Linux 4.1.18
[linux/fpc-iii.git] / kernel / cgroup.c
blob4d65b66ae60d413dce7037dac2d6f5f671b68d54
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct *cgroup_destroy_wq;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
130 #undef SUBSYS
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible;
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
156 static bool cgroup_legacy_files_on_dfl;
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask;
161 /* The list of hierarchy roots */
163 static LIST_HEAD(cgroup_roots);
164 static int cgroup_root_count;
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr);
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
176 static u64 css_serial_nr_next = 1;
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
183 static int need_forkexit_callback __read_mostly;
185 static struct cftype cgroup_dfl_base_files[];
186 static struct cftype cgroup_legacy_base_files[];
188 static int rebind_subsystems(struct cgroup_root *dst_root,
189 unsigned int ss_mask);
190 static int cgroup_destroy_locked(struct cgroup *cgrp);
191 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
193 static void css_release(struct percpu_ref *ref);
194 static void kill_css(struct cgroup_subsys_state *css);
195 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
199 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
202 int ret;
204 idr_preload(gfp_mask);
205 spin_lock_bh(&cgroup_idr_lock);
206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
207 spin_unlock_bh(&cgroup_idr_lock);
208 idr_preload_end();
209 return ret;
212 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
214 void *ret;
216 spin_lock_bh(&cgroup_idr_lock);
217 ret = idr_replace(idr, ptr, id);
218 spin_unlock_bh(&cgroup_idr_lock);
219 return ret;
222 static void cgroup_idr_remove(struct idr *idr, int id)
224 spin_lock_bh(&cgroup_idr_lock);
225 idr_remove(idr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
229 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
249 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
250 struct cgroup_subsys *ss)
252 if (ss)
253 return rcu_dereference_check(cgrp->subsys[ss->id],
254 lockdep_is_held(&cgroup_mutex));
255 else
256 return &cgrp->self;
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
269 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
272 lockdep_assert_held(&cgroup_mutex);
274 if (!ss)
275 return &cgrp->self;
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
281 * This function is used while updating css associations and thus
282 * can't test the csses directly. Use ->child_subsys_mask.
284 while (cgroup_parent(cgrp) &&
285 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
286 cgrp = cgroup_parent(cgrp);
288 return cgroup_css(cgrp, ss);
292 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
293 * @cgrp: the cgroup of interest
294 * @ss: the subsystem of interest
296 * Find and get the effective css of @cgrp for @ss. The effective css is
297 * defined as the matching css of the nearest ancestor including self which
298 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
299 * the root css is returned, so this function always returns a valid css.
300 * The returned css must be put using css_put().
302 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
303 struct cgroup_subsys *ss)
305 struct cgroup_subsys_state *css;
307 rcu_read_lock();
309 do {
310 css = cgroup_css(cgrp, ss);
312 if (css && css_tryget_online(css))
313 goto out_unlock;
314 cgrp = cgroup_parent(cgrp);
315 } while (cgrp);
317 css = init_css_set.subsys[ss->id];
318 css_get(css);
319 out_unlock:
320 rcu_read_unlock();
321 return css;
324 /* convenient tests for these bits */
325 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
327 return !(cgrp->self.flags & CSS_ONLINE);
330 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
332 struct cgroup *cgrp = of->kn->parent->priv;
333 struct cftype *cft = of_cft(of);
336 * This is open and unprotected implementation of cgroup_css().
337 * seq_css() is only called from a kernfs file operation which has
338 * an active reference on the file. Because all the subsystem
339 * files are drained before a css is disassociated with a cgroup,
340 * the matching css from the cgroup's subsys table is guaranteed to
341 * be and stay valid until the enclosing operation is complete.
343 if (cft->ss)
344 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
345 else
346 return &cgrp->self;
348 EXPORT_SYMBOL_GPL(of_css);
351 * cgroup_is_descendant - test ancestry
352 * @cgrp: the cgroup to be tested
353 * @ancestor: possible ancestor of @cgrp
355 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
356 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
357 * and @ancestor are accessible.
359 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
361 while (cgrp) {
362 if (cgrp == ancestor)
363 return true;
364 cgrp = cgroup_parent(cgrp);
366 return false;
369 static int notify_on_release(const struct cgroup *cgrp)
371 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
375 * for_each_css - iterate all css's of a cgroup
376 * @css: the iteration cursor
377 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
378 * @cgrp: the target cgroup to iterate css's of
380 * Should be called under cgroup_[tree_]mutex.
382 #define for_each_css(css, ssid, cgrp) \
383 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
384 if (!((css) = rcu_dereference_check( \
385 (cgrp)->subsys[(ssid)], \
386 lockdep_is_held(&cgroup_mutex)))) { } \
387 else
390 * for_each_e_css - iterate all effective css's of a cgroup
391 * @css: the iteration cursor
392 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
393 * @cgrp: the target cgroup to iterate css's of
395 * Should be called under cgroup_[tree_]mutex.
397 #define for_each_e_css(css, ssid, cgrp) \
398 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
399 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
401 else
404 * for_each_subsys - iterate all enabled cgroup subsystems
405 * @ss: the iteration cursor
406 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
408 #define for_each_subsys(ss, ssid) \
409 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
410 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
412 /* iterate across the hierarchies */
413 #define for_each_root(root) \
414 list_for_each_entry((root), &cgroup_roots, root_list)
416 /* iterate over child cgrps, lock should be held throughout iteration */
417 #define cgroup_for_each_live_child(child, cgrp) \
418 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
419 if (({ lockdep_assert_held(&cgroup_mutex); \
420 cgroup_is_dead(child); })) \
422 else
424 static void cgroup_release_agent(struct work_struct *work);
425 static void check_for_release(struct cgroup *cgrp);
428 * A cgroup can be associated with multiple css_sets as different tasks may
429 * belong to different cgroups on different hierarchies. In the other
430 * direction, a css_set is naturally associated with multiple cgroups.
431 * This M:N relationship is represented by the following link structure
432 * which exists for each association and allows traversing the associations
433 * from both sides.
435 struct cgrp_cset_link {
436 /* the cgroup and css_set this link associates */
437 struct cgroup *cgrp;
438 struct css_set *cset;
440 /* list of cgrp_cset_links anchored at cgrp->cset_links */
441 struct list_head cset_link;
443 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
444 struct list_head cgrp_link;
448 * The default css_set - used by init and its children prior to any
449 * hierarchies being mounted. It contains a pointer to the root state
450 * for each subsystem. Also used to anchor the list of css_sets. Not
451 * reference-counted, to improve performance when child cgroups
452 * haven't been created.
454 struct css_set init_css_set = {
455 .refcount = ATOMIC_INIT(1),
456 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
457 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
458 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
459 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
460 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
463 static int css_set_count = 1; /* 1 for init_css_set */
466 * cgroup_update_populated - updated populated count of a cgroup
467 * @cgrp: the target cgroup
468 * @populated: inc or dec populated count
470 * @cgrp is either getting the first task (css_set) or losing the last.
471 * Update @cgrp->populated_cnt accordingly. The count is propagated
472 * towards root so that a given cgroup's populated_cnt is zero iff the
473 * cgroup and all its descendants are empty.
475 * @cgrp's interface file "cgroup.populated" is zero if
476 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
477 * changes from or to zero, userland is notified that the content of the
478 * interface file has changed. This can be used to detect when @cgrp and
479 * its descendants become populated or empty.
481 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
483 lockdep_assert_held(&css_set_rwsem);
485 do {
486 bool trigger;
488 if (populated)
489 trigger = !cgrp->populated_cnt++;
490 else
491 trigger = !--cgrp->populated_cnt;
493 if (!trigger)
494 break;
496 if (cgrp->populated_kn)
497 kernfs_notify(cgrp->populated_kn);
498 cgrp = cgroup_parent(cgrp);
499 } while (cgrp);
503 * hash table for cgroup groups. This improves the performance to find
504 * an existing css_set. This hash doesn't (currently) take into
505 * account cgroups in empty hierarchies.
507 #define CSS_SET_HASH_BITS 7
508 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
510 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
512 unsigned long key = 0UL;
513 struct cgroup_subsys *ss;
514 int i;
516 for_each_subsys(ss, i)
517 key += (unsigned long)css[i];
518 key = (key >> 16) ^ key;
520 return key;
523 static void put_css_set_locked(struct css_set *cset)
525 struct cgrp_cset_link *link, *tmp_link;
526 struct cgroup_subsys *ss;
527 int ssid;
529 lockdep_assert_held(&css_set_rwsem);
531 if (!atomic_dec_and_test(&cset->refcount))
532 return;
534 /* This css_set is dead. unlink it and release cgroup refcounts */
535 for_each_subsys(ss, ssid)
536 list_del(&cset->e_cset_node[ssid]);
537 hash_del(&cset->hlist);
538 css_set_count--;
540 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
541 struct cgroup *cgrp = link->cgrp;
543 list_del(&link->cset_link);
544 list_del(&link->cgrp_link);
546 /* @cgrp can't go away while we're holding css_set_rwsem */
547 if (list_empty(&cgrp->cset_links)) {
548 cgroup_update_populated(cgrp, false);
549 check_for_release(cgrp);
552 kfree(link);
555 kfree_rcu(cset, rcu_head);
558 static void put_css_set(struct css_set *cset)
561 * Ensure that the refcount doesn't hit zero while any readers
562 * can see it. Similar to atomic_dec_and_lock(), but for an
563 * rwlock
565 if (atomic_add_unless(&cset->refcount, -1, 1))
566 return;
568 down_write(&css_set_rwsem);
569 put_css_set_locked(cset);
570 up_write(&css_set_rwsem);
574 * refcounted get/put for css_set objects
576 static inline void get_css_set(struct css_set *cset)
578 atomic_inc(&cset->refcount);
582 * compare_css_sets - helper function for find_existing_css_set().
583 * @cset: candidate css_set being tested
584 * @old_cset: existing css_set for a task
585 * @new_cgrp: cgroup that's being entered by the task
586 * @template: desired set of css pointers in css_set (pre-calculated)
588 * Returns true if "cset" matches "old_cset" except for the hierarchy
589 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
591 static bool compare_css_sets(struct css_set *cset,
592 struct css_set *old_cset,
593 struct cgroup *new_cgrp,
594 struct cgroup_subsys_state *template[])
596 struct list_head *l1, *l2;
599 * On the default hierarchy, there can be csets which are
600 * associated with the same set of cgroups but different csses.
601 * Let's first ensure that csses match.
603 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
604 return false;
607 * Compare cgroup pointers in order to distinguish between
608 * different cgroups in hierarchies. As different cgroups may
609 * share the same effective css, this comparison is always
610 * necessary.
612 l1 = &cset->cgrp_links;
613 l2 = &old_cset->cgrp_links;
614 while (1) {
615 struct cgrp_cset_link *link1, *link2;
616 struct cgroup *cgrp1, *cgrp2;
618 l1 = l1->next;
619 l2 = l2->next;
620 /* See if we reached the end - both lists are equal length. */
621 if (l1 == &cset->cgrp_links) {
622 BUG_ON(l2 != &old_cset->cgrp_links);
623 break;
624 } else {
625 BUG_ON(l2 == &old_cset->cgrp_links);
627 /* Locate the cgroups associated with these links. */
628 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
629 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
630 cgrp1 = link1->cgrp;
631 cgrp2 = link2->cgrp;
632 /* Hierarchies should be linked in the same order. */
633 BUG_ON(cgrp1->root != cgrp2->root);
636 * If this hierarchy is the hierarchy of the cgroup
637 * that's changing, then we need to check that this
638 * css_set points to the new cgroup; if it's any other
639 * hierarchy, then this css_set should point to the
640 * same cgroup as the old css_set.
642 if (cgrp1->root == new_cgrp->root) {
643 if (cgrp1 != new_cgrp)
644 return false;
645 } else {
646 if (cgrp1 != cgrp2)
647 return false;
650 return true;
654 * find_existing_css_set - init css array and find the matching css_set
655 * @old_cset: the css_set that we're using before the cgroup transition
656 * @cgrp: the cgroup that we're moving into
657 * @template: out param for the new set of csses, should be clear on entry
659 static struct css_set *find_existing_css_set(struct css_set *old_cset,
660 struct cgroup *cgrp,
661 struct cgroup_subsys_state *template[])
663 struct cgroup_root *root = cgrp->root;
664 struct cgroup_subsys *ss;
665 struct css_set *cset;
666 unsigned long key;
667 int i;
670 * Build the set of subsystem state objects that we want to see in the
671 * new css_set. while subsystems can change globally, the entries here
672 * won't change, so no need for locking.
674 for_each_subsys(ss, i) {
675 if (root->subsys_mask & (1UL << i)) {
677 * @ss is in this hierarchy, so we want the
678 * effective css from @cgrp.
680 template[i] = cgroup_e_css(cgrp, ss);
681 } else {
683 * @ss is not in this hierarchy, so we don't want
684 * to change the css.
686 template[i] = old_cset->subsys[i];
690 key = css_set_hash(template);
691 hash_for_each_possible(css_set_table, cset, hlist, key) {
692 if (!compare_css_sets(cset, old_cset, cgrp, template))
693 continue;
695 /* This css_set matches what we need */
696 return cset;
699 /* No existing cgroup group matched */
700 return NULL;
703 static void free_cgrp_cset_links(struct list_head *links_to_free)
705 struct cgrp_cset_link *link, *tmp_link;
707 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
708 list_del(&link->cset_link);
709 kfree(link);
714 * allocate_cgrp_cset_links - allocate cgrp_cset_links
715 * @count: the number of links to allocate
716 * @tmp_links: list_head the allocated links are put on
718 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
719 * through ->cset_link. Returns 0 on success or -errno.
721 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
723 struct cgrp_cset_link *link;
724 int i;
726 INIT_LIST_HEAD(tmp_links);
728 for (i = 0; i < count; i++) {
729 link = kzalloc(sizeof(*link), GFP_KERNEL);
730 if (!link) {
731 free_cgrp_cset_links(tmp_links);
732 return -ENOMEM;
734 list_add(&link->cset_link, tmp_links);
736 return 0;
740 * link_css_set - a helper function to link a css_set to a cgroup
741 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
742 * @cset: the css_set to be linked
743 * @cgrp: the destination cgroup
745 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
746 struct cgroup *cgrp)
748 struct cgrp_cset_link *link;
750 BUG_ON(list_empty(tmp_links));
752 if (cgroup_on_dfl(cgrp))
753 cset->dfl_cgrp = cgrp;
755 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
756 link->cset = cset;
757 link->cgrp = cgrp;
759 if (list_empty(&cgrp->cset_links))
760 cgroup_update_populated(cgrp, true);
761 list_move(&link->cset_link, &cgrp->cset_links);
764 * Always add links to the tail of the list so that the list
765 * is sorted by order of hierarchy creation
767 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
771 * find_css_set - return a new css_set with one cgroup updated
772 * @old_cset: the baseline css_set
773 * @cgrp: the cgroup to be updated
775 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
776 * substituted into the appropriate hierarchy.
778 static struct css_set *find_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp)
781 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
782 struct css_set *cset;
783 struct list_head tmp_links;
784 struct cgrp_cset_link *link;
785 struct cgroup_subsys *ss;
786 unsigned long key;
787 int ssid;
789 lockdep_assert_held(&cgroup_mutex);
791 /* First see if we already have a cgroup group that matches
792 * the desired set */
793 down_read(&css_set_rwsem);
794 cset = find_existing_css_set(old_cset, cgrp, template);
795 if (cset)
796 get_css_set(cset);
797 up_read(&css_set_rwsem);
799 if (cset)
800 return cset;
802 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
803 if (!cset)
804 return NULL;
806 /* Allocate all the cgrp_cset_link objects that we'll need */
807 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
808 kfree(cset);
809 return NULL;
812 atomic_set(&cset->refcount, 1);
813 INIT_LIST_HEAD(&cset->cgrp_links);
814 INIT_LIST_HEAD(&cset->tasks);
815 INIT_LIST_HEAD(&cset->mg_tasks);
816 INIT_LIST_HEAD(&cset->mg_preload_node);
817 INIT_LIST_HEAD(&cset->mg_node);
818 INIT_HLIST_NODE(&cset->hlist);
820 /* Copy the set of subsystem state objects generated in
821 * find_existing_css_set() */
822 memcpy(cset->subsys, template, sizeof(cset->subsys));
824 down_write(&css_set_rwsem);
825 /* Add reference counts and links from the new css_set. */
826 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
827 struct cgroup *c = link->cgrp;
829 if (c->root == cgrp->root)
830 c = cgrp;
831 link_css_set(&tmp_links, cset, c);
834 BUG_ON(!list_empty(&tmp_links));
836 css_set_count++;
838 /* Add @cset to the hash table */
839 key = css_set_hash(cset->subsys);
840 hash_add(css_set_table, &cset->hlist, key);
842 for_each_subsys(ss, ssid)
843 list_add_tail(&cset->e_cset_node[ssid],
844 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
846 up_write(&css_set_rwsem);
848 return cset;
851 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
853 struct cgroup *root_cgrp = kf_root->kn->priv;
855 return root_cgrp->root;
858 static int cgroup_init_root_id(struct cgroup_root *root)
860 int id;
862 lockdep_assert_held(&cgroup_mutex);
864 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
865 if (id < 0)
866 return id;
868 root->hierarchy_id = id;
869 return 0;
872 static void cgroup_exit_root_id(struct cgroup_root *root)
874 lockdep_assert_held(&cgroup_mutex);
876 if (root->hierarchy_id) {
877 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
878 root->hierarchy_id = 0;
882 static void cgroup_free_root(struct cgroup_root *root)
884 if (root) {
885 /* hierarhcy ID shoulid already have been released */
886 WARN_ON_ONCE(root->hierarchy_id);
888 idr_destroy(&root->cgroup_idr);
889 kfree(root);
893 static void cgroup_destroy_root(struct cgroup_root *root)
895 struct cgroup *cgrp = &root->cgrp;
896 struct cgrp_cset_link *link, *tmp_link;
898 mutex_lock(&cgroup_mutex);
900 BUG_ON(atomic_read(&root->nr_cgrps));
901 BUG_ON(!list_empty(&cgrp->self.children));
903 /* Rebind all subsystems back to the default hierarchy */
904 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
907 * Release all the links from cset_links to this hierarchy's
908 * root cgroup
910 down_write(&css_set_rwsem);
912 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
913 list_del(&link->cset_link);
914 list_del(&link->cgrp_link);
915 kfree(link);
917 up_write(&css_set_rwsem);
919 if (!list_empty(&root->root_list)) {
920 list_del(&root->root_list);
921 cgroup_root_count--;
924 cgroup_exit_root_id(root);
926 mutex_unlock(&cgroup_mutex);
928 kernfs_destroy_root(root->kf_root);
929 cgroup_free_root(root);
932 /* look up cgroup associated with given css_set on the specified hierarchy */
933 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
934 struct cgroup_root *root)
936 struct cgroup *res = NULL;
938 lockdep_assert_held(&cgroup_mutex);
939 lockdep_assert_held(&css_set_rwsem);
941 if (cset == &init_css_set) {
942 res = &root->cgrp;
943 } else {
944 struct cgrp_cset_link *link;
946 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
947 struct cgroup *c = link->cgrp;
949 if (c->root == root) {
950 res = c;
951 break;
956 BUG_ON(!res);
957 return res;
961 * Return the cgroup for "task" from the given hierarchy. Must be
962 * called with cgroup_mutex and css_set_rwsem held.
