Linux 4.1.18
[linux/fpc-iii.git] / kernel / events / core.c
blobe1af58e23bee927c1d168f627803cf4d834a3683
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/ftrace_event.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
48 #include "internal.h"
50 #include <asm/irq_regs.h>
52 static struct workqueue_struct *perf_wq;
54 struct remote_function_call {
55 struct task_struct *p;
56 int (*func)(void *info);
57 void *info;
58 int ret;
61 static void remote_function(void *data)
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
72 tfc->ret = tfc->func(tfc->info);
75 /**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
88 static int
89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
91 struct remote_function_call data = {
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
101 return data.ret;
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
109 * Calls the function @func on the remote cpu.
111 * returns: @func return value or -ENXIO when the cpu is offline
113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
115 struct remote_function_call data = {
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
122 smp_call_function_single(cpu, remote_function, &data, 1);
124 return data.ret;
127 #define EVENT_OWNER_KERNEL ((void *) -1)
129 static bool is_kernel_event(struct perf_event *event)
131 return event->owner == EVENT_OWNER_KERNEL;
134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
140 * branch priv levels that need permission checks
142 #define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
146 enum event_type_t {
147 EVENT_FLEXIBLE = 0x1,
148 EVENT_PINNED = 0x2,
149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
156 struct static_key_deferred perf_sched_events __read_mostly;
157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
160 static atomic_t nr_mmap_events __read_mostly;
161 static atomic_t nr_comm_events __read_mostly;
162 static atomic_t nr_task_events __read_mostly;
163 static atomic_t nr_freq_events __read_mostly;
165 static LIST_HEAD(pmus);
166 static DEFINE_MUTEX(pmus_lock);
167 static struct srcu_struct pmus_srcu;
170 * perf event paranoia level:
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
173 * 1 - disallow cpu events for unpriv
174 * 2 - disallow kernel profiling for unpriv
176 int sysctl_perf_event_paranoid __read_mostly = 1;
178 /* Minimum for 512 kiB + 1 user control page */
179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 * max perf event sample rate
184 #define DEFAULT_MAX_SAMPLE_RATE 100000
185 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
188 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
190 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
193 static int perf_sample_allowed_ns __read_mostly =
194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
196 void update_perf_cpu_limits(void)
198 u64 tmp = perf_sample_period_ns;
200 tmp *= sysctl_perf_cpu_time_max_percent;
201 do_div(tmp, 100);
202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
207 int perf_proc_update_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
213 if (ret || !write)
214 return ret;
216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 update_perf_cpu_limits();
220 return 0;
223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 void __user *buffer, size_t *lenp,
227 loff_t *ppos)
229 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
231 if (ret || !write)
232 return ret;
234 update_perf_cpu_limits();
236 return 0;
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
245 #define NR_ACCUMULATED_SAMPLES 128
246 static DEFINE_PER_CPU(u64, running_sample_length);
248 static void perf_duration_warn(struct irq_work *w)
250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251 u64 avg_local_sample_len;
252 u64 local_samples_len;
254 local_samples_len = __this_cpu_read(running_sample_length);
255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
260 avg_local_sample_len, allowed_ns >> 1,
261 sysctl_perf_event_sample_rate);
264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
266 void perf_sample_event_took(u64 sample_len_ns)
268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 u64 avg_local_sample_len;
270 u64 local_samples_len;
272 if (allowed_ns == 0)
273 return;
275 /* decay the counter by 1 average sample */
276 local_samples_len = __this_cpu_read(running_sample_length);
277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 local_samples_len += sample_len_ns;
279 __this_cpu_write(running_sample_length, local_samples_len);
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
288 if (avg_local_sample_len <= allowed_ns)
289 return;
291 if (max_samples_per_tick <= 1)
292 return;
294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
298 update_perf_cpu_limits();
300 if (!irq_work_queue(&perf_duration_work)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len, allowed_ns >> 1,
304 sysctl_perf_event_sample_rate);
308 static atomic64_t perf_event_id;
310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 enum event_type_t event_type);
313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type,
315 struct task_struct *task);
317 static void update_context_time(struct perf_event_context *ctx);
318 static u64 perf_event_time(struct perf_event *event);
320 void __weak perf_event_print_debug(void) { }
322 extern __weak const char *perf_pmu_name(void)
324 return "pmu";
327 static inline u64 perf_clock(void)
329 return local_clock();
332 static inline u64 perf_event_clock(struct perf_event *event)
334 return event->clock();
337 static inline struct perf_cpu_context *
338 __get_cpu_context(struct perf_event_context *ctx)
340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 struct perf_event_context *ctx)
346 raw_spin_lock(&cpuctx->ctx.lock);
347 if (ctx)
348 raw_spin_lock(&ctx->lock);
351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
354 if (ctx)
355 raw_spin_unlock(&ctx->lock);
356 raw_spin_unlock(&cpuctx->ctx.lock);
359 #ifdef CONFIG_CGROUP_PERF
361 static inline bool
362 perf_cgroup_match(struct perf_event *event)
364 struct perf_event_context *ctx = event->ctx;
365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
367 /* @event doesn't care about cgroup */
368 if (!event->cgrp)
369 return true;
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
372 if (!cpuctx->cgrp)
373 return false;
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 event->cgrp->css.cgroup);
385 static inline void perf_detach_cgroup(struct perf_event *event)
387 css_put(&event->cgrp->css);
388 event->cgrp = NULL;
391 static inline int is_cgroup_event(struct perf_event *event)
393 return event->cgrp != NULL;
396 static inline u64 perf_cgroup_event_time(struct perf_event *event)
398 struct perf_cgroup_info *t;
400 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 return t->time;
404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
406 struct perf_cgroup_info *info;
407 u64 now;
409 now = perf_clock();
411 info = this_cpu_ptr(cgrp->info);
413 info->time += now - info->timestamp;
414 info->timestamp = now;
417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
419 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 if (cgrp_out)
421 __update_cgrp_time(cgrp_out);
424 static inline void update_cgrp_time_from_event(struct perf_event *event)
426 struct perf_cgroup *cgrp;
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
432 if (!is_cgroup_event(event))
433 return;
435 cgrp = perf_cgroup_from_task(current);
437 * Do not update time when cgroup is not active
439 if (cgrp == event->cgrp)
440 __update_cgrp_time(event->cgrp);
443 static inline void
444 perf_cgroup_set_timestamp(struct task_struct *task,
445 struct perf_event_context *ctx)
447 struct perf_cgroup *cgrp;
448 struct perf_cgroup_info *info;
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
455 if (!task || !ctx->nr_cgroups)
456 return;
458 cgrp = perf_cgroup_from_task(task);
459 info = this_cpu_ptr(cgrp->info);
460 info->timestamp = ctx->timestamp;
463 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
467 * reschedule events based on the cgroup constraint of task.
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
472 void perf_cgroup_switch(struct task_struct *task, int mode)
474 struct perf_cpu_context *cpuctx;
475 struct pmu *pmu;
476 unsigned long flags;
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
481 * avoids preemption.
483 local_irq_save(flags);
486 * we reschedule only in the presence of cgroup
487 * constrained events.
489 rcu_read_lock();
491 list_for_each_entry_rcu(pmu, &pmus, entry) {
492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 if (cpuctx->unique_pmu != pmu)
494 continue; /* ensure we process each cpuctx once */
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
503 if (cpuctx->ctx.nr_cgroups > 0) {
504 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 perf_pmu_disable(cpuctx->ctx.pmu);
507 if (mode & PERF_CGROUP_SWOUT) {
508 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
513 cpuctx->cgrp = NULL;
516 if (mode & PERF_CGROUP_SWIN) {
517 WARN_ON_ONCE(cpuctx->cgrp);
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
521 * task around
523 cpuctx->cgrp = perf_cgroup_from_task(task);
524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
526 perf_pmu_enable(cpuctx->ctx.pmu);
527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 rcu_read_unlock();
533 local_irq_restore(flags);
536 static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
543 * we come here when we know perf_cgroup_events > 0
545 cgrp1 = perf_cgroup_from_task(task);
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
551 if (next)
552 cgrp2 = perf_cgroup_from_task(next);
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
559 if (cgrp1 != cgrp2)
560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
563 static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 struct task_struct *task)
566 struct perf_cgroup *cgrp1;
567 struct perf_cgroup *cgrp2 = NULL;
570 * we come here when we know perf_cgroup_events > 0
572 cgrp1 = perf_cgroup_from_task(task);
574 /* prev can never be NULL */
575 cgrp2 = perf_cgroup_from_task(prev);
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
582 if (cgrp1 != cgrp2)
583 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
586 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 struct perf_event_attr *attr,
588 struct perf_event *group_leader)
590 struct perf_cgroup *cgrp;
591 struct cgroup_subsys_state *css;
592 struct fd f = fdget(fd);
593 int ret = 0;
595 if (!f.file)
596 return -EBADF;
598 css = css_tryget_online_from_dir(f.file->f_path.dentry,
599 &perf_event_cgrp_subsys);
600 if (IS_ERR(css)) {
601 ret = PTR_ERR(css);
602 goto out;
605 cgrp = container_of(css, struct perf_cgroup, css);
606 event->cgrp = cgrp;
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
613 if (group_leader && group_leader->cgrp != cgrp) {
614 perf_detach_cgroup(event);
615 ret = -EINVAL;
617 out:
618 fdput(f);
619 return ret;
622 static inline void
623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 event->shadow_ctx_time = now - t->timestamp;
630 static inline void
631 perf_cgroup_defer_enabled(struct perf_event *event)
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
639 if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 event->cgrp_defer_enabled = 1;
643 static inline void
644 perf_cgroup_mark_enabled(struct perf_event *event,
645 struct perf_event_context *ctx)
647 struct perf_event *sub;
648 u64 tstamp = perf_event_time(event);
650 if (!event->cgrp_defer_enabled)
651 return;
653 event->cgrp_defer_enabled = 0;
655 event->tstamp_enabled = tstamp - event->total_time_enabled;
656 list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 sub->cgrp_defer_enabled = 0;
663 #else /* !CONFIG_CGROUP_PERF */
665 static inline bool
666 perf_cgroup_match(struct perf_event *event)
668 return true;
671 static inline void perf_detach_cgroup(struct perf_event *event)
674 static inline int is_cgroup_event(struct perf_event *event)
676 return 0;
679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
681 return 0;
684 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 static inline void perf_cgroup_sched_out(struct task_struct *task,
693 struct task_struct *next)
697 static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 struct task_struct *task)
702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 struct perf_event_attr *attr,
704 struct perf_event *group_leader)
706 return -EINVAL;
709 static inline void
710 perf_cgroup_set_timestamp(struct task_struct *task,
711 struct perf_event_context *ctx)
715 void
716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 static inline void
721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 static inline u64 perf_cgroup_event_time(struct perf_event *event)
727 return 0;
730 static inline void
731 perf_cgroup_defer_enabled(struct perf_event *event)
735 static inline void
736 perf_cgroup_mark_enabled(struct perf_event *event,
737 struct perf_event_context *ctx)
740 #endif
743 * set default to be dependent on timer tick just
744 * like original code
746 #define PERF_CPU_HRTIMER (1000 / HZ)
748 * function must be called with interrupts disbled
750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
752 struct perf_cpu_context *cpuctx;
753 enum hrtimer_restart ret = HRTIMER_NORESTART;
754 int rotations = 0;
756 WARN_ON(!irqs_disabled());
758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
760 rotations = perf_rotate_context(cpuctx);
763 * arm timer if needed
765 if (rotations) {
766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 ret = HRTIMER_RESTART;
770 return ret;
773 /* CPU is going down */
774 void perf_cpu_hrtimer_cancel(int cpu)
776 struct perf_cpu_context *cpuctx;
777 struct pmu *pmu;
778 unsigned long flags;
780 if (WARN_ON(cpu != smp_processor_id()))
781 return;
783 local_irq_save(flags);
785 rcu_read_lock();
787 list_for_each_entry_rcu(pmu, &pmus, entry) {
788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
790 if (pmu->task_ctx_nr == perf_sw_context)
791 continue;
793 hrtimer_cancel(&cpuctx->hrtimer);
796 rcu_read_unlock();
798 local_irq_restore(flags);
801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
803 struct hrtimer *hr = &cpuctx->hrtimer;
804 struct pmu *pmu = cpuctx->ctx.pmu;
805 int timer;
807 /* no multiplexing needed for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
809 return;
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
815 timer = pmu->hrtimer_interval_ms;
816 if (timer < 1)
817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 hr->function = perf_cpu_hrtimer_handler;
825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
830 /* not for SW PMU */
831 if (pmu->task_ctx_nr == perf_sw_context)
832 return;
834 if (hrtimer_active(hr))
835 return;
837 if (!hrtimer_callback_running(hr))
838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 0, HRTIMER_MODE_REL_PINNED, 0);
842 void perf_pmu_disable(struct pmu *pmu)
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!(*count)++)
846 pmu->pmu_disable(pmu);
849 void perf_pmu_enable(struct pmu *pmu)
851 int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 if (!--(*count))
853 pmu->pmu_enable(pmu);
856 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
864 static void perf_event_ctx_activate(struct perf_event_context *ctx)
866 struct list_head *head = this_cpu_ptr(&active_ctx_list);
868 WARN_ON(!irqs_disabled());
870 WARN_ON(!list_empty(&ctx->active_ctx_list));
872 list_add(&ctx->active_ctx_list, head);
875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
877 WARN_ON(!irqs_disabled());
879 WARN_ON(list_empty(&ctx->active_ctx_list));
881 list_del_init(&ctx->active_ctx_list);
884 static void get_ctx(struct perf_event_context *ctx)
886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 static void free_ctx(struct rcu_head *head)
891 struct perf_event_context *ctx;
893 ctx = container_of(head, struct perf_event_context, rcu_head);
894 kfree(ctx->task_ctx_data);
895 kfree(ctx);
898 static void put_ctx(struct perf_event_context *ctx)
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
903 if (ctx->task)
904 put_task_struct(ctx->task);
905 call_rcu(&ctx->rcu_head, free_ctx);
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
916 * Lock ordering is by mutex address. There are two other sites where
917 * perf_event_context::mutex nests and those are:
919 * - perf_event_exit_task_context() [ child , 0 ]
920 * __perf_event_exit_task()
921 * sync_child_event()
922 * put_event() [ parent, 1 ]
924 * - perf_event_init_context() [ parent, 0 ]
925 * inherit_task_group()
926 * inherit_group()
927 * inherit_event()
928 * perf_event_alloc()
929 * perf_init_event()
930 * perf_try_init_event() [ child , 1 ]
932 * While it appears there is an obvious deadlock here -- the parent and child
933 * nesting levels are inverted between the two. This is in fact safe because
934 * life-time rules separate them. That is an exiting task cannot fork, and a
935 * spawning task cannot (yet) exit.
937 * But remember that that these are parent<->child context relations, and
938 * migration does not affect children, therefore these two orderings should not
939 * interact.
941 * The change in perf_event::ctx does not affect children (as claimed above)
942 * because the sys_perf_event_open() case will install a new event and break
943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
944 * concerned with cpuctx and that doesn't have children.
946 * The places that change perf_event::ctx will issue:
948 * perf_remove_from_context();
949 * synchronize_rcu();
950 * perf_install_in_context();
952 * to affect the change. The remove_from_context() + synchronize_rcu() should
953 * quiesce the event, after which we can install it in the new location. This
954 * means that only external vectors (perf_fops, prctl) can perturb the event
955 * while in transit. Therefore all such accessors should also acquire
956 * perf_event_context::mutex to serialize against this.
958 * However; because event->ctx can change while we're waiting to acquire
959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
960 * function.
962 * Lock order:
963 * task_struct::perf_event_mutex
964 * perf_event_context::mutex
965 * perf_event_context::lock
966 * perf_event::child_mutex;
967 * perf_event::mmap_mutex
968 * mmap_sem
970 static struct perf_event_context *
971 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
973 struct perf_event_context *ctx;
975 again:
976 rcu_read_lock();
977 ctx = ACCESS_ONCE(event->ctx);
978 if (!atomic_inc_not_zero(&ctx->refcount)) {
979 rcu_read_unlock();
980 goto again;
982 rcu_read_unlock();
984 mutex_lock_nested(&ctx->mutex, nesting);
985 if (event->ctx != ctx) {
986 mutex_unlock(&ctx->mutex);
987 put_ctx(ctx);
988 goto again;
991 return ctx;
994 static inline struct perf_event_context *
995 perf_event_ctx_lock(struct perf_event *event)
997 return perf_event_ctx_lock_nested(event, 0);
1000 static void perf_event_ctx_unlock(struct perf_event *event,
1001 struct perf_event_context *ctx)
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1008 * This must be done under the ctx->lock, such as to serialize against
1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010 * calling scheduler related locks and ctx->lock nests inside those.
1012 static __must_check struct perf_event_context *
1013 unclone_ctx(struct perf_event_context *ctx)
1015 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1017 lockdep_assert_held(&ctx->lock);
1019 if (parent_ctx)
1020 ctx->parent_ctx = NULL;
1021 ctx->generation++;
1023 return parent_ctx;
1026 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1029 * only top level events have the pid namespace they were created in
1031 if (event->parent)
1032 event = event->parent;
1034 return task_tgid_nr_ns(p, event->ns);
1037 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1040 * only top level events have the pid namespace they were created in
1042 if (event->parent)
1043 event = event->parent;
1045 return task_pid_nr_ns(p, event->ns);
1049 * If we inherit events we want to return the parent event id
1050 * to userspace.
1052 static u64 primary_event_id(struct perf_event *event)
1054 u64 id = event->id;
1056 if (event->parent)
1057 id = event->parent->id;
1059 return id;
1063 * Get the perf_event_context for a task and lock it.
1064 * This has to cope with with the fact that until it is locked,
1065 * the context could get moved to another task.
1067 static struct perf_event_context *
1068 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1070 struct perf_event_context *ctx;
1072 retry:
1074 * One of the few rules of preemptible RCU is that one cannot do
1075 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076 * part of the read side critical section was preemptible -- see
1077 * rcu_read_unlock_special().
1079 * Since ctx->lock nests under rq->lock we must ensure the entire read
1080 * side critical section is non-preemptible.
1082 preempt_disable();
1083 rcu_read_lock();
1084 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085 if (ctx) {
1087 * If this context is a clone of another, it might
1088 * get swapped for another underneath us by
1089 * perf_event_task_sched_out, though the
1090 * rcu_read_lock() protects us from any context
1091 * getting freed. Lock the context and check if it
1092 * got swapped before we could get the lock, and retry
1093 * if so. If we locked the right context, then it
1094 * can't get swapped on us any more.
1096 raw_spin_lock_irqsave(&ctx->lock, *flags);
1097 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099 rcu_read_unlock();
1100 preempt_enable();
1101 goto retry;
1104 if (!atomic_inc_not_zero(&ctx->refcount)) {
1105 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106 ctx = NULL;
1109 rcu_read_unlock();
1110 preempt_enable();
1111 return ctx;
1115 * Get the context for a task and increment its pin_count so it
1116 * can't get swapped to another task. This also increments its
1117 * reference count so that the context can't get freed.
1119 static struct perf_event_context *
1120 perf_pin_task_context(struct task_struct *task, int ctxn)
1122 struct perf_event_context *ctx;
1123 unsigned long flags;
1125 ctx = perf_lock_task_context(task, ctxn, &flags);
1126 if (ctx) {
1127 ++ctx->pin_count;
1128 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 return ctx;
1133 static void perf_unpin_context(struct perf_event_context *ctx)
1135 unsigned long flags;
1137 raw_spin_lock_irqsave(&ctx->lock, flags);
1138 --ctx->pin_count;
1139 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1143 * Update the record of the current time in a context.
1145 static void update_context_time(struct perf_event_context *ctx)
1147 u64 now = perf_clock();
1149 ctx->time += now - ctx->timestamp;
1150 ctx->timestamp = now;
1153 static u64 perf_event_time(struct perf_event *event)
1155 struct perf_event_context *ctx = event->ctx;
1157 if (is_cgroup_event(event))
1158 return perf_cgroup_event_time(event);
1160 return ctx ? ctx->time : 0;
1164 * Update the total_time_enabled and total_time_running fields for a event.
1165 * The caller of this function needs to hold the ctx->lock.
1167 static void update_event_times(struct perf_event *event)
1169 struct perf_event_context *ctx = event->ctx;
1170 u64 run_end;
1172 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174 return;
1176 * in cgroup mode, time_enabled represents
1177 * the time the event was enabled AND active
1178 * tasks were in the monitored cgroup. This is
1179 * independent of the activity of the context as
1180 * there may be a mix of cgroup and non-cgroup events.
1182 * That is why we treat cgroup events differently
1183 * here.
1185 if (is_cgroup_event(event))
1186 run_end = perf_cgroup_event_time(event);
1187 else if (ctx->is_active)
1188 run_end = ctx->time;
1189 else
1190 run_end = event->tstamp_stopped;
1192 event->total_time_enabled = run_end - event->tstamp_enabled;
1194 if (event->state == PERF_EVENT_STATE_INACTIVE)
1195 run_end = event->tstamp_stopped;
1196 else
1197 run_end = perf_event_time(event);
1199 event->total_time_running = run_end - event->tstamp_running;
1204 * Update total_time_enabled and total_time_running for all events in a group.
1206 static void update_group_times(struct perf_event *leader)
1208 struct perf_event *event;
1210 update_event_times(leader);
1211 list_for_each_entry(event, &leader->sibling_list, group_entry)
1212 update_event_times(event);
1215 static struct list_head *
1216 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1218 if (event->attr.pinned)
1219 return &ctx->pinned_groups;
1220 else
1221 return &ctx->flexible_groups;
1225 * Add a event from the lists for its context.
1226 * Must be called with ctx->mutex and ctx->lock held.
1228 static void
1229 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1231 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232 event->attach_state |= PERF_ATTACH_CONTEXT;
1235 * If we're a stand alone event or group leader, we go to the context
1236 * list, group events are kept attached to the group so that
1237 * perf_group_detach can, at all times, locate all siblings.
1239 if (event->group_leader == event) {
1240 struct list_head *list;
1242 if (is_software_event(event))
1243 event->group_flags |= PERF_GROUP_SOFTWARE;
1245 list = ctx_group_list(event, ctx);
1246 list_add_tail(&event->group_entry, list);
1249 if (is_cgroup_event(event))
1250 ctx->nr_cgroups++;
1252 list_add_rcu(&event->event_entry, &ctx->event_list);
1253 ctx->nr_events++;
1254 if (event->attr.inherit_stat)
1255 ctx->nr_stat++;
1257 ctx->generation++;
1261 * Initialize event state based on the perf_event_attr::disabled.
1263 static inline void perf_event__state_init(struct perf_event *event)
1265 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266 PERF_EVENT_STATE_INACTIVE;
1270 * Called at perf_event creation and when events are attached/detached from a
1271 * group.
1273 static void perf_event__read_size(struct perf_event *event)
1275 int entry = sizeof(u64); /* value */
1276 int size = 0;
1277 int nr = 1;
1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280 size += sizeof(u64);
1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283 size += sizeof(u64);
1285 if (event->attr.read_format & PERF_FORMAT_ID)
1286 entry += sizeof(u64);
1288 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289 nr += event->group_leader->nr_siblings;
1290 size += sizeof(u64);
1293 size += entry * nr;
1294 event->read_size = size;
1297 static void perf_event__header_size(struct perf_event *event)
1299 struct perf_sample_data *data;
1300 u64 sample_type = event->attr.sample_type;
1301 u16 size = 0;
1303 perf_event__read_size(event);
1305 if (sample_type & PERF_SAMPLE_IP)
1306 size += sizeof(data->ip);
1308 if (sample_type & PERF_SAMPLE_ADDR)
1309 size += sizeof(data->addr);
1311 if (sample_type & PERF_SAMPLE_PERIOD)
1312 size += sizeof(data->period);
1314 if (sample_type & PERF_SAMPLE_WEIGHT)
1315 size += sizeof(data->weight);
1317 if (sample_type & PERF_SAMPLE_READ)
1318 size += event->read_size;
1320 if (sample_type & PERF_SAMPLE_DATA_SRC)
1321 size += sizeof(data->data_src.val);
1323 if (sample_type & PERF_SAMPLE_TRANSACTION)
1324 size += sizeof(data->txn);
1326 event->header_size = size;
1329 static void perf_event__id_header_size(struct perf_event *event)
1331 struct perf_sample_data *data;
1332 u64 sample_type = event->attr.sample_type;
1333 u16 size = 0;
1335 if (sample_type & PERF_SAMPLE_TID)
1336 size += sizeof(data->tid_entry);
1338 if (sample_type & PERF_SAMPLE_TIME)
1339 size += sizeof(data->time);
1341 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342 size += sizeof(data->id);
1344 if (sample_type & PERF_SAMPLE_ID)
1345 size += sizeof(data->id);
1347 if (sample_type & PERF_SAMPLE_STREAM_ID)
1348 size += sizeof(data->stream_id);
1350 if (sample_type & PERF_SAMPLE_CPU)
1351 size += sizeof(data->cpu_entry);
1353 event->id_header_size = size;
1356 static void perf_group_attach(struct perf_event *event)
1358 struct perf_event *group_leader = event->group_leader, *pos;
1361 * We can have double attach due to group movement in perf_event_open.
1363 if (event->attach_state & PERF_ATTACH_GROUP)
1364 return;
1366 event->attach_state |= PERF_ATTACH_GROUP;
1368 if (group_leader == event)
1369 return;
1371 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1373 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374 !is_software_event(event))
1375 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1377 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378 group_leader->nr_siblings++;
1380 perf_event__header_size(group_leader);
1382 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383 perf_event__header_size(pos);
1387 * Remove a event from the lists for its context.
1388 * Must be called with ctx->mutex and ctx->lock held.
1390 static void
1391 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1393 struct perf_cpu_context *cpuctx;
1395 WARN_ON_ONCE(event->ctx != ctx);
1396 lockdep_assert_held(&ctx->lock);
1399 * We can have double detach due to exit/hot-unplug + close.
1401 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402 return;
1404 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1406 if (is_cgroup_event(event)) {
1407 ctx->nr_cgroups--;
1408 cpuctx = __get_cpu_context(ctx);
1410 * if there are no more cgroup events
1411 * then cler cgrp to avoid stale pointer
1412 * in update_cgrp_time_from_cpuctx()
1414 if (!ctx->nr_cgroups)
1415 cpuctx->cgrp = NULL;
1418 ctx->nr_events--;
1419 if (event->attr.inherit_stat)
1420 ctx->nr_stat--;
1422 list_del_rcu(&event->event_entry);
1424 if (event->group_leader == event)
1425 list_del_init(&event->group_entry);
1427 update_group_times(event);
1430 * If event was in error state, then keep it
1431 * that way, otherwise bogus counts will be
1432 * returned on read(). The only way to get out
1433 * of error state is by explicit re-enabling
1434 * of the event
1436 if (event->state > PERF_EVENT_STATE_OFF)
1437 event->state = PERF_EVENT_STATE_OFF;
1439 ctx->generation++;
1442 static void perf_group_detach(struct perf_event *event)
1444 struct perf_event *sibling, *tmp;
1445 struct list_head *list = NULL;
1448 * We can have double detach due to exit/hot-unplug + close.
1450 if (!(event->attach_state & PERF_ATTACH_GROUP))
1451 return;
1453 event->attach_state &= ~PERF_ATTACH_GROUP;
1456 * If this is a sibling, remove it from its group.
1458 if (event->group_leader != event) {
1459 list_del_init(&event->group_entry);
1460 event->group_leader->nr_siblings--;
1461 goto out;
1464 if (!list_empty(&event->group_entry))
1465 list = &event->group_entry;
1468 * If this was a group event with sibling events then
1469 * upgrade the siblings to singleton events by adding them
1470 * to whatever list we are on.
