Linux 4.1.18
[linux/fpc-iii.git] / kernel / kprobes.c
blobc90e417bb9636300e4f4fe87d2c995a6c2cdab12
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
86 return &(kretprobe_table_locks[hash].lock);
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
99 struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
108 #define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
112 static int slots_per_page(struct kprobe_insn_cache *c)
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
117 enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
123 static void *alloc_insn_page(void)
125 return module_alloc(PAGE_SIZE);
128 static void free_insn_page(void *page)
130 module_memfree(page);
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198 out:
199 mutex_unlock(&c->mutex);
200 return slot;
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
220 return 1;
222 return 0;
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
227 struct kprobe_insn_page *kip, *next;
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
243 c->nr_garbage = 0;
244 return 0;
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
250 struct kprobe_insn_page *kip;
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
268 /* Could not free this slot. */
269 WARN_ON(1);
270 out:
271 mutex_unlock(&c->mutex);
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
284 #endif
285 #endif
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
290 __this_cpu_write(kprobe_instance, kp);
293 static inline void reset_kprobe_instance(void)
295 __this_cpu_write(kprobe_instance, NULL);
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
304 struct kprobe *get_kprobe(void *addr)
306 struct hlist_head *head;
307 struct kprobe *p;
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
315 return NULL;
317 NOKPROBE_SYMBOL(get_kprobe);
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
324 return p->pre_handler == aggr_pre_handler;
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
335 * Keep all fields in the kprobe consistent
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
353 struct kprobe *kp;
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
360 reset_kprobe_instance();
363 NOKPROBE_SYMBOL(opt_pre_handler);
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
368 struct optimized_kprobe *op;
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
379 struct optimized_kprobe *op;
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
386 return 0;
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
392 struct optimized_kprobe *op;
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
398 op = container_of(p, struct optimized_kprobe, kp);
400 return kprobe_disabled(p) && list_empty(&op->list);
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
406 struct optimized_kprobe *op;
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
413 return 0;
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
436 return NULL;
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
452 static void do_optimize_kprobes(void)
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
480 static void do_unoptimize_kprobes(void)
482 struct optimized_kprobe *op, *tmp;
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
514 struct optimized_kprobe *op, *tmp;
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 BUG_ON(!kprobe_unused(&op->kp));
518 list_del_init(&op->list);
519 free_aggr_kprobe(&op->kp);
523 /* Start optimizer after OPTIMIZE_DELAY passed */
524 static void kick_kprobe_optimizer(void)
526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
529 /* Kprobe jump optimizer */
530 static void kprobe_optimizer(struct work_struct *work)
532 mutex_lock(&kprobe_mutex);
533 /* Lock modules while optimizing kprobes */
534 mutex_lock(&module_mutex);
537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 * kprobes before waiting for quiesence period.
540 do_unoptimize_kprobes();
543 * Step 2: Wait for quiesence period to ensure all running interrupts
544 * are done. Because optprobe may modify multiple instructions
545 * there is a chance that Nth instruction is interrupted. In that
546 * case, running interrupt can return to 2nd-Nth byte of jump
547 * instruction. This wait is for avoiding it.
549 synchronize_sched();
551 /* Step 3: Optimize kprobes after quiesence period */
552 do_optimize_kprobes();
554 /* Step 4: Free cleaned kprobes after quiesence period */
555 do_free_cleaned_kprobes();
557 mutex_unlock(&module_mutex);
558 mutex_unlock(&kprobe_mutex);
560 /* Step 5: Kick optimizer again if needed */
561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 kick_kprobe_optimizer();
565 /* Wait for completing optimization and unoptimization */
566 static void wait_for_kprobe_optimizer(void)
568 mutex_lock(&kprobe_mutex);
570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 mutex_unlock(&kprobe_mutex);
573 /* this will also make optimizing_work execute immmediately */
574 flush_delayed_work(&optimizing_work);
575 /* @optimizing_work might not have been queued yet, relax */
576 cpu_relax();
578 mutex_lock(&kprobe_mutex);
581 mutex_unlock(&kprobe_mutex);
584 /* Optimize kprobe if p is ready to be optimized */
585 static void optimize_kprobe(struct kprobe *p)
587 struct optimized_kprobe *op;
589 /* Check if the kprobe is disabled or not ready for optimization. */
590 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 (kprobe_disabled(p) || kprobes_all_disarmed))
592 return;
594 /* Both of break_handler and post_handler are not supported. */
595 if (p->break_handler || p->post_handler)
596 return;
598 op = container_of(p, struct optimized_kprobe, kp);
600 /* Check there is no other kprobes at the optimized instructions */
601 if (arch_check_optimized_kprobe(op) < 0)
602 return;
604 /* Check if it is already optimized. */
605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 return;
607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
609 if (!list_empty(&op->list))
610 /* This is under unoptimizing. Just dequeue the probe */
611 list_del_init(&op->list);
612 else {
613 list_add(&op->list, &optimizing_list);
614 kick_kprobe_optimizer();
618 /* Short cut to direct unoptimizing */
619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
621 get_online_cpus();
622 arch_unoptimize_kprobe(op);
623 put_online_cpus();
624 if (kprobe_disabled(&op->kp))
625 arch_disarm_kprobe(&op->kp);
628 /* Unoptimize a kprobe if p is optimized */
629 static void unoptimize_kprobe(struct kprobe *p, bool force)
631 struct optimized_kprobe *op;
633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 return; /* This is not an optprobe nor optimized */
636 op = container_of(p, struct optimized_kprobe, kp);
637 if (!kprobe_optimized(p)) {
638 /* Unoptimized or unoptimizing case */
639 if (force && !list_empty(&op->list)) {
641 * Only if this is unoptimizing kprobe and forced,
642 * forcibly unoptimize it. (No need to unoptimize
643 * unoptimized kprobe again :)
645 list_del_init(&op->list);
646 force_unoptimize_kprobe(op);
648 return;
651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 if (!list_empty(&op->list)) {
653 /* Dequeue from the optimization queue */
654 list_del_init(&op->list);
655 return;
657 /* Optimized kprobe case */
658 if (force)
659 /* Forcibly update the code: this is a special case */
660 force_unoptimize_kprobe(op);
661 else {
662 list_add(&op->list, &unoptimizing_list);
663 kick_kprobe_optimizer();
667 /* Cancel unoptimizing for reusing */
668 static void reuse_unused_kprobe(struct kprobe *ap)
670 struct optimized_kprobe *op;
672 BUG_ON(!kprobe_unused(ap));
674 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 * there is still a relative jump) and disabled.