964 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
965 struct cgroup_root *root)
968 * No need to lock the task - since we hold cgroup_mutex the
969 * task can't change groups, so the only thing that can happen
970 * is that it exits and its css is set back to init_css_set.
972 return cset_cgroup_from_root(task_css_set(task), root);
976 * A task must hold cgroup_mutex to modify cgroups.
978 * Any task can increment and decrement the count field without lock.
979 * So in general, code holding cgroup_mutex can't rely on the count
980 * field not changing. However, if the count goes to zero, then only
981 * cgroup_attach_task() can increment it again. Because a count of zero
982 * means that no tasks are currently attached, therefore there is no
983 * way a task attached to that cgroup can fork (the other way to
984 * increment the count). So code holding cgroup_mutex can safely
985 * assume that if the count is zero, it will stay zero. Similarly, if
986 * a task holds cgroup_mutex on a cgroup with zero count, it
987 * knows that the cgroup won't be removed, as cgroup_rmdir()
988 * needs that mutex.
990 * A cgroup can only be deleted if both its 'count' of using tasks
991 * is zero, and its list of 'children' cgroups is empty. Since all
992 * tasks in the system use _some_ cgroup, and since there is always at
993 * least one task in the system (init, pid == 1), therefore, root cgroup
994 * always has either children cgroups and/or using tasks. So we don't
995 * need a special hack to ensure that root cgroup cannot be deleted.
997 * P.S. One more locking exception. RCU is used to guard the
998 * update of a tasks cgroup pointer by cgroup_attach_task()
1001 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
1002 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1003 static const struct file_operations proc_cgroupstats_operations;
1005 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1006 char *buf)
1008 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1009 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1010 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1011 cft->ss->name, cft->name);
1012 else
1013 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1014 return buf;
1018 * cgroup_file_mode - deduce file mode of a control file
1019 * @cft: the control file in question
1021 * returns cft->mode if ->mode is not 0
1022 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1023 * returns S_IRUGO if it has only a read handler
1024 * returns S_IWUSR if it has only a write hander
1026 static umode_t cgroup_file_mode(const struct cftype *cft)
1028 umode_t mode = 0;
1030 if (cft->mode)
1031 return cft->mode;
1033 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1034 mode |= S_IRUGO;
1036 if (cft->write_u64 || cft->write_s64 || cft->write)
1037 mode |= S_IWUSR;
1039 return mode;
1042 static void cgroup_get(struct cgroup *cgrp)
1044 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1045 css_get(&cgrp->self);
1048 static bool cgroup_tryget(struct cgroup *cgrp)
1050 return css_tryget(&cgrp->self);
1053 static void cgroup_put(struct cgroup *cgrp)
1055 css_put(&cgrp->self);
1059 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1060 * @cgrp: the target cgroup
1061 * @subtree_control: the new subtree_control mask to consider
1063 * On the default hierarchy, a subsystem may request other subsystems to be
1064 * enabled together through its ->depends_on mask. In such cases, more
1065 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1067 * This function calculates which subsystems need to be enabled if
1068 * @subtree_control is to be applied to @cgrp. The returned mask is always
1069 * a superset of @subtree_control and follows the usual hierarchy rules.
1071 static unsigned int cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1072 unsigned int subtree_control)
1074 struct cgroup *parent = cgroup_parent(cgrp);
1075 unsigned int cur_ss_mask = subtree_control;
1076 struct cgroup_subsys *ss;
1077 int ssid;
1079 lockdep_assert_held(&cgroup_mutex);
1081 if (!cgroup_on_dfl(cgrp))
1082 return cur_ss_mask;
1084 while (true) {
1085 unsigned int new_ss_mask = cur_ss_mask;
1087 for_each_subsys(ss, ssid)
1088 if (cur_ss_mask & (1 << ssid))
1089 new_ss_mask |= ss->depends_on;
1092 * Mask out subsystems which aren't available. This can
1093 * happen only if some depended-upon subsystems were bound
1094 * to non-default hierarchies.
1096 if (parent)
1097 new_ss_mask &= parent->child_subsys_mask;
1098 else
1099 new_ss_mask &= cgrp->root->subsys_mask;
1101 if (new_ss_mask == cur_ss_mask)
1102 break;
1103 cur_ss_mask = new_ss_mask;
1106 return cur_ss_mask;
1110 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1111 * @cgrp: the target cgroup
1113 * Update @cgrp->child_subsys_mask according to the current
1114 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1116 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1118 cgrp->child_subsys_mask =
1119 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1123 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1124 * @kn: the kernfs_node being serviced
1126 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1127 * the method finishes if locking succeeded. Note that once this function
1128 * returns the cgroup returned by cgroup_kn_lock_live() may become
1129 * inaccessible any time. If the caller intends to continue to access the
1130 * cgroup, it should pin it before invoking this function.
1132 static void cgroup_kn_unlock(struct kernfs_node *kn)
1134 struct cgroup *cgrp;
1136 if (kernfs_type(kn) == KERNFS_DIR)
1137 cgrp = kn->priv;
1138 else
1139 cgrp = kn->parent->priv;
1141 mutex_unlock(&cgroup_mutex);
1143 kernfs_unbreak_active_protection(kn);
1144 cgroup_put(cgrp);
1148 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1149 * @kn: the kernfs_node being serviced
1151 * This helper is to be used by a cgroup kernfs method currently servicing
1152 * @kn. It breaks the active protection, performs cgroup locking and
1153 * verifies that the associated cgroup is alive. Returns the cgroup if
1154 * alive; otherwise, %NULL. A successful return should be undone by a
1155 * matching cgroup_kn_unlock() invocation.
1157 * Any cgroup kernfs method implementation which requires locking the
1158 * associated cgroup should use this helper. It avoids nesting cgroup
1159 * locking under kernfs active protection and allows all kernfs operations
1160 * including self-removal.
1162 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1164 struct cgroup *cgrp;
1166 if (kernfs_type(kn) == KERNFS_DIR)
1167 cgrp = kn->priv;
1168 else
1169 cgrp = kn->parent->priv;
1172 * We're gonna grab cgroup_mutex which nests outside kernfs
1173 * active_ref. cgroup liveliness check alone provides enough
1174 * protection against removal. Ensure @cgrp stays accessible and
1175 * break the active_ref protection.
1177 if (!cgroup_tryget(cgrp))
1178 return NULL;
1179 kernfs_break_active_protection(kn);
1181 mutex_lock(&cgroup_mutex);
1183 if (!cgroup_is_dead(cgrp))
1184 return cgrp;
1186 cgroup_kn_unlock(kn);
1187 return NULL;
1190 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1192 char name[CGROUP_FILE_NAME_MAX];
1194 lockdep_assert_held(&cgroup_mutex);
1195 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1199 * cgroup_clear_dir - remove subsys files in a cgroup directory
1200 * @cgrp: target cgroup
1201 * @subsys_mask: mask of the subsystem ids whose files should be removed
1203 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1205 struct cgroup_subsys *ss;
1206 int i;
1208 for_each_subsys(ss, i) {
1209 struct cftype *cfts;
1211 if (!(subsys_mask & (1 << i)))
1212 continue;
1213 list_for_each_entry(cfts, &ss->cfts, node)
1214 cgroup_addrm_files(cgrp, cfts, false);
1218 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1220 struct cgroup_subsys *ss;
1221 unsigned int tmp_ss_mask;
1222 int ssid, i, ret;
1224 lockdep_assert_held(&cgroup_mutex);
1226 for_each_subsys(ss, ssid) {
1227 if (!(ss_mask & (1 << ssid)))
1228 continue;
1230 /* if @ss has non-root csses attached to it, can't move */
1231 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1232 return -EBUSY;
1234 /* can't move between two non-dummy roots either */
1235 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1236 return -EBUSY;
1239 /* skip creating root files on dfl_root for inhibited subsystems */
1240 tmp_ss_mask = ss_mask;
1241 if (dst_root == &cgrp_dfl_root)
1242 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1244 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1245 if (ret) {
1246 if (dst_root != &cgrp_dfl_root)
1247 return ret;
1250 * Rebinding back to the default root is not allowed to
1251 * fail. Using both default and non-default roots should
1252 * be rare. Moving subsystems back and forth even more so.
1253 * Just warn about it and continue.
1255 if (cgrp_dfl_root_visible) {
1256 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1257 ret, ss_mask);
1258 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1263 * Nothing can fail from this point on. Remove files for the
1264 * removed subsystems and rebind each subsystem.
1266 for_each_subsys(ss, ssid)
1267 if (ss_mask & (1 << ssid))
1268 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1270 for_each_subsys(ss, ssid) {
1271 struct cgroup_root *src_root;
1272 struct cgroup_subsys_state *css;
1273 struct css_set *cset;
1275 if (!(ss_mask & (1 << ssid)))
1276 continue;
1278 src_root = ss->root;
1279 css = cgroup_css(&src_root->cgrp, ss);
1281 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1283 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1284 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1285 ss->root = dst_root;
1286 css->cgroup = &dst_root->cgrp;
1288 down_write(&css_set_rwsem);
1289 hash_for_each(css_set_table, i, cset, hlist)
1290 list_move_tail(&cset->e_cset_node[ss->id],
1291 &dst_root->cgrp.e_csets[ss->id]);
1292 up_write(&css_set_rwsem);
1294 src_root->subsys_mask &= ~(1 << ssid);
1295 src_root->cgrp.subtree_control &= ~(1 << ssid);
1296 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1298 /* default hierarchy doesn't enable controllers by default */
1299 dst_root->subsys_mask |= 1 << ssid;
1300 if (dst_root != &cgrp_dfl_root) {
1301 dst_root->cgrp.subtree_control |= 1 << ssid;
1302 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1305 if (ss->bind)
1306 ss->bind(css);
1309 kernfs_activate(dst_root->cgrp.kn);
1310 return 0;
1313 static int cgroup_show_options(struct seq_file *seq,
1314 struct kernfs_root *kf_root)
1316 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1317 struct cgroup_subsys *ss;
1318 int ssid;
1320 for_each_subsys(ss, ssid)
1321 if (root->subsys_mask & (1 << ssid))
1322 seq_show_option(seq, ss->name, NULL);
1323 if (root->flags & CGRP_ROOT_NOPREFIX)
1324 seq_puts(seq, ",noprefix");
1325 if (root->flags & CGRP_ROOT_XATTR)
1326 seq_puts(seq, ",xattr");
1328 spin_lock(&release_agent_path_lock);
1329 if (strlen(root->release_agent_path))
1330 seq_show_option(seq, "release_agent",
1331 root->release_agent_path);
1332 spin_unlock(&release_agent_path_lock);
1334 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1335 seq_puts(seq, ",clone_children");
1336 if (strlen(root->name))
1337 seq_show_option(seq, "name", root->name);
1338 return 0;
1341 struct cgroup_sb_opts {
1342 unsigned int subsys_mask;
1343 unsigned int flags;
1344 char *release_agent;
1345 bool cpuset_clone_children;
1346 char *name;
1347 /* User explicitly requested empty subsystem */
1348 bool none;
1351 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1353 char *token, *o = data;
1354 bool all_ss = false, one_ss = false;
1355 unsigned int mask = -1U;
1356 struct cgroup_subsys *ss;
1357 int nr_opts = 0;
1358 int i;
1360 #ifdef CONFIG_CPUSETS
1361 mask = ~(1U << cpuset_cgrp_id);
1362 #endif
1364 memset(opts, 0, sizeof(*opts));
1366 while ((token = strsep(&o, ",")) != NULL) {
1367 nr_opts++;
1369 if (!*token)
1370 return -EINVAL;
1371 if (!strcmp(token, "none")) {
1372 /* Explicitly have no subsystems */
1373 opts->none = true;
1374 continue;
1376 if (!strcmp(token, "all")) {
1377 /* Mutually exclusive option 'all' + subsystem name */
1378 if (one_ss)
1379 return -EINVAL;
1380 all_ss = true;
1381 continue;
1383 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1384 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1385 continue;
1387 if (!strcmp(token, "noprefix")) {
1388 opts->flags |= CGRP_ROOT_NOPREFIX;
1389 continue;
1391 if (!strcmp(token, "clone_children")) {
1392 opts->cpuset_clone_children = true;
1393 continue;
1395 if (!strcmp(token, "xattr")) {
1396 opts->flags |= CGRP_ROOT_XATTR;
1397 continue;
1399 if (!strncmp(token, "release_agent=", 14)) {
1400 /* Specifying two release agents is forbidden */
1401 if (opts->release_agent)
1402 return -EINVAL;
1403 opts->release_agent =
1404 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1405 if (!opts->release_agent)
1406 return -ENOMEM;
1407 continue;
1409 if (!strncmp(token, "name=", 5)) {
1410 const char *name = token + 5;
1411 /* Can't specify an empty name */
1412 if (!strlen(name))
1413 return -EINVAL;
1414 /* Must match [\w.-]+ */
1415 for (i = 0; i < strlen(name); i++) {
1416 char c = name[i];
1417 if (isalnum(c))
1418 continue;
1419 if ((c == '.') || (c == '-') || (c == '_'))
1420 continue;
1421 return -EINVAL;
1423 /* Specifying two names is forbidden */
1424 if (opts->name)
1425 return -EINVAL;
1426 opts->name = kstrndup(name,
1427 MAX_CGROUP_ROOT_NAMELEN - 1,
1428 GFP_KERNEL);
1429 if (!opts->name)
1430 return -ENOMEM;
1432 continue;
1435 for_each_subsys(ss, i) {
1436 if (strcmp(token, ss->name))
1437 continue;
1438 if (ss->disabled)
1439 continue;
1441 /* Mutually exclusive option 'all' + subsystem name */
1442 if (all_ss)
1443 return -EINVAL;
1444 opts->subsys_mask |= (1 << i);
1445 one_ss = true;
1447 break;
1449 if (i == CGROUP_SUBSYS_COUNT)
1450 return -ENOENT;
1453 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1454 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1455 if (nr_opts != 1) {
1456 pr_err("sane_behavior: no other mount options allowed\n");
1457 return -EINVAL;
1459 return 0;
1463 * If the 'all' option was specified select all the subsystems,
1464 * otherwise if 'none', 'name=' and a subsystem name options were
1465 * not specified, let's default to 'all'
1467 if (all_ss || (!one_ss && !opts->none && !opts->name))
1468 for_each_subsys(ss, i)
1469 if (!ss->disabled)
1470 opts->subsys_mask |= (1 << i);
1473 * We either have to specify by name or by subsystems. (So all
1474 * empty hierarchies must have a name).
1476 if (!opts->subsys_mask && !opts->name)
1477 return -EINVAL;
1480 * Option noprefix was introduced just for backward compatibility
1481 * with the old cpuset, so we allow noprefix only if mounting just
1482 * the cpuset subsystem.
1484 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1485 return -EINVAL;
1487 /* Can't specify "none" and some subsystems */
1488 if (opts->subsys_mask && opts->none)
1489 return -EINVAL;
1491 return 0;
1494 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1496 int ret = 0;
1497 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1498 struct cgroup_sb_opts opts;
1499 unsigned int added_mask, removed_mask;
1501 if (root == &cgrp_dfl_root) {
1502 pr_err("remount is not allowed\n");
1503 return -EINVAL;
1506 mutex_lock(&cgroup_mutex);
1508 /* See what subsystems are wanted */
1509 ret = parse_cgroupfs_options(data, &opts);
1510 if (ret)
1511 goto out_unlock;
1513 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1514 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1515 task_tgid_nr(current), current->comm);
1517 added_mask = opts.subsys_mask & ~root->subsys_mask;
1518 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1520 /* Don't allow flags or name to change at remount */
1521 if ((opts.flags ^ root->flags) ||
1522 (opts.name && strcmp(opts.name, root->name))) {
1523 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1524 opts.flags, opts.name ?: "", root->flags, root->name);
1525 ret = -EINVAL;
1526 goto out_unlock;
1529 /* remounting is not allowed for populated hierarchies */
1530 if (!list_empty(&root->cgrp.self.children)) {
1531 ret = -EBUSY;
1532 goto out_unlock;
1535 ret = rebind_subsystems(root, added_mask);
1536 if (ret)
1537 goto out_unlock;
1539 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1541 if (opts.release_agent) {
1542 spin_lock(&release_agent_path_lock);
1543 strcpy(root->release_agent_path, opts.release_agent);
1544 spin_unlock(&release_agent_path_lock);
1546 out_unlock:
1547 kfree(opts.release_agent);
1548 kfree(opts.name);
1549 mutex_unlock(&cgroup_mutex);
1550 return ret;
1554 * To reduce the fork() overhead for systems that are not actually using
1555 * their cgroups capability, we don't maintain the lists running through
1556 * each css_set to its tasks until we see the list actually used - in other
1557 * words after the first mount.
1559 static bool use_task_css_set_links __read_mostly;
1561 static void cgroup_enable_task_cg_lists(void)
1563 struct task_struct *p, *g;
1565 down_write(&css_set_rwsem);
1567 if (use_task_css_set_links)
1568 goto out_unlock;
1570 use_task_css_set_links = true;
1573 * We need tasklist_lock because RCU is not safe against
1574 * while_each_thread(). Besides, a forking task that has passed
1575 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1576 * is not guaranteed to have its child immediately visible in the
1577 * tasklist if we walk through it with RCU.