1472 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473 if (list)
1474 list_move_tail(&sibling->group_entry, list);
1475 sibling->group_leader = sibling;
1477 /* Inherit group flags from the previous leader */
1478 sibling->group_flags = event->group_flags;
1480 WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 out:
1484 perf_event__header_size(event->group_leader);
1486 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487 perf_event__header_size(tmp);
1491 * User event without the task.
1493 static bool is_orphaned_event(struct perf_event *event)
1495 return event && !is_kernel_event(event) && !event->owner;
1499 * Event has a parent but parent's task finished and it's
1500 * alive only because of children holding refference.
1502 static bool is_orphaned_child(struct perf_event *event)
1504 return is_orphaned_event(event->parent);
1507 static void orphans_remove_work(struct work_struct *work);
1509 static void schedule_orphans_remove(struct perf_event_context *ctx)
1511 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512 return;
1514 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515 get_ctx(ctx);
1516 ctx->orphans_remove_sched = true;
1520 static int __init perf_workqueue_init(void)
1522 perf_wq = create_singlethread_workqueue("perf");
1523 WARN(!perf_wq, "failed to create perf workqueue\n");
1524 return perf_wq ? 0 : -1;
1527 core_initcall(perf_workqueue_init);
1529 static inline int
1530 event_filter_match(struct perf_event *event)
1532 return (event->cpu == -1 || event->cpu == smp_processor_id())
1533 && perf_cgroup_match(event);
1536 static void
1537 event_sched_out(struct perf_event *event,
1538 struct perf_cpu_context *cpuctx,
1539 struct perf_event_context *ctx)
1541 u64 tstamp = perf_event_time(event);
1542 u64 delta;
1544 WARN_ON_ONCE(event->ctx != ctx);
1545 lockdep_assert_held(&ctx->lock);
1548 * An event which could not be activated because of
1549 * filter mismatch still needs to have its timings
1550 * maintained, otherwise bogus information is return
1551 * via read() for time_enabled, time_running:
1553 if (event->state == PERF_EVENT_STATE_INACTIVE
1554 && !event_filter_match(event)) {
1555 delta = tstamp - event->tstamp_stopped;
1556 event->tstamp_running += delta;
1557 event->tstamp_stopped = tstamp;
1560 if (event->state != PERF_EVENT_STATE_ACTIVE)
1561 return;
1563 perf_pmu_disable(event->pmu);
1565 event->state = PERF_EVENT_STATE_INACTIVE;
1566 if (event->pending_disable) {
1567 event->pending_disable = 0;
1568 event->state = PERF_EVENT_STATE_OFF;
1570 event->tstamp_stopped = tstamp;
1571 event->pmu->del(event, 0);
1572 event->oncpu = -1;
1574 if (!is_software_event(event))
1575 cpuctx->active_oncpu--;
1576 if (!--ctx->nr_active)
1577 perf_event_ctx_deactivate(ctx);
1578 if (event->attr.freq && event->attr.sample_freq)
1579 ctx->nr_freq--;
1580 if (event->attr.exclusive || !cpuctx->active_oncpu)
1581 cpuctx->exclusive = 0;
1583 if (is_orphaned_child(event))
1584 schedule_orphans_remove(ctx);
1586 perf_pmu_enable(event->pmu);
1589 static void
1590 group_sched_out(struct perf_event *group_event,
1591 struct perf_cpu_context *cpuctx,
1592 struct perf_event_context *ctx)
1594 struct perf_event *event;
1595 int state = group_event->state;
1597 event_sched_out(group_event, cpuctx, ctx);
1600 * Schedule out siblings (if any):
1602 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603 event_sched_out(event, cpuctx, ctx);
1605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606 cpuctx->exclusive = 0;
1609 struct remove_event {
1610 struct perf_event *event;
1611 bool detach_group;
1615 * Cross CPU call to remove a performance event
1617 * We disable the event on the hardware level first. After that we
1618 * remove it from the context list.
1620 static int __perf_remove_from_context(void *info)
1622 struct remove_event *re = info;
1623 struct perf_event *event = re->event;
1624 struct perf_event_context *ctx = event->ctx;
1625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1627 raw_spin_lock(&ctx->lock);
1628 event_sched_out(event, cpuctx, ctx);
1629 if (re->detach_group)
1630 perf_group_detach(event);
1631 list_del_event(event, ctx);
1632 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633 ctx->is_active = 0;
1634 cpuctx->task_ctx = NULL;
1636 raw_spin_unlock(&ctx->lock);
1638 return 0;
1643 * Remove the event from a task's (or a CPU's) list of events.
1645 * CPU events are removed with a smp call. For task events we only
1646 * call when the task is on a CPU.
1648 * If event->ctx is a cloned context, callers must make sure that
1649 * every task struct that event->ctx->task could possibly point to
1650 * remains valid. This is OK when called from perf_release since
1651 * that only calls us on the top-level context, which can't be a clone.
1652 * When called from perf_event_exit_task, it's OK because the
1653 * context has been detached from its task.
1655 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1657 struct perf_event_context *ctx = event->ctx;
1658 struct task_struct *task = ctx->task;
1659 struct remove_event re = {
1660 .event = event,
1661 .detach_group = detach_group,
1664 lockdep_assert_held(&ctx->mutex);
1666 if (!task) {
1668 * Per cpu events are removed via an smp call. The removal can
1669 * fail if the CPU is currently offline, but in that case we
1670 * already called __perf_remove_from_context from
1671 * perf_event_exit_cpu.
1673 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1674 return;
1677 retry:
1678 if (!task_function_call(task, __perf_remove_from_context, &re))
1679 return;
1681 raw_spin_lock_irq(&ctx->lock);
1683 * If we failed to find a running task, but find the context active now
1684 * that we've acquired the ctx->lock, retry.
1686 if (ctx->is_active) {
1687 raw_spin_unlock_irq(&ctx->lock);
1689 * Reload the task pointer, it might have been changed by
1690 * a concurrent perf_event_context_sched_out().
1692 task = ctx->task;
1693 goto retry;
1697 * Since the task isn't running, its safe to remove the event, us
1698 * holding the ctx->lock ensures the task won't get scheduled in.
1700 if (detach_group)
1701 perf_group_detach(event);
1702 list_del_event(event, ctx);
1703 raw_spin_unlock_irq(&ctx->lock);
1707 * Cross CPU call to disable a performance event
1709 int __perf_event_disable(void *info)
1711 struct perf_event *event = info;
1712 struct perf_event_context *ctx = event->ctx;
1713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1716 * If this is a per-task event, need to check whether this
1717 * event's task is the current task on this cpu.
1719 * Can trigger due to concurrent perf_event_context_sched_out()
1720 * flipping contexts around.
1722 if (ctx->task && cpuctx->task_ctx != ctx)
1723 return -EINVAL;
1725 raw_spin_lock(&ctx->lock);
1728 * If the event is on, turn it off.
1729 * If it is in error state, leave it in error state.
1731 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732 update_context_time(ctx);
1733 update_cgrp_time_from_event(event);
1734 update_group_times(event);
1735 if (event == event->group_leader)
1736 group_sched_out(event, cpuctx, ctx);
1737 else
1738 event_sched_out(event, cpuctx, ctx);
1739 event->state = PERF_EVENT_STATE_OFF;
1742 raw_spin_unlock(&ctx->lock);
1744 return 0;
1748 * Disable a event.
1750 * If event->ctx is a cloned context, callers must make sure that
1751 * every task struct that event->ctx->task could possibly point to
1752 * remains valid. This condition is satisifed when called through
1753 * perf_event_for_each_child or perf_event_for_each because they
1754 * hold the top-level event's child_mutex, so any descendant that
1755 * goes to exit will block in sync_child_event.
1756 * When called from perf_pending_event it's OK because event->ctx
1757 * is the current context on this CPU and preemption is disabled,
1758 * hence we can't get into perf_event_task_sched_out for this context.
1760 static void _perf_event_disable(struct perf_event *event)
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1765 if (!task) {
1767 * Disable the event on the cpu that it's on
1769 cpu_function_call(event->cpu, __perf_event_disable, event);
1770 return;
1773 retry:
1774 if (!task_function_call(task, __perf_event_disable, event))
1775 return;
1777 raw_spin_lock_irq(&ctx->lock);
1779 * If the event is still active, we need to retry the cross-call.
1781 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782 raw_spin_unlock_irq(&ctx->lock);
1784 * Reload the task pointer, it might have been changed by
1785 * a concurrent perf_event_context_sched_out().
1787 task = ctx->task;
1788 goto retry;
1792 * Since we have the lock this context can't be scheduled
1793 * in, so we can change the state safely.
1795 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 update_group_times(event);
1797 event->state = PERF_EVENT_STATE_OFF;
1799 raw_spin_unlock_irq(&ctx->lock);
1803 * Strictly speaking kernel users cannot create groups and therefore this
1804 * interface does not need the perf_event_ctx_lock() magic.
1806 void perf_event_disable(struct perf_event *event)
1808 struct perf_event_context *ctx;
1810 ctx = perf_event_ctx_lock(event);
1811 _perf_event_disable(event);
1812 perf_event_ctx_unlock(event, ctx);
1814 EXPORT_SYMBOL_GPL(perf_event_disable);
1816 static void perf_set_shadow_time(struct perf_event *event,
1817 struct perf_event_context *ctx,
1818 u64 tstamp)
1821 * use the correct time source for the time snapshot
1823 * We could get by without this by leveraging the
1824 * fact that to get to this function, the caller
1825 * has most likely already called update_context_time()
1826 * and update_cgrp_time_xx() and thus both timestamp
1827 * are identical (or very close). Given that tstamp is,
1828 * already adjusted for cgroup, we could say that:
1829 * tstamp - ctx->timestamp
1830 * is equivalent to
1831 * tstamp - cgrp->timestamp.
1833 * Then, in perf_output_read(), the calculation would
1834 * work with no changes because:
1835 * - event is guaranteed scheduled in
1836 * - no scheduled out in between
1837 * - thus the timestamp would be the same
1839 * But this is a bit hairy.
1841 * So instead, we have an explicit cgroup call to remain
1842 * within the time time source all along. We believe it
1843 * is cleaner and simpler to understand.
1845 if (is_cgroup_event(event))
1846 perf_cgroup_set_shadow_time(event, tstamp);
1847 else
1848 event->shadow_ctx_time = tstamp - ctx->timestamp;
1851 #define MAX_INTERRUPTS (~0ULL)
1853 static void perf_log_throttle(struct perf_event *event, int enable);
1854 static void perf_log_itrace_start(struct perf_event *event);
1856 static int
1857 event_sched_in(struct perf_event *event,
1858 struct perf_cpu_context *cpuctx,
1859 struct perf_event_context *ctx)
1861 u64 tstamp = perf_event_time(event);
1862 int ret = 0;
1864 lockdep_assert_held(&ctx->lock);
1866 if (event->state <= PERF_EVENT_STATE_OFF)
1867 return 0;
1869 event->state = PERF_EVENT_STATE_ACTIVE;
1870 event->oncpu = smp_processor_id();
1873 * Unthrottle events, since we scheduled we might have missed several
1874 * ticks already, also for a heavily scheduling task there is little
1875 * guarantee it'll get a tick in a timely manner.
1877 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878 perf_log_throttle(event, 1);
1879 event->hw.interrupts = 0;
1883 * The new state must be visible before we turn it on in the hardware:
1885 smp_wmb();
1887 perf_pmu_disable(event->pmu);
1889 perf_set_shadow_time(event, ctx, tstamp);
1891 perf_log_itrace_start(event);
1893 if (event->pmu->add(event, PERF_EF_START)) {
1894 event->state = PERF_EVENT_STATE_INACTIVE;
1895 event->oncpu = -1;
1896 ret = -EAGAIN;
1897 goto out;
1900 event->tstamp_running += tstamp - event->tstamp_stopped;
1902 if (!is_software_event(event))
1903 cpuctx->active_oncpu++;
1904 if (!ctx->nr_active++)
1905 perf_event_ctx_activate(ctx);
1906 if (event->attr.freq && event->attr.sample_freq)
1907 ctx->nr_freq++;
1909 if (event->attr.exclusive)
1910 cpuctx->exclusive = 1;
1912 if (is_orphaned_child(event))
1913 schedule_orphans_remove(ctx);
1915 out:
1916 perf_pmu_enable(event->pmu);
1918 return ret;
1921 static int
1922 group_sched_in(struct perf_event *group_event,
1923 struct perf_cpu_context *cpuctx,
1924 struct perf_event_context *ctx)
1926 struct perf_event *event, *partial_group = NULL;
1927 struct pmu *pmu = ctx->pmu;
1928 u64 now = ctx->time;
1929 bool simulate = false;
1931 if (group_event->state == PERF_EVENT_STATE_OFF)
1932 return 0;
1934 pmu->start_txn(pmu);
1936 if (event_sched_in(group_event, cpuctx, ctx)) {
1937 pmu->cancel_txn(pmu);
1938 perf_cpu_hrtimer_restart(cpuctx);
1939 return -EAGAIN;
1943 * Schedule in siblings as one group (if any):
1945 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946 if (event_sched_in(event, cpuctx, ctx)) {
1947 partial_group = event;
1948 goto group_error;
1952 if (!pmu->commit_txn(pmu))
1953 return 0;
1955 group_error:
1957 * Groups can be scheduled in as one unit only, so undo any
1958 * partial group before returning:
1959 * The events up to the failed event are scheduled out normally,
1960 * tstamp_stopped will be updated.
1962 * The failed events and the remaining siblings need to have
1963 * their timings updated as if they had gone thru event_sched_in()
1964 * and event_sched_out(). This is required to get consistent timings
1965 * across the group. This also takes care of the case where the group
1966 * could never be scheduled by ensuring tstamp_stopped is set to mark
1967 * the time the event was actually stopped, such that time delta
1968 * calculation in update_event_times() is correct.
1970 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971 if (event == partial_group)
1972 simulate = true;
1974 if (simulate) {
1975 event->tstamp_running += now - event->tstamp_stopped;
1976 event->tstamp_stopped = now;
1977 } else {
1978 event_sched_out(event, cpuctx, ctx);
1981 event_sched_out(group_event, cpuctx, ctx);
1983 pmu->cancel_txn(pmu);
1985 perf_cpu_hrtimer_restart(cpuctx);
1987 return -EAGAIN;
1991 * Work out whether we can put this event group on the CPU now.
1993 static int group_can_go_on(struct perf_event *event,
1994 struct perf_cpu_context *cpuctx,
1995 int can_add_hw)
1998 * Groups consisting entirely of software events can always go on.
2000 if (event->group_flags & PERF_GROUP_SOFTWARE)
2001 return 1;
2003 * If an exclusive group is already on, no other hardware
2004 * events can go on.
2006 if (cpuctx->exclusive)
2007 return 0;
2009 * If this group is exclusive and there are already
2010 * events on the CPU, it can't go on.
2012 if (event->attr.exclusive && cpuctx->active_oncpu)
2013 return 0;
2015 * Otherwise, try to add it if all previous groups were able
2016 * to go on.
2018 return can_add_hw;
2021 static void add_event_to_ctx(struct perf_event *event,
2022 struct perf_event_context *ctx)
2024 u64 tstamp = perf_event_time(event);
2026 list_add_event(event, ctx);
2027 perf_group_attach(event);
2028 event->tstamp_enabled = tstamp;
2029 event->tstamp_running = tstamp;
2030 event->tstamp_stopped = tstamp;
2033 static void task_ctx_sched_out(struct perf_event_context *ctx);
2034 static void
2035 ctx_sched_in(struct perf_event_context *ctx,
2036 struct perf_cpu_context *cpuctx,
2037 enum event_type_t event_type,
2038 struct task_struct *task);
2040 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041 struct perf_event_context *ctx,
2042 struct task_struct *task)
2044 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045 if (ctx)
2046 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048 if (ctx)
2049 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2053 * Cross CPU call to install and enable a performance event
2055 * Must be called with ctx->mutex held
2057 static int __perf_install_in_context(void *info)
2059 struct perf_event *event = info;
2060 struct perf_event_context *ctx = event->ctx;
2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063 struct task_struct *task = current;
2065 perf_ctx_lock(cpuctx, task_ctx);
2066 perf_pmu_disable(cpuctx->ctx.pmu);
2069 * If there was an active task_ctx schedule it out.
2071 if (task_ctx)
2072 task_ctx_sched_out(task_ctx);
2075 * If the context we're installing events in is not the
2076 * active task_ctx, flip them.
2078 if (ctx->task && task_ctx != ctx) {
2079 if (task_ctx)
2080 raw_spin_unlock(&task_ctx->lock);
2081 raw_spin_lock(&ctx->lock);
2082 task_ctx = ctx;
2085 if (task_ctx) {
2086 cpuctx->task_ctx = task_ctx;
2087 task = task_ctx->task;
2090 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2092 update_context_time(ctx);
2094 * update cgrp time only if current cgrp
2095 * matches event->cgrp. Must be done before
2096 * calling add_event_to_ctx()
2098 update_cgrp_time_from_event(event);
2100 add_event_to_ctx(event, ctx);
2103 * Schedule everything back in
2105 perf_event_sched_in(cpuctx, task_ctx, task);
2107 perf_pmu_enable(cpuctx->ctx.pmu);
2108 perf_ctx_unlock(cpuctx, task_ctx);
2110 return 0;
2114 * Attach a performance event to a context
2116 * First we add the event to the list with the hardware enable bit
2117 * in event->hw_config cleared.
2119 * If the event is attached to a task which is on a CPU we use a smp
2120 * call to enable it in the task context. The task might have been
2121 * scheduled away, but we check this in the smp call again.
2123 static void
2124 perf_install_in_context(struct perf_event_context *ctx,
2125 struct perf_event *event,
2126 int cpu)
2128 struct task_struct *task = ctx->task;
2130 lockdep_assert_held(&ctx->mutex);
2132 event->ctx = ctx;
2133 if (event->cpu != -1)
2134 event->cpu = cpu;
2136 if (!task) {
2138 * Per cpu events are installed via an smp call and
2139 * the install is always successful.
2141 cpu_function_call(cpu, __perf_install_in_context, event);
2142 return;
2145 retry:
2146 if (!task_function_call(task, __perf_install_in_context, event))
2147 return;
2149 raw_spin_lock_irq(&ctx->lock);
2151 * If we failed to find a running task, but find the context active now
2152 * that we've acquired the ctx->lock, retry.
2154 if (ctx->is_active) {
2155 raw_spin_unlock_irq(&ctx->lock);
2157 * Reload the task pointer, it might have been changed by
2158 * a concurrent perf_event_context_sched_out().
2160 task = ctx->task;
2161 goto retry;
2165 * Since the task isn't running, its safe to add the event, us holding
2166 * the ctx->lock ensures the task won't get scheduled in.
2168 add_event_to_ctx(event, ctx);
2169 raw_spin_unlock_irq(&ctx->lock);
2173 * Put a event into inactive state and update time fields.
2174 * Enabling the leader of a group effectively enables all
2175 * the group members that aren't explicitly disabled, so we
2176 * have to update their ->tstamp_enabled also.
2177 * Note: this works for group members as well as group leaders
2178 * since the non-leader members' sibling_lists will be empty.
2180 static void __perf_event_mark_enabled(struct perf_event *event)
2182 struct perf_event *sub;
2183 u64 tstamp = perf_event_time(event);
2185 event->state = PERF_EVENT_STATE_INACTIVE;
2186 event->tstamp_enabled = tstamp - event->total_time_enabled;
2187 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2194 * Cross CPU call to enable a performance event
2196 static int __perf_event_enable(void *info)
2198 struct perf_event *event = info;
2199 struct perf_event_context *ctx = event->ctx;
2200 struct perf_event *leader = event->group_leader;
2201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202 int err;
2205 * There's a time window between 'ctx->is_active' check
2206 * in perf_event_enable function and this place having:
2207 * - IRQs on
2208 * - ctx->lock unlocked
2210 * where the task could be killed and 'ctx' deactivated
2211 * by perf_event_exit_task.
2213 if (!ctx->is_active)
2214 return -EINVAL;
2216 raw_spin_lock(&ctx->lock);
2217 update_context_time(ctx);
2219 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220 goto unlock;
2223 * set current task's cgroup time reference point
2225 perf_cgroup_set_timestamp(current, ctx);
2227 __perf_event_mark_enabled(event);
2229 if (!event_filter_match(event)) {
2230 if (is_cgroup_event(event))
2231 perf_cgroup_defer_enabled(event);
2232 goto unlock;
2236 * If the event is in a group and isn't the group leader,
2237 * then don't put it on unless the group is on.
2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240 goto unlock;
2242 if (!group_can_go_on(event, cpuctx, 1)) {
2243 err = -EEXIST;
2244 } else {
2245 if (event == leader)
2246 err = group_sched_in(event, cpuctx, ctx);
2247 else
2248 err = event_sched_in(event, cpuctx, ctx);
2251 if (err) {
2253 * If this event can't go on and it's part of a
2254 * group, then the whole group has to come off.
2256 if (leader != event) {
2257 group_sched_out(leader, cpuctx, ctx);
2258 perf_cpu_hrtimer_restart(cpuctx);
2260 if (leader->attr.pinned) {
2261 update_group_times(leader);
2262 leader->state = PERF_EVENT_STATE_ERROR;
2266 unlock:
2267 raw_spin_unlock(&ctx->lock);
2269 return 0;
2273 * Enable a event.
2275 * If event->ctx is a cloned context, callers must make sure that
2276 * every task struct that event->ctx->task could possibly point to
2277 * remains valid. This condition is satisfied when called through
2278 * perf_event_for_each_child or perf_event_for_each as described
2279 * for perf_event_disable.
2281 static void _perf_event_enable(struct perf_event *event)
2283 struct perf_event_context *ctx = event->ctx;
2284 struct task_struct *task = ctx->task;
2286 if (!task) {
2288 * Enable the event on the cpu that it's on
2290 cpu_function_call(event->cpu, __perf_event_enable, event);
2291 return;
2294 raw_spin_lock_irq(&ctx->lock);
2295 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296 goto out;
2299 * If the event is in error state, clear that first.
2300 * That way, if we see the event in error state below, we
2301 * know that it has gone back into error state, as distinct
2302 * from the task having been scheduled away before the
2303 * cross-call arrived.
2305 if (event->state == PERF_EVENT_STATE_ERROR)
2306 event->state = PERF_EVENT_STATE_OFF;
2308 retry:
2309 if (!ctx->is_active) {
2310 __perf_event_mark_enabled(event);
2311 goto out;
2314 raw_spin_unlock_irq(&ctx->lock);
2316 if (!task_function_call(task, __perf_event_enable, event))
2317 return;
2319 raw_spin_lock_irq(&ctx->lock);
2322 * If the context is active and the event is still off,
2323 * we need to retry the cross-call.
2325 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2327 * task could have been flipped by a concurrent
2328 * perf_event_context_sched_out()
2330 task = ctx->task;
2331 goto retry;
2334 out:
2335 raw_spin_unlock_irq(&ctx->lock);
2339 * See perf_event_disable();
2341 void perf_event_enable(struct perf_event *event)
2343 struct perf_event_context *ctx;
2345 ctx = perf_event_ctx_lock(event);
2346 _perf_event_enable(event);
2347 perf_event_ctx_unlock(event, ctx);
2349 EXPORT_SYMBOL_GPL(perf_event_enable);
2351 static int _perf_event_refresh(struct perf_event *event, int refresh)
2354 * not supported on inherited events
2356 if (event->attr.inherit || !is_sampling_event(event))
2357 return -EINVAL;
2359 atomic_add(refresh, &event->event_limit);
2360 _perf_event_enable(event);
2362 return 0;
2366 * See perf_event_disable()
2368 int perf_event_refresh(struct perf_event *event, int refresh)
2370 struct perf_event_context *ctx;
2371 int ret;
2373 ctx = perf_event_ctx_lock(event);
2374 ret = _perf_event_refresh(event, refresh);
2375 perf_event_ctx_unlock(event, ctx);
2377 return ret;
2379 EXPORT_SYMBOL_GPL(perf_event_refresh);
2381 static void ctx_sched_out(struct perf_event_context *ctx,
2382 struct perf_cpu_context *cpuctx,
2383 enum event_type_t event_type)
2385 struct perf_event *event;
2386 int is_active = ctx->is_active;
2388 ctx->is_active &= ~event_type;
2389 if (likely(!ctx->nr_events))
2390 return;
2392 update_context_time(ctx);
2393 update_cgrp_time_from_cpuctx(cpuctx);
2394 if (!ctx->nr_active)
2395 return;
2397 perf_pmu_disable(ctx->pmu);
2398 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400 group_sched_out(event, cpuctx, ctx);
2403 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405 group_sched_out(event, cpuctx, ctx);
2407 perf_pmu_enable(ctx->pmu);
2411 * Test whether two contexts are equivalent, i.e. whether they have both been
2412 * cloned from the same version of the same context.
2414 * Equivalence is measured using a generation number in the context that is
2415 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416 * and list_del_event().
2418 static int context_equiv(struct perf_event_context *ctx1,
2419 struct perf_event_context *ctx2)
2421 lockdep_assert_held(&ctx1->lock);
2422 lockdep_assert_held(&ctx2->lock);
2424 /* Pinning disables the swap optimization */
2425 if (ctx1->pin_count || ctx2->pin_count)
2426 return 0;
2428 /* If ctx1 is the parent of ctx2 */
2429 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430 return 1;
2432 /* If ctx2 is the parent of ctx1 */
2433 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434 return 1;
2437 * If ctx1 and ctx2 have the same parent; we flatten the parent
2438 * hierarchy, see perf_event_init_context().
2440 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441 ctx1->parent_gen == ctx2->parent_gen)
2442 return 1;
2444 /* Unmatched */
2445 return 0;
2448 static void __perf_event_sync_stat(struct perf_event *event,
2449 struct perf_event *next_event)
2451 u64 value;
2453 if (!event->attr.inherit_stat)
2454 return;
2457 * Update the event value, we cannot use perf_event_read()
2458 * because we're in the middle of a context switch and have IRQs
2459 * disabled, which upsets smp_call_function_single(), however
2460 * we know the event must be on the current CPU, therefore we
2461 * don't need to use it.
2463 switch (event->state) {
2464 case PERF_EVENT_STATE_ACTIVE:
2465 event->pmu->read(event);
2466 /* fall-through */
2468 case PERF_EVENT_STATE_INACTIVE:
2469 update_event_times(event);
2470 break;
2472 default:
2473 break;
2477 * In order to keep per-task stats reliable we need to flip the event
2478 * values when we flip the contexts.
2480 value = local64_read(&next_event->count);
2481 value = local64_xchg(&event->count, value);
2482 local64_set(&next_event->count, value);
2484 swap(event->total_time_enabled, next_event->total_time_enabled);
2485 swap(event->total_time_running, next_event->total_time_running);
2488 * Since we swizzled the values, update the user visible data too.