677 op = container_of(ap, struct optimized_kprobe, kp);
678 if (unlikely(list_empty(&op->list)))
679 printk(KERN_WARNING "Warning: found a stray unused "
680 "aggrprobe@%p\n", ap->addr);
681 /* Enable the probe again */
682 ap->flags &= ~KPROBE_FLAG_DISABLED;
683 /* Optimize it again (remove from op->list) */
684 BUG_ON(!kprobe_optready(ap));
685 optimize_kprobe(ap);
688 /* Remove optimized instructions */
689 static void kill_optimized_kprobe(struct kprobe *p)
691 struct optimized_kprobe *op;
693 op = container_of(p, struct optimized_kprobe, kp);
694 if (!list_empty(&op->list))
695 /* Dequeue from the (un)optimization queue */
696 list_del_init(&op->list);
697 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
699 if (kprobe_unused(p)) {
700 /* Enqueue if it is unused */
701 list_add(&op->list, &freeing_list);
703 * Remove unused probes from the hash list. After waiting
704 * for synchronization, this probe is reclaimed.
705 * (reclaiming is done by do_free_cleaned_kprobes().)
707 hlist_del_rcu(&op->kp.hlist);
710 /* Don't touch the code, because it is already freed. */
711 arch_remove_optimized_kprobe(op);
714 /* Try to prepare optimized instructions */
715 static void prepare_optimized_kprobe(struct kprobe *p)
717 struct optimized_kprobe *op;
719 op = container_of(p, struct optimized_kprobe, kp);
720 arch_prepare_optimized_kprobe(op, p);
723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
726 struct optimized_kprobe *op;
728 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
729 if (!op)
730 return NULL;
732 INIT_LIST_HEAD(&op->list);
733 op->kp.addr = p->addr;
734 arch_prepare_optimized_kprobe(op, p);
736 return &op->kp;
739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
742 * Prepare an optimized_kprobe and optimize it
743 * NOTE: p must be a normal registered kprobe
745 static void try_to_optimize_kprobe(struct kprobe *p)
747 struct kprobe *ap;
748 struct optimized_kprobe *op;
750 /* Impossible to optimize ftrace-based kprobe */
751 if (kprobe_ftrace(p))
752 return;
754 /* For preparing optimization, jump_label_text_reserved() is called */
755 jump_label_lock();
756 mutex_lock(&text_mutex);
758 ap = alloc_aggr_kprobe(p);
759 if (!ap)
760 goto out;
762 op = container_of(ap, struct optimized_kprobe, kp);
763 if (!arch_prepared_optinsn(&op->optinsn)) {
764 /* If failed to setup optimizing, fallback to kprobe */
765 arch_remove_optimized_kprobe(op);
766 kfree(op);
767 goto out;
770 init_aggr_kprobe(ap, p);
771 optimize_kprobe(ap); /* This just kicks optimizer thread */
773 out:
774 mutex_unlock(&text_mutex);
775 jump_label_unlock();
778 #ifdef CONFIG_SYSCTL
779 static void optimize_all_kprobes(void)
781 struct hlist_head *head;
782 struct kprobe *p;
783 unsigned int i;
785 mutex_lock(&kprobe_mutex);
786 /* If optimization is already allowed, just return */
787 if (kprobes_allow_optimization)
788 goto out;
790 kprobes_allow_optimization = true;
791 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
792 head = &kprobe_table[i];
793 hlist_for_each_entry_rcu(p, head, hlist)
794 if (!kprobe_disabled(p))
795 optimize_kprobe(p);
797 printk(KERN_INFO "Kprobes globally optimized\n");
798 out:
799 mutex_unlock(&kprobe_mutex);
802 static void unoptimize_all_kprobes(void)
804 struct hlist_head *head;
805 struct kprobe *p;
806 unsigned int i;
808 mutex_lock(&kprobe_mutex);
809 /* If optimization is already prohibited, just return */
810 if (!kprobes_allow_optimization) {
811 mutex_unlock(&kprobe_mutex);
812 return;
815 kprobes_allow_optimization = false;
816 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
817 head = &kprobe_table[i];
818 hlist_for_each_entry_rcu(p, head, hlist) {
819 if (!kprobe_disabled(p))
820 unoptimize_kprobe(p, false);
823 mutex_unlock(&kprobe_mutex);
825 /* Wait for unoptimizing completion */
826 wait_for_kprobe_optimizer();
827 printk(KERN_INFO "Kprobes globally unoptimized\n");
830 static DEFINE_MUTEX(kprobe_sysctl_mutex);
831 int sysctl_kprobes_optimization;
832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
833 void __user *buffer, size_t *length,
834 loff_t *ppos)
836 int ret;
838 mutex_lock(&kprobe_sysctl_mutex);
839 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
840 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
842 if (sysctl_kprobes_optimization)
843 optimize_all_kprobes();
844 else
845 unoptimize_all_kprobes();
846 mutex_unlock(&kprobe_sysctl_mutex);
848 return ret;
850 #endif /* CONFIG_SYSCTL */
852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
853 static void __arm_kprobe(struct kprobe *p)
855 struct kprobe *_p;
857 /* Check collision with other optimized kprobes */
858 _p = get_optimized_kprobe((unsigned long)p->addr);
859 if (unlikely(_p))
860 /* Fallback to unoptimized kprobe */
861 unoptimize_kprobe(_p, true);
863 arch_arm_kprobe(p);
864 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
868 static void __disarm_kprobe(struct kprobe *p, bool reopt)
870 struct kprobe *_p;
872 /* Try to unoptimize */
873 unoptimize_kprobe(p, kprobes_all_disarmed);
875 if (!kprobe_queued(p)) {
876 arch_disarm_kprobe(p);
877 /* If another kprobe was blocked, optimize it. */
878 _p = get_optimized_kprobe((unsigned long)p->addr);
879 if (unlikely(_p) && reopt)
880 optimize_kprobe(_p);
882 /* TODO: reoptimize others after unoptimized this probe */
885 #else /* !CONFIG_OPTPROBES */
887 #define optimize_kprobe(p) do {} while (0)
888 #define unoptimize_kprobe(p, f) do {} while (0)
889 #define kill_optimized_kprobe(p) do {} while (0)