1579 read_lock(&tasklist_lock);
1580 do_each_thread(g, p) {
1581 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1582 task_css_set(p) != &init_css_set);
1585 * We should check if the process is exiting, otherwise
1586 * it will race with cgroup_exit() in that the list
1587 * entry won't be deleted though the process has exited.
1588 * Do it while holding siglock so that we don't end up
1589 * racing against cgroup_exit().
1591 spin_lock_irq(&p->sighand->siglock);
1592 if (!(p->flags & PF_EXITING)) {
1593 struct css_set *cset = task_css_set(p);
1595 list_add(&p->cg_list, &cset->tasks);
1596 get_css_set(cset);
1598 spin_unlock_irq(&p->sighand->siglock);
1599 } while_each_thread(g, p);
1600 read_unlock(&tasklist_lock);
1601 out_unlock:
1602 up_write(&css_set_rwsem);
1605 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1607 struct cgroup_subsys *ss;
1608 int ssid;
1610 INIT_LIST_HEAD(&cgrp->self.sibling);
1611 INIT_LIST_HEAD(&cgrp->self.children);
1612 INIT_LIST_HEAD(&cgrp->cset_links);
1613 INIT_LIST_HEAD(&cgrp->pidlists);
1614 mutex_init(&cgrp->pidlist_mutex);
1615 cgrp->self.cgroup = cgrp;
1616 cgrp->self.flags |= CSS_ONLINE;
1618 for_each_subsys(ss, ssid)
1619 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1621 init_waitqueue_head(&cgrp->offline_waitq);
1622 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1625 static void init_cgroup_root(struct cgroup_root *root,
1626 struct cgroup_sb_opts *opts)
1628 struct cgroup *cgrp = &root->cgrp;
1630 INIT_LIST_HEAD(&root->root_list);
1631 atomic_set(&root->nr_cgrps, 1);
1632 cgrp->root = root;
1633 init_cgroup_housekeeping(cgrp);
1634 idr_init(&root->cgroup_idr);
1636 root->flags = opts->flags;
1637 if (opts->release_agent)
1638 strcpy(root->release_agent_path, opts->release_agent);
1639 if (opts->name)
1640 strcpy(root->name, opts->name);
1641 if (opts->cpuset_clone_children)
1642 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1645 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1647 LIST_HEAD(tmp_links);
1648 struct cgroup *root_cgrp = &root->cgrp;
1649 struct cftype *base_files;
1650 struct css_set *cset;
1651 int i, ret;
1653 lockdep_assert_held(&cgroup_mutex);
1655 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1656 if (ret < 0)
1657 goto out;
1658 root_cgrp->id = ret;
1660 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1661 GFP_KERNEL);
1662 if (ret)
1663 goto out;
1666 * We're accessing css_set_count without locking css_set_rwsem here,
1667 * but that's OK - it can only be increased by someone holding
1668 * cgroup_lock, and that's us. The worst that can happen is that we
1669 * have some link structures left over
1671 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1672 if (ret)
1673 goto cancel_ref;
1675 ret = cgroup_init_root_id(root);
1676 if (ret)
1677 goto cancel_ref;
1679 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1680 KERNFS_ROOT_CREATE_DEACTIVATED,
1681 root_cgrp);
1682 if (IS_ERR(root->kf_root)) {
1683 ret = PTR_ERR(root->kf_root);
1684 goto exit_root_id;
1686 root_cgrp->kn = root->kf_root->kn;
1688 if (root == &cgrp_dfl_root)
1689 base_files = cgroup_dfl_base_files;
1690 else
1691 base_files = cgroup_legacy_base_files;
1693 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1694 if (ret)
1695 goto destroy_root;
1697 ret = rebind_subsystems(root, ss_mask);
1698 if (ret)
1699 goto destroy_root;
1702 * There must be no failure case after here, since rebinding takes
1703 * care of subsystems' refcounts, which are explicitly dropped in
1704 * the failure exit path.
1706 list_add(&root->root_list, &cgroup_roots);
1707 cgroup_root_count++;
1710 * Link the root cgroup in this hierarchy into all the css_set
1711 * objects.
1713 down_write(&css_set_rwsem);
1714 hash_for_each(css_set_table, i, cset, hlist)
1715 link_css_set(&tmp_links, cset, root_cgrp);
1716 up_write(&css_set_rwsem);
1718 BUG_ON(!list_empty(&root_cgrp->self.children));
1719 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1721 kernfs_activate(root_cgrp->kn);
1722 ret = 0;
1723 goto out;
1725 destroy_root:
1726 kernfs_destroy_root(root->kf_root);
1727 root->kf_root = NULL;
1728 exit_root_id:
1729 cgroup_exit_root_id(root);
1730 cancel_ref:
1731 percpu_ref_exit(&root_cgrp->self.refcnt);
1732 out:
1733 free_cgrp_cset_links(&tmp_links);
1734 return ret;
1737 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1738 int flags, const char *unused_dev_name,
1739 void *data)
1741 struct super_block *pinned_sb = NULL;
1742 struct cgroup_subsys *ss;
1743 struct cgroup_root *root;
1744 struct cgroup_sb_opts opts;
1745 struct dentry *dentry;
1746 int ret;
1747 int i;
1748 bool new_sb;
1751 * The first time anyone tries to mount a cgroup, enable the list
1752 * linking each css_set to its tasks and fix up all existing tasks.
1754 if (!use_task_css_set_links)
1755 cgroup_enable_task_cg_lists();
1757 mutex_lock(&cgroup_mutex);
1759 /* First find the desired set of subsystems */
1760 ret = parse_cgroupfs_options(data, &opts);
1761 if (ret)
1762 goto out_unlock;
1764 /* look for a matching existing root */
1765 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1766 cgrp_dfl_root_visible = true;
1767 root = &cgrp_dfl_root;
1768 cgroup_get(&root->cgrp);
1769 ret = 0;
1770 goto out_unlock;
1774 * Destruction of cgroup root is asynchronous, so subsystems may
1775 * still be dying after the previous unmount. Let's drain the
1776 * dying subsystems. We just need to ensure that the ones
1777 * unmounted previously finish dying and don't care about new ones
1778 * starting. Testing ref liveliness is good enough.
1780 for_each_subsys(ss, i) {
1781 if (!(opts.subsys_mask & (1 << i)) ||
1782 ss->root == &cgrp_dfl_root)
1783 continue;
1785 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1786 mutex_unlock(&cgroup_mutex);
1787 msleep(10);
1788 ret = restart_syscall();
1789 goto out_free;
1791 cgroup_put(&ss->root->cgrp);
1794 for_each_root(root) {
1795 bool name_match = false;
1797 if (root == &cgrp_dfl_root)
1798 continue;
1801 * If we asked for a name then it must match. Also, if
1802 * name matches but sybsys_mask doesn't, we should fail.
1803 * Remember whether name matched.
1805 if (opts.name) {
1806 if (strcmp(opts.name, root->name))
1807 continue;
1808 name_match = true;
1812 * If we asked for subsystems (or explicitly for no
1813 * subsystems) then they must match.
1815 if ((opts.subsys_mask || opts.none) &&
1816 (opts.subsys_mask != root->subsys_mask)) {
1817 if (!name_match)
1818 continue;
1819 ret = -EBUSY;
1820 goto out_unlock;
1823 if (root->flags ^ opts.flags)
1824 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1827 * We want to reuse @root whose lifetime is governed by its
1828 * ->cgrp. Let's check whether @root is alive and keep it
1829 * that way. As cgroup_kill_sb() can happen anytime, we
1830 * want to block it by pinning the sb so that @root doesn't
1831 * get killed before mount is complete.
1833 * With the sb pinned, tryget_live can reliably indicate
1834 * whether @root can be reused. If it's being killed,
1835 * drain it. We can use wait_queue for the wait but this
1836 * path is super cold. Let's just sleep a bit and retry.
1838 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1839 if (IS_ERR(pinned_sb) ||
1840 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1841 mutex_unlock(&cgroup_mutex);
1842 if (!IS_ERR_OR_NULL(pinned_sb))
1843 deactivate_super(pinned_sb);
1844 msleep(10);
1845 ret = restart_syscall();
1846 goto out_free;
1849 ret = 0;
1850 goto out_unlock;
1854 * No such thing, create a new one. name= matching without subsys
1855 * specification is allowed for already existing hierarchies but we
1856 * can't create new one without subsys specification.
1858 if (!opts.subsys_mask && !opts.none) {
1859 ret = -EINVAL;
1860 goto out_unlock;
1863 root = kzalloc(sizeof(*root), GFP_KERNEL);
1864 if (!root) {
1865 ret = -ENOMEM;
1866 goto out_unlock;
1869 init_cgroup_root(root, &opts);
1871 ret = cgroup_setup_root(root, opts.subsys_mask);
1872 if (ret)
1873 cgroup_free_root(root);
1875 out_unlock:
1876 mutex_unlock(&cgroup_mutex);
1877 out_free:
1878 kfree(opts.release_agent);
1879 kfree(opts.name);
1881 if (ret)
1882 return ERR_PTR(ret);
1884 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1885 CGROUP_SUPER_MAGIC, &new_sb);
1886 if (IS_ERR(dentry) || !new_sb)
1887 cgroup_put(&root->cgrp);
1890 * If @pinned_sb, we're reusing an existing root and holding an
1891 * extra ref on its sb. Mount is complete. Put the extra ref.
1893 if (pinned_sb) {
1894 WARN_ON(new_sb);
1895 deactivate_super(pinned_sb);
1898 return dentry;
1901 static void cgroup_kill_sb(struct super_block *sb)
1903 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1904 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1907 * If @root doesn't have any mounts or children, start killing it.
1908 * This prevents new mounts by disabling percpu_ref_tryget_live().
1909 * cgroup_mount() may wait for @root's release.
1911 * And don't kill the default root.
1913 if (!list_empty(&root->cgrp.self.children) ||
1914 root == &cgrp_dfl_root)
1915 cgroup_put(&root->cgrp);
1916 else
1917 percpu_ref_kill(&root->cgrp.self.refcnt);
1919 kernfs_kill_sb(sb);
1922 static struct file_system_type cgroup_fs_type = {
1923 .name = "cgroup",
1924 .mount = cgroup_mount,
1925 .kill_sb = cgroup_kill_sb,
1929 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1930 * @task: target task
1931 * @buf: the buffer to write the path into
1932 * @buflen: the length of the buffer
1934 * Determine @task's cgroup on the first (the one with the lowest non-zero
1935 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1936 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1937 * cgroup controller callbacks.
1939 * Return value is the same as kernfs_path().
1941 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1943 struct cgroup_root *root;
1944 struct cgroup *cgrp;
1945 int hierarchy_id = 1;
1946 char *path = NULL;
1948 mutex_lock(&cgroup_mutex);
1949 down_read(&css_set_rwsem);
1951 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1953 if (root) {
1954 cgrp = task_cgroup_from_root(task, root);
1955 path = cgroup_path(cgrp, buf, buflen);
1956 } else {
1957 /* if no hierarchy exists, everyone is in "/" */
1958 if (strlcpy(buf, "/", buflen) < buflen)
1959 path = buf;
1962 up_read(&css_set_rwsem);
1963 mutex_unlock(&cgroup_mutex);
1964 return path;
1966 EXPORT_SYMBOL_GPL(task_cgroup_path);
1968 /* used to track tasks and other necessary states during migration */
1969 struct cgroup_taskset {
1970 /* the src and dst cset list running through cset->mg_node */
1971 struct list_head src_csets;
1972 struct list_head dst_csets;
1975 * Fields for cgroup_taskset_*() iteration.
1977 * Before migration is committed, the target migration tasks are on
1978 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1979 * the csets on ->dst_csets. ->csets point to either ->src_csets
1980 * or ->dst_csets depending on whether migration is committed.
1982 * ->cur_csets and ->cur_task point to the current task position
1983 * during iteration.
1985 struct list_head *csets;
1986 struct css_set *cur_cset;
1987 struct task_struct *cur_task;
1991 * cgroup_taskset_first - reset taskset and return the first task
1992 * @tset: taskset of interest
1994 * @tset iteration is initialized and the first task is returned.
1996 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1998 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1999 tset->cur_task = NULL;
2001 return cgroup_taskset_next(tset);
2005 * cgroup_taskset_next - iterate to the next task in taskset
2006 * @tset: taskset of interest
2008 * Return the next task in @tset. Iteration must have been initialized
2009 * with cgroup_taskset_first().
2011 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2013 struct css_set *cset = tset->cur_cset;
2014 struct task_struct *task = tset->cur_task;
2016 while (&cset->mg_node != tset->csets) {
2017 if (!task)
2018 task = list_first_entry(&cset->mg_tasks,
2019 struct task_struct, cg_list);
2020 else
2021 task = list_next_entry(task, cg_list);
2023 if (&task->cg_list != &cset->mg_tasks) {
2024 tset->cur_cset = cset;
2025 tset->cur_task = task;
2026 return task;
2029 cset = list_next_entry(cset, mg_node);
2030 task = NULL;
2033 return NULL;
2037 * cgroup_task_migrate - move a task from one cgroup to another.
2038 * @old_cgrp: the cgroup @tsk is being migrated from
2039 * @tsk: the task being migrated
2040 * @new_cset: the new css_set @tsk is being attached to
2042 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2044 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2045 struct task_struct *tsk,
2046 struct css_set *new_cset)
2048 struct css_set *old_cset;
2050 lockdep_assert_held(&cgroup_mutex);
2051 lockdep_assert_held(&css_set_rwsem);
2054 * We are synchronized through threadgroup_lock() against PF_EXITING
2055 * setting such that we can't race against cgroup_exit() changing the
2056 * css_set to init_css_set and dropping the old one.
2058 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2059 old_cset = task_css_set(tsk);
2061 get_css_set(new_cset);
2062 rcu_assign_pointer(tsk->cgroups, new_cset);
2065 * Use move_tail so that cgroup_taskset_first() still returns the
2066 * leader after migration. This works because cgroup_migrate()
2067 * ensures that the dst_cset of the leader is the first on the
2068 * tset's dst_csets list.
2070 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2073 * We just gained a reference on old_cset by taking it from the
2074 * task. As trading it for new_cset is protected by cgroup_mutex,
2075 * we're safe to drop it here; it will be freed under RCU.
2077 put_css_set_locked(old_cset);
2081 * cgroup_migrate_finish - cleanup after attach
2082 * @preloaded_csets: list of preloaded css_sets
2084 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2085 * those functions for details.
2087 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2089 struct css_set *cset, *tmp_cset;
2091 lockdep_assert_held(&cgroup_mutex);
2093 down_write(&css_set_rwsem);
2094 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2095 cset->mg_src_cgrp = NULL;
2096 cset->mg_dst_cset = NULL;
2097 list_del_init(&cset->mg_preload_node);
2098 put_css_set_locked(cset);
2100 up_write(&css_set_rwsem);
2104 * cgroup_migrate_add_src - add a migration source css_set
2105 * @src_cset: the source css_set to add
2106 * @dst_cgrp: the destination cgroup
2107 * @preloaded_csets: list of preloaded css_sets
2109 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2110 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2111 * up by cgroup_migrate_finish().
2113 * This function may be called without holding threadgroup_lock even if the
2114 * target is a process. Threads may be created and destroyed but as long
2115 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2116 * the preloaded css_sets are guaranteed to cover all migrations.
2118 static void cgroup_migrate_add_src(struct css_set *src_cset,
2119 struct cgroup *dst_cgrp,
2120 struct list_head *preloaded_csets)
2122 struct cgroup *src_cgrp;
2124 lockdep_assert_held(&cgroup_mutex);
2125 lockdep_assert_held(&css_set_rwsem);
2127 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2129 if (!list_empty(&src_cset->mg_preload_node))
2130 return;
2132 WARN_ON(src_cset->mg_src_cgrp);
2133 WARN_ON(!list_empty(&src_cset->mg_tasks));
2134 WARN_ON(!list_empty(&src_cset->mg_node));
2136 src_cset->mg_src_cgrp = src_cgrp;
2137 get_css_set(src_cset);
2138 list_add(&src_cset->mg_preload_node, preloaded_csets);
2142 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2143 * @dst_cgrp: the destination cgroup (may be %NULL)
2144 * @preloaded_csets: list of preloaded source css_sets
2146 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2147 * have been preloaded to @preloaded_csets. This function looks up and
2148 * pins all destination css_sets, links each to its source, and append them
2149 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2150 * source css_set is assumed to be its cgroup on the default hierarchy.
2152 * This function must be called after cgroup_migrate_add_src() has been
2153 * called on each migration source css_set. After migration is performed
2154 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2155 * @preloaded_csets.
2157 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2158 struct list_head *preloaded_csets)
2160 LIST_HEAD(csets);
2161 struct css_set *src_cset, *tmp_cset;
2163 lockdep_assert_held(&cgroup_mutex);
2166 * Except for the root, child_subsys_mask must be zero for a cgroup
2167 * with tasks so that child cgroups don't compete against tasks.
2169 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2170 dst_cgrp->child_subsys_mask)
2171 return -EBUSY;
2173 /* look up the dst cset for each src cset and link it to src */
2174 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2175 struct css_set *dst_cset;
2177 dst_cset = find_css_set(src_cset,
2178 dst_cgrp ?: src_cset->dfl_cgrp);
2179 if (!dst_cset)
2180 goto err;
2182 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2185 * If src cset equals dst, it's noop. Drop the src.
2186 * cgroup_migrate() will skip the cset too. Note that we
2187 * can't handle src == dst as some nodes are used by both.
2189 if (src_cset == dst_cset) {
2190 src_cset->mg_src_cgrp = NULL;
2191 list_del_init(&src_cset->mg_preload_node);
2192 put_css_set(src_cset);
2193 put_css_set(dst_cset);
2194 continue;
2197 src_cset->mg_dst_cset = dst_cset;
2199 if (list_empty(&dst_cset->mg_preload_node))
2200 list_add(&dst_cset->mg_preload_node, &csets);
2201 else
2202 put_css_set(dst_cset);
2205 list_splice_tail(&csets, preloaded_csets);
2206 return 0;
2207 err:
2208 cgroup_migrate_finish(&csets);
2209 return -ENOMEM;
2213 * cgroup_migrate - migrate a process or task to a cgroup
2214 * @cgrp: the destination cgroup
2215 * @leader: the leader of the process or the task to migrate
2216 * @threadgroup: whether @leader points to the whole process or a single task
2218 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2219 * process, the caller must be holding threadgroup_lock of @leader. The
2220 * caller is also responsible for invoking cgroup_migrate_add_src() and
2221 * cgroup_migrate_prepare_dst() on the targets before invoking this
2222 * function and following up with cgroup_migrate_finish().