2490 perf_event_update_userpage(event);
2491 perf_event_update_userpage(next_event);
2494 static void perf_event_sync_stat(struct perf_event_context *ctx,
2495 struct perf_event_context *next_ctx)
2497 struct perf_event *event, *next_event;
2499 if (!ctx->nr_stat)
2500 return;
2502 update_context_time(ctx);
2504 event = list_first_entry(&ctx->event_list,
2505 struct perf_event, event_entry);
2507 next_event = list_first_entry(&next_ctx->event_list,
2508 struct perf_event, event_entry);
2510 while (&event->event_entry != &ctx->event_list &&
2511 &next_event->event_entry != &next_ctx->event_list) {
2513 __perf_event_sync_stat(event, next_event);
2515 event = list_next_entry(event, event_entry);
2516 next_event = list_next_entry(next_event, event_entry);
2520 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521 struct task_struct *next)
2523 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524 struct perf_event_context *next_ctx;
2525 struct perf_event_context *parent, *next_parent;
2526 struct perf_cpu_context *cpuctx;
2527 int do_switch = 1;
2529 if (likely(!ctx))
2530 return;
2532 cpuctx = __get_cpu_context(ctx);
2533 if (!cpuctx->task_ctx)
2534 return;
2536 rcu_read_lock();
2537 next_ctx = next->perf_event_ctxp[ctxn];
2538 if (!next_ctx)
2539 goto unlock;
2541 parent = rcu_dereference(ctx->parent_ctx);
2542 next_parent = rcu_dereference(next_ctx->parent_ctx);
2544 /* If neither context have a parent context; they cannot be clones. */
2545 if (!parent && !next_parent)
2546 goto unlock;
2548 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2550 * Looks like the two contexts are clones, so we might be
2551 * able to optimize the context switch. We lock both
2552 * contexts and check that they are clones under the
2553 * lock (including re-checking that neither has been
2554 * uncloned in the meantime). It doesn't matter which
2555 * order we take the locks because no other cpu could
2556 * be trying to lock both of these tasks.
2558 raw_spin_lock(&ctx->lock);
2559 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560 if (context_equiv(ctx, next_ctx)) {
2562 * XXX do we need a memory barrier of sorts
2563 * wrt to rcu_dereference() of perf_event_ctxp
2565 task->perf_event_ctxp[ctxn] = next_ctx;
2566 next->perf_event_ctxp[ctxn] = ctx;
2567 ctx->task = next;
2568 next_ctx->task = task;
2570 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2572 do_switch = 0;
2574 perf_event_sync_stat(ctx, next_ctx);
2576 raw_spin_unlock(&next_ctx->lock);
2577 raw_spin_unlock(&ctx->lock);
2579 unlock:
2580 rcu_read_unlock();
2582 if (do_switch) {
2583 raw_spin_lock(&ctx->lock);
2584 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585 cpuctx->task_ctx = NULL;
2586 raw_spin_unlock(&ctx->lock);
2590 void perf_sched_cb_dec(struct pmu *pmu)
2592 this_cpu_dec(perf_sched_cb_usages);
2595 void perf_sched_cb_inc(struct pmu *pmu)
2597 this_cpu_inc(perf_sched_cb_usages);
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2604 static void perf_pmu_sched_task(struct task_struct *prev,
2605 struct task_struct *next,
2606 bool sched_in)
2608 struct perf_cpu_context *cpuctx;
2609 struct pmu *pmu;
2610 unsigned long flags;
2612 if (prev == next)
2613 return;
2615 local_irq_save(flags);
2617 rcu_read_lock();
2619 list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 if (pmu->sched_task) {
2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2625 perf_pmu_disable(pmu);
2627 pmu->sched_task(cpuctx->task_ctx, sched_in);
2629 perf_pmu_enable(pmu);
2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2635 rcu_read_unlock();
2637 local_irq_restore(flags);
2640 #define for_each_task_context_nr(ctxn) \
2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2644 * Called from scheduler to remove the events of the current task,
2645 * with interrupts disabled.
2647 * We stop each event and update the event value in event->count.
2649 * This does not protect us against NMI, but disable()
2650 * sets the disabled bit in the control field of event _before_
2651 * accessing the event control register. If a NMI hits, then it will
2652 * not restart the event.
2654 void __perf_event_task_sched_out(struct task_struct *task,
2655 struct task_struct *next)
2657 int ctxn;
2659 if (__this_cpu_read(perf_sched_cb_usages))
2660 perf_pmu_sched_task(task, next, false);
2662 for_each_task_context_nr(ctxn)
2663 perf_event_context_sched_out(task, ctxn, next);
2666 * if cgroup events exist on this CPU, then we need
2667 * to check if we have to switch out PMU state.
2668 * cgroup event are system-wide mode only
2670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671 perf_cgroup_sched_out(task, next);
2674 static void task_ctx_sched_out(struct perf_event_context *ctx)
2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2678 if (!cpuctx->task_ctx)
2679 return;
2681 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682 return;
2684 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685 cpuctx->task_ctx = NULL;
2689 * Called with IRQs disabled
2691 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692 enum event_type_t event_type)
2694 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2697 static void
2698 ctx_pinned_sched_in(struct perf_event_context *ctx,
2699 struct perf_cpu_context *cpuctx)
2701 struct perf_event *event;
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704 if (event->state <= PERF_EVENT_STATE_OFF)
2705 continue;
2706 if (!event_filter_match(event))
2707 continue;
2709 /* may need to reset tstamp_enabled */
2710 if (is_cgroup_event(event))
2711 perf_cgroup_mark_enabled(event, ctx);
2713 if (group_can_go_on(event, cpuctx, 1))
2714 group_sched_in(event, cpuctx, ctx);
2717 * If this pinned group hasn't been scheduled,
2718 * put it in error state.
2720 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721 update_group_times(event);
2722 event->state = PERF_EVENT_STATE_ERROR;
2727 static void
2728 ctx_flexible_sched_in(struct perf_event_context *ctx,
2729 struct perf_cpu_context *cpuctx)
2731 struct perf_event *event;
2732 int can_add_hw = 1;
2734 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735 /* Ignore events in OFF or ERROR state */
2736 if (event->state <= PERF_EVENT_STATE_OFF)
2737 continue;
2739 * Listen to the 'cpu' scheduling filter constraint
2740 * of events:
2742 if (!event_filter_match(event))
2743 continue;
2745 /* may need to reset tstamp_enabled */
2746 if (is_cgroup_event(event))
2747 perf_cgroup_mark_enabled(event, ctx);
2749 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750 if (group_sched_in(event, cpuctx, ctx))
2751 can_add_hw = 0;
2756 static void
2757 ctx_sched_in(struct perf_event_context *ctx,
2758 struct perf_cpu_context *cpuctx,
2759 enum event_type_t event_type,
2760 struct task_struct *task)
2762 u64 now;
2763 int is_active = ctx->is_active;
2765 ctx->is_active |= event_type;
2766 if (likely(!ctx->nr_events))
2767 return;
2769 now = perf_clock();
2770 ctx->timestamp = now;
2771 perf_cgroup_set_timestamp(task, ctx);
2773 * First go through the list and put on any pinned groups
2774 * in order to give them the best chance of going on.
2776 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777 ctx_pinned_sched_in(ctx, cpuctx);
2779 /* Then walk through the lower prio flexible groups */
2780 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781 ctx_flexible_sched_in(ctx, cpuctx);
2784 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2785 enum event_type_t event_type,
2786 struct task_struct *task)
2788 struct perf_event_context *ctx = &cpuctx->ctx;
2790 ctx_sched_in(ctx, cpuctx, event_type, task);
2793 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794 struct task_struct *task)
2796 struct perf_cpu_context *cpuctx;
2798 cpuctx = __get_cpu_context(ctx);
2799 if (cpuctx->task_ctx == ctx)
2800 return;
2802 perf_ctx_lock(cpuctx, ctx);
2803 perf_pmu_disable(ctx->pmu);
2805 * We want to keep the following priority order:
2806 * cpu pinned (that don't need to move), task pinned,
2807 * cpu flexible, task flexible.
2809 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2811 if (ctx->nr_events)
2812 cpuctx->task_ctx = ctx;
2814 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2816 perf_pmu_enable(ctx->pmu);
2817 perf_ctx_unlock(cpuctx, ctx);
2821 * Called from scheduler to add the events of the current task
2822 * with interrupts disabled.
2824 * We restore the event value and then enable it.
2826 * This does not protect us against NMI, but enable()
2827 * sets the enabled bit in the control field of event _before_
2828 * accessing the event control register. If a NMI hits, then it will
2829 * keep the event running.
2831 void __perf_event_task_sched_in(struct task_struct *prev,
2832 struct task_struct *task)
2834 struct perf_event_context *ctx;
2835 int ctxn;
2837 for_each_task_context_nr(ctxn) {
2838 ctx = task->perf_event_ctxp[ctxn];
2839 if (likely(!ctx))
2840 continue;
2842 perf_event_context_sched_in(ctx, task);
2845 * if cgroup events exist on this CPU, then we need
2846 * to check if we have to switch in PMU state.
2847 * cgroup event are system-wide mode only
2849 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850 perf_cgroup_sched_in(prev, task);
2852 if (__this_cpu_read(perf_sched_cb_usages))
2853 perf_pmu_sched_task(prev, task, true);
2856 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2858 u64 frequency = event->attr.sample_freq;
2859 u64 sec = NSEC_PER_SEC;
2860 u64 divisor, dividend;
2862 int count_fls, nsec_fls, frequency_fls, sec_fls;
2864 count_fls = fls64(count);
2865 nsec_fls = fls64(nsec);
2866 frequency_fls = fls64(frequency);
2867 sec_fls = 30;
2870 * We got @count in @nsec, with a target of sample_freq HZ
2871 * the target period becomes:
2873 * @count * 10^9
2874 * period = -------------------
2875 * @nsec * sample_freq
2880 * Reduce accuracy by one bit such that @a and @b converge
2881 * to a similar magnitude.
2883 #define REDUCE_FLS(a, b) \
2884 do { \
2885 if (a##_fls > b##_fls) { \
2886 a >>= 1; \
2887 a##_fls--; \
2888 } else { \
2889 b >>= 1; \
2890 b##_fls--; \
2892 } while (0)
2895 * Reduce accuracy until either term fits in a u64, then proceed with
2896 * the other, so that finally we can do a u64/u64 division.
2898 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899 REDUCE_FLS(nsec, frequency);
2900 REDUCE_FLS(sec, count);
2903 if (count_fls + sec_fls > 64) {
2904 divisor = nsec * frequency;
2906 while (count_fls + sec_fls > 64) {
2907 REDUCE_FLS(count, sec);
2908 divisor >>= 1;
2911 dividend = count * sec;
2912 } else {
2913 dividend = count * sec;
2915 while (nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 dividend >>= 1;
2920 divisor = nsec * frequency;
2923 if (!divisor)
2924 return dividend;
2926 return div64_u64(dividend, divisor);
2929 static DEFINE_PER_CPU(int, perf_throttled_count);
2930 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2932 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2934 struct hw_perf_event *hwc = &event->hw;
2935 s64 period, sample_period;
2936 s64 delta;
2938 period = perf_calculate_period(event, nsec, count);
2940 delta = (s64)(period - hwc->sample_period);
2941 delta = (delta + 7) / 8; /* low pass filter */
2943 sample_period = hwc->sample_period + delta;
2945 if (!sample_period)
2946 sample_period = 1;
2948 hwc->sample_period = sample_period;
2950 if (local64_read(&hwc->period_left) > 8*sample_period) {
2951 if (disable)
2952 event->pmu->stop(event, PERF_EF_UPDATE);
2954 local64_set(&hwc->period_left, 0);
2956 if (disable)
2957 event->pmu->start(event, PERF_EF_RELOAD);
2962 * combine freq adjustment with unthrottling to avoid two passes over the
2963 * events. At the same time, make sure, having freq events does not change
2964 * the rate of unthrottling as that would introduce bias.
2966 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967 int needs_unthr)
2969 struct perf_event *event;
2970 struct hw_perf_event *hwc;
2971 u64 now, period = TICK_NSEC;
2972 s64 delta;
2975 * only need to iterate over all events iff:
2976 * - context have events in frequency mode (needs freq adjust)
2977 * - there are events to unthrottle on this cpu
2979 if (!(ctx->nr_freq || needs_unthr))
2980 return;
2982 raw_spin_lock(&ctx->lock);
2983 perf_pmu_disable(ctx->pmu);
2985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986 if (event->state != PERF_EVENT_STATE_ACTIVE)
2987 continue;
2989 if (!event_filter_match(event))
2990 continue;
2992 perf_pmu_disable(event->pmu);
2994 hwc = &event->hw;
2996 if (hwc->interrupts == MAX_INTERRUPTS) {
2997 hwc->interrupts = 0;
2998 perf_log_throttle(event, 1);
2999 event->pmu->start(event, 0);
3002 if (!event->attr.freq || !event->attr.sample_freq)
3003 goto next;
3006 * stop the event and update event->count
3008 event->pmu->stop(event, PERF_EF_UPDATE);
3010 now = local64_read(&event->count);
3011 delta = now - hwc->freq_count_stamp;
3012 hwc->freq_count_stamp = now;
3015 * restart the event
3016 * reload only if value has changed
3017 * we have stopped the event so tell that
3018 * to perf_adjust_period() to avoid stopping it
3019 * twice.
3021 if (delta > 0)
3022 perf_adjust_period(event, period, delta, false);
3024 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025 next:
3026 perf_pmu_enable(event->pmu);
3029 perf_pmu_enable(ctx->pmu);
3030 raw_spin_unlock(&ctx->lock);
3034 * Round-robin a context's events:
3036 static void rotate_ctx(struct perf_event_context *ctx)
3039 * Rotate the first entry last of non-pinned groups. Rotation might be
3040 * disabled by the inheritance code.
3042 if (!ctx->rotate_disable)
3043 list_rotate_left(&ctx->flexible_groups);
3046 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3048 struct perf_event_context *ctx = NULL;
3049 int rotate = 0;
3051 if (cpuctx->ctx.nr_events) {
3052 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053 rotate = 1;
3056 ctx = cpuctx->task_ctx;
3057 if (ctx && ctx->nr_events) {
3058 if (ctx->nr_events != ctx->nr_active)
3059 rotate = 1;
3062 if (!rotate)
3063 goto done;
3065 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3066 perf_pmu_disable(cpuctx->ctx.pmu);
3068 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069 if (ctx)
3070 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3072 rotate_ctx(&cpuctx->ctx);
3073 if (ctx)
3074 rotate_ctx(ctx);
3076 perf_event_sched_in(cpuctx, ctx, current);
3078 perf_pmu_enable(cpuctx->ctx.pmu);
3079 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080 done:
3082 return rotate;
3085 #ifdef CONFIG_NO_HZ_FULL
3086 bool perf_event_can_stop_tick(void)
3088 if (atomic_read(&nr_freq_events) ||
3089 __this_cpu_read(perf_throttled_count))
3090 return false;
3091 else
3092 return true;
3094 #endif
3096 void perf_event_task_tick(void)
3098 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099 struct perf_event_context *ctx, *tmp;
3100 int throttled;
3102 WARN_ON(!irqs_disabled());
3104 __this_cpu_inc(perf_throttled_seq);
3105 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3107 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108 perf_adjust_freq_unthr_context(ctx, throttled);
3111 static int event_enable_on_exec(struct perf_event *event,
3112 struct perf_event_context *ctx)
3114 if (!event->attr.enable_on_exec)
3115 return 0;
3117 event->attr.enable_on_exec = 0;
3118 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119 return 0;
3121 __perf_event_mark_enabled(event);
3123 return 1;
3127 * Enable all of a task's events that have been marked enable-on-exec.
3128 * This expects task == current.
3130 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3132 struct perf_event_context *clone_ctx = NULL;
3133 struct perf_event *event;
3134 unsigned long flags;
3135 int enabled = 0;
3136 int ret;
3138 local_irq_save(flags);
3139 if (!ctx || !ctx->nr_events)
3140 goto out;
3143 * We must ctxsw out cgroup events to avoid conflict
3144 * when invoking perf_task_event_sched_in() later on
3145 * in this function. Otherwise we end up trying to
3146 * ctxswin cgroup events which are already scheduled
3147 * in.
3149 perf_cgroup_sched_out(current, NULL);
3151 raw_spin_lock(&ctx->lock);
3152 task_ctx_sched_out(ctx);
3154 list_for_each_entry(event, &ctx->event_list, event_entry) {
3155 ret = event_enable_on_exec(event, ctx);
3156 if (ret)
3157 enabled = 1;
3161 * Unclone this context if we enabled any event.
3163 if (enabled)
3164 clone_ctx = unclone_ctx(ctx);
3166 raw_spin_unlock(&ctx->lock);
3169 * Also calls ctxswin for cgroup events, if any:
3171 perf_event_context_sched_in(ctx, ctx->task);
3172 out:
3173 local_irq_restore(flags);
3175 if (clone_ctx)
3176 put_ctx(clone_ctx);
3179 void perf_event_exec(void)
3181 struct perf_event_context *ctx;
3182 int ctxn;
3184 rcu_read_lock();
3185 for_each_task_context_nr(ctxn) {
3186 ctx = current->perf_event_ctxp[ctxn];
3187 if (!ctx)
3188 continue;
3190 perf_event_enable_on_exec(ctx);
3192 rcu_read_unlock();
3196 * Cross CPU call to read the hardware event
3198 static void __perf_event_read(void *info)
3200 struct perf_event *event = info;
3201 struct perf_event_context *ctx = event->ctx;
3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3205 * If this is a task context, we need to check whether it is
3206 * the current task context of this cpu. If not it has been
3207 * scheduled out before the smp call arrived. In that case
3208 * event->count would have been updated to a recent sample
3209 * when the event was scheduled out.
3211 if (ctx->task && cpuctx->task_ctx != ctx)
3212 return;
3214 raw_spin_lock(&ctx->lock);
3215 if (ctx->is_active) {
3216 update_context_time(ctx);
3217 update_cgrp_time_from_event(event);
3219 update_event_times(event);
3220 if (event->state == PERF_EVENT_STATE_ACTIVE)
3221 event->pmu->read(event);
3222 raw_spin_unlock(&ctx->lock);
3225 static inline u64 perf_event_count(struct perf_event *event)
3227 if (event->pmu->count)
3228 return event->pmu->count(event);
3230 return __perf_event_count(event);
3233 static u64 perf_event_read(struct perf_event *event)
3236 * If event is enabled and currently active on a CPU, update the
3237 * value in the event structure:
3239 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240 smp_call_function_single(event->oncpu,
3241 __perf_event_read, event, 1);
3242 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3243 struct perf_event_context *ctx = event->ctx;
3244 unsigned long flags;
3246 raw_spin_lock_irqsave(&ctx->lock, flags);
3248 * may read while context is not active
3249 * (e.g., thread is blocked), in that case
3250 * we cannot update context time
3252 if (ctx->is_active) {
3253 update_context_time(ctx);
3254 update_cgrp_time_from_event(event);
3256 update_event_times(event);
3257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3260 return perf_event_count(event);
3264 * Initialize the perf_event context in a task_struct:
3266 static void __perf_event_init_context(struct perf_event_context *ctx)
3268 raw_spin_lock_init(&ctx->lock);
3269 mutex_init(&ctx->mutex);
3270 INIT_LIST_HEAD(&ctx->active_ctx_list);
3271 INIT_LIST_HEAD(&ctx->pinned_groups);
3272 INIT_LIST_HEAD(&ctx->flexible_groups);
3273 INIT_LIST_HEAD(&ctx->event_list);
3274 atomic_set(&ctx->refcount, 1);
3275 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3278 static struct perf_event_context *
3279 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3281 struct perf_event_context *ctx;
3283 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284 if (!ctx)
3285 return NULL;
3287 __perf_event_init_context(ctx);
3288 if (task) {
3289 ctx->task = task;
3290 get_task_struct(task);
3292 ctx->pmu = pmu;
3294 return ctx;
3297 static struct task_struct *
3298 find_lively_task_by_vpid(pid_t vpid)
3300 struct task_struct *task;
3301 int err;
3303 rcu_read_lock();
3304 if (!vpid)
3305 task = current;
3306 else
3307 task = find_task_by_vpid(vpid);
3308 if (task)
3309 get_task_struct(task);
3310 rcu_read_unlock();
3312 if (!task)
3313 return ERR_PTR(-ESRCH);
3315 /* Reuse ptrace permission checks for now. */
3316 err = -EACCES;
3317 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3318 goto errout;
3320 return task;
3321 errout:
3322 put_task_struct(task);
3323 return ERR_PTR(err);
3328 * Returns a matching context with refcount and pincount.
3330 static struct perf_event_context *
3331 find_get_context(struct pmu *pmu, struct task_struct *task,
3332 struct perf_event *event)
3334 struct perf_event_context *ctx, *clone_ctx = NULL;
3335 struct perf_cpu_context *cpuctx;
3336 void *task_ctx_data = NULL;
3337 unsigned long flags;
3338 int ctxn, err;
3339 int cpu = event->cpu;
3341 if (!task) {
3342 /* Must be root to operate on a CPU event: */
3343 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3344 return ERR_PTR(-EACCES);
3347 * We could be clever and allow to attach a event to an
3348 * offline CPU and activate it when the CPU comes up, but
3349 * that's for later.
3351 if (!cpu_online(cpu))
3352 return ERR_PTR(-ENODEV);
3354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3355 ctx = &cpuctx->ctx;
3356 get_ctx(ctx);
3357 ++ctx->pin_count;
3359 return ctx;
3362 err = -EINVAL;
3363 ctxn = pmu->task_ctx_nr;
3364 if (ctxn < 0)
3365 goto errout;
3367 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369 if (!task_ctx_data) {
3370 err = -ENOMEM;
3371 goto errout;
3375 retry:
3376 ctx = perf_lock_task_context(task, ctxn, &flags);
3377 if (ctx) {
3378 clone_ctx = unclone_ctx(ctx);
3379 ++ctx->pin_count;
3381 if (task_ctx_data && !ctx->task_ctx_data) {
3382 ctx->task_ctx_data = task_ctx_data;
3383 task_ctx_data = NULL;
3385 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3387 if (clone_ctx)
3388 put_ctx(clone_ctx);
3389 } else {
3390 ctx = alloc_perf_context(pmu, task);
3391 err = -ENOMEM;
3392 if (!ctx)
3393 goto errout;
3395 if (task_ctx_data) {
3396 ctx->task_ctx_data = task_ctx_data;
3397 task_ctx_data = NULL;
3400 err = 0;
3401 mutex_lock(&task->perf_event_mutex);
3403 * If it has already passed perf_event_exit_task().
3404 * we must see PF_EXITING, it takes this mutex too.
3406 if (task->flags & PF_EXITING)
3407 err = -ESRCH;
3408 else if (task->perf_event_ctxp[ctxn])
3409 err = -EAGAIN;
3410 else {
3411 get_ctx(ctx);
3412 ++ctx->pin_count;
3413 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3415 mutex_unlock(&task->perf_event_mutex);
3417 if (unlikely(err)) {
3418 put_ctx(ctx);
3420 if (err == -EAGAIN)
3421 goto retry;
3422 goto errout;
3426 kfree(task_ctx_data);
3427 return ctx;
3429 errout:
3430 kfree(task_ctx_data);
3431 return ERR_PTR(err);
3434 static void perf_event_free_filter(struct perf_event *event);
3435 static void perf_event_free_bpf_prog(struct perf_event *event);
3437 static void free_event_rcu(struct rcu_head *head)
3439 struct perf_event *event;
3441 event = container_of(head, struct perf_event, rcu_head);
3442 if (event->ns)
3443 put_pid_ns(event->ns);
3444 perf_event_free_filter(event);
3445 kfree(event);
3448 static void ring_buffer_attach(struct perf_event *event,
3449 struct ring_buffer *rb);
3451 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3453 if (event->parent)
3454 return;
3456 if (is_cgroup_event(event))
3457 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3460 static void unaccount_event(struct perf_event *event)
3462 if (event->parent)
3463 return;
3465 if (event->attach_state & PERF_ATTACH_TASK)
3466 static_key_slow_dec_deferred(&perf_sched_events);
3467 if (event->attr.mmap || event->attr.mmap_data)
3468 atomic_dec(&nr_mmap_events);
3469 if (event->attr.comm)
3470 atomic_dec(&nr_comm_events);
3471 if (event->attr.task)
3472 atomic_dec(&nr_task_events);
3473 if (event->attr.freq)
3474 atomic_dec(&nr_freq_events);
3475 if (is_cgroup_event(event))
3476 static_key_slow_dec_deferred(&perf_sched_events);
3477 if (has_branch_stack(event))
3478 static_key_slow_dec_deferred(&perf_sched_events);
3480 unaccount_event_cpu(event, event->cpu);
3484 * The following implement mutual exclusion of events on "exclusive" pmus
3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486 * at a time, so we disallow creating events that might conflict, namely:
3488 * 1) cpu-wide events in the presence of per-task events,
3489 * 2) per-task events in the presence of cpu-wide events,
3490 * 3) two matching events on the same context.
3492 * The former two cases are handled in the allocation path (perf_event_alloc(),
3493 * __free_event()), the latter -- before the first perf_install_in_context().
3495 static int exclusive_event_init(struct perf_event *event)
3497 struct pmu *pmu = event->pmu;
3499 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500 return 0;
3503 * Prevent co-existence of per-task and cpu-wide events on the
3504 * same exclusive pmu.
3506 * Negative pmu::exclusive_cnt means there are cpu-wide
3507 * events on this "exclusive" pmu, positive means there are
3508 * per-task events.
3510 * Since this is called in perf_event_alloc() path, event::ctx
3511 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512 * to mean "per-task event", because unlike other attach states it
3513 * never gets cleared.
3515 if (event->attach_state & PERF_ATTACH_TASK) {
3516 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517 return -EBUSY;
3518 } else {
3519 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520 return -EBUSY;
3523 return 0;
3526 static void exclusive_event_destroy(struct perf_event *event)
3528 struct pmu *pmu = event->pmu;
3530 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531 return;
3533 /* see comment in exclusive_event_init() */
3534 if (event->attach_state & PERF_ATTACH_TASK)
3535 atomic_dec(&pmu->exclusive_cnt);
3536 else
3537 atomic_inc(&pmu->exclusive_cnt);
3540 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3542 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543 (e1->cpu == e2->cpu ||
3544 e1->cpu == -1 ||
3545 e2->cpu == -1))
3546 return true;
3547 return false;
3550 /* Called under the same ctx::mutex as perf_install_in_context() */
3551 static bool exclusive_event_installable(struct perf_event *event,
3552 struct perf_event_context *ctx)
3554 struct perf_event *iter_event;
3555 struct pmu *pmu = event->pmu;
3557 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558 return true;
3560 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561 if (exclusive_event_match(iter_event, event))
3562 return false;
3565 return true;
3568 static void __free_event(struct perf_event *event)
3570 if (!event->parent) {
3571 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572 put_callchain_buffers();
3575 perf_event_free_bpf_prog(event);
3577 if (event->destroy)
3578 event->destroy(event);
3580 if (event->ctx)
3581 put_ctx(event->ctx);
3583 if (event->pmu) {
3584 exclusive_event_destroy(event);
3585 module_put(event->pmu->module);
3588 call_rcu(&event->rcu_head, free_event_rcu);
3591 static void _free_event(struct perf_event *event)
3593 irq_work_sync(&event->pending);
3595 unaccount_event(event);
3597 if (event->rb) {
3599 * Can happen when we close an event with re-directed output.
3601 * Since we have a 0 refcount, perf_mmap_close() will skip
3602 * over us; possibly making our ring_buffer_put() the last.
3604 mutex_lock(&event->mmap_mutex);
3605 ring_buffer_attach(event, NULL);
3606 mutex_unlock(&event->mmap_mutex);
3609 if (is_cgroup_event(event))
3610 perf_detach_cgroup(event);
3612 __free_event(event);
3616 * Used to free events which have a known refcount of 1, such as in error paths
3617 * where the event isn't exposed yet and inherited events.
3619 static void free_event(struct perf_event *event)
3621 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622 "unexpected event refcount: %ld; ptr=%p\n",
3623 atomic_long_read(&event->refcount), event)) {
3624 /* leak to avoid use-after-free */
3625 return;
3628 _free_event(event);
3632 * Remove user event from the owner task.