890 #define prepare_optimized_kprobe(p) do {} while (0)
891 #define try_to_optimize_kprobe(p) do {} while (0)
892 #define __arm_kprobe(p) arch_arm_kprobe(p)
893 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
894 #define kprobe_disarmed(p) kprobe_disabled(p)
895 #define wait_for_kprobe_optimizer() do {} while (0)
897 /* There should be no unused kprobes can be reused without optimization */
898 static void reuse_unused_kprobe(struct kprobe *ap)
900 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
901 BUG_ON(kprobe_unused(ap));
904 static void free_aggr_kprobe(struct kprobe *p)
906 arch_remove_kprobe(p);
907 kfree(p);
910 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
912 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
914 #endif /* CONFIG_OPTPROBES */
916 #ifdef CONFIG_KPROBES_ON_FTRACE
917 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
918 .func = kprobe_ftrace_handler,
919 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
921 static int kprobe_ftrace_enabled;
923 /* Must ensure p->addr is really on ftrace */
924 static int prepare_kprobe(struct kprobe *p)
926 if (!kprobe_ftrace(p))
927 return arch_prepare_kprobe(p);
929 return arch_prepare_kprobe_ftrace(p);
932 /* Caller must lock kprobe_mutex */
933 static void arm_kprobe_ftrace(struct kprobe *p)
935 int ret;
937 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
938 (unsigned long)p->addr, 0, 0);
939 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
940 kprobe_ftrace_enabled++;
941 if (kprobe_ftrace_enabled == 1) {
942 ret = register_ftrace_function(&kprobe_ftrace_ops);
943 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
947 /* Caller must lock kprobe_mutex */
948 static void disarm_kprobe_ftrace(struct kprobe *p)
950 int ret;
952 kprobe_ftrace_enabled--;
953 if (kprobe_ftrace_enabled == 0) {
954 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
955 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
957 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
958 (unsigned long)p->addr, 1, 0);
959 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
961 #else /* !CONFIG_KPROBES_ON_FTRACE */
962 #define prepare_kprobe(p) arch_prepare_kprobe(p)
963 #define arm_kprobe_ftrace(p) do {} while (0)
964 #define disarm_kprobe_ftrace(p) do {} while (0)
965 #endif
967 /* Arm a kprobe with text_mutex */
968 static void arm_kprobe(struct kprobe *kp)
970 if (unlikely(kprobe_ftrace(kp))) {
971 arm_kprobe_ftrace(kp);
972 return;
975 * Here, since __arm_kprobe() doesn't use stop_machine(),
976 * this doesn't cause deadlock on text_mutex. So, we don't
977 * need get_online_cpus().
979 mutex_lock(&text_mutex);
980 __arm_kprobe(kp);
981 mutex_unlock(&text_mutex);
984 /* Disarm a kprobe with text_mutex */
985 static void disarm_kprobe(struct kprobe *kp, bool reopt)
987 if (unlikely(kprobe_ftrace(kp))) {
988 disarm_kprobe_ftrace(kp);
989 return;
991 /* Ditto */
992 mutex_lock(&text_mutex);
993 __disarm_kprobe(kp, reopt);
994 mutex_unlock(&text_mutex);
998 * Aggregate handlers for multiple kprobes support - these handlers
999 * take care of invoking the individual kprobe handlers on p->list
1001 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1003 struct kprobe *kp;
1005 list_for_each_entry_rcu(kp, &p->list, list) {
1006 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1007 set_kprobe_instance(kp);
1008 if (kp->pre_handler(kp, regs))
1009 return 1;
1011 reset_kprobe_instance();
1013 return 0;
1015 NOKPROBE_SYMBOL(aggr_pre_handler);
1017 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1018 unsigned long flags)
1020 struct kprobe *kp;
1022 list_for_each_entry_rcu(kp, &p->list, list) {
1023 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1024 set_kprobe_instance(kp);
1025 kp->post_handler(kp, regs, flags);
1026 reset_kprobe_instance();
1030 NOKPROBE_SYMBOL(aggr_post_handler);
1032 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1033 int trapnr)
1035 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1038 * if we faulted "during" the execution of a user specified
1039 * probe handler, invoke just that probe's fault handler
1041 if (cur && cur->fault_handler) {
1042 if (cur->fault_handler(cur, regs, trapnr))
1043 return 1;
1045 return 0;
1047 NOKPROBE_SYMBOL(aggr_fault_handler);
1049 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1051 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1052 int ret = 0;
1054 if (cur && cur->break_handler) {
1055 if (cur->break_handler(cur, regs))
1056 ret = 1;
1058 reset_kprobe_instance();
1059 return ret;
1061 NOKPROBE_SYMBOL(aggr_break_handler);
1063 /* Walks the list and increments nmissed count for multiprobe case */
1064 void kprobes_inc_nmissed_count(struct kprobe *p)
1066 struct kprobe *kp;
1067 if (!kprobe_aggrprobe(p)) {
1068 p->nmissed++;
1069 } else {
1070 list_for_each_entry_rcu(kp, &p->list, list)
1071 kp->nmissed++;
1073 return;
1075 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1077 void recycle_rp_inst(struct kretprobe_instance *ri,
1078 struct hlist_head *head)
1080 struct kretprobe *rp = ri->rp;
1082 /* remove rp inst off the rprobe_inst_table */
1083 hlist_del(&ri->hlist);
1084 INIT_HLIST_NODE(&ri->hlist);
1085 if (likely(rp)) {
1086 raw_spin_lock(&rp->lock);
1087 hlist_add_head(&ri->hlist, &rp->free_instances);
1088 raw_spin_unlock(&rp->lock);
1089 } else
1090 /* Unregistering */
1091 hlist_add_head(&ri->hlist, head);
1093 NOKPROBE_SYMBOL(recycle_rp_inst);
1095 void kretprobe_hash_lock(struct task_struct *tsk,
1096 struct hlist_head **head, unsigned long *flags)