2224 * As long as a controller's ->can_attach() doesn't fail, this function is
2225 * guaranteed to succeed. This means that, excluding ->can_attach()
2226 * failure, when migrating multiple targets, the success or failure can be
2227 * decided for all targets by invoking group_migrate_prepare_dst() before
2228 * actually starting migrating.
2230 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2231 bool threadgroup)
2233 struct cgroup_taskset tset = {
2234 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2235 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2236 .csets = &tset.src_csets,
2238 struct cgroup_subsys_state *css, *failed_css = NULL;
2239 struct css_set *cset, *tmp_cset;
2240 struct task_struct *task, *tmp_task;
2241 int i, ret;
2244 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2245 * already PF_EXITING could be freed from underneath us unless we
2246 * take an rcu_read_lock.
2248 down_write(&css_set_rwsem);
2249 rcu_read_lock();
2250 task = leader;
2251 do {
2252 /* @task either already exited or can't exit until the end */
2253 if (task->flags & PF_EXITING)
2254 goto next;
2256 /* leave @task alone if post_fork() hasn't linked it yet */
2257 if (list_empty(&task->cg_list))
2258 goto next;
2260 cset = task_css_set(task);
2261 if (!cset->mg_src_cgrp)
2262 goto next;
2265 * cgroup_taskset_first() must always return the leader.
2266 * Take care to avoid disturbing the ordering.
2268 list_move_tail(&task->cg_list, &cset->mg_tasks);
2269 if (list_empty(&cset->mg_node))
2270 list_add_tail(&cset->mg_node, &tset.src_csets);
2271 if (list_empty(&cset->mg_dst_cset->mg_node))
2272 list_move_tail(&cset->mg_dst_cset->mg_node,
2273 &tset.dst_csets);
2274 next:
2275 if (!threadgroup)
2276 break;
2277 } while_each_thread(leader, task);
2278 rcu_read_unlock();
2279 up_write(&css_set_rwsem);
2281 /* methods shouldn't be called if no task is actually migrating */
2282 if (list_empty(&tset.src_csets))
2283 return 0;
2285 /* check that we can legitimately attach to the cgroup */
2286 for_each_e_css(css, i, cgrp) {
2287 if (css->ss->can_attach) {
2288 ret = css->ss->can_attach(css, &tset);
2289 if (ret) {
2290 failed_css = css;
2291 goto out_cancel_attach;
2297 * Now that we're guaranteed success, proceed to move all tasks to
2298 * the new cgroup. There are no failure cases after here, so this
2299 * is the commit point.
2301 down_write(&css_set_rwsem);
2302 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2303 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2304 cgroup_task_migrate(cset->mg_src_cgrp, task,
2305 cset->mg_dst_cset);
2307 up_write(&css_set_rwsem);
2310 * Migration is committed, all target tasks are now on dst_csets.
2311 * Nothing is sensitive to fork() after this point. Notify
2312 * controllers that migration is complete.
2314 tset.csets = &tset.dst_csets;
2316 for_each_e_css(css, i, cgrp)
2317 if (css->ss->attach)
2318 css->ss->attach(css, &tset);
2320 ret = 0;
2321 goto out_release_tset;
2323 out_cancel_attach:
2324 for_each_e_css(css, i, cgrp) {
2325 if (css == failed_css)
2326 break;
2327 if (css->ss->cancel_attach)
2328 css->ss->cancel_attach(css, &tset);
2330 out_release_tset:
2331 down_write(&css_set_rwsem);
2332 list_splice_init(&tset.dst_csets, &tset.src_csets);
2333 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2334 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2335 list_del_init(&cset->mg_node);
2337 up_write(&css_set_rwsem);
2338 return ret;
2342 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2343 * @dst_cgrp: the cgroup to attach to
2344 * @leader: the task or the leader of the threadgroup to be attached
2345 * @threadgroup: attach the whole threadgroup?
2347 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2349 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2350 struct task_struct *leader, bool threadgroup)
2352 LIST_HEAD(preloaded_csets);
2353 struct task_struct *task;
2354 int ret;
2356 /* look up all src csets */
2357 down_read(&css_set_rwsem);
2358 rcu_read_lock();
2359 task = leader;
2360 do {
2361 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2362 &preloaded_csets);
2363 if (!threadgroup)
2364 break;
2365 } while_each_thread(leader, task);
2366 rcu_read_unlock();
2367 up_read(&css_set_rwsem);
2369 /* prepare dst csets and commit */
2370 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2371 if (!ret)
2372 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2374 cgroup_migrate_finish(&preloaded_csets);
2375 return ret;
2379 * Find the task_struct of the task to attach by vpid and pass it along to the
2380 * function to attach either it or all tasks in its threadgroup. Will lock
2381 * cgroup_mutex and threadgroup.
2383 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2384 size_t nbytes, loff_t off, bool threadgroup)
2386 struct task_struct *tsk;
2387 const struct cred *cred = current_cred(), *tcred;
2388 struct cgroup *cgrp;
2389 pid_t pid;
2390 int ret;
2392 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2393 return -EINVAL;
2395 cgrp = cgroup_kn_lock_live(of->kn);
2396 if (!cgrp)
2397 return -ENODEV;
2399 retry_find_task:
2400 rcu_read_lock();
2401 if (pid) {
2402 tsk = find_task_by_vpid(pid);
2403 if (!tsk) {
2404 rcu_read_unlock();
2405 ret = -ESRCH;
2406 goto out_unlock_cgroup;
2409 * even if we're attaching all tasks in the thread group, we
2410 * only need to check permissions on one of them.
2412 tcred = __task_cred(tsk);
2413 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2414 !uid_eq(cred->euid, tcred->uid) &&
2415 !uid_eq(cred->euid, tcred->suid)) {
2416 rcu_read_unlock();
2417 ret = -EACCES;
2418 goto out_unlock_cgroup;
2420 } else
2421 tsk = current;
2423 if (threadgroup)
2424 tsk = tsk->group_leader;
2427 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2428 * trapped in a cpuset, or RT worker may be born in a cgroup
2429 * with no rt_runtime allocated. Just say no.
2431 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2432 ret = -EINVAL;
2433 rcu_read_unlock();
2434 goto out_unlock_cgroup;
2437 get_task_struct(tsk);
2438 rcu_read_unlock();
2440 threadgroup_lock(tsk);
2441 if (threadgroup) {
2442 if (!thread_group_leader(tsk)) {
2444 * a race with de_thread from another thread's exec()
2445 * may strip us of our leadership, if this happens,
2446 * there is no choice but to throw this task away and
2447 * try again; this is
2448 * "double-double-toil-and-trouble-check locking".
2450 threadgroup_unlock(tsk);
2451 put_task_struct(tsk);
2452 goto retry_find_task;
2456 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2458 threadgroup_unlock(tsk);
2460 put_task_struct(tsk);
2461 out_unlock_cgroup:
2462 cgroup_kn_unlock(of->kn);
2463 return ret ?: nbytes;
2467 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2468 * @from: attach to all cgroups of a given task
2469 * @tsk: the task to be attached
2471 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2473 struct cgroup_root *root;
2474 int retval = 0;
2476 mutex_lock(&cgroup_mutex);
2477 for_each_root(root) {
2478 struct cgroup *from_cgrp;
2480 if (root == &cgrp_dfl_root)
2481 continue;
2483 down_read(&css_set_rwsem);
2484 from_cgrp = task_cgroup_from_root(from, root);
2485 up_read(&css_set_rwsem);
2487 retval = cgroup_attach_task(from_cgrp, tsk, false);
2488 if (retval)
2489 break;
2491 mutex_unlock(&cgroup_mutex);
2493 return retval;
2495 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2497 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2498 char *buf, size_t nbytes, loff_t off)
2500 return __cgroup_procs_write(of, buf, nbytes, off, false);
2503 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2504 char *buf, size_t nbytes, loff_t off)
2506 return __cgroup_procs_write(of, buf, nbytes, off, true);
2509 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2510 char *buf, size_t nbytes, loff_t off)
2512 struct cgroup *cgrp;
2514 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2516 cgrp = cgroup_kn_lock_live(of->kn);
2517 if (!cgrp)
2518 return -ENODEV;
2519 spin_lock(&release_agent_path_lock);
2520 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2521 sizeof(cgrp->root->release_agent_path));
2522 spin_unlock(&release_agent_path_lock);
2523 cgroup_kn_unlock(of->kn);
2524 return nbytes;
2527 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2529 struct cgroup *cgrp = seq_css(seq)->cgroup;
2531 spin_lock(&release_agent_path_lock);
2532 seq_puts(seq, cgrp->root->release_agent_path);
2533 spin_unlock(&release_agent_path_lock);
2534 seq_putc(seq, '\n');
2535 return 0;
2538 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2540 seq_puts(seq, "0\n");
2541 return 0;
2544 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2546 struct cgroup_subsys *ss;
2547 bool printed = false;
2548 int ssid;
2550 for_each_subsys(ss, ssid) {
2551 if (ss_mask & (1 << ssid)) {
2552 if (printed)
2553 seq_putc(seq, ' ');
2554 seq_printf(seq, "%s", ss->name);
2555 printed = true;
2558 if (printed)
2559 seq_putc(seq, '\n');
2562 /* show controllers which are currently attached to the default hierarchy */
2563 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2565 struct cgroup *cgrp = seq_css(seq)->cgroup;
2567 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2568 ~cgrp_dfl_root_inhibit_ss_mask);
2569 return 0;
2572 /* show controllers which are enabled from the parent */
2573 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2575 struct cgroup *cgrp = seq_css(seq)->cgroup;
2577 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2578 return 0;
2581 /* show controllers which are enabled for a given cgroup's children */
2582 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2584 struct cgroup *cgrp = seq_css(seq)->cgroup;
2586 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2587 return 0;
2591 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2592 * @cgrp: root of the subtree to update csses for
2594 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2595 * css associations need to be updated accordingly. This function looks up
2596 * all css_sets which are attached to the subtree, creates the matching
2597 * updated css_sets and migrates the tasks to the new ones.
2599 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2601 LIST_HEAD(preloaded_csets);
2602 struct cgroup_subsys_state *css;
2603 struct css_set *src_cset;
2604 int ret;
2606 lockdep_assert_held(&cgroup_mutex);
2608 /* look up all csses currently attached to @cgrp's subtree */
2609 down_read(&css_set_rwsem);
2610 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2611 struct cgrp_cset_link *link;
2613 /* self is not affected by child_subsys_mask change */
2614 if (css->cgroup == cgrp)
2615 continue;
2617 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2618 cgroup_migrate_add_src(link->cset, cgrp,
2619 &preloaded_csets);
2621 up_read(&css_set_rwsem);
2623 /* NULL dst indicates self on default hierarchy */
2624 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2625 if (ret)
2626 goto out_finish;
2628 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2629 struct task_struct *last_task = NULL, *task;
2631 /* src_csets precede dst_csets, break on the first dst_cset */
2632 if (!src_cset->mg_src_cgrp)
2633 break;
2636 * All tasks in src_cset need to be migrated to the
2637 * matching dst_cset. Empty it process by process. We
2638 * walk tasks but migrate processes. The leader might even
2639 * belong to a different cset but such src_cset would also
2640 * be among the target src_csets because the default
2641 * hierarchy enforces per-process membership.
2643 while (true) {
2644 down_read(&css_set_rwsem);
2645 task = list_first_entry_or_null(&src_cset->tasks,
2646 struct task_struct, cg_list);
2647 if (task) {
2648 task = task->group_leader;
2649 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2650 get_task_struct(task);
2652 up_read(&css_set_rwsem);
2654 if (!task)
2655 break;
2657 /* guard against possible infinite loop */
2658 if (WARN(last_task == task,
2659 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2660 goto out_finish;
2661 last_task = task;
2663 threadgroup_lock(task);
2664 /* raced against de_thread() from another thread? */
2665 if (!thread_group_leader(task)) {
2666 threadgroup_unlock(task);
2667 put_task_struct(task);
2668 continue;
2671 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2673 threadgroup_unlock(task);
2674 put_task_struct(task);
2676 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2677 goto out_finish;
2681 out_finish:
2682 cgroup_migrate_finish(&preloaded_csets);
2683 return ret;
2686 /* change the enabled child controllers for a cgroup in the default hierarchy */
2687 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2688 char *buf, size_t nbytes,
2689 loff_t off)
2691 unsigned int enable = 0, disable = 0;
2692 unsigned int css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2693 struct cgroup *cgrp, *child;
2694 struct cgroup_subsys *ss;
2695 char *tok;
2696 int ssid, ret;
2699 * Parse input - space separated list of subsystem names prefixed
2700 * with either + or -.
2702 buf = strstrip(buf);
2703 while ((tok = strsep(&buf, " "))) {
2704 if (tok[0] == '\0')
2705 continue;
2706 for_each_subsys(ss, ssid) {
2707 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2708 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2709 continue;
2711 if (*tok == '+') {
2712 enable |= 1 << ssid;
2713 disable &= ~(1 << ssid);
2714 } else if (*tok == '-') {
2715 disable |= 1 << ssid;
2716 enable &= ~(1 << ssid);
2717 } else {
2718 return -EINVAL;
2720 break;
2722 if (ssid == CGROUP_SUBSYS_COUNT)
2723 return -EINVAL;
2726 cgrp = cgroup_kn_lock_live(of->kn);
2727 if (!cgrp)
2728 return -ENODEV;
2730 for_each_subsys(ss, ssid) {
2731 if (enable & (1 << ssid)) {
2732 if (cgrp->subtree_control & (1 << ssid)) {
2733 enable &= ~(1 << ssid);
2734 continue;
2737 /* unavailable or not enabled on the parent? */
2738 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2739 (cgroup_parent(cgrp) &&
2740 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2741 ret = -ENOENT;
2742 goto out_unlock;
2744 } else if (disable & (1 << ssid)) {
2745 if (!(cgrp->subtree_control & (1 << ssid))) {
2746 disable &= ~(1 << ssid);
2747 continue;
2750 /* a child has it enabled? */
2751 cgroup_for_each_live_child(child, cgrp) {
2752 if (child->subtree_control & (1 << ssid)) {
2753 ret = -EBUSY;
2754 goto out_unlock;
2760 if (!enable && !disable) {
2761 ret = 0;
2762 goto out_unlock;
2766 * Except for the root, subtree_control must be zero for a cgroup
2767 * with tasks so that child cgroups don't compete against tasks.
2769 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2770 ret = -EBUSY;
2771 goto out_unlock;
2775 * Update subsys masks and calculate what needs to be done. More
2776 * subsystems than specified may need to be enabled or disabled
2777 * depending on subsystem dependencies.
2779 old_sc = cgrp->subtree_control;
2780 old_ss = cgrp->child_subsys_mask;
2781 new_sc = (old_sc | enable) & ~disable;
2782 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2784 css_enable = ~old_ss & new_ss;
2785 css_disable = old_ss & ~new_ss;
2786 enable |= css_enable;
2787 disable |= css_disable;
2790 * Because css offlining is asynchronous, userland might try to
2791 * re-enable the same controller while the previous instance is
2792 * still around. In such cases, wait till it's gone using
2793 * offline_waitq.
2795 for_each_subsys(ss, ssid) {
2796 if (!(css_enable & (1 << ssid)))
2797 continue;
2799 cgroup_for_each_live_child(child, cgrp) {
2800 DEFINE_WAIT(wait);
2802 if (!cgroup_css(child, ss))
2803 continue;
2805 cgroup_get(child);
2806 prepare_to_wait(&child->offline_waitq, &wait,
2807 TASK_UNINTERRUPTIBLE);
2808 cgroup_kn_unlock(of->kn);
2809 schedule();
2810 finish_wait(&child->offline_waitq, &wait);
2811 cgroup_put(child);
2813 return restart_syscall();
2817 cgrp->subtree_control = new_sc;
2818 cgrp->child_subsys_mask = new_ss;
2821 * Create new csses or make the existing ones visible. A css is
2822 * created invisible if it's being implicitly enabled through
2823 * dependency. An invisible css is made visible when the userland
2824 * explicitly enables it.
2826 for_each_subsys(ss, ssid) {
2827 if (!(enable & (1 << ssid)))
2828 continue;
2830 cgroup_for_each_live_child(child, cgrp) {
2831 if (css_enable & (1 << ssid))
2832 ret = create_css(child, ss,
2833 cgrp->subtree_control & (1 << ssid));
2834 else
2835 ret = cgroup_populate_dir(child, 1 << ssid);
2836 if (ret)
2837 goto err_undo_css;
2842 * At this point, cgroup_e_css() results reflect the new csses
2843 * making the following cgroup_update_dfl_csses() properly update
2844 * css associations of all tasks in the subtree.
2846 ret = cgroup_update_dfl_csses(cgrp);
2847 if (ret)
2848 goto err_undo_css;
2851 * All tasks are migrated out of disabled csses. Kill or hide
2852 * them. A css is hidden when the userland requests it to be
2853 * disabled while other subsystems are still depending on it. The
2854 * css must not actively control resources and be in the vanilla
2855 * state if it's made visible again later. Controllers which may
2856 * be depended upon should provide ->css_reset() for this purpose.
2858 for_each_subsys(ss, ssid) {
2859 if (!(disable & (1 << ssid)))
2860 continue;
2862 cgroup_for_each_live_child(child, cgrp) {
2863 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2865 if (css_disable & (1 << ssid)) {
2866 kill_css(css);
2867 } else {
2868 cgroup_clear_dir(child, 1 << ssid);
2869 if (ss->css_reset)
2870 ss->css_reset(css);
2876 * The effective csses of all the descendants (excluding @cgrp) may
2877 * have changed. Subsystems can optionally subscribe to this event
2878 * by implementing ->css_e_css_changed() which is invoked if any of
2879 * the effective csses seen from the css's cgroup may have changed.