3634 static void perf_remove_from_owner(struct perf_event *event)
3636 struct task_struct *owner;
3638 rcu_read_lock();
3639 owner = ACCESS_ONCE(event->owner);
3641 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642 * !owner it means the list deletion is complete and we can indeed
3643 * free this event, otherwise we need to serialize on
3644 * owner->perf_event_mutex.
3646 smp_read_barrier_depends();
3647 if (owner) {
3649 * Since delayed_put_task_struct() also drops the last
3650 * task reference we can safely take a new reference
3651 * while holding the rcu_read_lock().
3653 get_task_struct(owner);
3655 rcu_read_unlock();
3657 if (owner) {
3659 * If we're here through perf_event_exit_task() we're already
3660 * holding ctx->mutex which would be an inversion wrt. the
3661 * normal lock order.
3663 * However we can safely take this lock because its the child
3664 * ctx->mutex.
3666 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3669 * We have to re-check the event->owner field, if it is cleared
3670 * we raced with perf_event_exit_task(), acquiring the mutex
3671 * ensured they're done, and we can proceed with freeing the
3672 * event.
3674 if (event->owner)
3675 list_del_init(&event->owner_entry);
3676 mutex_unlock(&owner->perf_event_mutex);
3677 put_task_struct(owner);
3681 static void put_event(struct perf_event *event)
3683 struct perf_event_context *ctx;
3685 if (!atomic_long_dec_and_test(&event->refcount))
3686 return;
3688 if (!is_kernel_event(event))
3689 perf_remove_from_owner(event);
3692 * There are two ways this annotation is useful:
3694 * 1) there is a lock recursion from perf_event_exit_task
3695 * see the comment there.
3697 * 2) there is a lock-inversion with mmap_sem through
3698 * perf_event_read_group(), which takes faults while
3699 * holding ctx->mutex, however this is called after
3700 * the last filedesc died, so there is no possibility
3701 * to trigger the AB-BA case.
3703 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704 WARN_ON_ONCE(ctx->parent_ctx);
3705 perf_remove_from_context(event, true);
3706 perf_event_ctx_unlock(event, ctx);
3708 _free_event(event);
3711 int perf_event_release_kernel(struct perf_event *event)
3713 put_event(event);
3714 return 0;
3716 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3719 * Called when the last reference to the file is gone.
3721 static int perf_release(struct inode *inode, struct file *file)
3723 put_event(file->private_data);
3724 return 0;
3728 * Remove all orphanes events from the context.
3730 static void orphans_remove_work(struct work_struct *work)
3732 struct perf_event_context *ctx;
3733 struct perf_event *event, *tmp;
3735 ctx = container_of(work, struct perf_event_context,
3736 orphans_remove.work);
3738 mutex_lock(&ctx->mutex);
3739 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740 struct perf_event *parent_event = event->parent;
3742 if (!is_orphaned_child(event))
3743 continue;
3745 perf_remove_from_context(event, true);
3747 mutex_lock(&parent_event->child_mutex);
3748 list_del_init(&event->child_list);
3749 mutex_unlock(&parent_event->child_mutex);
3751 free_event(event);
3752 put_event(parent_event);
3755 raw_spin_lock_irq(&ctx->lock);
3756 ctx->orphans_remove_sched = false;
3757 raw_spin_unlock_irq(&ctx->lock);
3758 mutex_unlock(&ctx->mutex);
3760 put_ctx(ctx);
3763 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3765 struct perf_event *child;
3766 u64 total = 0;
3768 *enabled = 0;
3769 *running = 0;
3771 mutex_lock(&event->child_mutex);
3772 total += perf_event_read(event);
3773 *enabled += event->total_time_enabled +
3774 atomic64_read(&event->child_total_time_enabled);
3775 *running += event->total_time_running +
3776 atomic64_read(&event->child_total_time_running);
3778 list_for_each_entry(child, &event->child_list, child_list) {
3779 total += perf_event_read(child);
3780 *enabled += child->total_time_enabled;
3781 *running += child->total_time_running;
3783 mutex_unlock(&event->child_mutex);
3785 return total;
3787 EXPORT_SYMBOL_GPL(perf_event_read_value);
3789 static int perf_event_read_group(struct perf_event *event,
3790 u64 read_format, char __user *buf)
3792 struct perf_event *leader = event->group_leader, *sub;
3793 struct perf_event_context *ctx = leader->ctx;
3794 int n = 0, size = 0, ret;
3795 u64 count, enabled, running;
3796 u64 values[5];
3798 lockdep_assert_held(&ctx->mutex);
3800 count = perf_event_read_value(leader, &enabled, &running);
3802 values[n++] = 1 + leader->nr_siblings;
3803 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804 values[n++] = enabled;
3805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806 values[n++] = running;
3807 values[n++] = count;
3808 if (read_format & PERF_FORMAT_ID)
3809 values[n++] = primary_event_id(leader);
3811 size = n * sizeof(u64);
3813 if (copy_to_user(buf, values, size))
3814 return -EFAULT;
3816 ret = size;
3818 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819 n = 0;
3821 values[n++] = perf_event_read_value(sub, &enabled, &running);
3822 if (read_format & PERF_FORMAT_ID)
3823 values[n++] = primary_event_id(sub);
3825 size = n * sizeof(u64);
3827 if (copy_to_user(buf + ret, values, size)) {
3828 return -EFAULT;
3831 ret += size;
3834 return ret;
3837 static int perf_event_read_one(struct perf_event *event,
3838 u64 read_format, char __user *buf)
3840 u64 enabled, running;
3841 u64 values[4];
3842 int n = 0;
3844 values[n++] = perf_event_read_value(event, &enabled, &running);
3845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846 values[n++] = enabled;
3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848 values[n++] = running;
3849 if (read_format & PERF_FORMAT_ID)
3850 values[n++] = primary_event_id(event);
3852 if (copy_to_user(buf, values, n * sizeof(u64)))
3853 return -EFAULT;
3855 return n * sizeof(u64);
3858 static bool is_event_hup(struct perf_event *event)
3860 bool no_children;
3862 if (event->state != PERF_EVENT_STATE_EXIT)
3863 return false;
3865 mutex_lock(&event->child_mutex);
3866 no_children = list_empty(&event->child_list);
3867 mutex_unlock(&event->child_mutex);
3868 return no_children;
3872 * Read the performance event - simple non blocking version for now
3874 static ssize_t
3875 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3877 u64 read_format = event->attr.read_format;
3878 int ret;
3881 * Return end-of-file for a read on a event that is in
3882 * error state (i.e. because it was pinned but it couldn't be
3883 * scheduled on to the CPU at some point).
3885 if (event->state == PERF_EVENT_STATE_ERROR)
3886 return 0;
3888 if (count < event->read_size)
3889 return -ENOSPC;
3891 WARN_ON_ONCE(event->ctx->parent_ctx);
3892 if (read_format & PERF_FORMAT_GROUP)
3893 ret = perf_event_read_group(event, read_format, buf);
3894 else
3895 ret = perf_event_read_one(event, read_format, buf);
3897 return ret;
3900 static ssize_t
3901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3903 struct perf_event *event = file->private_data;
3904 struct perf_event_context *ctx;
3905 int ret;
3907 ctx = perf_event_ctx_lock(event);
3908 ret = perf_read_hw(event, buf, count);
3909 perf_event_ctx_unlock(event, ctx);
3911 return ret;
3914 static unsigned int perf_poll(struct file *file, poll_table *wait)
3916 struct perf_event *event = file->private_data;
3917 struct ring_buffer *rb;
3918 unsigned int events = POLLHUP;
3920 poll_wait(file, &event->waitq, wait);
3922 if (is_event_hup(event))
3923 return events;
3926 * Pin the event->rb by taking event->mmap_mutex; otherwise
3927 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3929 mutex_lock(&event->mmap_mutex);
3930 rb = event->rb;
3931 if (rb)
3932 events = atomic_xchg(&rb->poll, 0);
3933 mutex_unlock(&event->mmap_mutex);
3934 return events;
3937 static void _perf_event_reset(struct perf_event *event)
3939 (void)perf_event_read(event);
3940 local64_set(&event->count, 0);
3941 perf_event_update_userpage(event);
3945 * Holding the top-level event's child_mutex means that any
3946 * descendant process that has inherited this event will block
3947 * in sync_child_event if it goes to exit, thus satisfying the
3948 * task existence requirements of perf_event_enable/disable.
3950 static void perf_event_for_each_child(struct perf_event *event,
3951 void (*func)(struct perf_event *))
3953 struct perf_event *child;
3955 WARN_ON_ONCE(event->ctx->parent_ctx);
3957 mutex_lock(&event->child_mutex);
3958 func(event);
3959 list_for_each_entry(child, &event->child_list, child_list)
3960 func(child);
3961 mutex_unlock(&event->child_mutex);
3964 static void perf_event_for_each(struct perf_event *event,
3965 void (*func)(struct perf_event *))
3967 struct perf_event_context *ctx = event->ctx;
3968 struct perf_event *sibling;
3970 lockdep_assert_held(&ctx->mutex);
3972 event = event->group_leader;
3974 perf_event_for_each_child(event, func);
3975 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976 perf_event_for_each_child(sibling, func);
3979 struct period_event {
3980 struct perf_event *event;
3981 u64 value;
3984 static int __perf_event_period(void *info)
3986 struct period_event *pe = info;
3987 struct perf_event *event = pe->event;
3988 struct perf_event_context *ctx = event->ctx;
3989 u64 value = pe->value;
3990 bool active;
3992 raw_spin_lock(&ctx->lock);
3993 if (event->attr.freq) {
3994 event->attr.sample_freq = value;
3995 } else {
3996 event->attr.sample_period = value;
3997 event->hw.sample_period = value;
4000 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4001 if (active) {
4002 perf_pmu_disable(ctx->pmu);
4003 event->pmu->stop(event, PERF_EF_UPDATE);
4006 local64_set(&event->hw.period_left, 0);
4008 if (active) {
4009 event->pmu->start(event, PERF_EF_RELOAD);
4010 perf_pmu_enable(ctx->pmu);
4012 raw_spin_unlock(&ctx->lock);
4014 return 0;
4017 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4019 struct period_event pe = { .event = event, };
4020 struct perf_event_context *ctx = event->ctx;
4021 struct task_struct *task;
4022 u64 value;
4024 if (!is_sampling_event(event))
4025 return -EINVAL;
4027 if (copy_from_user(&value, arg, sizeof(value)))
4028 return -EFAULT;
4030 if (!value)
4031 return -EINVAL;
4033 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4034 return -EINVAL;
4036 task = ctx->task;
4037 pe.value = value;
4039 if (!task) {
4040 cpu_function_call(event->cpu, __perf_event_period, &pe);
4041 return 0;
4044 retry:
4045 if (!task_function_call(task, __perf_event_period, &pe))
4046 return 0;
4048 raw_spin_lock_irq(&ctx->lock);
4049 if (ctx->is_active) {
4050 raw_spin_unlock_irq(&ctx->lock);
4051 task = ctx->task;
4052 goto retry;
4055 __perf_event_period(&pe);
4056 raw_spin_unlock_irq(&ctx->lock);
4058 return 0;
4061 static const struct file_operations perf_fops;
4063 static inline int perf_fget_light(int fd, struct fd *p)
4065 struct fd f = fdget(fd);
4066 if (!f.file)
4067 return -EBADF;
4069 if (f.file->f_op != &perf_fops) {
4070 fdput(f);
4071 return -EBADF;
4073 *p = f;
4074 return 0;
4077 static int perf_event_set_output(struct perf_event *event,
4078 struct perf_event *output_event);
4079 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4082 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4084 void (*func)(struct perf_event *);
4085 u32 flags = arg;
4087 switch (cmd) {
4088 case PERF_EVENT_IOC_ENABLE:
4089 func = _perf_event_enable;
4090 break;
4091 case PERF_EVENT_IOC_DISABLE:
4092 func = _perf_event_disable;
4093 break;
4094 case PERF_EVENT_IOC_RESET:
4095 func = _perf_event_reset;
4096 break;
4098 case PERF_EVENT_IOC_REFRESH:
4099 return _perf_event_refresh(event, arg);
4101 case PERF_EVENT_IOC_PERIOD:
4102 return perf_event_period(event, (u64 __user *)arg);
4104 case PERF_EVENT_IOC_ID:
4106 u64 id = primary_event_id(event);
4108 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4109 return -EFAULT;
4110 return 0;
4113 case PERF_EVENT_IOC_SET_OUTPUT:
4115 int ret;
4116 if (arg != -1) {
4117 struct perf_event *output_event;
4118 struct fd output;
4119 ret = perf_fget_light(arg, &output);
4120 if (ret)
4121 return ret;
4122 output_event = output.file->private_data;
4123 ret = perf_event_set_output(event, output_event);
4124 fdput(output);
4125 } else {
4126 ret = perf_event_set_output(event, NULL);
4128 return ret;
4131 case PERF_EVENT_IOC_SET_FILTER:
4132 return perf_event_set_filter(event, (void __user *)arg);
4134 case PERF_EVENT_IOC_SET_BPF:
4135 return perf_event_set_bpf_prog(event, arg);
4137 default:
4138 return -ENOTTY;
4141 if (flags & PERF_IOC_FLAG_GROUP)
4142 perf_event_for_each(event, func);
4143 else
4144 perf_event_for_each_child(event, func);
4146 return 0;
4149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4151 struct perf_event *event = file->private_data;
4152 struct perf_event_context *ctx;
4153 long ret;
4155 ctx = perf_event_ctx_lock(event);
4156 ret = _perf_ioctl(event, cmd, arg);
4157 perf_event_ctx_unlock(event, ctx);
4159 return ret;
4162 #ifdef CONFIG_COMPAT
4163 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4164 unsigned long arg)
4166 switch (_IOC_NR(cmd)) {
4167 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4168 case _IOC_NR(PERF_EVENT_IOC_ID):
4169 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4170 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4171 cmd &= ~IOCSIZE_MASK;
4172 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4174 break;
4176 return perf_ioctl(file, cmd, arg);
4178 #else
4179 # define perf_compat_ioctl NULL
4180 #endif
4182 int perf_event_task_enable(void)
4184 struct perf_event_context *ctx;
4185 struct perf_event *event;
4187 mutex_lock(&current->perf_event_mutex);
4188 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4189 ctx = perf_event_ctx_lock(event);
4190 perf_event_for_each_child(event, _perf_event_enable);
4191 perf_event_ctx_unlock(event, ctx);
4193 mutex_unlock(&current->perf_event_mutex);
4195 return 0;
4198 int perf_event_task_disable(void)
4200 struct perf_event_context *ctx;
4201 struct perf_event *event;
4203 mutex_lock(&current->perf_event_mutex);
4204 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4205 ctx = perf_event_ctx_lock(event);
4206 perf_event_for_each_child(event, _perf_event_disable);
4207 perf_event_ctx_unlock(event, ctx);
4209 mutex_unlock(&current->perf_event_mutex);
4211 return 0;
4214 static int perf_event_index(struct perf_event *event)
4216 if (event->hw.state & PERF_HES_STOPPED)
4217 return 0;
4219 if (event->state != PERF_EVENT_STATE_ACTIVE)
4220 return 0;
4222 return event->pmu->event_idx(event);
4225 static void calc_timer_values(struct perf_event *event,
4226 u64 *now,
4227 u64 *enabled,
4228 u64 *running)
4230 u64 ctx_time;
4232 *now = perf_clock();
4233 ctx_time = event->shadow_ctx_time + *now;
4234 *enabled = ctx_time - event->tstamp_enabled;
4235 *running = ctx_time - event->tstamp_running;
4238 static void perf_event_init_userpage(struct perf_event *event)
4240 struct perf_event_mmap_page *userpg;
4241 struct ring_buffer *rb;
4243 rcu_read_lock();
4244 rb = rcu_dereference(event->rb);
4245 if (!rb)
4246 goto unlock;
4248 userpg = rb->user_page;
4250 /* Allow new userspace to detect that bit 0 is deprecated */
4251 userpg->cap_bit0_is_deprecated = 1;
4252 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4253 userpg->data_offset = PAGE_SIZE;
4254 userpg->data_size = perf_data_size(rb);
4256 unlock:
4257 rcu_read_unlock();
4260 void __weak arch_perf_update_userpage(
4261 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4266 * Callers need to ensure there can be no nesting of this function, otherwise
4267 * the seqlock logic goes bad. We can not serialize this because the arch
4268 * code calls this from NMI context.
4270 void perf_event_update_userpage(struct perf_event *event)
4272 struct perf_event_mmap_page *userpg;
4273 struct ring_buffer *rb;
4274 u64 enabled, running, now;
4276 rcu_read_lock();
4277 rb = rcu_dereference(event->rb);
4278 if (!rb)
4279 goto unlock;
4282 * compute total_time_enabled, total_time_running
4283 * based on snapshot values taken when the event
4284 * was last scheduled in.
4286 * we cannot simply called update_context_time()
4287 * because of locking issue as we can be called in
4288 * NMI context
4290 calc_timer_values(event, &now, &enabled, &running);
4292 userpg = rb->user_page;
4294 * Disable preemption so as to not let the corresponding user-space
4295 * spin too long if we get preempted.
4297 preempt_disable();
4298 ++userpg->lock;
4299 barrier();
4300 userpg->index = perf_event_index(event);
4301 userpg->offset = perf_event_count(event);
4302 if (userpg->index)
4303 userpg->offset -= local64_read(&event->hw.prev_count);
4305 userpg->time_enabled = enabled +
4306 atomic64_read(&event->child_total_time_enabled);
4308 userpg->time_running = running +
4309 atomic64_read(&event->child_total_time_running);
4311 arch_perf_update_userpage(event, userpg, now);
4313 barrier();
4314 ++userpg->lock;
4315 preempt_enable();
4316 unlock:
4317 rcu_read_unlock();
4320 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4322 struct perf_event *event = vma->vm_file->private_data;
4323 struct ring_buffer *rb;
4324 int ret = VM_FAULT_SIGBUS;
4326 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4327 if (vmf->pgoff == 0)
4328 ret = 0;
4329 return ret;
4332 rcu_read_lock();
4333 rb = rcu_dereference(event->rb);
4334 if (!rb)
4335 goto unlock;
4337 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4338 goto unlock;
4340 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4341 if (!vmf->page)
4342 goto unlock;
4344 get_page(vmf->page);
4345 vmf->page->mapping = vma->vm_file->f_mapping;
4346 vmf->page->index = vmf->pgoff;
4348 ret = 0;
4349 unlock:
4350 rcu_read_unlock();
4352 return ret;
4355 static void ring_buffer_attach(struct perf_event *event,
4356 struct ring_buffer *rb)
4358 struct ring_buffer *old_rb = NULL;
4359 unsigned long flags;
4361 if (event->rb) {
4363 * Should be impossible, we set this when removing
4364 * event->rb_entry and wait/clear when adding event->rb_entry.
4366 WARN_ON_ONCE(event->rcu_pending);
4368 old_rb = event->rb;
4369 spin_lock_irqsave(&old_rb->event_lock, flags);
4370 list_del_rcu(&event->rb_entry);
4371 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4373 event->rcu_batches = get_state_synchronize_rcu();
4374 event->rcu_pending = 1;
4377 if (rb) {
4378 if (event->rcu_pending) {
4379 cond_synchronize_rcu(event->rcu_batches);
4380 event->rcu_pending = 0;
4383 spin_lock_irqsave(&rb->event_lock, flags);
4384 list_add_rcu(&event->rb_entry, &rb->event_list);
4385 spin_unlock_irqrestore(&rb->event_lock, flags);
4388 rcu_assign_pointer(event->rb, rb);
4390 if (old_rb) {
4391 ring_buffer_put(old_rb);
4393 * Since we detached before setting the new rb, so that we
4394 * could attach the new rb, we could have missed a wakeup.
4395 * Provide it now.
4397 wake_up_all(&event->waitq);
4401 static void ring_buffer_wakeup(struct perf_event *event)
4403 struct ring_buffer *rb;
4405 rcu_read_lock();
4406 rb = rcu_dereference(event->rb);
4407 if (rb) {
4408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4409 wake_up_all(&event->waitq);
4411 rcu_read_unlock();
4414 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4416 struct ring_buffer *rb;
4418 rcu_read_lock();
4419 rb = rcu_dereference(event->rb);
4420 if (rb) {
4421 if (!atomic_inc_not_zero(&rb->refcount))
4422 rb = NULL;
4424 rcu_read_unlock();
4426 return rb;
4429 void ring_buffer_put(struct ring_buffer *rb)
4431 if (!atomic_dec_and_test(&rb->refcount))
4432 return;
4434 WARN_ON_ONCE(!list_empty(&rb->event_list));
4436 call_rcu(&rb->rcu_head, rb_free_rcu);
4439 static void perf_mmap_open(struct vm_area_struct *vma)
4441 struct perf_event *event = vma->vm_file->private_data;
4443 atomic_inc(&event->mmap_count);
4444 atomic_inc(&event->rb->mmap_count);
4446 if (vma->vm_pgoff)
4447 atomic_inc(&event->rb->aux_mmap_count);
4449 if (event->pmu->event_mapped)
4450 event->pmu->event_mapped(event);
4454 * A buffer can be mmap()ed multiple times; either directly through the same
4455 * event, or through other events by use of perf_event_set_output().
4457 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4458 * the buffer here, where we still have a VM context. This means we need
4459 * to detach all events redirecting to us.
4461 static void perf_mmap_close(struct vm_area_struct *vma)
4463 struct perf_event *event = vma->vm_file->private_data;
4465 struct ring_buffer *rb = ring_buffer_get(event);
4466 struct user_struct *mmap_user = rb->mmap_user;
4467 int mmap_locked = rb->mmap_locked;
4468 unsigned long size = perf_data_size(rb);
4470 if (event->pmu->event_unmapped)
4471 event->pmu->event_unmapped(event);
4474 * rb->aux_mmap_count will always drop before rb->mmap_count and
4475 * event->mmap_count, so it is ok to use event->mmap_mutex to
4476 * serialize with perf_mmap here.
4478 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4479 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4480 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4481 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4483 rb_free_aux(rb);
4484 mutex_unlock(&event->mmap_mutex);
4487 atomic_dec(&rb->mmap_count);
4489 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4490 goto out_put;
4492 ring_buffer_attach(event, NULL);
4493 mutex_unlock(&event->mmap_mutex);
4495 /* If there's still other mmap()s of this buffer, we're done. */
4496 if (atomic_read(&rb->mmap_count))
4497 goto out_put;
4500 * No other mmap()s, detach from all other events that might redirect
4501 * into the now unreachable buffer. Somewhat complicated by the
4502 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4504 again:
4505 rcu_read_lock();
4506 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4507 if (!atomic_long_inc_not_zero(&event->refcount)) {
4509 * This event is en-route to free_event() which will
4510 * detach it and remove it from the list.
4512 continue;
4514 rcu_read_unlock();
4516 mutex_lock(&event->mmap_mutex);
4518 * Check we didn't race with perf_event_set_output() which can
4519 * swizzle the rb from under us while we were waiting to
4520 * acquire mmap_mutex.
4522 * If we find a different rb; ignore this event, a next
4523 * iteration will no longer find it on the list. We have to
4524 * still restart the iteration to make sure we're not now
4525 * iterating the wrong list.
4527 if (event->rb == rb)
4528 ring_buffer_attach(event, NULL);
4530 mutex_unlock(&event->mmap_mutex);
4531 put_event(event);
4534 * Restart the iteration; either we're on the wrong list or
4535 * destroyed its integrity by doing a deletion.
4537 goto again;
4539 rcu_read_unlock();
4542 * It could be there's still a few 0-ref events on the list; they'll
4543 * get cleaned up by free_event() -- they'll also still have their
4544 * ref on the rb and will free it whenever they are done with it.
4546 * Aside from that, this buffer is 'fully' detached and unmapped,
4547 * undo the VM accounting.
4550 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4551 vma->vm_mm->pinned_vm -= mmap_locked;
4552 free_uid(mmap_user);
4554 out_put:
4555 ring_buffer_put(rb); /* could be last */
4558 static const struct vm_operations_struct perf_mmap_vmops = {
4559 .open = perf_mmap_open,
4560 .close = perf_mmap_close, /* non mergable */
4561 .fault = perf_mmap_fault,
4562 .page_mkwrite = perf_mmap_fault,
4565 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4567 struct perf_event *event = file->private_data;
4568 unsigned long user_locked, user_lock_limit;
4569 struct user_struct *user = current_user();
4570 unsigned long locked, lock_limit;
4571 struct ring_buffer *rb = NULL;
4572 unsigned long vma_size;
4573 unsigned long nr_pages;
4574 long user_extra = 0, extra = 0;
4575 int ret = 0, flags = 0;
4578 * Don't allow mmap() of inherited per-task counters. This would
4579 * create a performance issue due to all children writing to the
4580 * same rb.
4582 if (event->cpu == -1 && event->attr.inherit)
4583 return -EINVAL;
4585 if (!(vma->vm_flags & VM_SHARED))
4586 return -EINVAL;
4588 vma_size = vma->vm_end - vma->vm_start;
4590 if (vma->vm_pgoff == 0) {
4591 nr_pages = (vma_size / PAGE_SIZE) - 1;
4592 } else {
4594 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4595 * mapped, all subsequent mappings should have the same size
4596 * and offset. Must be above the normal perf buffer.
4598 u64 aux_offset, aux_size;
4600 if (!event->rb)
4601 return -EINVAL;
4603 nr_pages = vma_size / PAGE_SIZE;
4605 mutex_lock(&event->mmap_mutex);
4606 ret = -EINVAL;
4608 rb = event->rb;
4609 if (!rb)
4610 goto aux_unlock;
4612 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4613 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4615 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4616 goto aux_unlock;
4618 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4619 goto aux_unlock;
4621 /* already mapped with a different offset */
4622 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4623 goto aux_unlock;
4625 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4626 goto aux_unlock;
4628 /* already mapped with a different size */
4629 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4630 goto aux_unlock;
4632 if (!is_power_of_2(nr_pages))
4633 goto aux_unlock;
4635 if (!atomic_inc_not_zero(&rb->mmap_count))
4636 goto aux_unlock;
4638 if (rb_has_aux(rb)) {
4639 atomic_inc(&rb->aux_mmap_count);
4640 ret = 0;
4641 goto unlock;
4644 atomic_set(&rb->aux_mmap_count, 1);
4645 user_extra = nr_pages;
4647 goto accounting;
4651 * If we have rb pages ensure they're a power-of-two number, so we
4652 * can do bitmasks instead of modulo.
4654 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4655 return -EINVAL;
4657 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4658 return -EINVAL;
4660 WARN_ON_ONCE(event->ctx->parent_ctx);
4661 again:
4662 mutex_lock(&event->mmap_mutex);
4663 if (event->rb) {
4664 if (event->rb->nr_pages != nr_pages) {
4665 ret = -EINVAL;
4666 goto unlock;
4669 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4671 * Raced against perf_mmap_close() through
4672 * perf_event_set_output(). Try again, hope for better
4673 * luck.