1097 __acquires(hlist_lock)
1099 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100 raw_spinlock_t *hlist_lock;
1102 *head = &kretprobe_inst_table[hash];
1103 hlist_lock = kretprobe_table_lock_ptr(hash);
1104 raw_spin_lock_irqsave(hlist_lock, *flags);
1106 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1108 static void kretprobe_table_lock(unsigned long hash,
1109 unsigned long *flags)
1110 __acquires(hlist_lock)
1112 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113 raw_spin_lock_irqsave(hlist_lock, *flags);
1115 NOKPROBE_SYMBOL(kretprobe_table_lock);
1117 void kretprobe_hash_unlock(struct task_struct *tsk,
1118 unsigned long *flags)
1119 __releases(hlist_lock)
1121 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1122 raw_spinlock_t *hlist_lock;
1124 hlist_lock = kretprobe_table_lock_ptr(hash);
1125 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1127 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1129 static void kretprobe_table_unlock(unsigned long hash,
1130 unsigned long *flags)
1131 __releases(hlist_lock)
1133 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1134 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1144 void kprobe_flush_task(struct task_struct *tk)
1146 struct kretprobe_instance *ri;
1147 struct hlist_head *head, empty_rp;
1148 struct hlist_node *tmp;
1149 unsigned long hash, flags = 0;
1151 if (unlikely(!kprobes_initialized))
1152 /* Early boot. kretprobe_table_locks not yet initialized. */
1153 return;
1155 INIT_HLIST_HEAD(&empty_rp);
1156 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 head = &kretprobe_inst_table[hash];
1158 kretprobe_table_lock(hash, &flags);
1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 if (ri->task == tk)
1161 recycle_rp_inst(ri, &empty_rp);
1163 kretprobe_table_unlock(hash, &flags);
1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 hlist_del(&ri->hlist);
1166 kfree(ri);
1169 NOKPROBE_SYMBOL(kprobe_flush_task);
1171 static inline void free_rp_inst(struct kretprobe *rp)
1173 struct kretprobe_instance *ri;
1174 struct hlist_node *next;
1176 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1177 hlist_del(&ri->hlist);
1178 kfree(ri);
1182 static void cleanup_rp_inst(struct kretprobe *rp)
1184 unsigned long flags, hash;
1185 struct kretprobe_instance *ri;
1186 struct hlist_node *next;
1187 struct hlist_head *head;
1189 /* No race here */
1190 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1191 kretprobe_table_lock(hash, &flags);
1192 head = &kretprobe_inst_table[hash];
1193 hlist_for_each_entry_safe(ri, next, head, hlist) {
1194 if (ri->rp == rp)
1195 ri->rp = NULL;
1197 kretprobe_table_unlock(hash, &flags);
1199 free_rp_inst(rp);
1201 NOKPROBE_SYMBOL(cleanup_rp_inst);
1204 * Add the new probe to ap->list. Fail if this is the
1205 * second jprobe at the address - two jprobes can't coexist
1207 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1209 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1211 if (p->break_handler || p->post_handler)
1212 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1214 if (p->break_handler) {
1215 if (ap->break_handler)
1216 return -EEXIST;
1217 list_add_tail_rcu(&p->list, &ap->list);
1218 ap->break_handler = aggr_break_handler;
1219 } else
1220 list_add_rcu(&p->list, &ap->list);
1221 if (p->post_handler && !ap->post_handler)
1222 ap->post_handler = aggr_post_handler;
1224 return 0;
1228 * Fill in the required fields of the "manager kprobe". Replace the
1229 * earlier kprobe in the hlist with the manager kprobe
1231 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1233 /* Copy p's insn slot to ap */
1234 copy_kprobe(p, ap);
1235 flush_insn_slot(ap);
1236 ap->addr = p->addr;
1237 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1238 ap->pre_handler = aggr_pre_handler;
1239 ap->fault_handler = aggr_fault_handler;
1240 /* We don't care the kprobe which has gone. */
1241 if (p->post_handler && !kprobe_gone(p))
1242 ap->post_handler = aggr_post_handler;
1243 if (p->break_handler && !kprobe_gone(p))
1244 ap->break_handler = aggr_break_handler;
1246 INIT_LIST_HEAD(&ap->list);
1247 INIT_HLIST_NODE(&ap->hlist);
1249 list_add_rcu(&p->list, &ap->list);
1250 hlist_replace_rcu(&p->hlist, &ap->hlist);
1254 * This is the second or subsequent kprobe at the address - handle
1255 * the intricacies
1257 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1259 int ret = 0;
1260 struct kprobe *ap = orig_p;
1262 /* For preparing optimization, jump_label_text_reserved() is called */
1263 jump_label_lock();
1265 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1266 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1268 get_online_cpus();
1269 mutex_lock(&text_mutex);
1271 if (!kprobe_aggrprobe(orig_p)) {
1272 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1273 ap = alloc_aggr_kprobe(orig_p);
1274 if (!ap) {
1275 ret = -ENOMEM;
1276 goto out;
1278 init_aggr_kprobe(ap, orig_p);
1279 } else if (kprobe_unused(ap))
1280 /* This probe is going to die. Rescue it */
1281 reuse_unused_kprobe(ap);
1283 if (kprobe_gone(ap)) {
1285 * Attempting to insert new probe at the same location that
1286 * had a probe in the module vaddr area which already
1287 * freed. So, the instruction slot has already been
1288 * released. We need a new slot for the new probe.
1290 ret = arch_prepare_kprobe(ap);
1291 if (ret)
1293 * Even if fail to allocate new slot, don't need to
1294 * free aggr_probe. It will be used next time, or
1295 * freed by unregister_kprobe.