2881 for_each_subsys(ss, ssid) {
2882 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2883 struct cgroup_subsys_state *css;
2885 if (!ss->css_e_css_changed || !this_css)
2886 continue;
2888 css_for_each_descendant_pre(css, this_css)
2889 if (css != this_css)
2890 ss->css_e_css_changed(css);
2893 kernfs_activate(cgrp->kn);
2894 ret = 0;
2895 out_unlock:
2896 cgroup_kn_unlock(of->kn);
2897 return ret ?: nbytes;
2899 err_undo_css:
2900 cgrp->subtree_control = old_sc;
2901 cgrp->child_subsys_mask = old_ss;
2903 for_each_subsys(ss, ssid) {
2904 if (!(enable & (1 << ssid)))
2905 continue;
2907 cgroup_for_each_live_child(child, cgrp) {
2908 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2910 if (!css)
2911 continue;
2913 if (css_enable & (1 << ssid))
2914 kill_css(css);
2915 else
2916 cgroup_clear_dir(child, 1 << ssid);
2919 goto out_unlock;
2922 static int cgroup_populated_show(struct seq_file *seq, void *v)
2924 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2925 return 0;
2928 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2929 size_t nbytes, loff_t off)
2931 struct cgroup *cgrp = of->kn->parent->priv;
2932 struct cftype *cft = of->kn->priv;
2933 struct cgroup_subsys_state *css;
2934 int ret;
2936 if (cft->write)
2937 return cft->write(of, buf, nbytes, off);
2940 * kernfs guarantees that a file isn't deleted with operations in
2941 * flight, which means that the matching css is and stays alive and
2942 * doesn't need to be pinned. The RCU locking is not necessary
2943 * either. It's just for the convenience of using cgroup_css().
2945 rcu_read_lock();
2946 css = cgroup_css(cgrp, cft->ss);
2947 rcu_read_unlock();
2949 if (cft->write_u64) {
2950 unsigned long long v;
2951 ret = kstrtoull(buf, 0, &v);
2952 if (!ret)
2953 ret = cft->write_u64(css, cft, v);
2954 } else if (cft->write_s64) {
2955 long long v;
2956 ret = kstrtoll(buf, 0, &v);
2957 if (!ret)
2958 ret = cft->write_s64(css, cft, v);
2959 } else {
2960 ret = -EINVAL;
2963 return ret ?: nbytes;
2966 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2968 return seq_cft(seq)->seq_start(seq, ppos);
2971 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2973 return seq_cft(seq)->seq_next(seq, v, ppos);
2976 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2978 seq_cft(seq)->seq_stop(seq, v);
2981 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2983 struct cftype *cft = seq_cft(m);
2984 struct cgroup_subsys_state *css = seq_css(m);
2986 if (cft->seq_show)
2987 return cft->seq_show(m, arg);
2989 if (cft->read_u64)
2990 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2991 else if (cft->read_s64)
2992 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2993 else
2994 return -EINVAL;
2995 return 0;
2998 static struct kernfs_ops cgroup_kf_single_ops = {
2999 .atomic_write_len = PAGE_SIZE,
3000 .write = cgroup_file_write,
3001 .seq_show = cgroup_seqfile_show,
3004 static struct kernfs_ops cgroup_kf_ops = {
3005 .atomic_write_len = PAGE_SIZE,
3006 .write = cgroup_file_write,
3007 .seq_start = cgroup_seqfile_start,
3008 .seq_next = cgroup_seqfile_next,
3009 .seq_stop = cgroup_seqfile_stop,
3010 .seq_show = cgroup_seqfile_show,
3014 * cgroup_rename - Only allow simple rename of directories in place.
3016 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3017 const char *new_name_str)
3019 struct cgroup *cgrp = kn->priv;
3020 int ret;
3022 if (kernfs_type(kn) != KERNFS_DIR)
3023 return -ENOTDIR;
3024 if (kn->parent != new_parent)
3025 return -EIO;
3028 * This isn't a proper migration and its usefulness is very
3029 * limited. Disallow on the default hierarchy.
3031 if (cgroup_on_dfl(cgrp))
3032 return -EPERM;
3035 * We're gonna grab cgroup_mutex which nests outside kernfs
3036 * active_ref. kernfs_rename() doesn't require active_ref
3037 * protection. Break them before grabbing cgroup_mutex.
3039 kernfs_break_active_protection(new_parent);
3040 kernfs_break_active_protection(kn);
3042 mutex_lock(&cgroup_mutex);
3044 ret = kernfs_rename(kn, new_parent, new_name_str);
3046 mutex_unlock(&cgroup_mutex);
3048 kernfs_unbreak_active_protection(kn);
3049 kernfs_unbreak_active_protection(new_parent);
3050 return ret;
3053 /* set uid and gid of cgroup dirs and files to that of the creator */
3054 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3056 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3057 .ia_uid = current_fsuid(),
3058 .ia_gid = current_fsgid(), };
3060 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3061 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3062 return 0;
3064 return kernfs_setattr(kn, &iattr);
3067 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3069 char name[CGROUP_FILE_NAME_MAX];
3070 struct kernfs_node *kn;
3071 struct lock_class_key *key = NULL;
3072 int ret;
3074 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3075 key = &cft->lockdep_key;
3076 #endif
3077 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3078 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3079 NULL, key);
3080 if (IS_ERR(kn))
3081 return PTR_ERR(kn);
3083 ret = cgroup_kn_set_ugid(kn);
3084 if (ret) {
3085 kernfs_remove(kn);
3086 return ret;
3089 if (cft->seq_show == cgroup_populated_show)
3090 cgrp->populated_kn = kn;
3091 return 0;
3095 * cgroup_addrm_files - add or remove files to a cgroup directory
3096 * @cgrp: the target cgroup
3097 * @cfts: array of cftypes to be added
3098 * @is_add: whether to add or remove
3100 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3101 * For removals, this function never fails. If addition fails, this
3102 * function doesn't remove files already added. The caller is responsible
3103 * for cleaning up.
3105 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3106 bool is_add)
3108 struct cftype *cft;
3109 int ret;
3111 lockdep_assert_held(&cgroup_mutex);
3113 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3114 /* does cft->flags tell us to skip this file on @cgrp? */
3115 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3116 continue;
3117 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3118 continue;
3119 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3120 continue;
3121 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3122 continue;
3124 if (is_add) {
3125 ret = cgroup_add_file(cgrp, cft);
3126 if (ret) {
3127 pr_warn("%s: failed to add %s, err=%d\n",
3128 __func__, cft->name, ret);
3129 return ret;
3131 } else {
3132 cgroup_rm_file(cgrp, cft);
3135 return 0;
3138 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3140 LIST_HEAD(pending);
3141 struct cgroup_subsys *ss = cfts[0].ss;
3142 struct cgroup *root = &ss->root->cgrp;
3143 struct cgroup_subsys_state *css;
3144 int ret = 0;
3146 lockdep_assert_held(&cgroup_mutex);
3148 /* add/rm files for all cgroups created before */
3149 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3150 struct cgroup *cgrp = css->cgroup;
3152 if (cgroup_is_dead(cgrp))
3153 continue;
3155 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3156 if (ret)
3157 break;
3160 if (is_add && !ret)
3161 kernfs_activate(root->kn);
3162 return ret;
3165 static void cgroup_exit_cftypes(struct cftype *cfts)
3167 struct cftype *cft;
3169 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3170 /* free copy for custom atomic_write_len, see init_cftypes() */
3171 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3172 kfree(cft->kf_ops);
3173 cft->kf_ops = NULL;
3174 cft->ss = NULL;
3176 /* revert flags set by cgroup core while adding @cfts */
3177 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3181 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3183 struct cftype *cft;
3185 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3186 struct kernfs_ops *kf_ops;
3188 WARN_ON(cft->ss || cft->kf_ops);
3190 if (cft->seq_start)
3191 kf_ops = &cgroup_kf_ops;
3192 else
3193 kf_ops = &cgroup_kf_single_ops;
3196 * Ugh... if @cft wants a custom max_write_len, we need to
3197 * make a copy of kf_ops to set its atomic_write_len.
3199 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3200 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3201 if (!kf_ops) {
3202 cgroup_exit_cftypes(cfts);
3203 return -ENOMEM;
3205 kf_ops->atomic_write_len = cft->max_write_len;
3208 cft->kf_ops = kf_ops;
3209 cft->ss = ss;
3212 return 0;
3215 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3217 lockdep_assert_held(&cgroup_mutex);
3219 if (!cfts || !cfts[0].ss)
3220 return -ENOENT;
3222 list_del(&cfts->node);
3223 cgroup_apply_cftypes(cfts, false);
3224 cgroup_exit_cftypes(cfts);
3225 return 0;
3229 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3230 * @cfts: zero-length name terminated array of cftypes
3232 * Unregister @cfts. Files described by @cfts are removed from all
3233 * existing cgroups and all future cgroups won't have them either. This
3234 * function can be called anytime whether @cfts' subsys is attached or not.
3236 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3237 * registered.
3239 int cgroup_rm_cftypes(struct cftype *cfts)
3241 int ret;
3243 mutex_lock(&cgroup_mutex);
3244 ret = cgroup_rm_cftypes_locked(cfts);
3245 mutex_unlock(&cgroup_mutex);
3246 return ret;
3250 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3251 * @ss: target cgroup subsystem
3252 * @cfts: zero-length name terminated array of cftypes
3254 * Register @cfts to @ss. Files described by @cfts are created for all
3255 * existing cgroups to which @ss is attached and all future cgroups will
3256 * have them too. This function can be called anytime whether @ss is
3257 * attached or not.
3259 * Returns 0 on successful registration, -errno on failure. Note that this
3260 * function currently returns 0 as long as @cfts registration is successful
3261 * even if some file creation attempts on existing cgroups fail.
3263 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3265 int ret;
3267 if (ss->disabled)
3268 return 0;
3270 if (!cfts || cfts[0].name[0] == '\0')
3271 return 0;
3273 ret = cgroup_init_cftypes(ss, cfts);
3274 if (ret)
3275 return ret;
3277 mutex_lock(&cgroup_mutex);
3279 list_add_tail(&cfts->node, &ss->cfts);
3280 ret = cgroup_apply_cftypes(cfts, true);
3281 if (ret)
3282 cgroup_rm_cftypes_locked(cfts);
3284 mutex_unlock(&cgroup_mutex);
3285 return ret;
3289 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3290 * @ss: target cgroup subsystem
3291 * @cfts: zero-length name terminated array of cftypes
3293 * Similar to cgroup_add_cftypes() but the added files are only used for
3294 * the default hierarchy.
3296 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298 struct cftype *cft;
3300 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3301 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3302 return cgroup_add_cftypes(ss, cfts);
3306 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3307 * @ss: target cgroup subsystem
3308 * @cfts: zero-length name terminated array of cftypes
3310 * Similar to cgroup_add_cftypes() but the added files are only used for
3311 * the legacy hierarchies.
3313 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3315 struct cftype *cft;
3318 * If legacy_flies_on_dfl, we want to show the legacy files on the
3319 * dfl hierarchy but iff the target subsystem hasn't been updated
3320 * for the dfl hierarchy yet.
3322 if (!cgroup_legacy_files_on_dfl ||
3323 ss->dfl_cftypes != ss->legacy_cftypes) {
3324 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3325 cft->flags |= __CFTYPE_NOT_ON_DFL;
3328 return cgroup_add_cftypes(ss, cfts);
3332 * cgroup_task_count - count the number of tasks in a cgroup.
3333 * @cgrp: the cgroup in question
3335 * Return the number of tasks in the cgroup.
3337 static int cgroup_task_count(const struct cgroup *cgrp)
3339 int count = 0;
3340 struct cgrp_cset_link *link;
3342 down_read(&css_set_rwsem);
3343 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3344 count += atomic_read(&link->cset->refcount);
3345 up_read(&css_set_rwsem);
3346 return count;
3350 * css_next_child - find the next child of a given css
3351 * @pos: the current position (%NULL to initiate traversal)
3352 * @parent: css whose children to walk
3354 * This function returns the next child of @parent and should be called
3355 * under either cgroup_mutex or RCU read lock. The only requirement is
3356 * that @parent and @pos are accessible. The next sibling is guaranteed to
3357 * be returned regardless of their states.
3359 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3360 * css which finished ->css_online() is guaranteed to be visible in the
3361 * future iterations and will stay visible until the last reference is put.
3362 * A css which hasn't finished ->css_online() or already finished
3363 * ->css_offline() may show up during traversal. It's each subsystem's
3364 * responsibility to synchronize against on/offlining.
3366 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3367 struct cgroup_subsys_state *parent)
3369 struct cgroup_subsys_state *next;
3371 cgroup_assert_mutex_or_rcu_locked();
3374 * @pos could already have been unlinked from the sibling list.
3375 * Once a cgroup is removed, its ->sibling.next is no longer
3376 * updated when its next sibling changes. CSS_RELEASED is set when
3377 * @pos is taken off list, at which time its next pointer is valid,
3378 * and, as releases are serialized, the one pointed to by the next
3379 * pointer is guaranteed to not have started release yet. This
3380 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3381 * critical section, the one pointed to by its next pointer is
3382 * guaranteed to not have finished its RCU grace period even if we
3383 * have dropped rcu_read_lock() inbetween iterations.
3385 * If @pos has CSS_RELEASED set, its next pointer can't be
3386 * dereferenced; however, as each css is given a monotonically
3387 * increasing unique serial number and always appended to the
3388 * sibling list, the next one can be found by walking the parent's
3389 * children until the first css with higher serial number than
3390 * @pos's. While this path can be slower, it happens iff iteration
3391 * races against release and the race window is very small.
3393 if (!pos) {
3394 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3395 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3396 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3397 } else {
3398 list_for_each_entry_rcu(next, &parent->children, sibling)
3399 if (next->serial_nr > pos->serial_nr)
3400 break;
3404 * @next, if not pointing to the head, can be dereferenced and is
3405 * the next sibling.
3407 if (&next->sibling != &parent->children)
3408 return next;
3409 return NULL;
3413 * css_next_descendant_pre - find the next descendant for pre-order walk
3414 * @pos: the current position (%NULL to initiate traversal)
3415 * @root: css whose descendants to walk
3417 * To be used by css_for_each_descendant_pre(). Find the next descendant
3418 * to visit for pre-order traversal of @root's descendants. @root is
3419 * included in the iteration and the first node to be visited.
3421 * While this function requires cgroup_mutex or RCU read locking, it
3422 * doesn't require the whole traversal to be contained in a single critical
3423 * section. This function will return the correct next descendant as long
3424 * as both @pos and @root are accessible and @pos is a descendant of @root.
3426 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3427 * css which finished ->css_online() is guaranteed to be visible in the
3428 * future iterations and will stay visible until the last reference is put.
3429 * A css which hasn't finished ->css_online() or already finished
3430 * ->css_offline() may show up during traversal. It's each subsystem's
3431 * responsibility to synchronize against on/offlining.
3433 struct cgroup_subsys_state *
3434 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3435 struct cgroup_subsys_state *root)
3437 struct cgroup_subsys_state *next;
3439 cgroup_assert_mutex_or_rcu_locked();
3441 /* if first iteration, visit @root */
3442 if (!pos)
3443 return root;
3445 /* visit the first child if exists */
3446 next = css_next_child(NULL, pos);
3447 if (next)
3448 return next;
3450 /* no child, visit my or the closest ancestor's next sibling */
3451 while (pos != root) {
3452 next = css_next_child(pos, pos->parent);
3453 if (next)
3454 return next;
3455 pos = pos->parent;
3458 return NULL;
3462 * css_rightmost_descendant - return the rightmost descendant of a css
3463 * @pos: css of interest
3465 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3466 * is returned. This can be used during pre-order traversal to skip
3467 * subtree of @pos.
3469 * While this function requires cgroup_mutex or RCU read locking, it
3470 * doesn't require the whole traversal to be contained in a single critical
3471 * section. This function will return the correct rightmost descendant as
3472 * long as @pos is accessible.
3474 struct cgroup_subsys_state *
3475 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3477 struct cgroup_subsys_state *last, *tmp;
3479 cgroup_assert_mutex_or_rcu_locked();
3481 do {
3482 last = pos;
3483 /* ->prev isn't RCU safe, walk ->next till the end */
3484 pos = NULL;
3485 css_for_each_child(tmp, last)
3486 pos = tmp;
3487 } while (pos);
3489 return last;
3492 static struct cgroup_subsys_state *
3493 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3495 struct cgroup_subsys_state *last;
3497 do {
3498 last = pos;
3499 pos = css_next_child(NULL, pos);
3500 } while (pos);
3502 return last;
3506 * css_next_descendant_post - find the next descendant for post-order walk
3507 * @pos: the current position (%NULL to initiate traversal)
3508 * @root: css whose descendants to walk
3510 * To be used by css_for_each_descendant_post(). Find the next descendant
3511 * to visit for post-order traversal of @root's descendants. @root is
3512 * included in the iteration and the last node to be visited.
3514 * While this function requires cgroup_mutex or RCU read locking, it
3515 * doesn't require the whole traversal to be contained in a single critical
3516 * section. This function will return the correct next descendant as long
3517 * as both @pos and @cgroup are accessible and @pos is a descendant of
3518 * @cgroup.
3520 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3521 * css which finished ->css_online() is guaranteed to be visible in the
3522 * future iterations and will stay visible until the last reference is put.
3523 * A css which hasn't finished ->css_online() or already finished
3524 * ->css_offline() may show up during traversal. It's each subsystem's
3525 * responsibility to synchronize against on/offlining.
3527 struct cgroup_subsys_state *
3528 css_next_descendant_post(struct cgroup_subsys_state *pos,
3529 struct cgroup_subsys_state *root)
3531 struct cgroup_subsys_state *next;
3533 cgroup_assert_mutex_or_rcu_locked();
3535 /* if first iteration, visit leftmost descendant which may be @root */
3536 if (!pos)
3537 return css_leftmost_descendant(root);
3539 /* if we visited @root, we're done */
3540 if (pos == root)
3541 return NULL;
3543 /* if there's an unvisited sibling, visit its leftmost descendant */
3544 next = css_next_child(pos, pos->parent);
3545 if (next)
3546 return css_leftmost_descendant(next);
3548 /* no sibling left, visit parent */
3549 return pos->parent;
3553 * css_has_online_children - does a css have online children
3554 * @css: the target css
3556 * Returns %true if @css has any online children; otherwise, %false. This
3557 * function can be called from any context but the caller is responsible
3558 * for synchronizing against on/offlining as necessary.
