variables */
1605 void sock_init_data(struct socket
*sock
, struct sock
*sk
);
1608 * Socket reference counting postulates.
1610 * * Each user of socket SHOULD hold a reference count.
1611 * * Each access point to socket (an hash table bucket, reference from a list,
1612 * running timer, skb in flight MUST hold a reference count.
1613 * * When reference count hits 0, it means it will never increase back.
1614 * * When reference count hits 0, it means that no references from
1615 * outside exist to this socket and current process on current CPU
1616 * is last user and may/should destroy this socket.
1617 * * sk_free is called from any context: process, BH, IRQ. When
1618 * it is called, socket has no references from outside -> sk_free
1619 * may release descendant resources allocated by the socket, but
1620 * to the time when it is called, socket is NOT referenced by any
1621 * hash tables, lists etc.
1622 * * Packets, delivered from outside (from network or from another process)
1623 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1624 * when they sit in queue. Otherwise, packets will leak to hole, when
1625 * socket is looked up by one cpu and unhasing is made by another CPU.
1626 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1627 * (leak to backlog). Packet socket does all the processing inside
1628 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1629 * use separate SMP lock, so that they are prone too.
1632 /* Ungrab socket and destroy it, if it was the last reference. */
1633 static inline void sock_put(struct sock
*sk
)
1635 if (atomic_dec_and_test(&sk
->sk_refcnt
))
1638 /* Generic version of sock_put(), dealing with all sockets
1639 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1641 void sock_gen_put(struct sock
*sk
);
1643 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
);
1645 static inline void sk_tx_queue_set(struct sock
*sk
, int tx_queue
)
1647 sk
->sk_tx_queue_mapping
= tx_queue
;
1650 static inline void sk_tx_queue_clear(struct sock
*sk
)
1652 sk
->sk_tx_queue_mapping
= -1;
1655 static inline int sk_tx_queue_get(const struct sock
*sk
)
1657 return sk
? sk
->sk_tx_queue_mapping
: -1;
1660 static inline void sk_set_socket(struct sock
*sk
, struct socket
*sock
)
1662 sk_tx_queue_clear(sk
);
1663 sk
->sk_socket
= sock
;
1666 static inline wait_queue_head_t
*sk_sleep(struct sock
*sk
)
1668 BUILD_BUG_ON(offsetof(struct socket_wq
, wait
) != 0);
1669 return &rcu_dereference_raw(sk
->sk_wq
)->wait
;
1671 /* Detach socket from process context.
1672 * Announce socket dead, detach it from wait queue and inode.
1673 * Note that parent inode held reference count on this struct sock,
1674 * we do not release it in this function, because protocol
1675 * probably wants some additional cleanups or even continuing
1676 * to work with this socket (TCP).