1297 goto out;
1299 /* Prepare optimized instructions if possible. */
1300 prepare_optimized_kprobe(ap);
1303 * Clear gone flag to prevent allocating new slot again, and
1304 * set disabled flag because it is not armed yet.
1306 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1307 | KPROBE_FLAG_DISABLED;
1310 /* Copy ap's insn slot to p */
1311 copy_kprobe(ap, p);
1312 ret = add_new_kprobe(ap, p);
1314 out:
1315 mutex_unlock(&text_mutex);
1316 put_online_cpus();
1317 jump_label_unlock();
1319 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1320 ap->flags &= ~KPROBE_FLAG_DISABLED;
1321 if (!kprobes_all_disarmed)
1322 /* Arm the breakpoint again. */
1323 arm_kprobe(ap);
1325 return ret;
1328 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1330 /* The __kprobes marked functions and entry code must not be probed */
1331 return addr >= (unsigned long)__kprobes_text_start &&
1332 addr < (unsigned long)__kprobes_text_end;
1335 static bool within_kprobe_blacklist(unsigned long addr)
1337 struct kprobe_blacklist_entry *ent;
1339 if (arch_within_kprobe_blacklist(addr))
1340 return true;
1342 * If there exists a kprobe_blacklist, verify and
1343 * fail any probe registration in the prohibited area
1345 list_for_each_entry(ent, &kprobe_blacklist, list) {
1346 if (addr >= ent->start_addr && addr < ent->end_addr)
1347 return true;
1350 return false;
1354 * If we have a symbol_name argument, look it up and add the offset field
1355 * to it. This way, we can specify a relative address to a symbol.
1356 * This returns encoded errors if it fails to look up symbol or invalid
1357 * combination of parameters.
1359 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1361 kprobe_opcode_t *addr = p->addr;
1363 if ((p->symbol_name && p->addr) ||
1364 (!p->symbol_name && !p->addr))
1365 goto invalid;
1367 if (p->symbol_name) {
1368 kprobe_lookup_name(p->symbol_name, addr);
1369 if (!addr)
1370 return ERR_PTR(-ENOENT);
1373 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1374 if (addr)
1375 return addr;
1377 invalid:
1378 return ERR_PTR(-EINVAL);
1381 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1382 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1384 struct kprobe *ap, *list_p;
1386 ap = get_kprobe(p->addr);
1387 if (unlikely(!ap))
1388 return NULL;
1390 if (p != ap) {
1391 list_for_each_entry_rcu(list_p, &ap->list, list)
1392 if (list_p == p)
1393 /* kprobe p is a valid probe */
1394 goto valid;
1395 return NULL;
1397 valid:
1398 return ap;
1401 /* Return error if the kprobe is being re-registered */
1402 static inline int check_kprobe_rereg(struct kprobe *p)
1404 int ret = 0;
1406 mutex_lock(&kprobe_mutex);
1407 if (__get_valid_kprobe(p))
1408 ret = -EINVAL;
1409 mutex_unlock(&kprobe_mutex);
1411 return ret;
1414 int __weak arch_check_ftrace_location(struct kprobe *p)
1416 unsigned long ftrace_addr;
1418 ftrace_addr = ftrace_location((unsigned long)p->addr);
1419 if (ftrace_addr) {
1420 #ifdef CONFIG_KPROBES_ON_FTRACE
1421 /* Given address is not on the instruction boundary */
1422 if ((unsigned long)p->addr != ftrace_addr)
1423 return -EILSEQ;
1424 p->flags |= KPROBE_FLAG_FTRACE;
1425 #else /* !CONFIG_KPROBES_ON_FTRACE */
1426 return -EINVAL;
1427 #endif
1429 return 0;
1432 static int check_kprobe_address_safe(struct kprobe *p,
1433 struct module **probed_mod)
1435 int ret;
1437 ret = arch_check_ftrace_location(p);
1438 if (ret)
1439 return ret;
1440 jump_label_lock();
1441 preempt_disable();
1443 /* Ensure it is not in reserved area nor out of text */
1444 if (!kernel_text_address((unsigned long) p->addr) ||
1445 within_kprobe_blacklist((unsigned long) p->addr) ||
1446 jump_label_text_reserved(p->addr, p->addr)) {
1447 ret = -EINVAL;
1448 goto out;
1451 /* Check if are we probing a module */
1452 *probed_mod = __module_text_address((unsigned long) p->addr);
1453 if (*probed_mod) {
1455 * We must hold a refcount of the probed module while updating
1456 * its code to prohibit unexpected unloading.
1458 if (unlikely(!try_module_get(*probed_mod))) {
1459 ret = -ENOENT;
1460 goto out;
1464 * If the module freed .init.text, we couldn't insert
1465 * kprobes in there.
1467 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1468 (*probed_mod)->state != MODULE_STATE_COMING) {
1469 module_put(*probed_mod);
1470 *probed_mod = NULL;
1471 ret = -ENOENT;
1474 out:
1475 preempt_enable();
1476 jump_label_unlock();
1478 return ret;
1481 int register_kprobe(struct kprobe *p)
1483 int ret;
1484 struct kprobe *old_p;
1485 struct module *probed_mod;
1486 kprobe_opcode_t *addr;
1488 /* Adjust probe address from symbol */
1489 addr = kprobe_addr(p);
1490 if (IS_ERR(addr))
1491 return PTR_ERR(addr);
1492 p->addr = addr;
1494 ret = check_kprobe_rereg(p);
1495 if (ret)
1496 return ret;
1498 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1499 p->flags &= KPROBE_FLAG_DISABLED;
1500 p->nmissed = 0;
1501 INIT_LIST_HEAD(&p->list);
1503 ret = check_kprobe_address_safe(p, &probed_mod);
1504 if (ret)
1505 return ret;
1507 mutex_lock(&kprobe_mutex);
1509 old_p = get_kprobe(p->addr);
1510 if (old_p) {
1511 /* Since this may unoptimize old_p, locking text_mutex. */
1512 ret = register_aggr_kprobe(old_p, p);
1513 goto out;
1516 mutex_lock(&text_mutex); /* Avoiding text modification */
1517 ret = prepare_kprobe(p);
1518 mutex_unlock(&text_mutex);
1519 if (ret)
1520 goto out;
1522 INIT_HLIST_NODE(&p->hlist);
1523 hlist_add_head_rcu(&p->hlist,
1524 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1526 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1527 arm_kprobe(p);
1529 /* Try to optimize kprobe */
1530 try_to_optimize_kprobe(p);
1532 out:
1533 mutex_unlock(&kprobe_mutex);
1535 if (probed_mod)
1536 module_put(probed_mod);
1538 return ret;
1540 EXPORT_SYMBOL_GPL(register_kprobe);
1542 /* Check if all probes on the aggrprobe are disabled */
1543 static int aggr_kprobe_disabled(struct kprobe *ap)
1545 struct kprobe *kp;
1547 list_for_each_entry_rcu(kp, &ap->list, list)
1548 if (!kprobe_disabled(kp))
1550 * There is an active probe on the list.