3560 bool css_has_online_children(struct cgroup_subsys_state *css)
3562 struct cgroup_subsys_state *child;
3563 bool ret = false;
3565 rcu_read_lock();
3566 css_for_each_child(child, css) {
3567 if (child->flags & CSS_ONLINE) {
3568 ret = true;
3569 break;
3572 rcu_read_unlock();
3573 return ret;
3577 * css_advance_task_iter - advance a task itererator to the next css_set
3578 * @it: the iterator to advance
3580 * Advance @it to the next css_set to walk.
3582 static void css_advance_task_iter(struct css_task_iter *it)
3584 struct list_head *l = it->cset_pos;
3585 struct cgrp_cset_link *link;
3586 struct css_set *cset;
3588 /* Advance to the next non-empty css_set */
3589 do {
3590 l = l->next;
3591 if (l == it->cset_head) {
3592 it->cset_pos = NULL;
3593 return;
3596 if (it->ss) {
3597 cset = container_of(l, struct css_set,
3598 e_cset_node[it->ss->id]);
3599 } else {
3600 link = list_entry(l, struct cgrp_cset_link, cset_link);
3601 cset = link->cset;
3603 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3605 it->cset_pos = l;
3607 if (!list_empty(&cset->tasks))
3608 it->task_pos = cset->tasks.next;
3609 else
3610 it->task_pos = cset->mg_tasks.next;
3612 it->tasks_head = &cset->tasks;
3613 it->mg_tasks_head = &cset->mg_tasks;
3617 * css_task_iter_start - initiate task iteration
3618 * @css: the css to walk tasks of
3619 * @it: the task iterator to use
3621 * Initiate iteration through the tasks of @css. The caller can call
3622 * css_task_iter_next() to walk through the tasks until the function
3623 * returns NULL. On completion of iteration, css_task_iter_end() must be
3624 * called.
3626 * Note that this function acquires a lock which is released when the
3627 * iteration finishes. The caller can't sleep while iteration is in
3628 * progress.
3630 void css_task_iter_start(struct cgroup_subsys_state *css,
3631 struct css_task_iter *it)
3632 __acquires(css_set_rwsem)
3634 /* no one should try to iterate before mounting cgroups */
3635 WARN_ON_ONCE(!use_task_css_set_links);
3637 down_read(&css_set_rwsem);
3639 it->ss = css->ss;
3641 if (it->ss)
3642 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3643 else
3644 it->cset_pos = &css->cgroup->cset_links;
3646 it->cset_head = it->cset_pos;
3648 css_advance_task_iter(it);
3652 * css_task_iter_next - return the next task for the iterator
3653 * @it: the task iterator being iterated
3655 * The "next" function for task iteration. @it should have been
3656 * initialized via css_task_iter_start(). Returns NULL when the iteration
3657 * reaches the end.
3659 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3661 struct task_struct *res;
3662 struct list_head *l = it->task_pos;
3664 /* If the iterator cg is NULL, we have no tasks */
3665 if (!it->cset_pos)
3666 return NULL;
3667 res = list_entry(l, struct task_struct, cg_list);
3670 * Advance iterator to find next entry. cset->tasks is consumed
3671 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3672 * next cset.
3674 l = l->next;
3676 if (l == it->tasks_head)
3677 l = it->mg_tasks_head->next;
3679 if (l == it->mg_tasks_head)
3680 css_advance_task_iter(it);
3681 else
3682 it->task_pos = l;
3684 return res;
3688 * css_task_iter_end - finish task iteration
3689 * @it: the task iterator to finish
3691 * Finish task iteration started by css_task_iter_start().
3693 void css_task_iter_end(struct css_task_iter *it)
3694 __releases(css_set_rwsem)
3696 up_read(&css_set_rwsem);
3700 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3701 * @to: cgroup to which the tasks will be moved
3702 * @from: cgroup in which the tasks currently reside
3704 * Locking rules between cgroup_post_fork() and the migration path
3705 * guarantee that, if a task is forking while being migrated, the new child
3706 * is guaranteed to be either visible in the source cgroup after the
3707 * parent's migration is complete or put into the target cgroup. No task
3708 * can slip out of migration through forking.
3710 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3712 LIST_HEAD(preloaded_csets);
3713 struct cgrp_cset_link *link;
3714 struct css_task_iter it;
3715 struct task_struct *task;
3716 int ret;
3718 mutex_lock(&cgroup_mutex);
3720 /* all tasks in @from are being moved, all csets are source */
3721 down_read(&css_set_rwsem);
3722 list_for_each_entry(link, &from->cset_links, cset_link)
3723 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3724 up_read(&css_set_rwsem);
3726 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3727 if (ret)
3728 goto out_err;
3731 * Migrate tasks one-by-one until @form is empty. This fails iff
3732 * ->can_attach() fails.
3734 do {
3735 css_task_iter_start(&from->self, &it);
3736 task = css_task_iter_next(&it);
3737 if (task)
3738 get_task_struct(task);
3739 css_task_iter_end(&it);
3741 if (task) {
3742 ret = cgroup_migrate(to, task, false);
3743 put_task_struct(task);
3745 } while (task && !ret);
3746 out_err:
3747 cgroup_migrate_finish(&preloaded_csets);
3748 mutex_unlock(&cgroup_mutex);
3749 return ret;
3753 * Stuff for reading the 'tasks'/'procs' files.
3755 * Reading this file can return large amounts of data if a cgroup has
3756 * *lots* of attached tasks. So it may need several calls to read(),
3757 * but we cannot guarantee that the information we produce is correct
3758 * unless we produce it entirely atomically.
3762 /* which pidlist file are we talking about? */
3763 enum cgroup_filetype {
3764 CGROUP_FILE_PROCS,
3765 CGROUP_FILE_TASKS,
3769 * A pidlist is a list of pids that virtually represents the contents of one
3770 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3771 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3772 * to the cgroup.
3774 struct cgroup_pidlist {
3776 * used to find which pidlist is wanted. doesn't change as long as
3777 * this particular list stays in the list.
3779 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3780 /* array of xids */
3781 pid_t *list;
3782 /* how many elements the above list has */
3783 int length;
3784 /* each of these stored in a list by its cgroup */
3785 struct list_head links;
3786 /* pointer to the cgroup we belong to, for list removal purposes */
3787 struct cgroup *owner;
3788 /* for delayed destruction */
3789 struct delayed_work destroy_dwork;
3793 * The following two functions "fix" the issue where there are more pids
3794 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3795 * TODO: replace with a kernel-wide solution to this problem
3797 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3798 static void *pidlist_allocate(int count)
3800 if (PIDLIST_TOO_LARGE(count))
3801 return vmalloc(count * sizeof(pid_t));
3802 else
3803 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3806 static void pidlist_free(void *p)
3808 kvfree(p);
3812 * Used to destroy all pidlists lingering waiting for destroy timer. None
3813 * should be left afterwards.
3815 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3817 struct cgroup_pidlist *l, *tmp_l;
3819 mutex_lock(&cgrp->pidlist_mutex);
3820 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3821 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3822 mutex_unlock(&cgrp->pidlist_mutex);
3824 flush_workqueue(cgroup_pidlist_destroy_wq);
3825 BUG_ON(!list_empty(&cgrp->pidlists));
3828 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3830 struct delayed_work *dwork = to_delayed_work(work);
3831 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3832 destroy_dwork);
3833 struct cgroup_pidlist *tofree = NULL;
3835 mutex_lock(&l->owner->pidlist_mutex);
3838 * Destroy iff we didn't get queued again. The state won't change
3839 * as destroy_dwork can only be queued while locked.
3841 if (!delayed_work_pending(dwork)) {
3842 list_del(&l->links);
3843 pidlist_free(l->list);
3844 put_pid_ns(l->key.ns);
3845 tofree = l;
3848 mutex_unlock(&l->owner->pidlist_mutex);
3849 kfree(tofree);
3853 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3854 * Returns the number of unique elements.
3856 static int pidlist_uniq(pid_t *list, int length)
3858 int src, dest = 1;
3861 * we presume the 0th element is unique, so i starts at 1. trivial
3862 * edge cases first; no work needs to be done for either
3864 if (length == 0 || length == 1)
3865 return length;
3866 /* src and dest walk down the list; dest counts unique elements */
3867 for (src = 1; src < length; src++) {
3868 /* find next unique element */
3869 while (list[src] == list[src-1]) {
3870 src++;
3871 if (src == length)
3872 goto after;
3874 /* dest always points to where the next unique element goes */
3875 list[dest] = list[src];
3876 dest++;
3878 after:
3879 return dest;
3883 * The two pid files - task and cgroup.procs - guaranteed that the result
3884 * is sorted, which forced this whole pidlist fiasco. As pid order is
3885 * different per namespace, each namespace needs differently sorted list,
3886 * making it impossible to use, for example, single rbtree of member tasks
3887 * sorted by task pointer. As pidlists can be fairly large, allocating one
3888 * per open file is dangerous, so cgroup had to implement shared pool of
3889 * pidlists keyed by cgroup and namespace.
3891 * All this extra complexity was caused by the original implementation
3892 * committing to an entirely unnecessary property. In the long term, we
3893 * want to do away with it. Explicitly scramble sort order if on the
3894 * default hierarchy so that no such expectation exists in the new
3895 * interface.
3897 * Scrambling is done by swapping every two consecutive bits, which is
3898 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3900 static pid_t pid_fry(pid_t pid)
3902 unsigned a = pid & 0x55555555;
3903 unsigned b = pid & 0xAAAAAAAA;
3905 return (a << 1) | (b >> 1);
3908 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3910 if (cgroup_on_dfl(cgrp))
3911 return pid_fry(pid);
3912 else
3913 return pid;
3916 static int cmppid(const void *a, const void *b)
3918 return *(pid_t *)a - *(pid_t *)b;
3921 static int fried_cmppid(const void *a, const void *b)
3923 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3926 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3927 enum cgroup_filetype type)
3929 struct cgroup_pidlist *l;
3930 /* don't need task_nsproxy() if we're looking at ourself */
3931 struct pid_namespace *ns = task_active_pid_ns(current);
3933 lockdep_assert_held(&cgrp->pidlist_mutex);
3935 list_for_each_entry(l, &cgrp->pidlists, links)
3936 if (l->key.type == type && l->key.ns == ns)
3937 return l;
3938 return NULL;
3942 * find the appropriate pidlist for our purpose (given procs vs tasks)
3943 * returns with the lock on that pidlist already held, and takes care
3944 * of the use count, or returns NULL with no locks held if we're out of
3945 * memory.
3947 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3948 enum cgroup_filetype type)
3950 struct cgroup_pidlist *l;
3952 lockdep_assert_held(&cgrp->pidlist_mutex);
3954 l = cgroup_pidlist_find(cgrp, type);
3955 if (l)
3956 return l;
3958 /* entry not found; create a new one */
3959 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3960 if (!l)
3961 return l;
3963 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3964 l->key.type = type;
3965 /* don't need task_nsproxy() if we're looking at ourself */
3966 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3967 l->owner = cgrp;
3968 list_add(&l->links, &cgrp->pidlists);
3969 return l;
3973 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3975 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3976 struct cgroup_pidlist **lp)
3978 pid_t *array;
3979 int length;
3980 int pid, n = 0; /* used for populating the array */
3981 struct css_task_iter it;
3982 struct task_struct *tsk;
3983 struct cgroup_pidlist *l;
3985 lockdep_assert_held(&cgrp->pidlist_mutex);
3988 * If cgroup gets more users after we read count, we won't have
3989 * enough space - tough. This race is indistinguishable to the
3990 * caller from the case that the additional cgroup users didn't
3991 * show up until sometime later on.
3993 length = cgroup_task_count(cgrp);
3994 array = pidlist_allocate(length);
3995 if (!array)
3996 return -ENOMEM;
3997 /* now, populate the array */
3998 css_task_iter_start(&cgrp->self, &it);
3999 while ((tsk = css_task_iter_next(&it))) {
4000 if (unlikely(n == length))
4001 break;
4002 /* get tgid or pid for procs or tasks file respectively */
4003 if (type == CGROUP_FILE_PROCS)
4004 pid = task_tgid_vnr(tsk);
4005 else
4006 pid = task_pid_vnr(tsk);
4007 if (pid > 0) /* make sure to only use valid results */
4008 array[n++] = pid;
4010 css_task_iter_end(&it);
4011 length = n;
4012 /* now sort & (if procs) strip out duplicates */
4013 if (cgroup_on_dfl(cgrp))
4014 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4015 else
4016 sort(array, length, sizeof(pid_t), cmppid, NULL);
4017 if (type == CGROUP_FILE_PROCS)
4018 length = pidlist_uniq(array, length);
4020 l = cgroup_pidlist_find_create(cgrp, type);
4021 if (!l) {
4022 pidlist_free(array);
4023 return -ENOMEM;
4026 /* store array, freeing old if necessary */
4027 pidlist_free(l->list);
4028 l->list = array;
4029 l->length = length;
4030 *lp = l;
4031 return 0;
4035 * cgroupstats_build - build and fill cgroupstats
4036 * @stats: cgroupstats to fill information into
4037 * @dentry: A dentry entry belonging to the cgroup for which stats have
4038 * been requested.
4040 * Build and fill cgroupstats so that taskstats can export it to user
4041 * space.
4043 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4045 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4046 struct cgroup *cgrp;
4047 struct css_task_iter it;
4048 struct task_struct *tsk;
4050 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4051 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4052 kernfs_type(kn) != KERNFS_DIR)
4053 return -EINVAL;
4055 mutex_lock(&cgroup_mutex);
4058 * We aren't being called from kernfs and there's no guarantee on
4059 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4060 * @kn->priv is RCU safe. Let's do the RCU dancing.
4062 rcu_read_lock();
4063 cgrp = rcu_dereference(kn->priv);
4064 if (!cgrp || cgroup_is_dead(cgrp)) {
4065 rcu_read_unlock();
4066 mutex_unlock(&cgroup_mutex);
4067 return -ENOENT;
4069 rcu_read_unlock();
4071 css_task_iter_start(&cgrp->self, &it);
4072 while ((tsk = css_task_iter_next(&it))) {
4073 switch (tsk->state) {
4074 case TASK_RUNNING:
4075 stats->nr_running++;
4076 break;
4077 case TASK_INTERRUPTIBLE:
4078 stats->nr_sleeping++;
4079 break;
4080 case TASK_UNINTERRUPTIBLE:
4081 stats->nr_uninterruptible++;
4082 break;
4083 case TASK_STOPPED:
4084 stats->nr_stopped++;
4085 break;
4086 default:
4087 if (delayacct_is_task_waiting_on_io(tsk))
4088 stats->nr_io_wait++;
4089 break;
4092 css_task_iter_end(&it);
4094 mutex_unlock(&cgroup_mutex);
4095 return 0;
4100 * seq_file methods for the tasks/procs files. The seq_file position is the
4101 * next pid to display; the seq_file iterator is a pointer to the pid
4102 * in the cgroup->l->list array.
4105 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4108 * Initially we receive a position value that corresponds to
4109 * one more than the last pid shown (or 0 on the first call or
4110 * after a seek to the start). Use a binary-search to find the
4111 * next pid to display, if any
4113 struct kernfs_open_file *of = s->private;
4114 struct cgroup *cgrp = seq_css(s)->cgroup;
4115 struct cgroup_pidlist *l;
4116 enum cgroup_filetype type = seq_cft(s)->private;
4117 int index = 0, pid = *pos;
4118 int *iter, ret;
4120 mutex_lock(&cgrp->pidlist_mutex);
4123 * !NULL @of->priv indicates that this isn't the first start()
4124 * after open. If the matching pidlist is around, we can use that.
4125 * Look for it. Note that @of->priv can't be used directly. It
4126 * could already have been destroyed.
4128 if (of->priv)
4129 of->priv = cgroup_pidlist_find(cgrp, type);
4132 * Either this is the first start() after open or the matching
4133 * pidlist has been destroyed inbetween. Create a new one.