1678 static inline void sock_orphan(struct sock
*sk
)
1680 write_lock_bh(&sk
->sk_callback_lock
);
1681 sock_set_flag(sk
, SOCK_DEAD
);
1682 sk_set_socket(sk
, NULL
);
1684 write_unlock_bh(&sk
->sk_callback_lock
);
1687 static inline void sock_graft(struct sock
*sk
, struct socket
*parent
)
1689 write_lock_bh(&sk
->sk_callback_lock
);
1690 sk
->sk_wq
= parent
->wq
;
1692 sk_set_socket(sk
, parent
);
1693 security_sock_graft(sk
, parent
);
1694 write_unlock_bh(&sk
->sk_callback_lock
);
1697 kuid_t
sock_i_uid(struct sock
*sk
);
1698 unsigned long sock_i_ino(struct sock
*sk
);
1700 static inline struct dst_entry
*
1701 __sk_dst_get(struct sock
*sk
)
1703 return rcu_dereference_check(sk
->sk_dst_cache
, sock_owned_by_user(sk
) ||
1704 lockdep_is_held(&sk
->sk_lock
.slock
));
1707 static inline struct dst_entry
*
1708 sk_dst_get(struct sock
*sk
)
1710 struct dst_entry
*dst
;
1713 dst
= rcu_dereference(sk
->sk_dst_cache
);
1714 if (dst
&& !atomic_inc_not_zero(&dst
->__refcnt
))
1720 static inline void dst_negative_advice(struct sock
*sk
)
1722 struct dst_entry
*ndst
, *dst
= __sk_dst_get(sk
);
1724 if (dst
&& dst
->ops
->negative_advice
) {
1725 ndst
= dst
->ops
->negative_advice(dst
);
1728 rcu_assign_pointer(sk
->sk_dst_cache
, ndst
);
1729 sk_tx_queue_clear(sk
);
1735 __sk_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
1737 struct dst_entry
*old_dst
;
1739 sk_tx_queue_clear(sk
);
1741 * This can be called while sk is owned by the caller only,
1742 * with no state that can be checked in a rcu_dereference_check() cond
1744 old_dst
= rcu_dereference_raw(sk
->sk_dst_cache
);
1745 rcu_assign_pointer(sk
->sk_dst_cache
, dst
);
1746 dst_release(old_dst
);
1750 sk_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
1752 struct dst_entry
*old_dst
;
1754 sk_tx_queue_clear(sk
);
1755 old_dst
= xchg((__force
struct dst_entry
**)&sk
->sk_dst_cache
, dst
);
1756 dst_release(old_dst
);
1760 __sk_dst_reset(struct sock
*sk
)
1762 __sk_dst_set(sk
, NULL
);
1766 sk_dst_reset(struct sock
*sk
)
1768 sk_dst_set(sk
, NULL
);
1771 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
);
1773 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
);
1775 bool sk_mc_loop(struct sock
*sk
);
1777 static inline bool sk_can_gso(const struct sock
*sk
)
1779 return net_gso_ok(sk
->sk_route_caps
, sk
->sk_gso_type
);
1782 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
);
1784 static inline void sk_nocaps_add(struct sock
*sk
, netdev_features_t flags
)
1786 sk
->sk_route_nocaps
|= flags
;
1787 sk
->sk_route_caps
&= ~flags
;
1790 static inline int skb_do_copy_data_nocache(struct sock
*sk
, struct sk_buff
*skb
,
1791 struct iov_iter
*from
, char *to
,
1792 int copy
, int offset
)
1794 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1796 if (csum_and_copy_from_iter(to
, copy
, &csum
, from
) != copy
)
1798 skb
->csum
= csum_block_add(skb
->csum
, csum
, offset
);
1799 } else if (sk
->sk_route_caps
& NETIF_F_NOCACHE_COPY
) {
1800 if (copy_from_iter_nocache(to
, copy
, from
) != copy
)
1802 } else if (copy_from_iter(to
, copy
, from
) != copy
)
1808 static inline int skb_add_data_nocache(struct sock
*sk
, struct sk_buff
*skb
,
1809 struct iov_iter
*from
, int copy
)
1811 int err
, offset
= skb
->len
;
1813 err
= skb_do_copy_data_nocache(sk
, skb
, from
, skb_put(skb
, copy
),
1816 __skb_trim(skb
, offset
);
1821 static inline int skb_copy_to_page_nocache(struct sock
*sk
, struct iov_iter
*from
,
1822 struct sk_buff
*skb
,
1828 err
= skb_do_copy_data_nocache(sk
, skb
, from
, page_address(page
) + off
,
1834 skb
->data_len
+= copy
;
1835 skb
->truesize
+= copy
;
1836 sk
->sk_wmem_queued
+= copy
;
1837 sk_mem_charge(sk
, copy
);
1842 * sk_wmem_alloc_get - returns write allocations
1845 * Returns sk_wmem_alloc minus initial offset of one
1847 static inline int sk_wmem_alloc_get(const struct sock
*sk
)
1849 return atomic_read(&sk
->sk_wmem_alloc
) - 1;
1853 * sk_rmem_alloc_get - returns read allocations
1856 * Returns sk_rmem_alloc
1858 static inline int sk_rmem_alloc_get(const struct sock
*sk
)
1860 return atomic_read(&sk
->sk_rmem_alloc
);
1864 * sk_has_allocations - check if allocations are outstanding
1867 * Returns true if socket has write or read allocations
1869 static inline bool sk_has_allocations(const struct sock
*sk
)
1871 return sk_wmem_alloc_get(sk
) || sk_rmem_alloc_get(sk
);
1875 * wq_has_sleeper - check if there are any waiting processes
1876 * @wq: struct socket_wq
1878 * Returns true if socket_wq has waiting processes
1880 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881 * barrier call. They were added due to the race found within the tcp code.