1551 * We can't disable this ap.
1553 return 0;
1555 return 1;
1558 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1559 static struct kprobe *__disable_kprobe(struct kprobe *p)
1561 struct kprobe *orig_p;
1563 /* Get an original kprobe for return */
1564 orig_p = __get_valid_kprobe(p);
1565 if (unlikely(orig_p == NULL))
1566 return NULL;
1568 if (!kprobe_disabled(p)) {
1569 /* Disable probe if it is a child probe */
1570 if (p != orig_p)
1571 p->flags |= KPROBE_FLAG_DISABLED;
1573 /* Try to disarm and disable this/parent probe */
1574 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1576 * If kprobes_all_disarmed is set, orig_p
1577 * should have already been disarmed, so
1578 * skip unneed disarming process.
1580 if (!kprobes_all_disarmed)
1581 disarm_kprobe(orig_p, true);
1582 orig_p->flags |= KPROBE_FLAG_DISABLED;
1586 return orig_p;
1590 * Unregister a kprobe without a scheduler synchronization.
1592 static int __unregister_kprobe_top(struct kprobe *p)
1594 struct kprobe *ap, *list_p;
1596 /* Disable kprobe. This will disarm it if needed. */
1597 ap = __disable_kprobe(p);
1598 if (ap == NULL)
1599 return -EINVAL;
1601 if (ap == p)
1603 * This probe is an independent(and non-optimized) kprobe
1604 * (not an aggrprobe). Remove from the hash list.
1606 goto disarmed;
1608 /* Following process expects this probe is an aggrprobe */
1609 WARN_ON(!kprobe_aggrprobe(ap));
1611 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1613 * !disarmed could be happen if the probe is under delayed
1614 * unoptimizing.
1616 goto disarmed;
1617 else {
1618 /* If disabling probe has special handlers, update aggrprobe */
1619 if (p->break_handler && !kprobe_gone(p))
1620 ap->break_handler = NULL;
1621 if (p->post_handler && !kprobe_gone(p)) {
1622 list_for_each_entry_rcu(list_p, &ap->list, list) {
1623 if ((list_p != p) && (list_p->post_handler))
1624 goto noclean;
1626 ap->post_handler = NULL;
1628 noclean:
1630 * Remove from the aggrprobe: this path will do nothing in
1631 * __unregister_kprobe_bottom().
1633 list_del_rcu(&p->list);
1634 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1636 * Try to optimize this probe again, because post
1637 * handler may have been changed.
1639 optimize_kprobe(ap);
1641 return 0;
1643 disarmed:
1644 BUG_ON(!kprobe_disarmed(ap));
1645 hlist_del_rcu(&ap->hlist);
1646 return 0;
1649 static void __unregister_kprobe_bottom(struct kprobe *p)
1651 struct kprobe *ap;
1653 if (list_empty(&p->list))
1654 /* This is an independent kprobe */
1655 arch_remove_kprobe(p);
1656 else if (list_is_singular(&p->list)) {
1657 /* This is the last child of an aggrprobe */
1658 ap = list_entry(p->list.next, struct kprobe, list);
1659 list_del(&p->list);
1660 free_aggr_kprobe(ap);
1662 /* Otherwise, do nothing. */
1665 int register_kprobes(struct kprobe **kps, int num)
1667 int i, ret = 0;
1669 if (num <= 0)
1670 return -EINVAL;
1671 for (i = 0; i < num; i++) {
1672 ret = register_kprobe(kps[i]);
1673 if (ret < 0) {
1674 if (i > 0)
1675 unregister_kprobes(kps, i);
1676 break;
1679 return ret;
1681 EXPORT_SYMBOL_GPL(register_kprobes);
1683 void unregister_kprobe(struct kprobe *p)
1685 unregister_kprobes(&p, 1);
1687 EXPORT_SYMBOL_GPL(unregister_kprobe);
1689 void unregister_kprobes(struct kprobe **kps, int num)
1691 int i;
1693 if (num <= 0)
1694 return;
1695 mutex_lock(&kprobe_mutex);
1696 for (i = 0; i < num; i++)
1697 if (__unregister_kprobe_top(kps[i]) < 0)
1698 kps[i]->addr = NULL;
1699 mutex_unlock(&kprobe_mutex);
1701 synchronize_sched();
1702 for (i = 0; i < num; i++)
1703 if (kps[i]->addr)
1704 __unregister_kprobe_bottom(kps[i]);
1706 EXPORT_SYMBOL_GPL(unregister_kprobes);
1708 static struct notifier_block kprobe_exceptions_nb = {
1709 .notifier_call = kprobe_exceptions_notify,
1710 .priority = 0x7fffffff /* we need to be notified first */
1713 unsigned long __weak arch_deref_entry_point(void *entry)
1715 return (unsigned long)entry;
1718 int register_jprobes(struct jprobe **jps, int num)
1720 struct jprobe *jp;
1721 int ret = 0, i;
1723 if (num <= 0)
1724 return -EINVAL;
1725 for (i = 0; i < num; i++) {
1726 unsigned long addr, offset;
1727 jp = jps[i];
1728 addr = arch_deref_entry_point(jp->entry);
1730 /* Verify probepoint is a function entry point */
1731 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1732 offset == 0) {
1733 jp->kp.pre_handler = setjmp_pre_handler;
1734 jp->kp.break_handler = longjmp_break_handler;
1735 ret = register_kprobe(&jp->kp);
1736 } else
1737 ret = -EINVAL;
1739 if (ret < 0) {
1740 if (i > 0)
1741 unregister_jprobes(jps, i);
1742 break;
1745 return ret;
1747 EXPORT_SYMBOL_GPL(register_jprobes);
1749 int register_jprobe(struct jprobe *jp)
1751 return register_jprobes(&jp, 1);
1753 EXPORT_SYMBOL_GPL(register_jprobe);
1755 void unregister_jprobe(struct jprobe *jp)
1757 unregister_jprobes(&jp, 1);
1759 EXPORT_SYMBOL_GPL(unregister_jprobe);
1761 void unregister_jprobes(struct jprobe **jps, int num)
1763 int i;
1765 if (num <= 0)
1766 return;
1767 mutex_lock(&kprobe_mutex);
1768 for (i = 0; i < num; i++)
1769 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1770 jps[i]->kp.addr = NULL;
1771 mutex_unlock(&kprobe_mutex);
1773 synchronize_sched();
1774 for (i = 0; i < num; i++) {
1775 if (jps[i]->kp.addr)
1776 __unregister_kprobe_bottom(&jps[i]->kp);
1779 EXPORT_SYMBOL_GPL(unregister_jprobes);
1781 #ifdef CONFIG_KRETPROBES
1783 * This kprobe pre_handler is registered with every kretprobe. When probe
1784 * hits it will set up the return probe.