4135 if (!of->priv) {
4136 ret = pidlist_array_load(cgrp, type,
4137 (struct cgroup_pidlist **)&of->priv);
4138 if (ret)
4139 return ERR_PTR(ret);
4141 l = of->priv;
4143 if (pid) {
4144 int end = l->length;
4146 while (index < end) {
4147 int mid = (index + end) / 2;
4148 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4149 index = mid;
4150 break;
4151 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4152 index = mid + 1;
4153 else
4154 end = mid;
4157 /* If we're off the end of the array, we're done */
4158 if (index >= l->length)
4159 return NULL;
4160 /* Update the abstract position to be the actual pid that we found */
4161 iter = l->list + index;
4162 *pos = cgroup_pid_fry(cgrp, *iter);
4163 return iter;
4166 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4168 struct kernfs_open_file *of = s->private;
4169 struct cgroup_pidlist *l = of->priv;
4171 if (l)
4172 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4173 CGROUP_PIDLIST_DESTROY_DELAY);
4174 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4177 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4179 struct kernfs_open_file *of = s->private;
4180 struct cgroup_pidlist *l = of->priv;
4181 pid_t *p = v;
4182 pid_t *end = l->list + l->length;
4184 * Advance to the next pid in the array. If this goes off the
4185 * end, we're done
4187 p++;
4188 if (p >= end) {
4189 return NULL;
4190 } else {
4191 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4192 return p;
4196 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4198 seq_printf(s, "%d\n", *(int *)v);
4200 return 0;
4203 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4204 struct cftype *cft)
4206 return notify_on_release(css->cgroup);
4209 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4210 struct cftype *cft, u64 val)
4212 if (val)
4213 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4214 else
4215 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4216 return 0;
4219 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4220 struct cftype *cft)
4222 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4225 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4226 struct cftype *cft, u64 val)
4228 if (val)
4229 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4230 else
4231 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4232 return 0;
4235 /* cgroup core interface files for the default hierarchy */
4236 static struct cftype cgroup_dfl_base_files[] = {
4238 .name = "cgroup.procs",
4239 .seq_start = cgroup_pidlist_start,
4240 .seq_next = cgroup_pidlist_next,
4241 .seq_stop = cgroup_pidlist_stop,
4242 .seq_show = cgroup_pidlist_show,
4243 .private = CGROUP_FILE_PROCS,
4244 .write = cgroup_procs_write,
4245 .mode = S_IRUGO | S_IWUSR,
4248 .name = "cgroup.controllers",
4249 .flags = CFTYPE_ONLY_ON_ROOT,
4250 .seq_show = cgroup_root_controllers_show,
4253 .name = "cgroup.controllers",
4254 .flags = CFTYPE_NOT_ON_ROOT,
4255 .seq_show = cgroup_controllers_show,
4258 .name = "cgroup.subtree_control",
4259 .seq_show = cgroup_subtree_control_show,
4260 .write = cgroup_subtree_control_write,
4263 .name = "cgroup.populated",
4264 .flags = CFTYPE_NOT_ON_ROOT,
4265 .seq_show = cgroup_populated_show,
4267 { } /* terminate */
4270 /* cgroup core interface files for the legacy hierarchies */
4271 static struct cftype cgroup_legacy_base_files[] = {
4273 .name = "cgroup.procs",
4274 .seq_start = cgroup_pidlist_start,
4275 .seq_next = cgroup_pidlist_next,
4276 .seq_stop = cgroup_pidlist_stop,
4277 .seq_show = cgroup_pidlist_show,
4278 .private = CGROUP_FILE_PROCS,
4279 .write = cgroup_procs_write,
4280 .mode = S_IRUGO | S_IWUSR,
4283 .name = "cgroup.clone_children",
4284 .read_u64 = cgroup_clone_children_read,
4285 .write_u64 = cgroup_clone_children_write,
4288 .name = "cgroup.sane_behavior",
4289 .flags = CFTYPE_ONLY_ON_ROOT,
4290 .seq_show = cgroup_sane_behavior_show,
4293 .name = "tasks",
4294 .seq_start = cgroup_pidlist_start,
4295 .seq_next = cgroup_pidlist_next,
4296 .seq_stop = cgroup_pidlist_stop,
4297 .seq_show = cgroup_pidlist_show,
4298 .private = CGROUP_FILE_TASKS,
4299 .write = cgroup_tasks_write,
4300 .mode = S_IRUGO | S_IWUSR,
4303 .name = "notify_on_release",
4304 .read_u64 = cgroup_read_notify_on_release,
4305 .write_u64 = cgroup_write_notify_on_release,
4308 .name = "release_agent",
4309 .flags = CFTYPE_ONLY_ON_ROOT,
4310 .seq_show = cgroup_release_agent_show,
4311 .write = cgroup_release_agent_write,
4312 .max_write_len = PATH_MAX - 1,
4314 { } /* terminate */
4318 * cgroup_populate_dir - create subsys files in a cgroup directory
4319 * @cgrp: target cgroup
4320 * @subsys_mask: mask of the subsystem ids whose files should be added
4322 * On failure, no file is added.
4324 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4326 struct cgroup_subsys *ss;
4327 int i, ret = 0;
4329 /* process cftsets of each subsystem */
4330 for_each_subsys(ss, i) {
4331 struct cftype *cfts;
4333 if (!(subsys_mask & (1 << i)))
4334 continue;
4336 list_for_each_entry(cfts, &ss->cfts, node) {
4337 ret = cgroup_addrm_files(cgrp, cfts, true);
4338 if (ret < 0)
4339 goto err;
4342 return 0;
4343 err:
4344 cgroup_clear_dir(cgrp, subsys_mask);
4345 return ret;
4349 * css destruction is four-stage process.
4351 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4352 * Implemented in kill_css().
4354 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4355 * and thus css_tryget_online() is guaranteed to fail, the css can be
4356 * offlined by invoking offline_css(). After offlining, the base ref is
4357 * put. Implemented in css_killed_work_fn().
4359 * 3. When the percpu_ref reaches zero, the only possible remaining
4360 * accessors are inside RCU read sections. css_release() schedules the
4361 * RCU callback.
4363 * 4. After the grace period, the css can be freed. Implemented in
4364 * css_free_work_fn().
4366 * It is actually hairier because both step 2 and 4 require process context
4367 * and thus involve punting to css->destroy_work adding two additional
4368 * steps to the already complex sequence.
4370 static void css_free_work_fn(struct work_struct *work)
4372 struct cgroup_subsys_state *css =
4373 container_of(work, struct cgroup_subsys_state, destroy_work);
4374 struct cgroup_subsys *ss = css->ss;
4375 struct cgroup *cgrp = css->cgroup;
4377 percpu_ref_exit(&css->refcnt);
4379 if (ss) {
4380 /* css free path */
4381 int id = css->id;
4383 if (css->parent)
4384 css_put(css->parent);
4386 ss->css_free(css);
4387 cgroup_idr_remove(&ss->css_idr, id);
4388 cgroup_put(cgrp);
4389 } else {
4390 /* cgroup free path */
4391 atomic_dec(&cgrp->root->nr_cgrps);
4392 cgroup_pidlist_destroy_all(cgrp);
4393 cancel_work_sync(&cgrp->release_agent_work);
4395 if (cgroup_parent(cgrp)) {
4397 * We get a ref to the parent, and put the ref when
4398 * this cgroup is being freed, so it's guaranteed
4399 * that the parent won't be destroyed before its
4400 * children.
4402 cgroup_put(cgroup_parent(cgrp));
4403 kernfs_put(cgrp->kn);
4404 kfree(cgrp);
4405 } else {
4407 * This is root cgroup's refcnt reaching zero,
4408 * which indicates that the root should be
4409 * released.
4411 cgroup_destroy_root(cgrp->root);
4416 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4418 struct cgroup_subsys_state *css =
4419 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4421 INIT_WORK(&css->destroy_work, css_free_work_fn);
4422 queue_work(cgroup_destroy_wq, &css->destroy_work);
4425 static void css_release_work_fn(struct work_struct *work)
4427 struct cgroup_subsys_state *css =
4428 container_of(work, struct cgroup_subsys_state, destroy_work);
4429 struct cgroup_subsys *ss = css->ss;
4430 struct cgroup *cgrp = css->cgroup;
4432 mutex_lock(&cgroup_mutex);
4434 css->flags |= CSS_RELEASED;
4435 list_del_rcu(&css->sibling);
4437 if (ss) {
4438 /* css release path */
4439 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4440 if (ss->css_released)
4441 ss->css_released(css);
4442 } else {
4443 /* cgroup release path */
4444 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4445 cgrp->id = -1;
4448 * There are two control paths which try to determine
4449 * cgroup from dentry without going through kernfs -
4450 * cgroupstats_build() and css_tryget_online_from_dir().
4451 * Those are supported by RCU protecting clearing of
4452 * cgrp->kn->priv backpointer.
4454 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4457 mutex_unlock(&cgroup_mutex);
4459 call_rcu(&css->rcu_head, css_free_rcu_fn);
4462 static void css_release(struct percpu_ref *ref)
4464 struct cgroup_subsys_state *css =
4465 container_of(ref, struct cgroup_subsys_state, refcnt);
4467 INIT_WORK(&css->destroy_work, css_release_work_fn);
4468 queue_work(cgroup_destroy_wq, &css->destroy_work);
4471 static void init_and_link_css(struct cgroup_subsys_state *css,
4472 struct cgroup_subsys *ss, struct cgroup *cgrp)
4474 lockdep_assert_held(&cgroup_mutex);
4476 cgroup_get(cgrp);
4478 memset(css, 0, sizeof(*css));
4479 css->cgroup = cgrp;
4480 css->ss = ss;
4481 INIT_LIST_HEAD(&css->sibling);
4482 INIT_LIST_HEAD(&css->children);
4483 css->serial_nr = css_serial_nr_next++;
4485 if (cgroup_parent(cgrp)) {
4486 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4487 css_get(css->parent);
4490 BUG_ON(cgroup_css(cgrp, ss));
4493 /* invoke ->css_online() on a new CSS and mark it online if successful */
4494 static int online_css(struct cgroup_subsys_state *css)
4496 struct cgroup_subsys *ss = css->ss;
4497 int ret = 0;
4499 lockdep_assert_held(&cgroup_mutex);
4501 if (ss->css_online)
4502 ret = ss->css_online(css);
4503 if (!ret) {
4504 css->flags |= CSS_ONLINE;
4505 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4507 return ret;
4510 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4511 static void offline_css(struct cgroup_subsys_state *css)
4513 struct cgroup_subsys *ss = css->ss;
4515 lockdep_assert_held(&cgroup_mutex);
4517 if (!(css->flags & CSS_ONLINE))
4518 return;
4520 if (ss->css_offline)
4521 ss->css_offline(css);
4523 css->flags &= ~CSS_ONLINE;
4524 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4526 wake_up_all(&css->cgroup->offline_waitq);
4530 * create_css - create a cgroup_subsys_state
4531 * @cgrp: the cgroup new css will be associated with
4532 * @ss: the subsys of new css
4533 * @visible: whether to create control knobs for the new css or not
4535 * Create a new css associated with @cgrp - @ss pair. On success, the new
4536 * css is online and installed in @cgrp with all interface files created if
4537 * @visible. Returns 0 on success, -errno on failure.
4539 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4540 bool visible)
4542 struct cgroup *parent = cgroup_parent(cgrp);
4543 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4544 struct cgroup_subsys_state *css;
4545 int err;
4547 lockdep_assert_held(&cgroup_mutex);
4549 css = ss->css_alloc(parent_css);
4550 if (IS_ERR(css))
4551 return PTR_ERR(css);
4553 init_and_link_css(css, ss, cgrp);
4555 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4556 if (err)
4557 goto err_free_css;
4559 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4560 if (err < 0)
4561 goto err_free_percpu_ref;
4562 css->id = err;
4564 if (visible) {
4565 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4566 if (err)
4567 goto err_free_id;
4570 /* @css is ready to be brought online now, make it visible */
4571 list_add_tail_rcu(&css->sibling, &parent_css->children);
4572 cgroup_idr_replace(&ss->css_idr, css, css->id);
4574 err = online_css(css);
4575 if (err)
4576 goto err_list_del;
4578 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4579 cgroup_parent(parent)) {
4580 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4581 current->comm, current->pid, ss->name);
4582 if (!strcmp(ss->name, "memory"))
4583 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4584 ss->warned_broken_hierarchy = true;
4587 return 0;
4589 err_list_del:
4590 list_del_rcu(&css->sibling);
4591 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4592 err_free_id:
4593 cgroup_idr_remove(&ss->css_idr, css->id);
4594 err_free_percpu_ref:
4595 percpu_ref_exit(&css->refcnt);
4596 err_free_css:
4597 call_rcu(&css->rcu_head, css_free_rcu_fn);
4598 return err;
4601 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4602 umode_t mode)
4604 struct cgroup *parent, *cgrp;
4605 struct cgroup_root *root;
4606 struct cgroup_subsys *ss;
4607 struct kernfs_node *kn;
4608 struct cftype *base_files;
4609 int ssid, ret;
4611 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4613 if (strchr(name, '\n'))
4614 return -EINVAL;
4616 parent = cgroup_kn_lock_live(parent_kn);
4617 if (!parent)
4618 return -ENODEV;
4619 root = parent->root;
4621 /* allocate the cgroup and its ID, 0 is reserved for the root */
4622 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4623 if (!cgrp) {
4624 ret = -ENOMEM;
4625 goto out_unlock;
4628 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4629 if (ret)
4630 goto out_free_cgrp;
4633 * Temporarily set the pointer to NULL, so idr_find() won't return
4634 * a half-baked cgroup.
4636 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4637 if (cgrp->id < 0) {
4638 ret = -ENOMEM;
4639 goto out_cancel_ref;
4642 init_cgroup_housekeeping(cgrp);
4644 cgrp->self.parent = &parent->self;
4645 cgrp->root = root;
4647 if (notify_on_release(parent))
4648 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4650 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4651 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4653 /* create the directory */
4654 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4655 if (IS_ERR(kn)) {
4656 ret = PTR_ERR(kn);
4657 goto out_free_id;
4659 cgrp->kn = kn;
4662 * This extra ref will be put in cgroup_free_fn() and guarantees
4663 * that @cgrp->kn is always accessible.
4665 kernfs_get(kn);
4667 cgrp->self.serial_nr = css_serial_nr_next++;
4669 /* allocation complete, commit to creation */
4670 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4671 atomic_inc(&root->nr_cgrps);
4672 cgroup_get(parent);
4675 * @cgrp is now fully operational. If something fails after this
4676 * point, it'll be released via the normal destruction path.
4678 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4680 ret = cgroup_kn_set_ugid(kn);
4681 if (ret)
4682 goto out_destroy;
4684 if (cgroup_on_dfl(cgrp))
4685 base_files = cgroup_dfl_base_files;
4686 else
4687 base_files = cgroup_legacy_base_files;
4689 ret = cgroup_addrm_files(cgrp, base_files, true);
4690 if (ret)
4691 goto out_destroy;
4693 /* let's create and online css's */
4694 for_each_subsys(ss, ssid) {
4695 if (parent->child_subsys_mask & (1 << ssid)) {
4696 ret = create_css(cgrp, ss,
4697 parent->subtree_control & (1 << ssid));
4698 if (ret)
4699 goto out_destroy;
4704 * On the default hierarchy, a child doesn't automatically inherit
4705 * subtree_control from the parent. Each is configured manually.
4707 if (!cgroup_on_dfl(cgrp)) {
4708 cgrp->subtree_control = parent->subtree_control;
4709 cgroup_refresh_child_subsys_mask(cgrp);
4712 kernfs_activate(kn);
4714 ret = 0;
4715 goto out_unlock;
4717 out_free_id:
4718 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4719 out_cancel_ref:
4720 percpu_ref_exit(&cgrp->self.refcnt);
4721 out_free_cgrp:
4722 kfree(cgrp);
4723 out_unlock:
4724 cgroup_kn_unlock(parent_kn);
4725 return ret;
4727 out_destroy:
4728 cgroup_destroy_locked(cgrp);
4729 goto out_unlock;
4733 * This is called when the refcnt of a css is confirmed to be killed.
4734 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4735 * initate destruction and put the css ref from kill_css().
4737 static void css_killed_work_fn(struct work_struct *work)
4739 struct cgroup_subsys_state *css =
4740 container_of(work, struct cgroup_subsys_state, destroy_work);
4742 mutex_lock(&cgroup_mutex);
4743 offline_css(css);
4744 mutex_unlock(&cgroup_mutex);
4746 css_put(css);
4749 /* css kill confirmation processing requires process context, bounce */
4750 static void css_killed_ref_fn(struct percpu_ref *ref)
4752 struct cgroup_subsys_state *css =
4753 container_of(ref, struct cgroup_subsys_state, refcnt);
4755 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4756 queue_work(cgroup_destroy_wq, &css->destroy_work);
4760 * kill_css - destroy a css
4761 * @css: css to destroy
4763 * This function initiates destruction of @css by removing cgroup interface
4764 * files and putting its base reference. ->css_offline() will be invoked
4765 * asynchronously once css_tryget_online() is guaranteed to fail and when
4766 * the reference count reaches zero, @css will be released.
4768 static void kill_css(struct cgroup_subsys_state *css)
4770 lockdep_assert_held(&cgroup_mutex);
4773 * This must happen before css is disassociated with its cgroup.
4774 * See seq_css() for details.
4776 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4779 * Killing would put the base ref, but we need to keep it alive
4780 * until after ->css_offline().
4782 css_get(css);
4785 * cgroup core guarantees that, by the time ->css_offline() is
4786 * invoked, no new css reference will be given out via
4787 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4788 * proceed to offlining css's because percpu_ref_kill() doesn't
4789 * guarantee that the ref is seen as killed on all CPUs on return.
4791 * Use percpu_ref_kill_and_confirm() to get notifications as each
4792 * css is confirmed to be seen as killed on all CPUs.
4794 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4798 * cgroup_destroy_locked - the first stage of cgroup destruction
4799 * @cgrp: cgroup to be destroyed
4801 * css's make use of percpu refcnts whose killing latency shouldn't be
4802 * exposed to userland and are RCU protected. Also, cgroup core needs to
4803 * guarantee that css_tryget_online() won't succeed by the time
4804 * ->css_offline() is invoked. To satisfy all the requirements,
4805 * destruction is implemented in the following two steps.
4807 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4808 * userland visible parts and start killing the percpu refcnts of
4809 * css's. Set up so that the next stage will be kicked off once all
4810 * the percpu refcnts are confirmed to be killed.
4812 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4813 * rest of destruction. Once all cgroup references are gone, the
4814 * cgroup is RCU-freed.
4816 * This function implements s1. After this step, @cgrp is gone as far as
4817 * the userland is concerned and a new cgroup with the same name may be
4818 * created. As cgroup doesn't care about the names internally, this
4819 * doesn't cause any problem.
4821 static int cgroup_destroy_locked(struct cgroup *cgrp)
4822 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4824 struct cgroup_subsys_state *css;
4825 bool empty;
4826 int ssid;
4828 lockdep_assert_held(&cgroup_mutex);
4831 * css_set_rwsem synchronizes access to ->cset_links and prevents
4832 * @cgrp from being removed while put_css_set() is in progress.
4834 down_read(&css_set_rwsem);
4835 empty = list_empty(&cgrp->cset_links);
4836 up_read(&css_set_rwsem);
4837 if (!empty)
4838 return -EBUSY;
4841 * Make sure there's no live children. We can't test emptiness of
4842 * ->self.children as dead children linger on it while being
4843 * drained; otherwise, "rmdir parent/child parent" may fail.
4845 if (css_has_online_children(&cgrp->self))
4846 return -EBUSY;
4849 * Mark @cgrp dead. This prevents further task migration and child
4850 * creation by disabling cgroup_lock_live_group().
4852 cgrp->self.flags &= ~CSS_ONLINE;
4854 /* initiate massacre of all css's */
4855 for_each_css(css, ssid, cgrp)
4856 kill_css(css);
4859 * Remove @cgrp directory along with the base files. @cgrp has an
4860 * extra ref on its kn.