1883 * Consider following tcp code paths:
1887 * sys_select receive packet
1889 * __add_wait_queue update tp->rcv_nxt
1891 * tp->rcv_nxt check sock_def_readable
1893 * schedule rcu_read_lock();
1894 * wq = rcu_dereference(sk->sk_wq);
1895 * if (wq && waitqueue_active(&wq->wait))
1896 * wake_up_interruptible(&wq->wait)
1900 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1902 * could then endup calling schedule and sleep forever if there are no more
1903 * data on the socket.
1906 static inline bool wq_has_sleeper(struct socket_wq
*wq
)
1908 /* We need to be sure we are in sync with the
1909 * add_wait_queue modifications to the wait queue.
1911 * This memory barrier is paired in the sock_poll_wait.
1914 return wq
&& waitqueue_active(&wq
->wait
);
1918 * sock_poll_wait - place memory barrier behind the poll_wait call.
1920 * @wait_address: socket wait queue
1923 * See the comments in the wq_has_sleeper function.
1925 static inline void sock_poll_wait(struct file
*filp
,
1926 wait_queue_head_t
*wait_address
, poll_table
*p
)
1928 if (!poll_does_not_wait(p
) && wait_address
) {
1929 poll_wait(filp
, wait_address
, p
);
1930 /* We need to be sure we are in sync with the
1931 * socket flags modification.
1933 * This memory barrier is paired in the wq_has_sleeper.
1939 static inline void skb_set_hash_from_sk(struct sk_buff
*skb
, struct sock
*sk
)
1941 if (sk
->sk_txhash
) {
1943 skb
->hash
= sk
->sk_txhash
;
1948 * Queue a received datagram if it will fit. Stream and sequenced
1949 * protocols can't normally use this as they need to fit buffers in
1950 * and play with them.
1952 * Inlined as it's very short and called for pretty much every
1953 * packet ever received.
1956 static inline void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1960 skb
->destructor
= sock_wfree
;
1961 skb_set_hash_from_sk(skb
, sk
);
1963 * We used to take a refcount on sk, but following operation
1964 * is enough to guarantee sk_free() wont free this sock until
1965 * all in-flight packets are completed
1967 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1970 static inline void skb_set_owner_r(struct sk_buff
*skb
, struct sock
*sk
)
1974 skb
->destructor
= sock_rfree
;
1975 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
1976 sk_mem_charge(sk
, skb
->truesize
);
1979 void sk_reset_timer(struct sock
*sk
, struct timer_list
*timer
,
1980 unsigned long expires
);
1982 void sk_stop_timer(struct sock
*sk
, struct timer_list
*timer
);
1984 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
1986 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
);
1987 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
);
1990 * Recover an error report and clear atomically
1993 static inline int sock_error(struct sock
*sk
)
1996 if (likely(!sk
->sk_err
))
1998 err
= xchg(&sk
->sk_err
, 0);
2002 static inline unsigned long sock_wspace(struct sock
*sk
)
2006 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
2007 amt
= sk
->sk_sndbuf
- atomic_read(&sk
->sk_wmem_alloc
);
2014 static inline void sk_wake_async(struct sock
*sk
, int how
, int band
)
2016 if (sock_flag(sk
, SOCK_FASYNC
))
2017 sock_wake_async(sk
->sk_socket
, how
, band
);
2020 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022 * Note: for send buffers, TCP works better if we can build two skbs at
2025 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2027 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2028 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2030 static inline void sk_stream_moderate_sndbuf(struct sock
*sk
)
2032 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)) {
2033 sk
->sk_sndbuf
= min(sk
->sk_sndbuf
, sk
->sk_wmem_queued
>> 1);
2034 sk
->sk_sndbuf
= max_t(u32
, sk
->sk_sndbuf
, SOCK_MIN_SNDBUF
);
2038 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
);
2041 * sk_page_frag - return an appropriate page_frag
2044 * If socket allocation mode allows current thread to sleep, it means its
2045 * safe to use the per task page_frag instead of the per socket one.