4675 mutex_unlock(&event->mmap_mutex);
4676 goto again;
4679 goto unlock;
4682 user_extra = nr_pages + 1;
4684 accounting:
4685 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4688 * Increase the limit linearly with more CPUs:
4690 user_lock_limit *= num_online_cpus();
4692 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4694 if (user_locked > user_lock_limit)
4695 extra = user_locked - user_lock_limit;
4697 lock_limit = rlimit(RLIMIT_MEMLOCK);
4698 lock_limit >>= PAGE_SHIFT;
4699 locked = vma->vm_mm->pinned_vm + extra;
4701 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4702 !capable(CAP_IPC_LOCK)) {
4703 ret = -EPERM;
4704 goto unlock;
4707 WARN_ON(!rb && event->rb);
4709 if (vma->vm_flags & VM_WRITE)
4710 flags |= RING_BUFFER_WRITABLE;
4712 if (!rb) {
4713 rb = rb_alloc(nr_pages,
4714 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4715 event->cpu, flags);
4717 if (!rb) {
4718 ret = -ENOMEM;
4719 goto unlock;
4722 atomic_set(&rb->mmap_count, 1);
4723 rb->mmap_user = get_current_user();
4724 rb->mmap_locked = extra;
4726 ring_buffer_attach(event, rb);
4728 perf_event_init_userpage(event);
4729 perf_event_update_userpage(event);
4730 } else {
4731 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4732 event->attr.aux_watermark, flags);
4733 if (!ret)
4734 rb->aux_mmap_locked = extra;
4737 unlock:
4738 if (!ret) {
4739 atomic_long_add(user_extra, &user->locked_vm);
4740 vma->vm_mm->pinned_vm += extra;
4742 atomic_inc(&event->mmap_count);
4743 } else if (rb) {
4744 atomic_dec(&rb->mmap_count);
4746 aux_unlock:
4747 mutex_unlock(&event->mmap_mutex);
4750 * Since pinned accounting is per vm we cannot allow fork() to copy our
4751 * vma.
4753 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4754 vma->vm_ops = &perf_mmap_vmops;
4756 if (event->pmu->event_mapped)
4757 event->pmu->event_mapped(event);
4759 return ret;
4762 static int perf_fasync(int fd, struct file *filp, int on)
4764 struct inode *inode = file_inode(filp);
4765 struct perf_event *event = filp->private_data;
4766 int retval;
4768 mutex_lock(&inode->i_mutex);
4769 retval = fasync_helper(fd, filp, on, &event->fasync);
4770 mutex_unlock(&inode->i_mutex);
4772 if (retval < 0)
4773 return retval;
4775 return 0;
4778 static const struct file_operations perf_fops = {
4779 .llseek = no_llseek,
4780 .release = perf_release,
4781 .read = perf_read,
4782 .poll = perf_poll,
4783 .unlocked_ioctl = perf_ioctl,
4784 .compat_ioctl = perf_compat_ioctl,
4785 .mmap = perf_mmap,
4786 .fasync = perf_fasync,
4790 * Perf event wakeup
4792 * If there's data, ensure we set the poll() state and publish everything
4793 * to user-space before waking everybody up.
4796 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4798 /* only the parent has fasync state */
4799 if (event->parent)
4800 event = event->parent;
4801 return &event->fasync;
4804 void perf_event_wakeup(struct perf_event *event)
4806 ring_buffer_wakeup(event);
4808 if (event->pending_kill) {
4809 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4810 event->pending_kill = 0;
4814 static void perf_pending_event(struct irq_work *entry)
4816 struct perf_event *event = container_of(entry,
4817 struct perf_event, pending);
4818 int rctx;
4820 rctx = perf_swevent_get_recursion_context();
4822 * If we 'fail' here, that's OK, it means recursion is already disabled
4823 * and we won't recurse 'further'.
4826 if (event->pending_disable) {
4827 event->pending_disable = 0;
4828 __perf_event_disable(event);
4831 if (event->pending_wakeup) {
4832 event->pending_wakeup = 0;
4833 perf_event_wakeup(event);
4836 if (rctx >= 0)
4837 perf_swevent_put_recursion_context(rctx);
4841 * We assume there is only KVM supporting the callbacks.
4842 * Later on, we might change it to a list if there is
4843 * another virtualization implementation supporting the callbacks.
4845 struct perf_guest_info_callbacks *perf_guest_cbs;
4847 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4849 perf_guest_cbs = cbs;
4850 return 0;
4852 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4854 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4856 perf_guest_cbs = NULL;
4857 return 0;
4859 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4861 static void
4862 perf_output_sample_regs(struct perf_output_handle *handle,
4863 struct pt_regs *regs, u64 mask)
4865 int bit;
4867 for_each_set_bit(bit, (const unsigned long *) &mask,
4868 sizeof(mask) * BITS_PER_BYTE) {
4869 u64 val;
4871 val = perf_reg_value(regs, bit);
4872 perf_output_put(handle, val);
4876 static void perf_sample_regs_user(struct perf_regs *regs_user,
4877 struct pt_regs *regs,
4878 struct pt_regs *regs_user_copy)
4880 if (user_mode(regs)) {
4881 regs_user->abi = perf_reg_abi(current);
4882 regs_user->regs = regs;
4883 } else if (current->mm) {
4884 perf_get_regs_user(regs_user, regs, regs_user_copy);
4885 } else {
4886 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4887 regs_user->regs = NULL;
4891 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4892 struct pt_regs *regs)
4894 regs_intr->regs = regs;
4895 regs_intr->abi = perf_reg_abi(current);
4900 * Get remaining task size from user stack pointer.
4902 * It'd be better to take stack vma map and limit this more
4903 * precisly, but there's no way to get it safely under interrupt,
4904 * so using TASK_SIZE as limit.
4906 static u64 perf_ustack_task_size(struct pt_regs *regs)
4908 unsigned long addr = perf_user_stack_pointer(regs);
4910 if (!addr || addr >= TASK_SIZE)
4911 return 0;
4913 return TASK_SIZE - addr;
4916 static u16
4917 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4918 struct pt_regs *regs)
4920 u64 task_size;
4922 /* No regs, no stack pointer, no dump. */
4923 if (!regs)
4924 return 0;
4927 * Check if we fit in with the requested stack size into the:
4928 * - TASK_SIZE
4929 * If we don't, we limit the size to the TASK_SIZE.
4931 * - remaining sample size
4932 * If we don't, we customize the stack size to
4933 * fit in to the remaining sample size.
4936 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4937 stack_size = min(stack_size, (u16) task_size);
4939 /* Current header size plus static size and dynamic size. */
4940 header_size += 2 * sizeof(u64);
4942 /* Do we fit in with the current stack dump size? */
4943 if ((u16) (header_size + stack_size) < header_size) {
4945 * If we overflow the maximum size for the sample,
4946 * we customize the stack dump size to fit in.
4948 stack_size = USHRT_MAX - header_size - sizeof(u64);
4949 stack_size = round_up(stack_size, sizeof(u64));
4952 return stack_size;
4955 static void
4956 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4957 struct pt_regs *regs)
4959 /* Case of a kernel thread, nothing to dump */
4960 if (!regs) {
4961 u64 size = 0;
4962 perf_output_put(handle, size);
4963 } else {
4964 unsigned long sp;
4965 unsigned int rem;
4966 u64 dyn_size;
4969 * We dump:
4970 * static size
4971 * - the size requested by user or the best one we can fit
4972 * in to the sample max size
4973 * data
4974 * - user stack dump data
4975 * dynamic size
4976 * - the actual dumped size
4979 /* Static size. */
4980 perf_output_put(handle, dump_size);
4982 /* Data. */
4983 sp = perf_user_stack_pointer(regs);
4984 rem = __output_copy_user(handle, (void *) sp, dump_size);
4985 dyn_size = dump_size - rem;
4987 perf_output_skip(handle, rem);
4989 /* Dynamic size. */
4990 perf_output_put(handle, dyn_size);
4994 static void __perf_event_header__init_id(struct perf_event_header *header,
4995 struct perf_sample_data *data,
4996 struct perf_event *event)
4998 u64 sample_type = event->attr.sample_type;
5000 data->type = sample_type;
5001 header->size += event->id_header_size;
5003 if (sample_type & PERF_SAMPLE_TID) {
5004 /* namespace issues */
5005 data->tid_entry.pid = perf_event_pid(event, current);
5006 data->tid_entry.tid = perf_event_tid(event, current);
5009 if (sample_type & PERF_SAMPLE_TIME)
5010 data->time = perf_event_clock(event);
5012 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5013 data->id = primary_event_id(event);
5015 if (sample_type & PERF_SAMPLE_STREAM_ID)
5016 data->stream_id = event->id;
5018 if (sample_type & PERF_SAMPLE_CPU) {
5019 data->cpu_entry.cpu = raw_smp_processor_id();
5020 data->cpu_entry.reserved = 0;
5024 void perf_event_header__init_id(struct perf_event_header *header,
5025 struct perf_sample_data *data,
5026 struct perf_event *event)
5028 if (event->attr.sample_id_all)
5029 __perf_event_header__init_id(header, data, event);
5032 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5033 struct perf_sample_data *data)
5035 u64 sample_type = data->type;
5037 if (sample_type & PERF_SAMPLE_TID)
5038 perf_output_put(handle, data->tid_entry);
5040 if (sample_type & PERF_SAMPLE_TIME)
5041 perf_output_put(handle, data->time);
5043 if (sample_type & PERF_SAMPLE_ID)
5044 perf_output_put(handle, data->id);
5046 if (sample_type & PERF_SAMPLE_STREAM_ID)
5047 perf_output_put(handle, data->stream_id);
5049 if (sample_type & PERF_SAMPLE_CPU)
5050 perf_output_put(handle, data->cpu_entry);
5052 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5053 perf_output_put(handle, data->id);
5056 void perf_event__output_id_sample(struct perf_event *event,
5057 struct perf_output_handle *handle,
5058 struct perf_sample_data *sample)
5060 if (event->attr.sample_id_all)
5061 __perf_event__output_id_sample(handle, sample);
5064 static void perf_output_read_one(struct perf_output_handle *handle,
5065 struct perf_event *event,
5066 u64 enabled, u64 running)
5068 u64 read_format = event->attr.read_format;
5069 u64 values[4];
5070 int n = 0;
5072 values[n++] = perf_event_count(event);
5073 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5074 values[n++] = enabled +
5075 atomic64_read(&event->child_total_time_enabled);
5077 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5078 values[n++] = running +
5079 atomic64_read(&event->child_total_time_running);
5081 if (read_format & PERF_FORMAT_ID)
5082 values[n++] = primary_event_id(event);
5084 __output_copy(handle, values, n * sizeof(u64));
5088 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5090 static void perf_output_read_group(struct perf_output_handle *handle,
5091 struct perf_event *event,
5092 u64 enabled, u64 running)
5094 struct perf_event *leader = event->group_leader, *sub;
5095 u64 read_format = event->attr.read_format;
5096 u64 values[5];
5097 int n = 0;
5099 values[n++] = 1 + leader->nr_siblings;
5101 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5102 values[n++] = enabled;
5104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5105 values[n++] = running;
5107 if (leader != event)
5108 leader->pmu->read(leader);
5110 values[n++] = perf_event_count(leader);
5111 if (read_format & PERF_FORMAT_ID)
5112 values[n++] = primary_event_id(leader);
5114 __output_copy(handle, values, n * sizeof(u64));
5116 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5117 n = 0;
5119 if ((sub != event) &&
5120 (sub->state == PERF_EVENT_STATE_ACTIVE))
5121 sub->pmu->read(sub);
5123 values[n++] = perf_event_count(sub);
5124 if (read_format & PERF_FORMAT_ID)
5125 values[n++] = primary_event_id(sub);
5127 __output_copy(handle, values, n * sizeof(u64));
5131 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5132 PERF_FORMAT_TOTAL_TIME_RUNNING)
5134 static void perf_output_read(struct perf_output_handle *handle,
5135 struct perf_event *event)
5137 u64 enabled = 0, running = 0, now;
5138 u64 read_format = event->attr.read_format;
5141 * compute total_time_enabled, total_time_running
5142 * based on snapshot values taken when the event
5143 * was last scheduled in.
5145 * we cannot simply called update_context_time()
5146 * because of locking issue as we are called in
5147 * NMI context
5149 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5150 calc_timer_values(event, &now, &enabled, &running);
5152 if (event->attr.read_format & PERF_FORMAT_GROUP)
5153 perf_output_read_group(handle, event, enabled, running);
5154 else
5155 perf_output_read_one(handle, event, enabled, running);
5158 void perf_output_sample(struct perf_output_handle *handle,
5159 struct perf_event_header *header,
5160 struct perf_sample_data *data,
5161 struct perf_event *event)
5163 u64 sample_type = data->type;
5165 perf_output_put(handle, *header);
5167 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5168 perf_output_put(handle, data->id);
5170 if (sample_type & PERF_SAMPLE_IP)
5171 perf_output_put(handle, data->ip);
5173 if (sample_type & PERF_SAMPLE_TID)
5174 perf_output_put(handle, data->tid_entry);
5176 if (sample_type & PERF_SAMPLE_TIME)
5177 perf_output_put(handle, data->time);
5179 if (sample_type & PERF_SAMPLE_ADDR)
5180 perf_output_put(handle, data->addr);
5182 if (sample_type & PERF_SAMPLE_ID)
5183 perf_output_put(handle, data->id);
5185 if (sample_type & PERF_SAMPLE_STREAM_ID)
5186 perf_output_put(handle, data->stream_id);
5188 if (sample_type & PERF_SAMPLE_CPU)
5189 perf_output_put(handle, data->cpu_entry);
5191 if (sample_type & PERF_SAMPLE_PERIOD)
5192 perf_output_put(handle, data->period);
5194 if (sample_type & PERF_SAMPLE_READ)
5195 perf_output_read(handle, event);
5197 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5198 if (data->callchain) {
5199 int size = 1;
5201 if (data->callchain)
5202 size += data->callchain->nr;
5204 size *= sizeof(u64);
5206 __output_copy(handle, data->callchain, size);
5207 } else {
5208 u64 nr = 0;
5209 perf_output_put(handle, nr);
5213 if (sample_type & PERF_SAMPLE_RAW) {
5214 if (data->raw) {
5215 perf_output_put(handle, data->raw->size);
5216 __output_copy(handle, data->raw->data,
5217 data->raw->size);
5218 } else {
5219 struct {
5220 u32 size;
5221 u32 data;
5222 } raw = {
5223 .size = sizeof(u32),
5224 .data = 0,
5226 perf_output_put(handle, raw);
5230 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5231 if (data->br_stack) {
5232 size_t size;
5234 size = data->br_stack->nr
5235 * sizeof(struct perf_branch_entry);
5237 perf_output_put(handle, data->br_stack->nr);
5238 perf_output_copy(handle, data->br_stack->entries, size);
5239 } else {
5241 * we always store at least the value of nr
5243 u64 nr = 0;
5244 perf_output_put(handle, nr);
5248 if (sample_type & PERF_SAMPLE_REGS_USER) {
5249 u64 abi = data->regs_user.abi;
5252 * If there are no regs to dump, notice it through
5253 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5255 perf_output_put(handle, abi);
5257 if (abi) {
5258 u64 mask = event->attr.sample_regs_user;
5259 perf_output_sample_regs(handle,
5260 data->regs_user.regs,
5261 mask);
5265 if (sample_type & PERF_SAMPLE_STACK_USER) {
5266 perf_output_sample_ustack(handle,
5267 data->stack_user_size,
5268 data->regs_user.regs);
5271 if (sample_type & PERF_SAMPLE_WEIGHT)
5272 perf_output_put(handle, data->weight);
5274 if (sample_type & PERF_SAMPLE_DATA_SRC)
5275 perf_output_put(handle, data->data_src.val);
5277 if (sample_type & PERF_SAMPLE_TRANSACTION)
5278 perf_output_put(handle, data->txn);
5280 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5281 u64 abi = data->regs_intr.abi;
5283 * If there are no regs to dump, notice it through
5284 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5286 perf_output_put(handle, abi);
5288 if (abi) {
5289 u64 mask = event->attr.sample_regs_intr;
5291 perf_output_sample_regs(handle,
5292 data->regs_intr.regs,
5293 mask);
5297 if (!event->attr.watermark) {
5298 int wakeup_events = event->attr.wakeup_events;
5300 if (wakeup_events) {
5301 struct ring_buffer *rb = handle->rb;
5302 int events = local_inc_return(&rb->events);
5304 if (events >= wakeup_events) {
5305 local_sub(wakeup_events, &rb->events);
5306 local_inc(&rb->wakeup);
5312 void perf_prepare_sample(struct perf_event_header *header,
5313 struct perf_sample_data *data,
5314 struct perf_event *event,
5315 struct pt_regs *regs)
5317 u64 sample_type = event->attr.sample_type;
5319 header->type = PERF_RECORD_SAMPLE;
5320 header->size = sizeof(*header) + event->header_size;
5322 header->misc = 0;
5323 header->misc |= perf_misc_flags(regs);
5325 __perf_event_header__init_id(header, data, event);
5327 if (sample_type & PERF_SAMPLE_IP)
5328 data->ip = perf_instruction_pointer(regs);
5330 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5331 int size = 1;
5333 data->callchain = perf_callchain(event, regs);
5335 if (data->callchain)
5336 size += data->callchain->nr;
5338 header->size += size * sizeof(u64);
5341 if (sample_type & PERF_SAMPLE_RAW) {
5342 int size = sizeof(u32);
5344 if (data->raw)
5345 size += data->raw->size;
5346 else
5347 size += sizeof(u32);
5349 WARN_ON_ONCE(size & (sizeof(u64)-1));
5350 header->size += size;
5353 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5354 int size = sizeof(u64); /* nr */
5355 if (data->br_stack) {
5356 size += data->br_stack->nr
5357 * sizeof(struct perf_branch_entry);
5359 header->size += size;
5362 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5363 perf_sample_regs_user(&data->regs_user, regs,
5364 &data->regs_user_copy);
5366 if (sample_type & PERF_SAMPLE_REGS_USER) {
5367 /* regs dump ABI info */
5368 int size = sizeof(u64);
5370 if (data->regs_user.regs) {
5371 u64 mask = event->attr.sample_regs_user;
5372 size += hweight64(mask) * sizeof(u64);
5375 header->size += size;
5378 if (sample_type & PERF_SAMPLE_STACK_USER) {
5380 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5381 * processed as the last one or have additional check added
5382 * in case new sample type is added, because we could eat
5383 * up the rest of the sample size.
5385 u16 stack_size = event->attr.sample_stack_user;
5386 u16 size = sizeof(u64);
5388 stack_size = perf_sample_ustack_size(stack_size, header->size,
5389 data->regs_user.regs);
5392 * If there is something to dump, add space for the dump
5393 * itself and for the field that tells the dynamic size,
5394 * which is how many have been actually dumped.
5396 if (stack_size)
5397 size += sizeof(u64) + stack_size;
5399 data->stack_user_size = stack_size;
5400 header->size += size;
5403 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5404 /* regs dump ABI info */
5405 int size = sizeof(u64);
5407 perf_sample_regs_intr(&data->regs_intr, regs);
5409 if (data->regs_intr.regs) {
5410 u64 mask = event->attr.sample_regs_intr;
5412 size += hweight64(mask) * sizeof(u64);
5415 header->size += size;
5419 static void perf_event_output(struct perf_event *event,
5420 struct perf_sample_data *data,
5421 struct pt_regs *regs)
5423 struct perf_output_handle handle;
5424 struct perf_event_header header;
5426 /* protect the callchain buffers */
5427 rcu_read_lock();
5429 perf_prepare_sample(&header, data, event, regs);
5431 if (perf_output_begin(&handle, event, header.size))
5432 goto exit;
5434 perf_output_sample(&handle, &header, data, event);
5436 perf_output_end(&handle);
5438 exit:
5439 rcu_read_unlock();
5443 * read event_id
5446 struct perf_read_event {
5447 struct perf_event_header header;
5449 u32 pid;
5450 u32 tid;
5453 static void
5454 perf_event_read_event(struct perf_event *event,
5455 struct task_struct *task)
5457 struct perf_output_handle handle;
5458 struct perf_sample_data sample;
5459 struct perf_read_event read_event = {
5460 .header = {
5461 .type = PERF_RECORD_READ,
5462 .misc = 0,
5463 .size = sizeof(read_event) + event->read_size,
5465 .pid = perf_event_pid(event, task),
5466 .tid = perf_event_tid(event, task),
5468 int ret;
5470 perf_event_header__init_id(&read_event.header, &sample, event);
5471 ret = perf_output_begin(&handle, event, read_event.header.size);
5472 if (ret)
5473 return;
5475 perf_output_put(&handle, read_event);
5476 perf_output_read(&handle, event);
5477 perf_event__output_id_sample(event, &handle, &sample);
5479 perf_output_end(&handle);
5482 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5484 static void
5485 perf_event_aux_ctx(struct perf_event_context *ctx,
5486 perf_event_aux_output_cb output,
5487 void *data)
5489 struct perf_event *event;
5491 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5492 if (event->state < PERF_EVENT_STATE_INACTIVE)
5493 continue;
5494 if (!event_filter_match(event))
5495 continue;
5496 output(event, data);
5500 static void
5501 perf_event_aux(perf_event_aux_output_cb output, void *data,
5502 struct perf_event_context *task_ctx)
5504 struct perf_cpu_context *cpuctx;
5505 struct perf_event_context *ctx;
5506 struct pmu *pmu;
5507 int ctxn;
5509 rcu_read_lock();
5510 list_for_each_entry_rcu(pmu, &pmus, entry) {
5511 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5512 if (cpuctx->unique_pmu != pmu)
5513 goto next;
5514 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5515 if (task_ctx)
5516 goto next;
5517 ctxn = pmu->task_ctx_nr;
5518 if (ctxn < 0)
5519 goto next;
5520 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5521 if (ctx)
5522 perf_event_aux_ctx(ctx, output, data);
5523 next:
5524 put_cpu_ptr(pmu->pmu_cpu_context);
5527 if (task_ctx) {
5528 preempt_disable();
5529 perf_event_aux_ctx(task_ctx, output, data);
5530 preempt_enable();
5532 rcu_read_unlock();
5536 * task tracking -- fork/exit
5538 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5541 struct perf_task_event {
5542 struct task_struct *task;
5543 struct perf_event_context *task_ctx;
5545 struct {
5546 struct perf_event_header header;
5548 u32 pid;
5549 u32 ppid;
5550 u32 tid;
5551 u32 ptid;
5552 u64 time;
5553 } event_id;
5556 static int perf_event_task_match(struct perf_event *event)
5558 return event->attr.comm || event->attr.mmap ||
5559 event->attr.mmap2 || event->attr.mmap_data ||
5560 event->attr.task;
5563 static void perf_event_task_output(struct perf_event *event,
5564 void *data)
5566 struct perf_task_event *task_event = data;
5567 struct perf_output_handle handle;
5568 struct perf_sample_data sample;
5569 struct task_struct *task = task_event->task;
5570 int ret, size = task_event->event_id.header.size;
5572 if (!perf_event_task_match(event))
5573 return;
5575 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5577 ret = perf_output_begin(&handle, event,
5578 task_event->event_id.header.size);
5579 if (ret)
5580 goto out;
5582 task_event->event_id.pid = perf_event_pid(event, task);
5583 task_event->event_id.ppid = perf_event_pid(event, current);
5585 task_event->event_id.tid = perf_event_tid(event, task);
5586 task_event->event_id.ptid = perf_event_tid(event, current);
5588 task_event->event_id.time = perf_event_clock(event);
5590 perf_output_put(&handle, task_event->event_id);
5592 perf_event__output_id_sample(event, &handle, &sample);
5594 perf_output_end(&handle);
5595 out:
5596 task_event->event_id.header.size = size;
5599 static void perf_event_task(struct task_struct *task,
5600 struct perf_event_context *task_ctx,
5601 int new)
5603 struct perf_task_event task_event;
5605 if (!atomic_read(&nr_comm_events) &&
5606 !atomic_read(&nr_mmap_events) &&
5607 !atomic_read(&nr_task_events))
5608 return;
5610 task_event = (struct perf_task_event){
5611 .task = task,
5612 .task_ctx = task_ctx,
5613 .event_id = {
5614 .header = {
5615 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5616 .misc = 0,
5617 .size = sizeof(task_event.event_id),
5619 /* .pid */
5620 /* .ppid */
5621 /* .tid */
5622 /* .ptid */
5623 /* .time */
5627 perf_event_aux(perf_event_task_output,
5628 &task_event,
5629 task_ctx);
5632 void perf_event_fork(struct task_struct *task)
5634 perf_event_task(task, NULL, 1);
5638 * comm tracking
5641 struct perf_comm_event {
5642 struct task_struct *task;
5643 char *comm;
5644 int comm_size;
5646 struct {
5647 struct perf_event_header header;
5649 u32 pid;
5650 u32 tid;
5651 } event_id;
5654 static int perf_event_comm_match(struct perf_event *event)
5656 return event->attr.comm;
5659 static void perf_event_comm_output(struct perf_event *event,
5660 void *data)
5662 struct perf_comm_event *comm_event = data;
5663 struct perf_output_handle handle;
5664 struct perf_sample_data sample;
5665 int size = comm_event->event_id.header.size;
5666 int ret;
5668 if (!perf_event_comm_match(event))
5669 return;
5671 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5672 ret = perf_output_begin(&handle, event,
5673 comm_event->event_id.header.size);
5675 if (ret)
5676 goto out;
5678 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5679 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5681 perf_output_put(&handle, comm_event->event_id);
5682 __output_copy(&handle, comm_event->comm,
5683 comm_event->comm_size);
5685 perf_event__output_id_sample(event, &handle, &sample);
5687 perf_output_end(&handle);
5688 out:
5689 comm_event->event_id.header.size = size;
5692 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5694 char comm[TASK_COMM_LEN];
5695 unsigned int size;
5697 memset(comm, 0, sizeof(comm));
5698 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5699 size = ALIGN(strlen(comm)+1, sizeof(u64));
5701 comm_event->comm = comm;
5702 comm_event->comm_size = size;
5704 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5706 perf_event_aux(perf_event_comm_output,
5707 comm_event,
5708 NULL);
5711 void perf_event_comm(struct task_struct *task, bool exec)
5713 struct perf_comm_event comm_event;
5715 if (!atomic_read(&nr_comm_events))
5716 return;
5718 comm_event = (struct perf_comm_event){
5719 .task = task,
5720 /* .comm */
5721 /* .comm_size */
5722 .event_id = {
5723 .header = {
5724 .type = PERF_RECORD_COMM,
5725 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5726 /* .size */
5728 /* .pid */
5729 /* .tid */
5733 perf_event_comm_event(&comm_event);
5737 * mmap tracking
5740 struct perf_mmap_event {
5741 struct vm_area_struct *vma;
5743 const char *file_name;
5744 int file_size;
5745 int maj, min;
5746 u64 ino;
5747 u64 ino_generation;
5748 u32 prot, flags;
5750 struct {
5751 struct perf_event_header header;
5753 u32 pid;
5754 u32 tid;
5755 u64 start;
5756 u64 len;
5757 u64 pgoff;
5758 } event_id;
5761 static int perf_event_mmap_match(struct perf_event *event,
5762 void *data)
5764 struct perf_mmap_event *mmap_event = data;
5765 struct vm_area_struct *vma = mmap_event->vma;
5766 int executable = vma->vm_flags & VM_EXEC;
5768 return (!executable && event->attr.mmap_data) ||
5769 (executable && (event->attr.mmap || event->attr.mmap2));
5772 static void perf_event_mmap_output(struct perf_event *event,
5773 void *data)
5775 struct perf_mmap_event *mmap_event = data;
5776 struct perf_output_handle handle;
5777 struct perf_sample_data sample;
5778 int size = mmap_event->event_id.header.size;
5779 int ret;
5781 if (!perf_event_mmap_match(event, data))
5782 return;
5784 if (event->attr.mmap2) {
5785 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5786 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5787 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5788 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5789 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5790 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5791 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5794 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5795 ret = perf_output_begin(&handle, event,
5796 mmap_event->event_id.header.size);
5797 if (ret)
5798 goto out;
5800 mmap_event->event_id.pid = perf_event_pid(event, current);
5801 mmap_event->event_id.tid = perf_event_tid(event, current);
5803 perf_output_put(&handle, mmap_event->event_id);
5805 if (event->attr.mmap2) {
5806 perf_output_put(&handle, mmap_event->maj);
5807 perf_output_put(&handle, mmap_event->min);
5808 perf_output_put(&handle, mmap_event->ino);
5809 perf_output_put(&handle, mmap_event->ino_generation);
5810 perf_output_put(&handle, mmap_event->prot);
5811 perf_output_put(&handle, mmap_event->flags);
5814 __output_copy(&handle, mmap_event->file_name,
5815 mmap_event->file_size);
5817 perf_event__output_id_sample(event, &handle, &sample);
5819 perf_output_end(&handle);
5820 out:
5821 mmap_event->event_id.header.size = size;
5824 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5826 struct vm_area_struct *vma = mmap_event->vma;
5827 struct file *file = vma->vm_file;
5828 int maj = 0, min = 0;
5829 u64 ino = 0, gen = 0;
5830 u32 prot = 0, flags = 0;
5831 unsigned int size;
5832 char tmp[16];
5833 char *buf = NULL;
5834 char *name;
5836 if (file) {
5837 struct inode *inode;
5838 dev_t dev;
5840 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5841 if (!buf) {
5842 name = "//enomem";
5843 goto cpy_name;
5846 * d_path() works from the end of the rb backwards, so we
5847 * need to add enough zero bytes after the string to handle
5848 * the 64bit alignment we do later.