1786 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1788 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1789 unsigned long hash, flags = 0;
1790 struct kretprobe_instance *ri;
1793 * To avoid deadlocks, prohibit return probing in NMI contexts,
1794 * just skip the probe and increase the (inexact) 'nmissed'
1795 * statistical counter, so that the user is informed that
1796 * something happened:
1798 if (unlikely(in_nmi())) {
1799 rp->nmissed++;
1800 return 0;
1803 /* TODO: consider to only swap the RA after the last pre_handler fired */
1804 hash = hash_ptr(current, KPROBE_HASH_BITS);
1805 raw_spin_lock_irqsave(&rp->lock, flags);
1806 if (!hlist_empty(&rp->free_instances)) {
1807 ri = hlist_entry(rp->free_instances.first,
1808 struct kretprobe_instance, hlist);
1809 hlist_del(&ri->hlist);
1810 raw_spin_unlock_irqrestore(&rp->lock, flags);
1812 ri->rp = rp;
1813 ri->task = current;
1815 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1816 raw_spin_lock_irqsave(&rp->lock, flags);
1817 hlist_add_head(&ri->hlist, &rp->free_instances);
1818 raw_spin_unlock_irqrestore(&rp->lock, flags);
1819 return 0;
1822 arch_prepare_kretprobe(ri, regs);
1824 /* XXX(hch): why is there no hlist_move_head? */
1825 INIT_HLIST_NODE(&ri->hlist);
1826 kretprobe_table_lock(hash, &flags);
1827 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1828 kretprobe_table_unlock(hash, &flags);
1829 } else {
1830 rp->nmissed++;
1831 raw_spin_unlock_irqrestore(&rp->lock, flags);
1833 return 0;
1835 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1837 int register_kretprobe(struct kretprobe *rp)
1839 int ret = 0;
1840 struct kretprobe_instance *inst;
1841 int i;
1842 void *addr;
1844 if (kretprobe_blacklist_size) {
1845 addr = kprobe_addr(&rp->kp);
1846 if (IS_ERR(addr))
1847 return PTR_ERR(addr);
1849 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1850 if (kretprobe_blacklist[i].addr == addr)
1851 return -EINVAL;
1855 rp->kp.pre_handler = pre_handler_kretprobe;
1856 rp->kp.post_handler = NULL;
1857 rp->kp.fault_handler = NULL;
1858 rp->kp.break_handler = NULL;
1860 /* Pre-allocate memory for max kretprobe instances */
1861 if (rp->maxactive <= 0) {
1862 #ifdef CONFIG_PREEMPT
1863 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1864 #else
1865 rp->maxactive = num_possible_cpus();
1866 #endif
1868 raw_spin_lock_init(&rp->lock);
1869 INIT_HLIST_HEAD(&rp->free_instances);
1870 for (i = 0; i < rp->maxactive; i++) {
1871 inst = kmalloc(sizeof(struct kretprobe_instance) +
1872 rp->data_size, GFP_KERNEL);
1873 if (inst == NULL) {
1874 free_rp_inst(rp);
1875 return -ENOMEM;
1877 INIT_HLIST_NODE(&inst->hlist);
1878 hlist_add_head(&inst->hlist, &rp->free_instances);
1881 rp->nmissed = 0;
1882 /* Establish function entry probe point */
1883 ret = register_kprobe(&rp->kp);
1884 if (ret != 0)
1885 free_rp_inst(rp);
1886 return ret;
1888 EXPORT_SYMBOL_GPL(register_kretprobe);
1890 int register_kretprobes(struct kretprobe **rps, int num)
1892 int ret = 0, i;
1894 if (num <= 0)
1895 return -EINVAL;
1896 for (i = 0; i < num; i++) {
1897 ret = register_kretprobe(rps[i]);
1898 if (ret < 0) {
1899 if (i > 0)
1900 unregister_kretprobes(rps, i);
1901 break;
1904 return ret;
1906 EXPORT_SYMBOL_GPL(register_kretprobes);
1908 void unregister_kretprobe(struct kretprobe *rp)
1910 unregister_kretprobes(&rp, 1);
1912 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1914 void unregister_kretprobes(struct kretprobe **rps, int num)
1916 int i;
1918 if (num <= 0)
1919 return;
1920 mutex_lock(&kprobe_mutex);
1921 for (i = 0; i < num; i++)
1922 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1923 rps[i]->kp.addr = NULL;
1924 mutex_unlock(&kprobe_mutex);
1926 synchronize_sched();
1927 for (i = 0; i < num; i++) {
1928 if (rps[i]->kp.addr) {
1929 __unregister_kprobe_bottom(&rps[i]->kp);
1930 cleanup_rp_inst(rps[i]);
1934 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1936 #else /* CONFIG_KRETPROBES */
1937 int register_kretprobe(struct kretprobe *rp)
1939 return -ENOSYS;
1941 EXPORT_SYMBOL_GPL(register_kretprobe);
1943 int register_kretprobes(struct kretprobe **rps, int num)
1945 return -ENOSYS;
1947 EXPORT_SYMBOL_GPL(register_kretprobes);
1949 void unregister_kretprobe(struct kretprobe *rp)
1952 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1954 void unregister_kretprobes(struct kretprobe **rps, int num)
1957 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1959 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1961 return 0;
1963 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1965 #endif /* CONFIG_KRETPROBES */
1967 /* Set the kprobe gone and remove its instruction buffer. */
1968 static void kill_kprobe(struct kprobe *p)
1970 struct kprobe *kp;
1972 p->flags |= KPROBE_FLAG_GONE;
1973 if (kprobe_aggrprobe(p)) {
1975 * If this is an aggr_kprobe, we have to list all the
1976 * chained probes and mark them GONE.