2047 static inline struct page_frag
*sk_page_frag(struct sock
*sk
)
2049 if (sk
->sk_allocation
& __GFP_WAIT
)
2050 return ¤t
->task_frag
;
2052 return &sk
->sk_frag
;
2055 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
);
2058 * Default write policy as shown to user space via poll/select/SIGIO
2060 static inline bool sock_writeable(const struct sock
*sk
)
2062 return atomic_read(&sk
->sk_wmem_alloc
) < (sk
->sk_sndbuf
>> 1);
2065 static inline gfp_t
gfp_any(void)
2067 return in_softirq() ? GFP_ATOMIC
: GFP_KERNEL
;
2070 static inline long sock_rcvtimeo(const struct sock
*sk
, bool noblock
)
2072 return noblock
? 0 : sk
->sk_rcvtimeo
;
2075 static inline long sock_sndtimeo(const struct sock
*sk
, bool noblock
)
2077 return noblock
? 0 : sk
->sk_sndtimeo
;
2080 static inline int sock_rcvlowat(const struct sock
*sk
, int waitall
, int len
)
2082 return (waitall
? len
: min_t(int, sk
->sk_rcvlowat
, len
)) ? : 1;
2085 /* Alas, with timeout socket operations are not restartable.
2086 * Compare this to poll().
2088 static inline int sock_intr_errno(long timeo
)
2090 return timeo
== MAX_SCHEDULE_TIMEOUT
? -ERESTARTSYS
: -EINTR
;
2093 struct sock_skb_cb
{
2097 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2098 * using skb->cb[] would keep using it directly and utilize its
2099 * alignement guarantee.
2101 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2102 sizeof(struct sock_skb_cb)))
2104 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2105 SOCK_SKB_CB_OFFSET))
2107 #define sock_skb_cb_check_size(size) \
2108 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2111 sock_skb_set_dropcount(const struct sock
*sk
, struct sk_buff
*skb
)
2113 SOCK_SKB_CB(skb
)->dropcount
= atomic_read(&sk
->sk_drops
);
2116 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
2117 struct sk_buff
*skb
);
2118 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
2119 struct sk_buff
*skb
);
2122 sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
, struct sk_buff
*skb
)
2124 ktime_t kt
= skb
->tstamp
;
2125 struct skb_shared_hwtstamps
*hwtstamps
= skb_hwtstamps(skb
);
2128 * generate control messages if
2129 * - receive time stamping in software requested
2130 * - software time stamp available and wanted
2131 * - hardware time stamps available and wanted
2133 if (sock_flag(sk
, SOCK_RCVTSTAMP
) ||
2134 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RX_SOFTWARE
) ||
2135 (kt
.tv64
&& sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) ||
2136 (hwtstamps
->hwtstamp
.tv64
&&
2137 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)))
2138 __sock_recv_timestamp(msg
, sk
, skb
);
2142 if (sock_flag(sk
, SOCK_WIFI_STATUS
) && skb
->wifi_acked_valid
)
2143 __sock_recv_wifi_status(msg
, sk
, skb
);
2146 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
2147 struct sk_buff
*skb
);
2149 static inline void sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
2150 struct sk_buff
*skb
)
2152 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2153 (1UL << SOCK_RCVTSTAMP))