5850 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5851 if (IS_ERR(name)) {
5852 name = "//toolong";
5853 goto cpy_name;
5855 inode = file_inode(vma->vm_file);
5856 dev = inode->i_sb->s_dev;
5857 ino = inode->i_ino;
5858 gen = inode->i_generation;
5859 maj = MAJOR(dev);
5860 min = MINOR(dev);
5862 if (vma->vm_flags & VM_READ)
5863 prot |= PROT_READ;
5864 if (vma->vm_flags & VM_WRITE)
5865 prot |= PROT_WRITE;
5866 if (vma->vm_flags & VM_EXEC)
5867 prot |= PROT_EXEC;
5869 if (vma->vm_flags & VM_MAYSHARE)
5870 flags = MAP_SHARED;
5871 else
5872 flags = MAP_PRIVATE;
5874 if (vma->vm_flags & VM_DENYWRITE)
5875 flags |= MAP_DENYWRITE;
5876 if (vma->vm_flags & VM_MAYEXEC)
5877 flags |= MAP_EXECUTABLE;
5878 if (vma->vm_flags & VM_LOCKED)
5879 flags |= MAP_LOCKED;
5880 if (vma->vm_flags & VM_HUGETLB)
5881 flags |= MAP_HUGETLB;
5883 goto got_name;
5884 } else {
5885 if (vma->vm_ops && vma->vm_ops->name) {
5886 name = (char *) vma->vm_ops->name(vma);
5887 if (name)
5888 goto cpy_name;
5891 name = (char *)arch_vma_name(vma);
5892 if (name)
5893 goto cpy_name;
5895 if (vma->vm_start <= vma->vm_mm->start_brk &&
5896 vma->vm_end >= vma->vm_mm->brk) {
5897 name = "[heap]";
5898 goto cpy_name;
5900 if (vma->vm_start <= vma->vm_mm->start_stack &&
5901 vma->vm_end >= vma->vm_mm->start_stack) {
5902 name = "[stack]";
5903 goto cpy_name;
5906 name = "//anon";
5907 goto cpy_name;
5910 cpy_name:
5911 strlcpy(tmp, name, sizeof(tmp));
5912 name = tmp;
5913 got_name:
5915 * Since our buffer works in 8 byte units we need to align our string
5916 * size to a multiple of 8. However, we must guarantee the tail end is
5917 * zero'd out to avoid leaking random bits to userspace.
5919 size = strlen(name)+1;
5920 while (!IS_ALIGNED(size, sizeof(u64)))
5921 name[size++] = '\0';
5923 mmap_event->file_name = name;
5924 mmap_event->file_size = size;
5925 mmap_event->maj = maj;
5926 mmap_event->min = min;
5927 mmap_event->ino = ino;
5928 mmap_event->ino_generation = gen;
5929 mmap_event->prot = prot;
5930 mmap_event->flags = flags;
5932 if (!(vma->vm_flags & VM_EXEC))
5933 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5935 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5937 perf_event_aux(perf_event_mmap_output,
5938 mmap_event,
5939 NULL);
5941 kfree(buf);
5944 void perf_event_mmap(struct vm_area_struct *vma)
5946 struct perf_mmap_event mmap_event;
5948 if (!atomic_read(&nr_mmap_events))
5949 return;
5951 mmap_event = (struct perf_mmap_event){
5952 .vma = vma,
5953 /* .file_name */
5954 /* .file_size */
5955 .event_id = {
5956 .header = {
5957 .type = PERF_RECORD_MMAP,
5958 .misc = PERF_RECORD_MISC_USER,
5959 /* .size */
5961 /* .pid */
5962 /* .tid */
5963 .start = vma->vm_start,
5964 .len = vma->vm_end - vma->vm_start,
5965 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5967 /* .maj (attr_mmap2 only) */
5968 /* .min (attr_mmap2 only) */
5969 /* .ino (attr_mmap2 only) */
5970 /* .ino_generation (attr_mmap2 only) */
5971 /* .prot (attr_mmap2 only) */
5972 /* .flags (attr_mmap2 only) */
5975 perf_event_mmap_event(&mmap_event);
5978 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5979 unsigned long size, u64 flags)
5981 struct perf_output_handle handle;
5982 struct perf_sample_data sample;
5983 struct perf_aux_event {
5984 struct perf_event_header header;
5985 u64 offset;
5986 u64 size;
5987 u64 flags;
5988 } rec = {
5989 .header = {
5990 .type = PERF_RECORD_AUX,
5991 .misc = 0,
5992 .size = sizeof(rec),
5994 .offset = head,
5995 .size = size,
5996 .flags = flags,
5998 int ret;
6000 perf_event_header__init_id(&rec.header, &sample, event);
6001 ret = perf_output_begin(&handle, event, rec.header.size);
6003 if (ret)
6004 return;
6006 perf_output_put(&handle, rec);
6007 perf_event__output_id_sample(event, &handle, &sample);
6009 perf_output_end(&handle);
6013 * IRQ throttle logging
6016 static void perf_log_throttle(struct perf_event *event, int enable)
6018 struct perf_output_handle handle;
6019 struct perf_sample_data sample;
6020 int ret;
6022 struct {
6023 struct perf_event_header header;
6024 u64 time;
6025 u64 id;
6026 u64 stream_id;
6027 } throttle_event = {
6028 .header = {
6029 .type = PERF_RECORD_THROTTLE,
6030 .misc = 0,
6031 .size = sizeof(throttle_event),
6033 .time = perf_event_clock(event),
6034 .id = primary_event_id(event),
6035 .stream_id = event->id,
6038 if (enable)
6039 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6041 perf_event_header__init_id(&throttle_event.header, &sample, event);
6043 ret = perf_output_begin(&handle, event,
6044 throttle_event.header.size);
6045 if (ret)
6046 return;
6048 perf_output_put(&handle, throttle_event);
6049 perf_event__output_id_sample(event, &handle, &sample);
6050 perf_output_end(&handle);
6053 static void perf_log_itrace_start(struct perf_event *event)
6055 struct perf_output_handle handle;
6056 struct perf_sample_data sample;
6057 struct perf_aux_event {
6058 struct perf_event_header header;
6059 u32 pid;
6060 u32 tid;
6061 } rec;
6062 int ret;
6064 if (event->parent)
6065 event = event->parent;
6067 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6068 event->hw.itrace_started)
6069 return;
6071 event->hw.itrace_started = 1;
6073 rec.header.type = PERF_RECORD_ITRACE_START;
6074 rec.header.misc = 0;
6075 rec.header.size = sizeof(rec);
6076 rec.pid = perf_event_pid(event, current);
6077 rec.tid = perf_event_tid(event, current);
6079 perf_event_header__init_id(&rec.header, &sample, event);
6080 ret = perf_output_begin(&handle, event, rec.header.size);
6082 if (ret)
6083 return;
6085 perf_output_put(&handle, rec);
6086 perf_event__output_id_sample(event, &handle, &sample);
6088 perf_output_end(&handle);
6092 * Generic event overflow handling, sampling.
6095 static int __perf_event_overflow(struct perf_event *event,
6096 int throttle, struct perf_sample_data *data,
6097 struct pt_regs *regs)
6099 int events = atomic_read(&event->event_limit);
6100 struct hw_perf_event *hwc = &event->hw;
6101 u64 seq;
6102 int ret = 0;
6105 * Non-sampling counters might still use the PMI to fold short
6106 * hardware counters, ignore those.
6108 if (unlikely(!is_sampling_event(event)))
6109 return 0;
6111 seq = __this_cpu_read(perf_throttled_seq);
6112 if (seq != hwc->interrupts_seq) {
6113 hwc->interrupts_seq = seq;
6114 hwc->interrupts = 1;
6115 } else {
6116 hwc->interrupts++;
6117 if (unlikely(throttle
6118 && hwc->interrupts >= max_samples_per_tick)) {
6119 __this_cpu_inc(perf_throttled_count);
6120 hwc->interrupts = MAX_INTERRUPTS;
6121 perf_log_throttle(event, 0);
6122 tick_nohz_full_kick();
6123 ret = 1;
6127 if (event->attr.freq) {
6128 u64 now = perf_clock();
6129 s64 delta = now - hwc->freq_time_stamp;
6131 hwc->freq_time_stamp = now;
6133 if (delta > 0 && delta < 2*TICK_NSEC)
6134 perf_adjust_period(event, delta, hwc->last_period, true);
6138 * XXX event_limit might not quite work as expected on inherited
6139 * events
6142 event->pending_kill = POLL_IN;
6143 if (events && atomic_dec_and_test(&event->event_limit)) {
6144 ret = 1;
6145 event->pending_kill = POLL_HUP;
6146 event->pending_disable = 1;
6147 irq_work_queue(&event->pending);
6150 if (event->overflow_handler)
6151 event->overflow_handler(event, data, regs);
6152 else
6153 perf_event_output(event, data, regs);
6155 if (*perf_event_fasync(event) && event->pending_kill) {
6156 event->pending_wakeup = 1;
6157 irq_work_queue(&event->pending);
6160 return ret;
6163 int perf_event_overflow(struct perf_event *event,
6164 struct perf_sample_data *data,
6165 struct pt_regs *regs)
6167 return __perf_event_overflow(event, 1, data, regs);
6171 * Generic software event infrastructure
6174 struct swevent_htable {
6175 struct swevent_hlist *swevent_hlist;
6176 struct mutex hlist_mutex;
6177 int hlist_refcount;
6179 /* Recursion avoidance in each contexts */
6180 int recursion[PERF_NR_CONTEXTS];
6182 /* Keeps track of cpu being initialized/exited */
6183 bool online;
6186 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6189 * We directly increment event->count and keep a second value in
6190 * event->hw.period_left to count intervals. This period event
6191 * is kept in the range [-sample_period, 0] so that we can use the
6192 * sign as trigger.
6195 u64 perf_swevent_set_period(struct perf_event *event)
6197 struct hw_perf_event *hwc = &event->hw;
6198 u64 period = hwc->last_period;
6199 u64 nr, offset;
6200 s64 old, val;
6202 hwc->last_period = hwc->sample_period;
6204 again:
6205 old = val = local64_read(&hwc->period_left);
6206 if (val < 0)
6207 return 0;
6209 nr = div64_u64(period + val, period);
6210 offset = nr * period;
6211 val -= offset;
6212 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6213 goto again;
6215 return nr;
6218 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6219 struct perf_sample_data *data,
6220 struct pt_regs *regs)
6222 struct hw_perf_event *hwc = &event->hw;
6223 int throttle = 0;
6225 if (!overflow)
6226 overflow = perf_swevent_set_period(event);
6228 if (hwc->interrupts == MAX_INTERRUPTS)
6229 return;
6231 for (; overflow; overflow--) {
6232 if (__perf_event_overflow(event, throttle,
6233 data, regs)) {
6235 * We inhibit the overflow from happening when
6236 * hwc->interrupts == MAX_INTERRUPTS.
6238 break;
6240 throttle = 1;
6244 static void perf_swevent_event(struct perf_event *event, u64 nr,
6245 struct perf_sample_data *data,
6246 struct pt_regs *regs)
6248 struct hw_perf_event *hwc = &event->hw;
6250 local64_add(nr, &event->count);
6252 if (!regs)
6253 return;
6255 if (!is_sampling_event(event))
6256 return;
6258 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6259 data->period = nr;
6260 return perf_swevent_overflow(event, 1, data, regs);
6261 } else
6262 data->period = event->hw.last_period;
6264 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6265 return perf_swevent_overflow(event, 1, data, regs);
6267 if (local64_add_negative(nr, &hwc->period_left))
6268 return;
6270 perf_swevent_overflow(event, 0, data, regs);
6273 static int perf_exclude_event(struct perf_event *event,
6274 struct pt_regs *regs)
6276 if (event->hw.state & PERF_HES_STOPPED)
6277 return 1;
6279 if (regs) {
6280 if (event->attr.exclude_user && user_mode(regs))
6281 return 1;
6283 if (event->attr.exclude_kernel && !user_mode(regs))
6284 return 1;
6287 return 0;
6290 static int perf_swevent_match(struct perf_event *event,
6291 enum perf_type_id type,
6292 u32 event_id,
6293 struct perf_sample_data *data,
6294 struct pt_regs *regs)
6296 if (event->attr.type != type)
6297 return 0;
6299 if (event->attr.config != event_id)
6300 return 0;
6302 if (perf_exclude_event(event, regs))
6303 return 0;
6305 return 1;
6308 static inline u64 swevent_hash(u64 type, u32 event_id)
6310 u64 val = event_id | (type << 32);
6312 return hash_64(val, SWEVENT_HLIST_BITS);
6315 static inline struct hlist_head *
6316 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6318 u64 hash = swevent_hash(type, event_id);
6320 return &hlist->heads[hash];
6323 /* For the read side: events when they trigger */
6324 static inline struct hlist_head *
6325 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6327 struct swevent_hlist *hlist;
6329 hlist = rcu_dereference(swhash->swevent_hlist);
6330 if (!hlist)
6331 return NULL;
6333 return __find_swevent_head(hlist, type, event_id);
6336 /* For the event head insertion and removal in the hlist */
6337 static inline struct hlist_head *
6338 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6340 struct swevent_hlist *hlist;
6341 u32 event_id = event->attr.config;
6342 u64 type = event->attr.type;
6345 * Event scheduling is always serialized against hlist allocation
6346 * and release. Which makes the protected version suitable here.
6347 * The context lock guarantees that.
6349 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6350 lockdep_is_held(&event->ctx->lock));
6351 if (!hlist)
6352 return NULL;
6354 return __find_swevent_head(hlist, type, event_id);
6357 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6358 u64 nr,
6359 struct perf_sample_data *data,
6360 struct pt_regs *regs)
6362 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6363 struct perf_event *event;
6364 struct hlist_head *head;
6366 rcu_read_lock();
6367 head = find_swevent_head_rcu(swhash, type, event_id);
6368 if (!head)
6369 goto end;
6371 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6372 if (perf_swevent_match(event, type, event_id, data, regs))
6373 perf_swevent_event(event, nr, data, regs);
6375 end:
6376 rcu_read_unlock();
6379 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6381 int perf_swevent_get_recursion_context(void)
6383 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6385 return get_recursion_context(swhash->recursion);
6387 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6389 inline void perf_swevent_put_recursion_context(int rctx)
6391 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6393 put_recursion_context(swhash->recursion, rctx);
6396 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6398 struct perf_sample_data data;
6400 if (WARN_ON_ONCE(!regs))
6401 return;
6403 perf_sample_data_init(&data, addr, 0);
6404 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6407 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6409 int rctx;
6411 preempt_disable_notrace();
6412 rctx = perf_swevent_get_recursion_context();
6413 if (unlikely(rctx < 0))
6414 goto fail;
6416 ___perf_sw_event(event_id, nr, regs, addr);
6418 perf_swevent_put_recursion_context(rctx);
6419 fail:
6420 preempt_enable_notrace();
6423 static void perf_swevent_read(struct perf_event *event)
6427 static int perf_swevent_add(struct perf_event *event, int flags)
6429 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6430 struct hw_perf_event *hwc = &event->hw;
6431 struct hlist_head *head;
6433 if (is_sampling_event(event)) {
6434 hwc->last_period = hwc->sample_period;
6435 perf_swevent_set_period(event);
6438 hwc->state = !(flags & PERF_EF_START);
6440 head = find_swevent_head(swhash, event);
6441 if (!head) {
6443 * We can race with cpu hotplug code. Do not
6444 * WARN if the cpu just got unplugged.
6446 WARN_ON_ONCE(swhash->online);
6447 return -EINVAL;
6450 hlist_add_head_rcu(&event->hlist_entry, head);
6451 perf_event_update_userpage(event);
6453 return 0;
6456 static void perf_swevent_del(struct perf_event *event, int flags)
6458 hlist_del_rcu(&event->hlist_entry);
6461 static void perf_swevent_start(struct perf_event *event, int flags)
6463 event->hw.state = 0;
6466 static void perf_swevent_stop(struct perf_event *event, int flags)
6468 event->hw.state = PERF_HES_STOPPED;
6471 /* Deref the hlist from the update side */
6472 static inline struct swevent_hlist *
6473 swevent_hlist_deref(struct swevent_htable *swhash)
6475 return rcu_dereference_protected(swhash->swevent_hlist,
6476 lockdep_is_held(&swhash->hlist_mutex));
6479 static void swevent_hlist_release(struct swevent_htable *swhash)
6481 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6483 if (!hlist)
6484 return;
6486 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6487 kfree_rcu(hlist, rcu_head);
6490 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6492 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6494 mutex_lock(&swhash->hlist_mutex);
6496 if (!--swhash->hlist_refcount)
6497 swevent_hlist_release(swhash);
6499 mutex_unlock(&swhash->hlist_mutex);
6502 static void swevent_hlist_put(struct perf_event *event)
6504 int cpu;
6506 for_each_possible_cpu(cpu)
6507 swevent_hlist_put_cpu(event, cpu);
6510 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6512 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6513 int err = 0;
6515 mutex_lock(&swhash->hlist_mutex);
6517 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6518 struct swevent_hlist *hlist;
6520 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6521 if (!hlist) {
6522 err = -ENOMEM;
6523 goto exit;
6525 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6527 swhash->hlist_refcount++;
6528 exit:
6529 mutex_unlock(&swhash->hlist_mutex);
6531 return err;
6534 static int swevent_hlist_get(struct perf_event *event)
6536 int err;
6537 int cpu, failed_cpu;
6539 get_online_cpus();
6540 for_each_possible_cpu(cpu) {
6541 err = swevent_hlist_get_cpu(event, cpu);
6542 if (err) {
6543 failed_cpu = cpu;
6544 goto fail;
6547 put_online_cpus();
6549 return 0;
6550 fail:
6551 for_each_possible_cpu(cpu) {
6552 if (cpu == failed_cpu)
6553 break;
6554 swevent_hlist_put_cpu(event, cpu);
6557 put_online_cpus();
6558 return err;
6561 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6563 static void sw_perf_event_destroy(struct perf_event *event)
6565 u64 event_id = event->attr.config;
6567 WARN_ON(event->parent);
6569 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6570 swevent_hlist_put(event);
6573 static int perf_swevent_init(struct perf_event *event)
6575 u64 event_id = event->attr.config;
6577 if (event->attr.type != PERF_TYPE_SOFTWARE)
6578 return -ENOENT;
6581 * no branch sampling for software events
6583 if (has_branch_stack(event))
6584 return -EOPNOTSUPP;
6586 switch (event_id) {
6587 case PERF_COUNT_SW_CPU_CLOCK:
6588 case PERF_COUNT_SW_TASK_CLOCK:
6589 return -ENOENT;
6591 default:
6592 break;
6595 if (event_id >= PERF_COUNT_SW_MAX)
6596 return -ENOENT;
6598 if (!event->parent) {
6599 int err;
6601 err = swevent_hlist_get(event);
6602 if (err)
6603 return err;
6605 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6606 event->destroy = sw_perf_event_destroy;
6609 return 0;
6612 static struct pmu perf_swevent = {
6613 .task_ctx_nr = perf_sw_context,
6615 .capabilities = PERF_PMU_CAP_NO_NMI,
6617 .event_init = perf_swevent_init,
6618 .add = perf_swevent_add,
6619 .del = perf_swevent_del,
6620 .start = perf_swevent_start,
6621 .stop = perf_swevent_stop,
6622 .read = perf_swevent_read,
6625 #ifdef CONFIG_EVENT_TRACING
6627 static int perf_tp_filter_match(struct perf_event *event,
6628 struct perf_sample_data *data)
6630 void *record = data->raw->data;
6632 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6633 return 1;
6634 return 0;
6637 static int perf_tp_event_match(struct perf_event *event,
6638 struct perf_sample_data *data,
6639 struct pt_regs *regs)
6641 if (event->hw.state & PERF_HES_STOPPED)
6642 return 0;
6644 * All tracepoints are from kernel-space.
6646 if (event->attr.exclude_kernel)
6647 return 0;
6649 if (!perf_tp_filter_match(event, data))
6650 return 0;
6652 return 1;
6655 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6656 struct pt_regs *regs, struct hlist_head *head, int rctx,
6657 struct task_struct *task)
6659 struct perf_sample_data data;
6660 struct perf_event *event;
6662 struct perf_raw_record raw = {
6663 .size = entry_size,
6664 .data = record,
6667 perf_sample_data_init(&data, addr, 0);
6668 data.raw = &raw;
6670 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6671 if (perf_tp_event_match(event, &data, regs))
6672 perf_swevent_event(event, count, &data, regs);
6676 * If we got specified a target task, also iterate its context and
6677 * deliver this event there too.
6679 if (task && task != current) {
6680 struct perf_event_context *ctx;
6681 struct trace_entry *entry = record;
6683 rcu_read_lock();
6684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6685 if (!ctx)
6686 goto unlock;
6688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6689 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6690 continue;
6691 if (event->attr.config != entry->type)
6692 continue;
6693 if (perf_tp_event_match(event, &data, regs))
6694 perf_swevent_event(event, count, &data, regs);
6696 unlock:
6697 rcu_read_unlock();
6700 perf_swevent_put_recursion_context(rctx);
6702 EXPORT_SYMBOL_GPL(perf_tp_event);
6704 static void tp_perf_event_destroy(struct perf_event *event)
6706 perf_trace_destroy(event);
6709 static int perf_tp_event_init(struct perf_event *event)
6711 int err;
6713 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6714 return -ENOENT;
6717 * no branch sampling for tracepoint events
6719 if (has_branch_stack(event))
6720 return -EOPNOTSUPP;
6722 err = perf_trace_init(event);
6723 if (err)
6724 return err;
6726 event->destroy = tp_perf_event_destroy;
6728 return 0;
6731 static struct pmu perf_tracepoint = {
6732 .task_ctx_nr = perf_sw_context,
6734 .event_init = perf_tp_event_init,
6735 .add = perf_trace_add,
6736 .del = perf_trace_del,
6737 .start = perf_swevent_start,
6738 .stop = perf_swevent_stop,
6739 .read = perf_swevent_read,
6742 static inline void perf_tp_register(void)
6744 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6747 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6749 char *filter_str;
6750 int ret;
6752 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6753 return -EINVAL;
6755 filter_str = strndup_user(arg, PAGE_SIZE);
6756 if (IS_ERR(filter_str))
6757 return PTR_ERR(filter_str);
6759 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6761 kfree(filter_str);
6762 return ret;
6765 static void perf_event_free_filter(struct perf_event *event)
6767 ftrace_profile_free_filter(event);
6770 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6772 struct bpf_prog *prog;
6774 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6775 return -EINVAL;
6777 if (event->tp_event->prog)
6778 return -EEXIST;
6780 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6781 /* bpf programs can only be attached to kprobes */
6782 return -EINVAL;
6784 prog = bpf_prog_get(prog_fd);
6785 if (IS_ERR(prog))
6786 return PTR_ERR(prog);
6788 if (prog->type != BPF_PROG_TYPE_KPROBE) {
6789 /* valid fd, but invalid bpf program type */
6790 bpf_prog_put(prog);
6791 return -EINVAL;
6794 event->tp_event->prog = prog;
6796 return 0;
6799 static void perf_event_free_bpf_prog(struct perf_event *event)
6801 struct bpf_prog *prog;
6803 if (!event->tp_event)
6804 return;
6806 prog = event->tp_event->prog;
6807 if (prog) {
6808 event->tp_event->prog = NULL;
6809 bpf_prog_put(prog);
6813 #else
6815 static inline void perf_tp_register(void)
6819 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6821 return -ENOENT;
6824 static void perf_event_free_filter(struct perf_event *event)
6828 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6830 return -ENOENT;
6833 static void perf_event_free_bpf_prog(struct perf_event *event)
6836 #endif /* CONFIG_EVENT_TRACING */
6838 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6839 void perf_bp_event(struct perf_event *bp, void *data)
6841 struct perf_sample_data sample;
6842 struct pt_regs *regs = data;
6844 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6846 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6847 perf_swevent_event(bp, 1, &sample, regs);
6849 #endif
6852 * hrtimer based swevent callback
6855 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6857 enum hrtimer_restart ret = HRTIMER_RESTART;
6858 struct perf_sample_data data;
6859 struct pt_regs *regs;
6860 struct perf_event *event;
6861 u64 period;
6863 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6865 if (event->state != PERF_EVENT_STATE_ACTIVE)
6866 return HRTIMER_NORESTART;
6868 event->pmu->read(event);
6870 perf_sample_data_init(&data, 0, event->hw.last_period);
6871 regs = get_irq_regs();
6873 if (regs && !perf_exclude_event(event, regs)) {
6874 if (!(event->attr.exclude_idle && is_idle_task(current)))
6875 if (__perf_event_overflow(event, 1, &data, regs))
6876 ret = HRTIMER_NORESTART;
6879 period = max_t(u64, 10000, event->hw.sample_period);
6880 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6882 return ret;
6885 static void perf_swevent_start_hrtimer(struct perf_event *event)
6887 struct hw_perf_event *hwc = &event->hw;
6888 s64 period;
6890 if (!is_sampling_event(event))
6891 return;
6893 period = local64_read(&hwc->period_left);
6894 if (period) {
6895 if (period < 0)
6896 period = 10000;
6898 local64_set(&hwc->period_left, 0);
6899 } else {
6900 period = max_t(u64, 10000, hwc->sample_period);
6902 __hrtimer_start_range_ns(&hwc->hrtimer,
6903 ns_to_ktime(period), 0,
6904 HRTIMER_MODE_REL_PINNED, 0);
6907 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6909 struct hw_perf_event *hwc = &event->hw;
6911 if (is_sampling_event(event)) {
6912 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6913 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6915 hrtimer_cancel(&hwc->hrtimer);
6919 static void perf_swevent_init_hrtimer(struct perf_event *event)
6921 struct hw_perf_event *hwc = &event->hw;
6923 if (!is_sampling_event(event))
6924 return;
6926 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6927 hwc->hrtimer.function = perf_swevent_hrtimer;
6930 * Since hrtimers have a fixed rate, we can do a static freq->period
6931 * mapping and avoid the whole period adjust feedback stuff.