4862 kernfs_remove(cgrp->kn);
4864 check_for_release(cgroup_parent(cgrp));
4866 /* put the base reference */
4867 percpu_ref_kill(&cgrp->self.refcnt);
4869 return 0;
4872 static int cgroup_rmdir(struct kernfs_node *kn)
4874 struct cgroup *cgrp;
4875 int ret = 0;
4877 cgrp = cgroup_kn_lock_live(kn);
4878 if (!cgrp)
4879 return 0;
4881 ret = cgroup_destroy_locked(cgrp);
4883 cgroup_kn_unlock(kn);
4884 return ret;
4887 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4888 .remount_fs = cgroup_remount,
4889 .show_options = cgroup_show_options,
4890 .mkdir = cgroup_mkdir,
4891 .rmdir = cgroup_rmdir,
4892 .rename = cgroup_rename,
4895 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4897 struct cgroup_subsys_state *css;
4899 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4901 mutex_lock(&cgroup_mutex);
4903 idr_init(&ss->css_idr);
4904 INIT_LIST_HEAD(&ss->cfts);
4906 /* Create the root cgroup state for this subsystem */
4907 ss->root = &cgrp_dfl_root;
4908 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4909 /* We don't handle early failures gracefully */
4910 BUG_ON(IS_ERR(css));
4911 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4914 * Root csses are never destroyed and we can't initialize
4915 * percpu_ref during early init. Disable refcnting.
4917 css->flags |= CSS_NO_REF;
4919 if (early) {
4920 /* allocation can't be done safely during early init */
4921 css->id = 1;
4922 } else {
4923 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4924 BUG_ON(css->id < 0);
4927 /* Update the init_css_set to contain a subsys
4928 * pointer to this state - since the subsystem is
4929 * newly registered, all tasks and hence the
4930 * init_css_set is in the subsystem's root cgroup. */
4931 init_css_set.subsys[ss->id] = css;
4933 need_forkexit_callback |= ss->fork || ss->exit;
4935 /* At system boot, before all subsystems have been
4936 * registered, no tasks have been forked, so we don't
4937 * need to invoke fork callbacks here. */
4938 BUG_ON(!list_empty(&init_task.tasks));
4940 BUG_ON(online_css(css));
4942 mutex_unlock(&cgroup_mutex);
4946 * cgroup_init_early - cgroup initialization at system boot
4948 * Initialize cgroups at system boot, and initialize any
4949 * subsystems that request early init.
4951 int __init cgroup_init_early(void)
4953 static struct cgroup_sb_opts __initdata opts;
4954 struct cgroup_subsys *ss;
4955 int i;
4957 init_cgroup_root(&cgrp_dfl_root, &opts);
4958 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4960 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4962 for_each_subsys(ss, i) {
4963 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4964 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4965 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4966 ss->id, ss->name);
4967 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4968 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4970 ss->id = i;
4971 ss->name = cgroup_subsys_name[i];
4973 if (ss->early_init)
4974 cgroup_init_subsys(ss, true);
4976 return 0;
4980 * cgroup_init - cgroup initialization
4982 * Register cgroup filesystem and /proc file, and initialize
4983 * any subsystems that didn't request early init.
4985 int __init cgroup_init(void)
4987 struct cgroup_subsys *ss;
4988 unsigned long key;
4989 int ssid, err;
4991 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4992 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4994 mutex_lock(&cgroup_mutex);
4996 /* Add init_css_set to the hash table */
4997 key = css_set_hash(init_css_set.subsys);
4998 hash_add(css_set_table, &init_css_set.hlist, key);
5000 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5002 mutex_unlock(&cgroup_mutex);
5004 for_each_subsys(ss, ssid) {
5005 if (ss->early_init) {
5006 struct cgroup_subsys_state *css =
5007 init_css_set.subsys[ss->id];
5009 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5010 GFP_KERNEL);
5011 BUG_ON(css->id < 0);
5012 } else {
5013 cgroup_init_subsys(ss, false);
5016 list_add_tail(&init_css_set.e_cset_node[ssid],
5017 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5020 * Setting dfl_root subsys_mask needs to consider the
5021 * disabled flag and cftype registration needs kmalloc,
5022 * both of which aren't available during early_init.
5024 if (ss->disabled)
5025 continue;
5027 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5029 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5030 ss->dfl_cftypes = ss->legacy_cftypes;
5032 if (!ss->dfl_cftypes)
5033 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5035 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5036 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5037 } else {
5038 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5039 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5042 if (ss->bind)
5043 ss->bind(init_css_set.subsys[ssid]);
5046 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5047 if (err)
5048 return err;
5050 err = register_filesystem(&cgroup_fs_type);
5051 if (err < 0) {
5052 sysfs_remove_mount_point(fs_kobj, "cgroup");
5053 return err;
5056 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5057 return 0;
5060 static int __init cgroup_wq_init(void)
5063 * There isn't much point in executing destruction path in
5064 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5065 * Use 1 for @max_active.
5067 * We would prefer to do this in cgroup_init() above, but that
5068 * is called before init_workqueues(): so leave this until after.
5070 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5071 BUG_ON(!cgroup_destroy_wq);
5074 * Used to destroy pidlists and separate to serve as flush domain.
5075 * Cap @max_active to 1 too.
5077 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5078 0, 1);
5079 BUG_ON(!cgroup_pidlist_destroy_wq);
5081 return 0;
5083 core_initcall(cgroup_wq_init);
5086 * proc_cgroup_show()
5087 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5088 * - Used for /proc/<pid>/cgroup.
5090 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5091 struct pid *pid, struct task_struct *tsk)
5093 char *buf, *path;
5094 int retval;
5095 struct cgroup_root *root;
5097 retval = -ENOMEM;
5098 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5099 if (!buf)
5100 goto out;
5102 mutex_lock(&cgroup_mutex);
5103 down_read(&css_set_rwsem);
5105 for_each_root(root) {
5106 struct cgroup_subsys *ss;
5107 struct cgroup *cgrp;
5108 int ssid, count = 0;
5110 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5111 continue;
5113 seq_printf(m, "%d:", root->hierarchy_id);
5114 for_each_subsys(ss, ssid)
5115 if (root->subsys_mask & (1 << ssid))
5116 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5117 if (strlen(root->name))
5118 seq_printf(m, "%sname=%s", count ? "," : "",
5119 root->name);
5120 seq_putc(m, ':');
5121 cgrp = task_cgroup_from_root(tsk, root);
5122 path = cgroup_path(cgrp, buf, PATH_MAX);
5123 if (!path) {
5124 retval = -ENAMETOOLONG;
5125 goto out_unlock;
5127 seq_puts(m, path);
5128 seq_putc(m, '\n');
5131 retval = 0;
5132 out_unlock:
5133 up_read(&css_set_rwsem);
5134 mutex_unlock(&cgroup_mutex);
5135 kfree(buf);
5136 out:
5137 return retval;
5140 /* Display information about each subsystem and each hierarchy */
5141 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5143 struct cgroup_subsys *ss;
5144 int i;
5146 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5148 * ideally we don't want subsystems moving around while we do this.
5149 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5150 * subsys/hierarchy state.
5152 mutex_lock(&cgroup_mutex);
5154 for_each_subsys(ss, i)
5155 seq_printf(m, "%s\t%d\t%d\t%d\n",
5156 ss->name, ss->root->hierarchy_id,
5157 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5159 mutex_unlock(&cgroup_mutex);
5160 return 0;
5163 static int cgroupstats_open(struct inode *inode, struct file *file)
5165 return single_open(file, proc_cgroupstats_show, NULL);
5168 static const struct file_operations proc_cgroupstats_operations = {
5169 .open = cgroupstats_open,
5170 .read = seq_read,
5171 .llseek = seq_lseek,
5172 .release = single_release,
5176 * cgroup_fork - initialize cgroup related fields during copy_process()
5177 * @child: pointer to task_struct of forking parent process.
5179 * A task is associated with the init_css_set until cgroup_post_fork()
5180 * attaches it to the parent's css_set. Empty cg_list indicates that
5181 * @child isn't holding reference to its css_set.
5183 void cgroup_fork(struct task_struct *child)
5185 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5186 INIT_LIST_HEAD(&child->cg_list);
5190 * cgroup_post_fork - called on a new task after adding it to the task list
5191 * @child: the task in question
5193 * Adds the task to the list running through its css_set if necessary and
5194 * call the subsystem fork() callbacks. Has to be after the task is
5195 * visible on the task list in case we race with the first call to
5196 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5197 * list.
5199 void cgroup_post_fork(struct task_struct *child)
5201 struct cgroup_subsys *ss;
5202 int i;
5205 * This may race against cgroup_enable_task_cg_lists(). As that
5206 * function sets use_task_css_set_links before grabbing
5207 * tasklist_lock and we just went through tasklist_lock to add
5208 * @child, it's guaranteed that either we see the set
5209 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5210 * @child during its iteration.
5212 * If we won the race, @child is associated with %current's
5213 * css_set. Grabbing css_set_rwsem guarantees both that the
5214 * association is stable, and, on completion of the parent's
5215 * migration, @child is visible in the source of migration or
5216 * already in the destination cgroup. This guarantee is necessary
5217 * when implementing operations which need to migrate all tasks of
5218 * a cgroup to another.
5220 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5221 * will remain in init_css_set. This is safe because all tasks are
5222 * in the init_css_set before cg_links is enabled and there's no
5223 * operation which transfers all tasks out of init_css_set.
5225 if (use_task_css_set_links) {
5226 struct css_set *cset;
5228 down_write(&css_set_rwsem);
5229 cset = task_css_set(current);
5230 if (list_empty(&child->cg_list)) {
5231 rcu_assign_pointer(child->cgroups, cset);
5232 list_add(&child->cg_list, &cset->tasks);
5233 get_css_set(cset);
5235 up_write(&css_set_rwsem);
5239 * Call ss->fork(). This must happen after @child is linked on
5240 * css_set; otherwise, @child might change state between ->fork()
5241 * and addition to css_set.
5243 if (need_forkexit_callback) {
5244 for_each_subsys(ss, i)
5245 if (ss->fork)
5246 ss->fork(child);
5251 * cgroup_exit - detach cgroup from exiting task
5252 * @tsk: pointer to task_struct of exiting process
5254 * Description: Detach cgroup from @tsk and release it.
5256 * Note that cgroups marked notify_on_release force every task in
5257 * them to take the global cgroup_mutex mutex when exiting.
5258 * This could impact scaling on very large systems. Be reluctant to
5259 * use notify_on_release cgroups where very high task exit scaling
5260 * is required on large systems.
5262 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5263 * call cgroup_exit() while the task is still competent to handle
5264 * notify_on_release(), then leave the task attached to the root cgroup in
5265 * each hierarchy for the remainder of its exit. No need to bother with
5266 * init_css_set refcnting. init_css_set never goes away and we can't race
5267 * with migration path - PF_EXITING is visible to migration path.
5269 void cgroup_exit(struct task_struct *tsk)
5271 struct cgroup_subsys *ss;
5272 struct css_set *cset;
5273 bool put_cset = false;
5274 int i;
5277 * Unlink from @tsk from its css_set. As migration path can't race
5278 * with us, we can check cg_list without grabbing css_set_rwsem.
5280 if (!list_empty(&tsk->cg_list)) {
5281 down_write(&css_set_rwsem);
5282 list_del_init(&tsk->cg_list);
5283 up_write(&css_set_rwsem);
5284 put_cset = true;
5287 /* Reassign the task to the init_css_set. */
5288 cset = task_css_set(tsk);
5289 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5291 if (need_forkexit_callback) {
5292 /* see cgroup_post_fork() for details */
5293 for_each_subsys(ss, i) {
5294 if (ss->exit) {
5295 struct cgroup_subsys_state *old_css = cset->subsys[i];
5296 struct cgroup_subsys_state *css = task_css(tsk, i);
5298 ss->exit(css, old_css, tsk);
5303 if (put_cset)
5304 put_css_set(cset);
5307 static void check_for_release(struct cgroup *cgrp)
5309 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5310 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5311 schedule_work(&cgrp->release_agent_work);
5315 * Notify userspace when a cgroup is released, by running the
5316 * configured release agent with the name of the cgroup (path
5317 * relative to the root of cgroup file system) as the argument.
5319 * Most likely, this user command will try to rmdir this cgroup.
5321 * This races with the possibility that some other task will be
5322 * attached to this cgroup before it is removed, or that some other
5323 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5324 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5325 * unused, and this cgroup will be reprieved from its death sentence,
5326 * to continue to serve a useful existence. Next time it's released,
5327 * we will get notified again, if it still has 'notify_on_release' set.
5329 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5330 * means only wait until the task is successfully execve()'d. The
5331 * separate release agent task is forked by call_usermodehelper(),
5332 * then control in this thread returns here, without waiting for the
5333 * release agent task. We don't bother to wait because the caller of
5334 * this routine has no use for the exit status of the release agent
5335 * task, so no sense holding our caller up for that.
5337 static void cgroup_release_agent(struct work_struct *work)
5339 struct cgroup *cgrp =
5340 container_of(work, struct cgroup, release_agent_work);
5341 char *pathbuf = NULL, *agentbuf = NULL, *path;
5342 char *argv[3], *envp[3];
5344 mutex_lock(&cgroup_mutex);
5346 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5347 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5348 if (!pathbuf || !agentbuf)
5349 goto out;
5351 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5352 if (!path)
5353 goto out;
5355 argv[0] = agentbuf;
5356 argv[1] = path;
5357 argv[2] = NULL;
5359 /* minimal command environment */
5360 envp[0] = "HOME=/";
5361 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5362 envp[2] = NULL;
5364 mutex_unlock(&cgroup_mutex);
5365 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5366 goto out_free;
5367 out:
5368 mutex_unlock(&cgroup_mutex);
5369 out_free:
5370 kfree(agentbuf);
5371 kfree(pathbuf);
5374 static int __init cgroup_disable(char *str)
5376 struct cgroup_subsys *ss;
5377 char *token;
5378 int i;
5380 while ((token = strsep(&str, ",")) != NULL) {
5381 if (!*token)
5382 continue;
5384 for_each_subsys(ss, i) {
5385 if (!strcmp(token, ss->name)) {
5386 ss->disabled = 1;
5387 printk(KERN_INFO "Disabling %s control group"
5388 " subsystem\n", ss->name);
5389 break;
5393 return 1;
5395 __setup("cgroup_disable=", cgroup_disable);
5397 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5399 printk("cgroup: using legacy files on the default hierarchy\n");
5400 cgroup_legacy_files_on_dfl = true;
5401 return 0;
5403 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5406 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5407 * @dentry: directory dentry of interest
5408 * @ss: subsystem of interest
5410 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5411 * to get the corresponding css and return it. If such css doesn't exist
5412 * or can't be pinned, an ERR_PTR value is returned.
5414 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5415 struct cgroup_subsys *ss)
5417 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5418 struct cgroup_subsys_state *css = NULL;
5419 struct cgroup *cgrp;
5421 /* is @dentry a cgroup dir? */
5422 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5423 kernfs_type(kn) != KERNFS_DIR)
5424 return ERR_PTR(-EBADF);
5426 rcu_read_lock();
5429 * This path doesn't originate from kernfs and @kn could already
5430 * have been or be removed at any point. @kn->priv is RCU
5431 * protected for this access. See css_release_work_fn() for details.
5433 cgrp = rcu_dereference(kn->priv);
5434 if (cgrp)
5435 css = cgroup_css(cgrp, ss);
5437 if (!css || !css_tryget_online(css))
5438 css = ERR_PTR(-ENOENT);
5440 rcu_read_unlock();
5441 return css;
5445 * css_from_id - lookup css by id
5446 * @id: the cgroup id
5447 * @ss: cgroup subsys to be looked into
5449 * Returns the css if there's valid one with @id, otherwise returns NULL.
5450 * Should be called under rcu_read_lock().
5452 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5454 WARN_ON_ONCE(!rcu_read_lock_held());
5455 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5458 #ifdef CONFIG_CGROUP_DEBUG
5459 static struct cgroup_subsys_state *
5460 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5462 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5464 if (!css)
5465 return ERR_PTR(-ENOMEM);
5467 return css;
5470 static void debug_css_free(struct cgroup_subsys_state *css)
5472 kfree(css);
5475 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5476 struct cftype *cft)
5478 return cgroup_task_count(css->cgroup);
5481 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5482 struct cftype *cft)
5484 return (u64)(unsigned long)current->cgroups;
5487 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5488 struct cftype *cft)
5490 u64 count;
5492 rcu_read_lock();
5493 count = atomic_read(&task_css_set(current)->refcount);
5494 rcu_read_unlock();
5495 return count;
5498 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5500 struct cgrp_cset_link *link;
5501 struct css_set *cset;
5502 char *name_buf;
5504 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5505 if (!name_buf)
5506 return -ENOMEM;
5508 down_read(&css_set_rwsem);
5509 rcu_read_lock();
5510 cset = rcu_dereference(current->cgroups);
5511 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5512 struct cgroup *c = link->cgrp;
5514 cgroup_name(c, name_buf, NAME_MAX + 1);
5515 seq_printf(seq, "Root %d group %s\n",
5516 c->root->hierarchy_id, name_buf);
5518 rcu_read_unlock();
5519 up_read(&css_set_rwsem);
5520 kfree(name_buf);
5521 return 0;
5524 #define MAX_TASKS_SHOWN_PER_CSS 25
5525 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5527 struct cgroup_subsys_state *css = seq_css(seq);
5528 struct cgrp_cset_link *link;
5530 down_read(&css_set_rwsem);
5531 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5532 struct css_set *cset = link->cset;
5533 struct task_struct *task;
5534 int count = 0;
5536 seq_printf(seq, "css_set %p\n", cset);
5538 list_for_each_entry(task, &cset->tasks, cg_list) {
5539 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5540 goto overflow;
5541 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5544 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5545 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5546 goto overflow;
5547 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5549 continue;
5550 overflow:
5551 seq_puts(seq, " ...\n");
5553 up_read(&css_set_rwsem);
5554 return 0;
5557 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5559 return (!cgroup_has_tasks(css->cgroup) &&
5560 !css_has_online_children(&css->cgroup->self));
5563 static struct cftype debug_files[] = {
5565 .name = "taskcount",
5566 .read_u64 = debug_taskcount_read,
5570 .name = "current_css_set",
5571 .read_u64 = current_css_set_read,
5575 .name = "current_css_set_refcount",
5576 .read_u64 = current_css_set_refcount_read,
5580 .name = "current_css_set_cg_links",
5581 .seq_show = current_css_set_cg_links_read,
5585 .name = "cgroup_css_links",
5586 .seq_show = cgroup_css_links_read,
5590 .name = "releasable",
5591 .read_u64 = releasable_read,
5594 { } /* terminate */
5597 struct cgroup_subsys debug_cgrp_subsys = {
5598 .css_alloc = debug_css_alloc,
5599 .css_free = debug_css_free,
5600 .legacy_cftypes = debug_files,
5602 #endif /* CONFIG_CGROUP_DEBUG */