2154 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2155 SOF_TIMESTAMPING_RAW_HARDWARE)
2157 if (sk
->sk_flags
& FLAGS_TS_OR_DROPS
|| sk
->sk_tsflags
& TSFLAGS_ANY
)
2158 __sock_recv_ts_and_drops(msg
, sk
, skb
);
2160 sk
->sk_stamp
= skb
->tstamp
;
2163 void __sock_tx_timestamp(const struct sock
*sk
, __u8
*tx_flags
);
2166 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2167 * @sk: socket sending this packet
2168 * @tx_flags: completed with instructions for time stamping
2170 * Note : callers should take care of initial *tx_flags value (usually 0)
2172 static inline void sock_tx_timestamp(const struct sock
*sk
, __u8
*tx_flags
)
2174 if (unlikely(sk
->sk_tsflags
))
2175 __sock_tx_timestamp(sk
, tx_flags
);
2176 if (unlikely(sock_flag(sk
, SOCK_WIFI_STATUS
)))
2177 *tx_flags
|= SKBTX_WIFI_STATUS
;
2181 * sk_eat_skb - Release a skb if it is no longer needed
2182 * @sk: socket to eat this skb from
2183 * @skb: socket buffer to eat
2185 * This routine must be called with interrupts disabled or with the socket
2186 * locked so that the sk_buff queue operation is ok.
2188 static inline void sk_eat_skb(struct sock
*sk
, struct sk_buff
*skb
)
2190 __skb_unlink(skb
, &sk
->sk_receive_queue
);
2195 struct net
*sock_net(const struct sock
*sk
)
2197 return read_pnet(&sk
->sk_net
);
2201 void sock_net_set(struct sock
*sk
, struct net
*net
)
2203 write_pnet(&sk
->sk_net
, net
);
2207 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2208 * They should not hold a reference to a namespace in order to allow
2210 * Sockets after sk_change_net should be released using sk_release_kernel
2212 static inline void sk_change_net(struct sock
*sk
, struct net
*net
)
2214 struct net
*current_net
= sock_net(sk
);
2216 if (!net_eq(current_net
, net
)) {
2217 put_net(current_net
);
2218 sock_net_set(sk
, net
);
2222 static inline struct sock
*skb_steal_sock(struct sk_buff
*skb
)
2225 struct sock
*sk
= skb
->sk
;
2227 skb
->destructor
= NULL
;
2234 /* This helper checks if a socket is a full socket,
2235 * ie _not_ a timewait or request socket.
2237 static inline bool sk_fullsock(const struct sock
*sk
)
2239 return (1 << sk
->sk_state
) & ~(TCPF_TIME_WAIT
| TCPF_NEW_SYN_RECV
);
2242 void sock_enable_timestamp(struct sock
*sk
, int flag
);
2243 int sock_get_timestamp(struct sock
*, struct timeval __user
*);
2244 int sock_get_timestampns(struct sock
*, struct timespec __user
*);
2245 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
, int level
,
2248 bool sk_ns_capable(const struct sock
*sk
,
2249 struct user_namespace
*user_ns
, int cap
);
2250 bool sk_capable(const struct sock
*sk
, int cap
);
2251 bool sk_net_capable(const struct sock
*sk
, int cap
);
2253 extern __u32 sysctl_wmem_max
;
2254 extern __u32 sysctl_rmem_max
;
2256 extern int sysctl_tstamp_allow_data
;
2257 extern int sysctl_optmem_max
;
2259 extern __u32 sysctl_wmem_default
;
2260 extern __u32 sysctl_rmem_default
;
2262 #endif /* _SOCK_H */