6933 if (event->attr.freq) {
6934 long freq = event->attr.sample_freq;
6936 event->attr.sample_period = NSEC_PER_SEC / freq;
6937 hwc->sample_period = event->attr.sample_period;
6938 local64_set(&hwc->period_left, hwc->sample_period);
6939 hwc->last_period = hwc->sample_period;
6940 event->attr.freq = 0;
6945 * Software event: cpu wall time clock
6948 static void cpu_clock_event_update(struct perf_event *event)
6950 s64 prev;
6951 u64 now;
6953 now = local_clock();
6954 prev = local64_xchg(&event->hw.prev_count, now);
6955 local64_add(now - prev, &event->count);
6958 static void cpu_clock_event_start(struct perf_event *event, int flags)
6960 local64_set(&event->hw.prev_count, local_clock());
6961 perf_swevent_start_hrtimer(event);
6964 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6966 perf_swevent_cancel_hrtimer(event);
6967 cpu_clock_event_update(event);
6970 static int cpu_clock_event_add(struct perf_event *event, int flags)
6972 if (flags & PERF_EF_START)
6973 cpu_clock_event_start(event, flags);
6974 perf_event_update_userpage(event);
6976 return 0;
6979 static void cpu_clock_event_del(struct perf_event *event, int flags)
6981 cpu_clock_event_stop(event, flags);
6984 static void cpu_clock_event_read(struct perf_event *event)
6986 cpu_clock_event_update(event);
6989 static int cpu_clock_event_init(struct perf_event *event)
6991 if (event->attr.type != PERF_TYPE_SOFTWARE)
6992 return -ENOENT;
6994 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6995 return -ENOENT;
6998 * no branch sampling for software events
7000 if (has_branch_stack(event))
7001 return -EOPNOTSUPP;
7003 perf_swevent_init_hrtimer(event);
7005 return 0;
7008 static struct pmu perf_cpu_clock = {
7009 .task_ctx_nr = perf_sw_context,
7011 .capabilities = PERF_PMU_CAP_NO_NMI,
7013 .event_init = cpu_clock_event_init,
7014 .add = cpu_clock_event_add,
7015 .del = cpu_clock_event_del,
7016 .start = cpu_clock_event_start,
7017 .stop = cpu_clock_event_stop,
7018 .read = cpu_clock_event_read,
7022 * Software event: task time clock
7025 static void task_clock_event_update(struct perf_event *event, u64 now)
7027 u64 prev;
7028 s64 delta;
7030 prev = local64_xchg(&event->hw.prev_count, now);
7031 delta = now - prev;
7032 local64_add(delta, &event->count);
7035 static void task_clock_event_start(struct perf_event *event, int flags)
7037 local64_set(&event->hw.prev_count, event->ctx->time);
7038 perf_swevent_start_hrtimer(event);
7041 static void task_clock_event_stop(struct perf_event *event, int flags)
7043 perf_swevent_cancel_hrtimer(event);
7044 task_clock_event_update(event, event->ctx->time);
7047 static int task_clock_event_add(struct perf_event *event, int flags)
7049 if (flags & PERF_EF_START)
7050 task_clock_event_start(event, flags);
7051 perf_event_update_userpage(event);
7053 return 0;
7056 static void task_clock_event_del(struct perf_event *event, int flags)
7058 task_clock_event_stop(event, PERF_EF_UPDATE);
7061 static void task_clock_event_read(struct perf_event *event)
7063 u64 now = perf_clock();
7064 u64 delta = now - event->ctx->timestamp;
7065 u64 time = event->ctx->time + delta;
7067 task_clock_event_update(event, time);
7070 static int task_clock_event_init(struct perf_event *event)
7072 if (event->attr.type != PERF_TYPE_SOFTWARE)
7073 return -ENOENT;
7075 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7076 return -ENOENT;
7079 * no branch sampling for software events
7081 if (has_branch_stack(event))
7082 return -EOPNOTSUPP;
7084 perf_swevent_init_hrtimer(event);
7086 return 0;
7089 static struct pmu perf_task_clock = {
7090 .task_ctx_nr = perf_sw_context,
7092 .capabilities = PERF_PMU_CAP_NO_NMI,
7094 .event_init = task_clock_event_init,
7095 .add = task_clock_event_add,
7096 .del = task_clock_event_del,
7097 .start = task_clock_event_start,
7098 .stop = task_clock_event_stop,
7099 .read = task_clock_event_read,
7102 static void perf_pmu_nop_void(struct pmu *pmu)
7106 static int perf_pmu_nop_int(struct pmu *pmu)
7108 return 0;
7111 static void perf_pmu_start_txn(struct pmu *pmu)
7113 perf_pmu_disable(pmu);
7116 static int perf_pmu_commit_txn(struct pmu *pmu)
7118 perf_pmu_enable(pmu);
7119 return 0;
7122 static void perf_pmu_cancel_txn(struct pmu *pmu)
7124 perf_pmu_enable(pmu);
7127 static int perf_event_idx_default(struct perf_event *event)
7129 return 0;
7133 * Ensures all contexts with the same task_ctx_nr have the same
7134 * pmu_cpu_context too.
7136 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7138 struct pmu *pmu;
7140 if (ctxn < 0)
7141 return NULL;
7143 list_for_each_entry(pmu, &pmus, entry) {
7144 if (pmu->task_ctx_nr == ctxn)
7145 return pmu->pmu_cpu_context;
7148 return NULL;
7151 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7153 int cpu;
7155 for_each_possible_cpu(cpu) {
7156 struct perf_cpu_context *cpuctx;
7158 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7160 if (cpuctx->unique_pmu == old_pmu)
7161 cpuctx->unique_pmu = pmu;
7165 static void free_pmu_context(struct pmu *pmu)
7167 struct pmu *i;
7169 mutex_lock(&pmus_lock);
7171 * Like a real lame refcount.
7173 list_for_each_entry(i, &pmus, entry) {
7174 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7175 update_pmu_context(i, pmu);
7176 goto out;
7180 free_percpu(pmu->pmu_cpu_context);
7181 out:
7182 mutex_unlock(&pmus_lock);
7184 static struct idr pmu_idr;
7186 static ssize_t
7187 type_show(struct device *dev, struct device_attribute *attr, char *page)
7189 struct pmu *pmu = dev_get_drvdata(dev);
7191 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7193 static DEVICE_ATTR_RO(type);
7195 static ssize_t
7196 perf_event_mux_interval_ms_show(struct device *dev,
7197 struct device_attribute *attr,
7198 char *page)
7200 struct pmu *pmu = dev_get_drvdata(dev);
7202 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7205 static ssize_t
7206 perf_event_mux_interval_ms_store(struct device *dev,
7207 struct device_attribute *attr,
7208 const char *buf, size_t count)
7210 struct pmu *pmu = dev_get_drvdata(dev);
7211 int timer, cpu, ret;
7213 ret = kstrtoint(buf, 0, &timer);
7214 if (ret)
7215 return ret;
7217 if (timer < 1)
7218 return -EINVAL;
7220 /* same value, noting to do */
7221 if (timer == pmu->hrtimer_interval_ms)
7222 return count;
7224 pmu->hrtimer_interval_ms = timer;
7226 /* update all cpuctx for this PMU */
7227 for_each_possible_cpu(cpu) {
7228 struct perf_cpu_context *cpuctx;
7229 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7230 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7232 if (hrtimer_active(&cpuctx->hrtimer))
7233 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7236 return count;
7238 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7240 static struct attribute *pmu_dev_attrs[] = {
7241 &dev_attr_type.attr,
7242 &dev_attr_perf_event_mux_interval_ms.attr,
7243 NULL,
7245 ATTRIBUTE_GROUPS(pmu_dev);
7247 static int pmu_bus_running;
7248 static struct bus_type pmu_bus = {
7249 .name = "event_source",
7250 .dev_groups = pmu_dev_groups,
7253 static void pmu_dev_release(struct device *dev)
7255 kfree(dev);
7258 static int pmu_dev_alloc(struct pmu *pmu)
7260 int ret = -ENOMEM;
7262 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7263 if (!pmu->dev)
7264 goto out;
7266 pmu->dev->groups = pmu->attr_groups;
7267 device_initialize(pmu->dev);
7268 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7269 if (ret)
7270 goto free_dev;
7272 dev_set_drvdata(pmu->dev, pmu);
7273 pmu->dev->bus = &pmu_bus;
7274 pmu->dev->release = pmu_dev_release;
7275 ret = device_add(pmu->dev);
7276 if (ret)
7277 goto free_dev;
7279 out:
7280 return ret;
7282 free_dev:
7283 put_device(pmu->dev);
7284 goto out;
7287 static struct lock_class_key cpuctx_mutex;
7288 static struct lock_class_key cpuctx_lock;
7290 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7292 int cpu, ret;
7294 mutex_lock(&pmus_lock);
7295 ret = -ENOMEM;
7296 pmu->pmu_disable_count = alloc_percpu(int);
7297 if (!pmu->pmu_disable_count)
7298 goto unlock;
7300 pmu->type = -1;
7301 if (!name)
7302 goto skip_type;
7303 pmu->name = name;
7305 if (type < 0) {
7306 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7307 if (type < 0) {
7308 ret = type;
7309 goto free_pdc;
7312 pmu->type = type;
7314 if (pmu_bus_running) {
7315 ret = pmu_dev_alloc(pmu);
7316 if (ret)
7317 goto free_idr;
7320 skip_type:
7321 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7322 if (pmu->pmu_cpu_context)
7323 goto got_cpu_context;
7325 ret = -ENOMEM;
7326 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7327 if (!pmu->pmu_cpu_context)
7328 goto free_dev;
7330 for_each_possible_cpu(cpu) {
7331 struct perf_cpu_context *cpuctx;
7333 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7334 __perf_event_init_context(&cpuctx->ctx);
7335 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7336 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7337 cpuctx->ctx.pmu = pmu;
7339 __perf_cpu_hrtimer_init(cpuctx, cpu);
7341 cpuctx->unique_pmu = pmu;
7344 got_cpu_context:
7345 if (!pmu->start_txn) {
7346 if (pmu->pmu_enable) {
7348 * If we have pmu_enable/pmu_disable calls, install
7349 * transaction stubs that use that to try and batch
7350 * hardware accesses.
7352 pmu->start_txn = perf_pmu_start_txn;
7353 pmu->commit_txn = perf_pmu_commit_txn;
7354 pmu->cancel_txn = perf_pmu_cancel_txn;
7355 } else {
7356 pmu->start_txn = perf_pmu_nop_void;
7357 pmu->commit_txn = perf_pmu_nop_int;
7358 pmu->cancel_txn = perf_pmu_nop_void;
7362 if (!pmu->pmu_enable) {
7363 pmu->pmu_enable = perf_pmu_nop_void;
7364 pmu->pmu_disable = perf_pmu_nop_void;
7367 if (!pmu->event_idx)
7368 pmu->event_idx = perf_event_idx_default;
7370 list_add_rcu(&pmu->entry, &pmus);
7371 atomic_set(&pmu->exclusive_cnt, 0);
7372 ret = 0;
7373 unlock:
7374 mutex_unlock(&pmus_lock);
7376 return ret;
7378 free_dev:
7379 device_del(pmu->dev);
7380 put_device(pmu->dev);
7382 free_idr:
7383 if (pmu->type >= PERF_TYPE_MAX)
7384 idr_remove(&pmu_idr, pmu->type);
7386 free_pdc:
7387 free_percpu(pmu->pmu_disable_count);
7388 goto unlock;
7390 EXPORT_SYMBOL_GPL(perf_pmu_register);
7392 void perf_pmu_unregister(struct pmu *pmu)
7394 mutex_lock(&pmus_lock);
7395 list_del_rcu(&pmu->entry);
7396 mutex_unlock(&pmus_lock);
7399 * We dereference the pmu list under both SRCU and regular RCU, so
7400 * synchronize against both of those.
7402 synchronize_srcu(&pmus_srcu);
7403 synchronize_rcu();
7405 free_percpu(pmu->pmu_disable_count);
7406 if (pmu->type >= PERF_TYPE_MAX)
7407 idr_remove(&pmu_idr, pmu->type);
7408 device_del(pmu->dev);
7409 put_device(pmu->dev);
7410 free_pmu_context(pmu);
7412 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7414 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7416 struct perf_event_context *ctx = NULL;
7417 int ret;
7419 if (!try_module_get(pmu->module))
7420 return -ENODEV;
7422 if (event->group_leader != event) {
7424 * This ctx->mutex can nest when we're called through
7425 * inheritance. See the perf_event_ctx_lock_nested() comment.
7427 ctx = perf_event_ctx_lock_nested(event->group_leader,
7428 SINGLE_DEPTH_NESTING);
7429 BUG_ON(!ctx);
7432 event->pmu = pmu;
7433 ret = pmu->event_init(event);
7435 if (ctx)
7436 perf_event_ctx_unlock(event->group_leader, ctx);
7438 if (ret)
7439 module_put(pmu->module);
7441 return ret;
7444 struct pmu *perf_init_event(struct perf_event *event)
7446 struct pmu *pmu = NULL;
7447 int idx;
7448 int ret;
7450 idx = srcu_read_lock(&pmus_srcu);
7452 rcu_read_lock();
7453 pmu = idr_find(&pmu_idr, event->attr.type);
7454 rcu_read_unlock();
7455 if (pmu) {
7456 ret = perf_try_init_event(pmu, event);
7457 if (ret)
7458 pmu = ERR_PTR(ret);
7459 goto unlock;
7462 list_for_each_entry_rcu(pmu, &pmus, entry) {
7463 ret = perf_try_init_event(pmu, event);
7464 if (!ret)
7465 goto unlock;
7467 if (ret != -ENOENT) {
7468 pmu = ERR_PTR(ret);
7469 goto unlock;
7472 pmu = ERR_PTR(-ENOENT);
7473 unlock:
7474 srcu_read_unlock(&pmus_srcu, idx);
7476 return pmu;
7479 static void account_event_cpu(struct perf_event *event, int cpu)
7481 if (event->parent)
7482 return;
7484 if (is_cgroup_event(event))
7485 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7488 static void account_event(struct perf_event *event)
7490 if (event->parent)
7491 return;
7493 if (event->attach_state & PERF_ATTACH_TASK)
7494 static_key_slow_inc(&perf_sched_events.key);
7495 if (event->attr.mmap || event->attr.mmap_data)
7496 atomic_inc(&nr_mmap_events);
7497 if (event->attr.comm)
7498 atomic_inc(&nr_comm_events);
7499 if (event->attr.task)
7500 atomic_inc(&nr_task_events);
7501 if (event->attr.freq) {
7502 if (atomic_inc_return(&nr_freq_events) == 1)
7503 tick_nohz_full_kick_all();
7505 if (has_branch_stack(event))
7506 static_key_slow_inc(&perf_sched_events.key);
7507 if (is_cgroup_event(event))
7508 static_key_slow_inc(&perf_sched_events.key);
7510 account_event_cpu(event, event->cpu);
7514 * Allocate and initialize a event structure
7516 static struct perf_event *
7517 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7518 struct task_struct *task,
7519 struct perf_event *group_leader,
7520 struct perf_event *parent_event,
7521 perf_overflow_handler_t overflow_handler,
7522 void *context, int cgroup_fd)
7524 struct pmu *pmu;
7525 struct perf_event *event;
7526 struct hw_perf_event *hwc;
7527 long err = -EINVAL;
7529 if ((unsigned)cpu >= nr_cpu_ids) {
7530 if (!task || cpu != -1)
7531 return ERR_PTR(-EINVAL);
7534 event = kzalloc(sizeof(*event), GFP_KERNEL);
7535 if (!event)
7536 return ERR_PTR(-ENOMEM);
7539 * Single events are their own group leaders, with an
7540 * empty sibling list:
7542 if (!group_leader)
7543 group_leader = event;
7545 mutex_init(&event->child_mutex);
7546 INIT_LIST_HEAD(&event->child_list);
7548 INIT_LIST_HEAD(&event->group_entry);
7549 INIT_LIST_HEAD(&event->event_entry);
7550 INIT_LIST_HEAD(&event->sibling_list);
7551 INIT_LIST_HEAD(&event->rb_entry);
7552 INIT_LIST_HEAD(&event->active_entry);
7553 INIT_HLIST_NODE(&event->hlist_entry);
7556 init_waitqueue_head(&event->waitq);
7557 init_irq_work(&event->pending, perf_pending_event);
7559 mutex_init(&event->mmap_mutex);
7561 atomic_long_set(&event->refcount, 1);
7562 event->cpu = cpu;
7563 event->attr = *attr;
7564 event->group_leader = group_leader;
7565 event->pmu = NULL;
7566 event->oncpu = -1;
7568 event->parent = parent_event;
7570 event->ns = get_pid_ns(task_active_pid_ns(current));
7571 event->id = atomic64_inc_return(&perf_event_id);
7573 event->state = PERF_EVENT_STATE_INACTIVE;
7575 if (task) {
7576 event->attach_state = PERF_ATTACH_TASK;
7578 * XXX pmu::event_init needs to know what task to account to
7579 * and we cannot use the ctx information because we need the
7580 * pmu before we get a ctx.
7582 event->hw.target = task;
7585 event->clock = &local_clock;
7586 if (parent_event)
7587 event->clock = parent_event->clock;
7589 if (!overflow_handler && parent_event) {
7590 overflow_handler = parent_event->overflow_handler;
7591 context = parent_event->overflow_handler_context;
7594 event->overflow_handler = overflow_handler;
7595 event->overflow_handler_context = context;
7597 perf_event__state_init(event);
7599 pmu = NULL;
7601 hwc = &event->hw;
7602 hwc->sample_period = attr->sample_period;
7603 if (attr->freq && attr->sample_freq)
7604 hwc->sample_period = 1;
7605 hwc->last_period = hwc->sample_period;
7607 local64_set(&hwc->period_left, hwc->sample_period);
7610 * we currently do not support PERF_FORMAT_GROUP on inherited events
7612 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7613 goto err_ns;
7615 if (!has_branch_stack(event))
7616 event->attr.branch_sample_type = 0;
7618 if (cgroup_fd != -1) {
7619 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7620 if (err)
7621 goto err_ns;
7624 pmu = perf_init_event(event);
7625 if (!pmu)
7626 goto err_ns;
7627 else if (IS_ERR(pmu)) {
7628 err = PTR_ERR(pmu);
7629 goto err_ns;
7632 err = exclusive_event_init(event);
7633 if (err)
7634 goto err_pmu;
7636 if (!event->parent) {
7637 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7638 err = get_callchain_buffers();
7639 if (err)
7640 goto err_per_task;
7644 return event;
7646 err_per_task:
7647 exclusive_event_destroy(event);
7649 err_pmu:
7650 if (event->destroy)
7651 event->destroy(event);
7652 module_put(pmu->module);
7653 err_ns:
7654 if (is_cgroup_event(event))
7655 perf_detach_cgroup(event);
7656 if (event->ns)
7657 put_pid_ns(event->ns);
7658 kfree(event);
7660 return ERR_PTR(err);
7663 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7664 struct perf_event_attr *attr)
7666 u32 size;
7667 int ret;
7669 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7670 return -EFAULT;
7673 * zero the full structure, so that a short copy will be nice.
7675 memset(attr, 0, sizeof(*attr));
7677 ret = get_user(size, &uattr->size);
7678 if (ret)
7679 return ret;
7681 if (size > PAGE_SIZE) /* silly large */
7682 goto err_size;
7684 if (!size) /* abi compat */
7685 size = PERF_ATTR_SIZE_VER0;
7687 if (size < PERF_ATTR_SIZE_VER0)
7688 goto err_size;
7691 * If we're handed a bigger struct than we know of,
7692 * ensure all the unknown bits are 0 - i.e. new
7693 * user-space does not rely on any kernel feature
7694 * extensions we dont know about yet.
7696 if (size > sizeof(*attr)) {
7697 unsigned char __user *addr;
7698 unsigned char __user *end;
7699 unsigned char val;
7701 addr = (void __user *)uattr + sizeof(*attr);
7702 end = (void __user *)uattr + size;
7704 for (; addr < end; addr++) {
7705 ret = get_user(val, addr);
7706 if (ret)
7707 return ret;
7708 if (val)
7709 goto err_size;
7711 size = sizeof(*attr);
7714 ret = copy_from_user(attr, uattr, size);
7715 if (ret)
7716 return -EFAULT;
7718 if (attr->__reserved_1)
7719 return -EINVAL;
7721 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7722 return -EINVAL;
7724 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7725 return -EINVAL;
7727 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7728 u64 mask = attr->branch_sample_type;
7730 /* only using defined bits */
7731 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7732 return -EINVAL;
7734 /* at least one branch bit must be set */
7735 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7736 return -EINVAL;
7738 /* propagate priv level, when not set for branch */
7739 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7741 /* exclude_kernel checked on syscall entry */
7742 if (!attr->exclude_kernel)
7743 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7745 if (!attr->exclude_user)
7746 mask |= PERF_SAMPLE_BRANCH_USER;
7748 if (!attr->exclude_hv)
7749 mask |= PERF_SAMPLE_BRANCH_HV;
7751 * adjust user setting (for HW filter setup)
7753 attr->branch_sample_type = mask;
7755 /* privileged levels capture (kernel, hv): check permissions */
7756 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7757 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7758 return -EACCES;
7761 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7762 ret = perf_reg_validate(attr->sample_regs_user);
7763 if (ret)
7764 return ret;
7767 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7768 if (!arch_perf_have_user_stack_dump())
7769 return -ENOSYS;
7772 * We have __u32 type for the size, but so far
7773 * we can only use __u16 as maximum due to the
7774 * __u16 sample size limit.
7776 if (attr->sample_stack_user >= USHRT_MAX)
7777 ret = -EINVAL;
7778 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7779 ret = -EINVAL;
7782 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7783 ret = perf_reg_validate(attr->sample_regs_intr);
7784 out:
7785 return ret;
7787 err_size:
7788 put_user(sizeof(*attr), &uattr->size);
7789 ret = -E2BIG;
7790 goto out;
7793 static int
7794 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7796 struct ring_buffer *rb = NULL;
7797 int ret = -EINVAL;
7799 if (!output_event)
7800 goto set;
7802 /* don't allow circular references */
7803 if (event == output_event)
7804 goto out;
7807 * Don't allow cross-cpu buffers
7809 if (output_event->cpu != event->cpu)
7810 goto out;
7813 * If its not a per-cpu rb, it must be the same task.
7815 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7816 goto out;
7819 * Mixing clocks in the same buffer is trouble you don't need.
7821 if (output_event->clock != event->clock)
7822 goto out;
7825 * If both events generate aux data, they must be on the same PMU
7827 if (has_aux(event) && has_aux(output_event) &&
7828 event->pmu != output_event->pmu)
7829 goto out;
7831 set:
7832 mutex_lock(&event->mmap_mutex);
7833 /* Can't redirect output if we've got an active mmap() */
7834 if (atomic_read(&event->mmap_count))
7835 goto unlock;
7837 if (output_event) {
7838 /* get the rb we want to redirect to */
7839 rb = ring_buffer_get(output_event);
7840 if (!rb)
7841 goto unlock;
7844 ring_buffer_attach(event, rb);
7846 ret = 0;
7847 unlock:
7848 mutex_unlock(&event->mmap_mutex);
7850 out:
7851 return ret;
7854 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7856 if (b < a)
7857 swap(a, b);
7859 mutex_lock(a);
7860 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7863 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7865 bool nmi_safe = false;
7867 switch (clk_id) {
7868 case CLOCK_MONOTONIC:
7869 event->clock = &ktime_get_mono_fast_ns;
7870 nmi_safe = true;
7871 break;
7873 case CLOCK_MONOTONIC_RAW:
7874 event->clock = &ktime_get_raw_fast_ns;
7875 nmi_safe = true;
7876 break;
7878 case CLOCK_REALTIME:
7879 event->clock = &ktime_get_real_ns;
7880 break;
7882 case CLOCK_BOOTTIME:
7883 event->clock = &ktime_get_boot_ns;
7884 break;
7886 case CLOCK_TAI:
7887 event->clock = &ktime_get_tai_ns;
7888 break;
7890 default:
7891 return -EINVAL;
7894 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7895 return -EINVAL;
7897 return 0;
7901 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7903 * @attr_uptr: event_id type attributes for monitoring/sampling
7904 * @pid: target pid
7905 * @cpu: target cpu
7906 * @group_fd: group leader event fd
7908 SYSCALL_DEFINE5(perf_event_open,
7909 struct perf_event_attr __user *, attr_uptr,
7910 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7912 struct perf_event *group_leader = NULL, *output_event = NULL;
7913 struct perf_event *event, *sibling;
7914 struct perf_event_attr attr;
7915 struct perf_event_context *ctx, *uninitialized_var(gctx);
7916 struct file *event_file = NULL;
7917 struct fd group = {NULL, 0};
7918 struct task_struct *task = NULL;
7919 struct pmu *pmu;
7920 int event_fd;
7921 int move_group = 0;
7922 int err;
7923 int f_flags = O_RDWR;
7924 int cgroup_fd = -1;
7926 /* for future expandability... */
7927 if (flags & ~PERF_FLAG_ALL)
7928 return -EINVAL;
7930 err = perf_copy_attr(attr_uptr, &attr);
7931 if (err)
7932 return err;
7934 if (!attr.exclude_kernel) {
7935 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7936 return -EACCES;
7939 if (attr.freq) {
7940 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7941 return -EINVAL;
7942 } else {
7943 if (attr.sample_period & (1ULL << 63))
7944 return -EINVAL;
7948 * In cgroup mode, the pid argument is used to pass the fd
7949 * opened to the cgroup directory in cgroupfs. The cpu argument
7950 * designates the cpu on which to monitor threads from that
7951 * cgroup.
7953 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7954 return -EINVAL;
7956 if (flags & PERF_FLAG_FD_CLOEXEC)
7957 f_flags |= O_CLOEXEC;
7959 event_fd = get_unused_fd_flags(f_flags);
7960 if (event_fd < 0)
7961 return event_fd;
7963 if (group_fd != -1) {
7964 err = perf_fget_light(group_fd, &group);
7965 if (err)
7966 goto err_fd;
7967 group_leader = group.file->private_data;
7968 if (flags & PERF_FLAG_FD_OUTPUT)
7969 output_event = group_leader;
7970 if (flags & PERF_FLAG_FD_NO_GROUP)
7971 group_leader = NULL;
7974 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7975 task = find_lively_task_by_vpid(pid);
7976 if (IS_ERR(task)) {
7977 err = PTR_ERR(task);
7978 goto err_group_fd;
7982 if (task && group_leader &&
7983 group_leader->attr.inherit != attr.inherit) {
7984 err = -EINVAL;
7985 goto err_task;
7988 get_online_cpus();
7990 if (flags & PERF_FLAG_PID_CGROUP)
7991 cgroup_fd = pid;
7993 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7994 NULL, NULL, cgroup_fd);
7995 if (IS_ERR(event)) {
7996 err = PTR_ERR(event);
7997 goto err_cpus;
8000 if (is_sampling_event(event)) {
8001 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8002 err = -ENOTSUPP;
8003 goto err_alloc;
8007 account_event(event);
8010 * Special case software events and allow them to be part of
8011 * any hardware group.
8013 pmu = event->pmu;
8015 if (attr.use_clockid) {
8016 err = perf_event_set_clock(event, attr.clockid);
8017 if (err)
8018 goto err_alloc;
8021 if (group_leader &&
8022 (is_software_event(event) != is_software_event(group_leader))) {
8023 if (is_software_event(event)) {
8025 * If event and group_leader are not both a software
8026 * event, and event is, then group leader is not.
8028 * Allow the addition of software events to !software
8029 * groups, this is safe because software events never
8030 * fail to schedule.
8032 pmu = group_leader->pmu;
8033 } else if (is_software_event(group_leader) &&
8034 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8036 * In case the group is a pure software group, and we
8037 * try to add a hardware event, move the whole group to
8038 * the hardware context.
8040 move_group = 1;
8045 * Get the target context (task or percpu):
8047 ctx = find_get_context(pmu, task, event);
8048 if (IS_ERR(ctx)) {
8049 err = PTR_ERR(ctx);
8050 goto err_alloc;
8053 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8054 err = -EBUSY;
8055 goto err_context;
8058 if (task) {
8059 put_task_struct(task);
8060 task = NULL;
8064 * Look up the group leader (we will attach this event to it):
8066 if (group_leader) {
8067 err = -EINVAL;
8070 * Do not allow a recursive hierarchy (this new sibling
8071 * becoming part of another group-sibling):
8073 if (group_leader->group_leader != group_leader)
8074 goto err_context;
8076 /* All events in a group should have the same clock */
8077 if (group_leader->clock != event->clock)
8078 goto err_context;
8081 * Do not allow to attach to a group in a different
8082 * task or CPU context:
8084 if (move_group) {
8086 * Make sure we're both on the same task, or both
8087 * per-cpu events.
8089 if (group_leader->ctx->task != ctx->task)
8090 goto err_context;
8093 * Make sure we're both events for the same CPU;
8094 * grouping events for different CPUs is broken; since
8095 * you can never concurrently schedule them anyhow.
8097 if (group_leader->cpu != event->cpu)
8098 goto err_context;
8099 } else {
8100 if (group_leader->ctx != ctx)
8101 goto err_context;
8105 * Only a group leader can be exclusive or pinned
8107 if (attr.exclusive || attr.pinned)
8108 goto err_context;
8111 if (output_event) {
8112 err = perf_event_set_output(event, output_event);
8113 if (err)
8114 goto err_context;
8117 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8118 f_flags);
8119 if (IS_ERR(event_file)) {
8120 err = PTR_ERR(event_file);
8121 goto err_context;
8124 if (move_group) {
8125 gctx = group_leader->ctx;
8128 * See perf_event_ctx_lock() for comments on the details
8129 * of swizzling perf_event::ctx.
8131 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8133 perf_remove_from_context(group_leader, false);
8135 list_for_each_entry(sibling, &group_leader->sibling_list,
8136 group_entry) {
8137 perf_remove_from_context(sibling, false);
8138 put_ctx(gctx);
8140 } else {
8141 mutex_lock(&ctx->mutex);
8144 WARN_ON_ONCE(ctx->parent_ctx);
8146 if (move_group) {
8148 * Wait for everybody to stop referencing the events through
8149 * the old lists, before installing it on new lists.
8151 synchronize_rcu();
8154 * Install the group siblings before the group leader.
8156 * Because a group leader will try and install the entire group
8157 * (through the sibling list, which is still in-tact), we can
8158 * end up with siblings installed in the wrong context.
8160 * By installing siblings first we NO-OP because they're not
8161 * reachable through the group lists.
8163 list_for_each_entry(sibling, &group_leader->sibling_list,
8164 group_entry) {
8165 perf_event__state_init(sibling);
8166 perf_install_in_context(ctx, sibling, sibling->cpu);
8167 get_ctx(ctx);
8171 * Removing from the context ends up with disabled
8172 * event. What we want here is event in the initial
8173 * startup state, ready to be add into new context.
8175 perf_event__state_init(group_leader);
8176 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8177 get_ctx(ctx);
8180 if (!exclusive_event_installable(event, ctx)) {
8181 err = -EBUSY;
8182 mutex_unlock(&ctx->mutex);
8183 fput(event_file);
8184 goto err_context;
8187 perf_install_in_context(ctx, event, event->cpu);
8188 perf_unpin_context(ctx);
8190 if (move_group) {
8191 mutex_unlock(&gctx->mutex);
8192 put_ctx(gctx);
8194 mutex_unlock(&ctx->mutex);
8196 put_online_cpus();
8198 event->owner = current;
8200 mutex_lock(&current->perf_event_mutex);
8201 list_add_tail(&event->owner_entry, &current->perf_event_list);
8202 mutex_unlock(&current->perf_event_mutex);
8205 * Precalculate sample_data sizes
8207 perf_event__header_size(event);
8208 perf_event__id_header_size(event);
8211 * Drop the reference on the group_event after placing the
8212 * new event on the sibling_list. This ensures destruction
8213 * of the group leader will find the pointer to itself in
8214 * perf_group_detach().
8216 fdput(group);
8217 fd_install(event_fd, event_file);
8218 return event_fd;
8220 err_context:
8221 perf_unpin_context(ctx);
8222 put_ctx(ctx);
8223 err_alloc:
8224 free_event(event);
8225 err_cpus:
8226 put_online_cpus();
8227 err_task:
8228 if (task)
8229 put_task_struct(task);
8230 err_group_fd:
8231 fdput(group);
8232 err_fd:
8233 put_unused_fd(event_fd);
8234 return err;
8238 * perf_event_create_kernel_counter
8240 * @attr: attributes of the counter to create
8241 * @cpu: cpu in which the counter is bound
8242 * @task: task to profile (NULL for percpu)
8244 struct perf_event *
8245 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8246 struct task_struct *task,
8247 perf_overflow_handler_t overflow_handler,
8248 void *context)
8250 struct perf_event_context *ctx;
8251 struct perf_event *event;
8252 int err;
8255 * Get the target context (task or percpu):
8258 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8259 overflow_handler, context, -1);
8260 if (IS_ERR(event)) {
8261 err = PTR_ERR(event);
8262 goto err;
8265 /* Mark owner so we could distinguish it from user events. */
8266 event->owner = EVENT_OWNER_KERNEL;
8268 account_event(event);
8270 ctx = find_get_context(event->pmu, task, event);
8271 if (IS_ERR(ctx)) {
8272 err = PTR_ERR(ctx);
8273 goto err_free;
8276 WARN_ON_ONCE(ctx->parent_ctx);
8277 mutex_lock(&ctx->mutex);
8278 if (!exclusive_event_installable(event, ctx)) {
8279 mutex_unlock(&ctx->mutex);
8280 perf_unpin_context(ctx);
8281 put_ctx(ctx);
8282 err = -EBUSY;
8283 goto err_free;
8286 perf_install_in_context(ctx, event, cpu);
8287 perf_unpin_context(ctx);
8288 mutex_unlock(&ctx->mutex);
8290 return event;
8292 err_free:
8293 free_event(event);
8294 err:
8295 return ERR_PTR(err);
8297 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8301 struct perf_event_context *src_ctx;
8302 struct perf_event_context *dst_ctx;
8303 struct perf_event *event, *tmp;
8304 LIST_HEAD(events);
8306 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8307 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8310 * See perf_event_ctx_lock() for comments on the details
8311 * of swizzling perf_event::ctx.
8313 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8314 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8315 event_entry) {
8316 perf_remove_from_context(event, false);
8317 unaccount_event_cpu(event, src_cpu);
8318 put_ctx(src_ctx);
8319 list_add(&event->migrate_entry, &events);
8323 * Wait for the events to quiesce before re-instating them.
8325 synchronize_rcu();
8328 * Re-instate events in 2 passes.
8330 * Skip over group leaders and only install siblings on this first
8331 * pass, siblings will not get enabled without a leader, however a
8332 * leader will enable its siblings, even if those are still on the old
8333 * context.
8335 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8336 if (event->group_leader == event)
8337 continue;
8339 list_del(&event->migrate_entry);
8340 if (event->state >= PERF_EVENT_STATE_OFF)
8341 event->state = PERF_EVENT_STATE_INACTIVE;
8342 account_event_cpu(event, dst_cpu);
8343 perf_install_in_context(dst_ctx, event, dst_cpu);
8344 get_ctx(dst_ctx);
8348 * Once all the siblings are setup properly, install the group leaders
8349 * to make it go.
8351 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8352 list_del(&event->migrate_entry);
8353 if (event->state >= PERF_EVENT_STATE_OFF)
8354 event->state = PERF_EVENT_STATE_INACTIVE;
8355 account_event_cpu(event, dst_cpu);
8356 perf_install_in_context(dst_ctx, event, dst_cpu);
8357 get_ctx(dst_ctx);
8359 mutex_unlock(&dst_ctx->mutex);
8360 mutex_unlock(&src_ctx->mutex);
8362 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8364 static void sync_child_event(struct perf_event *child_event,
8365 struct task_struct *child)
8367 struct perf_event *parent_event = child_event->parent;
8368 u64 child_val;
8370 if (child_event->attr.inherit_stat)
8371 perf_event_read_event(child_event, child);
8373 child_val = perf_event_count(child_event);
8376 * Add back the child's count to the parent's count:
8378 atomic64_add(child_val, &parent_event->child_count);
8379 atomic64_add(child_event->total_time_enabled,
8380 &parent_event->child_total_time_enabled);
8381 atomic64_add(child_event->total_time_running,
8382 &parent_event->child_total_time_running);
8385 * Remove this event from the parent's list
8387 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8388 mutex_lock(&parent_event->child_mutex);
8389 list_del_init(&child_event->child_list);
8390 mutex_unlock(&parent_event->child_mutex);
8393 * Make sure user/parent get notified, that we just
8394 * lost one event.
8396 perf_event_wakeup(parent_event);
8399 * Release the parent event, if this was the last
8400 * reference to it.
8402 put_event(parent_event);
8405 static void
8406 __perf_event_exit_task(struct perf_event *child_event,
8407 struct perf_event_context *child_ctx,
8408 struct task_struct *child)
8411 * Do not destroy the 'original' grouping; because of the context
8412 * switch optimization the original events could've ended up in a
8413 * random child task.
8415 * If we were to destroy the original group, all group related
8416 * operations would cease to function properly after this random
8417 * child dies.
8419 * Do destroy all inherited groups, we don't care about those
8420 * and being thorough is better.
8422 perf_remove_from_context(child_event, !!child_event->parent);
8425 * It can happen that the parent exits first, and has events
8426 * that are still around due to the child reference. These
8427 * events need to be zapped.
8429 if (child_event->parent) {
8430 sync_child_event(child_event, child);
8431 free_event(child_event);
8432 } else {
8433 child_event->state = PERF_EVENT_STATE_EXIT;
8434 perf_event_wakeup(child_event);
8438 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8440 struct perf_event *child_event, *next;
8441 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8442 unsigned long flags;
8444 if (likely(!child->perf_event_ctxp[ctxn])) {
8445 perf_event_task(child, NULL, 0);
8446 return;
8449 local_irq_save(flags);
8451 * We can't reschedule here because interrupts are disabled,
8452 * and either child is current or it is a task that can't be
8453 * scheduled, so we are now safe from rescheduling changing
8454 * our context.
8456 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8459 * Take the context lock here so that if find_get_context is
8460 * reading child->perf_event_ctxp, we wait until it has
8461 * incremented the context's refcount before we do put_ctx below.
8463 raw_spin_lock(&child_ctx->lock);
8464 task_ctx_sched_out(child_ctx);
8465 child->perf_event_ctxp[ctxn] = NULL;
8468 * If this context is a clone; unclone it so it can't get
8469 * swapped to another process while we're removing all
8470 * the events from it.
8472 clone_ctx = unclone_ctx(child_ctx);
8473 update_context_time(child_ctx);
8474 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8476 if (clone_ctx)
8477 put_ctx(clone_ctx);
8480 * Report the task dead after unscheduling the events so that we
8481 * won't get any samples after PERF_RECORD_EXIT. We can however still
8482 * get a few PERF_RECORD_READ events.
8484 perf_event_task(child, child_ctx, 0);
8487 * We can recurse on the same lock type through:
8489 * __perf_event_exit_task()
8490 * sync_child_event()
8491 * put_event()
8492 * mutex_lock(&ctx->mutex)
8494 * But since its the parent context it won't be the same instance.
8496 mutex_lock(&child_ctx->mutex);
8498 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8499 __perf_event_exit_task(child_event, child_ctx, child);
8501 mutex_unlock(&child_ctx->mutex);
8503 put_ctx(child_ctx);
8507 * When a child task exits, feed back event values to parent events.
8509 void perf_event_exit_task(struct task_struct *child)
8511 struct perf_event *event, *tmp;
8512 int ctxn;
8514 mutex_lock(&child->perf_event_mutex);
8515 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8516 owner_entry) {
8517 list_del_init(&event->owner_entry);
8520 * Ensure the list deletion is visible before we clear
8521 * the owner, closes a race against perf_release() where
8522 * we need to serialize on the owner->perf_event_mutex.
8524 smp_wmb();
8525 event->owner = NULL;
8527 mutex_unlock(&child->perf_event_mutex);
8529 for_each_task_context_nr(ctxn)
8530 perf_event_exit_task_context(child, ctxn);
8533 static void perf_free_event(struct perf_event *event,
8534 struct perf_event_context *ctx)
8536 struct perf_event *parent = event->parent;
8538 if (WARN_ON_ONCE(!parent))
8539 return;
8541 mutex_lock(&parent->child_mutex);
8542 list_del_init(&event->child_list);
8543 mutex_unlock(&parent->child_mutex);
8545 put_event(parent);
8547 raw_spin_lock_irq(&ctx->lock);
8548 perf_group_detach(event);
8549 list_del_event(event, ctx);
8550 raw_spin_unlock_irq(&ctx->lock);
8551 free_event(event);
8555 * Free an unexposed, unused context as created by inheritance by
8556 * perf_event_init_task below, used by fork() in case of fail.
8558 * Not all locks are strictly required, but take them anyway to be nice and
8559 * help out with the lockdep assertions.
8561 void perf_event_free_task(struct task_struct *task)
8563 struct perf_event_context *ctx;
8564 struct perf_event *event, *tmp;
8565 int ctxn;
8567 for_each_task_context_nr(ctxn) {
8568 ctx = task->perf_event_ctxp[ctxn];
8569 if (!ctx)
8570 continue;
8572 mutex_lock(&ctx->mutex);
8573 again:
8574 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8575 group_entry)
8576 perf_free_event(event, ctx);
8578 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8579 group_entry)
8580 perf_free_event(event, ctx);
8582 if (!list_empty(&ctx->pinned_groups) ||
8583 !list_empty(&ctx->flexible_groups))
8584 goto again;
8586 mutex_unlock(&ctx->mutex);
8588 put_ctx(ctx);
8592 void perf_event_delayed_put(struct task_struct *task)
8594 int ctxn;
8596 for_each_task_context_nr(ctxn)
8597 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8601 * inherit a event from parent task to child task:
8603 static struct perf_event *
8604 inherit_event(struct perf_event *parent_event,
8605 struct task_struct *parent,
8606 struct perf_event_context *parent_ctx,
8607 struct task_struct *child,
8608 struct perf_event *group_leader,
8609 struct perf_event_context *child_ctx)
8611 enum perf_event_active_state parent_state = parent_event->state;
8612 struct perf_event *child_event;
8613 unsigned long flags;
8616 * Instead of creating recursive hierarchies of events,
8617 * we link inherited events back to the original parent,
8618 * which has a filp for sure, which we use as the reference
8619 * count:
8621 if (parent_event->parent)
8622 parent_event = parent_event->parent;
8624 child_event = perf_event_alloc(&parent_event->attr,
8625 parent_event->cpu,
8626 child,
8627 group_leader, parent_event,
8628 NULL, NULL, -1);
8629 if (IS_ERR(child_event))
8630 return child_event;
8632 if (is_orphaned_event(parent_event) ||
8633 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8634 free_event(child_event);
8635 return NULL;
8638 get_ctx(child_ctx);
8641 * Make the child state follow the state of the parent event,
8642 * not its attr.disabled bit. We hold the parent's mutex,
8643 * so we won't race with perf_event_{en, dis}able_family.
8645 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8646 child_event->state = PERF_EVENT_STATE_INACTIVE;
8647 else
8648 child_event->state = PERF_EVENT_STATE_OFF;
8650 if (parent_event->attr.freq) {
8651 u64 sample_period = parent_event->hw.sample_period;
8652 struct hw_perf_event *hwc = &child_event->hw;
8654 hwc->sample_period = sample_period;
8655 hwc->last_period = sample_period;
8657 local64_set(&hwc->period_left, sample_period);
8660 child_event->ctx = child_ctx;
8661 child_event->overflow_handler = parent_event->overflow_handler;
8662 child_event->overflow_handler_context
8663 = parent_event->overflow_handler_context;
8666 * Precalculate sample_data sizes
8668 perf_event__header_size(child_event);
8669 perf_event__id_header_size(child_event);
8672 * Link it up in the child's context:
8674 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8675 add_event_to_ctx(child_event, child_ctx);
8676 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8679 * Link this into the parent event's child list
8681 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8682 mutex_lock(&parent_event->child_mutex);
8683 list_add_tail(&child_event->child_list, &parent_event->child_list);
8684 mutex_unlock(&parent_event->child_mutex);
8686 return child_event;
8689 static int inherit_group(struct perf_event *parent_event,
8690 struct task_struct *parent,
8691 struct perf_event_context *parent_ctx,
8692 struct task_struct *child,
8693 struct perf_event_context *child_ctx)
8695 struct perf_event *leader;
8696 struct perf_event *sub;
8697 struct perf_event *child_ctr;
8699 leader = inherit_event(parent_event, parent, parent_ctx,
8700 child, NULL, child_ctx);
8701 if (IS_ERR(leader))
8702 return PTR_ERR(leader);
8703 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8704 child_ctr = inherit_event(sub, parent, parent_ctx,
8705 child, leader, child_ctx);
8706 if (IS_ERR(child_ctr))
8707 return PTR_ERR(child_ctr);
8709 return 0;
8712 static int
8713 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8714 struct perf_event_context *parent_ctx,
8715 struct task_struct *child, int ctxn,
8716 int *inherited_all)
8718 int ret;
8719 struct perf_event_context *child_ctx;
8721 if (!event->attr.inherit) {
8722 *inherited_all = 0;
8723 return 0;
8726 child_ctx = child->perf_event_ctxp[ctxn];
8727 if (!child_ctx) {
8729 * This is executed from the parent task context, so
8730 * inherit events that have been marked for cloning.
8731 * First allocate and initialize a context for the
8732 * child.
8735 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8736 if (!child_ctx)
8737 return -ENOMEM;
8739 child->perf_event_ctxp[ctxn] = child_ctx;
8742 ret = inherit_group(event, parent, parent_ctx,
8743 child, child_ctx);
8745 if (ret)
8746 *inherited_all = 0;
8748 return ret;
8752 * Initialize the perf_event context in task_struct
8754 static int perf_event_init_context(struct task_struct *child, int ctxn)
8756 struct perf_event_context *child_ctx, *parent_ctx;
8757 struct perf_event_context *cloned_ctx;
8758 struct perf_event *event;
8759 struct task_struct *parent = current;
8760 int inherited_all = 1;
8761 unsigned long flags;
8762 int ret = 0;
8764 if (likely(!parent->perf_event_ctxp[ctxn]))
8765 return 0;
8768 * If the parent's context is a clone, pin it so it won't get
8769 * swapped under us.
8771 parent_ctx = perf_pin_task_context(parent, ctxn);
8772 if (!parent_ctx)
8773 return 0;
8776 * No need to check if parent_ctx != NULL here; since we saw
8777 * it non-NULL earlier, the only reason for it to become NULL
8778 * is if we exit, and since we're currently in the middle of
8779 * a fork we can't be exiting at the same time.
8783 * Lock the parent list. No need to lock the child - not PID
8784 * hashed yet and not running, so nobody can access it.
8786 mutex_lock(&parent_ctx->mutex);
8789 * We dont have to disable NMIs - we are only looking at
8790 * the list, not manipulating it:
8792 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8793 ret = inherit_task_group(event, parent, parent_ctx,
8794 child, ctxn, &inherited_all);
8795 if (ret)
8796 break;
8800 * We can't hold ctx->lock when iterating the ->flexible_group list due
8801 * to allocations, but we need to prevent rotation because
8802 * rotate_ctx() will change the list from interrupt context.
8804 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8805 parent_ctx->rotate_disable = 1;
8806 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8808 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8809 ret = inherit_task_group(event, parent, parent_ctx,
8810 child, ctxn, &inherited_all);
8811 if (ret)
8812 break;
8815 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8816 parent_ctx->rotate_disable = 0;
8818 child_ctx = child->perf_event_ctxp[ctxn];
8820 if (child_ctx && inherited_all) {
8822 * Mark the child context as a clone of the parent
8823 * context, or of whatever the parent is a clone of.
8825 * Note that if the parent is a clone, the holding of
8826 * parent_ctx->lock avoids it from being uncloned.
8828 cloned_ctx = parent_ctx->parent_ctx;
8829 if (cloned_ctx) {
8830 child_ctx->parent_ctx = cloned_ctx;
8831 child_ctx->parent_gen = parent_ctx->parent_gen;
8832 } else {
8833 child_ctx->parent_ctx = parent_ctx;
8834 child_ctx->parent_gen = parent_ctx->generation;
8836 get_ctx(child_ctx->parent_ctx);
8839 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8840 mutex_unlock(&parent_ctx->mutex);
8842 perf_unpin_context(parent_ctx);
8843 put_ctx(parent_ctx);
8845 return ret;
8849 * Initialize the perf_event context in task_struct
8851 int perf_event_init_task(struct task_struct *child)
8853 int ctxn, ret;
8855 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8856 mutex_init(&child->perf_event_mutex);
8857 INIT_LIST_HEAD(&child->perf_event_list);
8859 for_each_task_context_nr(ctxn) {
8860 ret = perf_event_init_context(child, ctxn);
8861 if (ret) {
8862 perf_event_free_task(child);
8863 return ret;
8867 return 0;
8870 static void __init perf_event_init_all_cpus(void)
8872 struct swevent_htable *swhash;
8873 int cpu;
8875 for_each_possible_cpu(cpu) {
8876 swhash = &per_cpu(swevent_htable, cpu);
8877 mutex_init(&swhash->hlist_mutex);
8878 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8882 static void perf_event_init_cpu(int cpu)
8884 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8886 mutex_lock(&swhash->hlist_mutex);
8887 swhash->online = true;
8888 if (swhash->hlist_refcount > 0) {
8889 struct swevent_hlist *hlist;
8891 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8892 WARN_ON(!hlist);
8893 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8895 mutex_unlock(&swhash->hlist_mutex);
8898 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8899 static void __perf_event_exit_context(void *__info)
8901 struct remove_event re = { .detach_group = true };
8902 struct perf_event_context *ctx = __info;
8904 rcu_read_lock();
8905 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8906 __perf_remove_from_context(&re);
8907 rcu_read_unlock();
8910 static void perf_event_exit_cpu_context(int cpu)
8912 struct perf_event_context *ctx;
8913 struct pmu *pmu;
8914 int idx;
8916 idx = srcu_read_lock(&pmus_srcu);
8917 list_for_each_entry_rcu(pmu, &pmus, entry) {
8918 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8920 mutex_lock(&ctx->mutex);
8921 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8922 mutex_unlock(&ctx->mutex);
8924 srcu_read_unlock(&pmus_srcu, idx);
8927 static void perf_event_exit_cpu(int cpu)
8929 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8931 perf_event_exit_cpu_context(cpu);
8933 mutex_lock(&swhash->hlist_mutex);
8934 swhash->online = false;
8935 swevent_hlist_release(swhash);
8936 mutex_unlock(&swhash->hlist_mutex);
8938 #else
8939 static inline void perf_event_exit_cpu(int cpu) { }
8940 #endif
8942 static int
8943 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8945 int cpu;
8947 for_each_online_cpu(cpu)
8948 perf_event_exit_cpu(cpu);
8950 return NOTIFY_OK;
8954 * Run the perf reboot notifier at the very last possible moment so that
8955 * the generic watchdog code runs as long as possible.
8957 static struct notifier_block perf_reboot_notifier = {
8958 .notifier_call = perf_reboot,
8959 .priority = INT_MIN,
8962 static int
8963 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8965 unsigned int cpu = (long)hcpu;
8967 switch (action & ~CPU_TASKS_FROZEN) {
8969 case CPU_UP_PREPARE:
8970 case CPU_DOWN_FAILED:
8971 perf_event_init_cpu(cpu);
8972 break;
8974 case CPU_UP_CANCELED:
8975 case CPU_DOWN_PREPARE:
8976 perf_event_exit_cpu(cpu);
8977 break;
8978 default:
8979 break;
8982 return NOTIFY_OK;
8985 void __init perf_event_init(void)
8987 int ret;
8989 idr_init(&pmu_idr);
8991 perf_event_init_all_cpus();
8992 init_srcu_struct(&pmus_srcu);
8993 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8994 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8995 perf_pmu_register(&perf_task_clock, NULL, -1);
8996 perf_tp_register();
8997 perf_cpu_notifier(perf_cpu_notify);
8998 register_reboot_notifier(&perf_reboot_notifier);
9000 ret = init_hw_breakpoint();
9001 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9003 /* do not patch jump label more than once per second */
9004 jump_label_rate_limit(&perf_sched_events, HZ);
9007 * Build time assertion that we keep the data_head at the intended
9008 * location. IOW, validation we got the __reserved[] size right.
9010 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9011 != 1024);
9014 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9015 char *page)
9017 struct perf_pmu_events_attr *pmu_attr =
9018 container_of(attr, struct perf_pmu_events_attr, attr);
9020 if (pmu_attr->event_str)
9021 return sprintf(page, "%s\n", pmu_attr->event_str);
9023 return 0;
9026 static int __init perf_event_sysfs_init(void)
9028 struct pmu *pmu;
9029 int ret;
9031 mutex_lock(&pmus_lock);
9033 ret = bus_register(&pmu_bus);
9034 if (ret)
9035 goto unlock;
9037 list_for_each_entry(pmu, &pmus, entry) {
9038 if (!pmu->name || pmu->type < 0)
9039 continue;
9041 ret = pmu_dev_alloc(pmu);
9042 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9044 pmu_bus_running = 1;
9045 ret = 0;
9047 unlock:
9048 mutex_unlock(&pmus_lock);
9050 return ret;
9052 device_initcall(perf_event_sysfs_init);
9054 #ifdef CONFIG_CGROUP_PERF
9055 static struct cgroup_subsys_state *
9056 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9058 struct perf_cgroup *jc;
9060 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9061 if (!jc)
9062 return ERR_PTR(-ENOMEM);
9064 jc->info = alloc_percpu(struct perf_cgroup_info);
9065 if (!jc->info) {
9066 kfree(jc);
9067 return ERR_PTR(-ENOMEM);
9070 return &jc->css;
9073 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9075 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9077 free_percpu(jc->info);
9078 kfree(jc);
9081 static int __perf_cgroup_move(void *info)
9083 struct task_struct *task = info;
9084 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9085 return 0;
9088 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9089 struct cgroup_taskset *tset)
9091 struct task_struct *task;
9093 cgroup_taskset_for_each(task, tset)
9094 task_function_call(task, __perf_cgroup_move, task);
9097 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9098 struct cgroup_subsys_state *old_css,
9099 struct task_struct *task)
9102 * cgroup_exit() is called in the copy_process() failure path.
9103 * Ignore this case since the task hasn't ran yet, this avoids
9104 * trying to poke a half freed task state from generic code.
9106 if (!(task->flags & PF_EXITING))
9107 return;
9109 task_function_call(task, __perf_cgroup_move, task);
9112 struct cgroup_subsys perf_event_cgrp_subsys = {
9113 .css_alloc = perf_cgroup_css_alloc,
9114 .css_free = perf_cgroup_css_free,
9115 .exit = perf_cgroup_exit,
9116 .attach = perf_cgroup_attach,
9118 #endif /* CONFIG_CGROUP_PERF */