1978 list_for_each_entry_rcu(kp, &p->list, list)
1979 kp->flags |= KPROBE_FLAG_GONE;
1980 p->post_handler = NULL;
1981 p->break_handler = NULL;
1982 kill_optimized_kprobe(p);
1985 * Here, we can remove insn_slot safely, because no thread calls
1986 * the original probed function (which will be freed soon) any more.
1988 arch_remove_kprobe(p);
1991 /* Disable one kprobe */
1992 int disable_kprobe(struct kprobe *kp)
1994 int ret = 0;
1996 mutex_lock(&kprobe_mutex);
1998 /* Disable this kprobe */
1999 if (__disable_kprobe(kp) == NULL)
2000 ret = -EINVAL;
2002 mutex_unlock(&kprobe_mutex);
2003 return ret;
2005 EXPORT_SYMBOL_GPL(disable_kprobe);
2007 /* Enable one kprobe */
2008 int enable_kprobe(struct kprobe *kp)
2010 int ret = 0;
2011 struct kprobe *p;
2013 mutex_lock(&kprobe_mutex);
2015 /* Check whether specified probe is valid. */
2016 p = __get_valid_kprobe(kp);
2017 if (unlikely(p == NULL)) {
2018 ret = -EINVAL;
2019 goto out;
2022 if (kprobe_gone(kp)) {
2023 /* This kprobe has gone, we couldn't enable it. */
2024 ret = -EINVAL;
2025 goto out;
2028 if (p != kp)
2029 kp->flags &= ~KPROBE_FLAG_DISABLED;
2031 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2032 p->flags &= ~KPROBE_FLAG_DISABLED;
2033 arm_kprobe(p);
2035 out:
2036 mutex_unlock(&kprobe_mutex);
2037 return ret;
2039 EXPORT_SYMBOL_GPL(enable_kprobe);
2041 void dump_kprobe(struct kprobe *kp)
2043 printk(KERN_WARNING "Dumping kprobe:\n");
2044 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2045 kp->symbol_name, kp->addr, kp->offset);
2047 NOKPROBE_SYMBOL(dump_kprobe);
2050 * Lookup and populate the kprobe_blacklist.
2052 * Unlike the kretprobe blacklist, we'll need to determine
2053 * the range of addresses that belong to the said functions,
2054 * since a kprobe need not necessarily be at the beginning
2055 * of a function.
2057 static int __init populate_kprobe_blacklist(unsigned long *start,
2058 unsigned long *end)
2060 unsigned long *iter;
2061 struct kprobe_blacklist_entry *ent;
2062 unsigned long entry, offset = 0, size = 0;
2064 for (iter = start; iter < end; iter++) {
2065 entry = arch_deref_entry_point((void *)*iter);
2067 if (!kernel_text_address(entry) ||
2068 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2069 pr_err("Failed to find blacklist at %p\n",
2070 (void *)entry);
2071 continue;
2074 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2075 if (!ent)
2076 return -ENOMEM;
2077 ent->start_addr = entry;
2078 ent->end_addr = entry + size;
2079 INIT_LIST_HEAD(&ent->list);
2080 list_add_tail(&ent->list, &kprobe_blacklist);
2082 return 0;
2085 /* Module notifier call back, checking kprobes on the module */
2086 static int kprobes_module_callback(struct notifier_block *nb,
2087 unsigned long val, void *data)
2089 struct module *mod = data;
2090 struct hlist_head *head;
2091 struct kprobe *p;
2092 unsigned int i;
2093 int checkcore = (val == MODULE_STATE_GOING);
2095 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2096 return NOTIFY_DONE;
2099 * When MODULE_STATE_GOING was notified, both of module .text and
2100 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2101 * notified, only .init.text section would be freed. We need to
2102 * disable kprobes which have been inserted in the sections.
2104 mutex_lock(&kprobe_mutex);
2105 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2106 head = &kprobe_table[i];
2107 hlist_for_each_entry_rcu(p, head, hlist)
2108 if (within_module_init((unsigned long)p->addr, mod) ||
2109 (checkcore &&
2110 within_module_core((unsigned long)p->addr, mod))) {
2112 * The vaddr this probe is installed will soon
2113 * be vfreed buy not synced to disk. Hence,
2114 * disarming the breakpoint isn't needed.
2116 kill_kprobe(p);
2119 mutex_unlock(&kprobe_mutex);
2120 return NOTIFY_DONE;
2123 static struct notifier_block kprobe_module_nb = {
2124 .notifier_call = kprobes_module_callback,
2125 .priority = 0
2128 /* Markers of _kprobe_blacklist section */
2129 extern unsigned long __start_kprobe_blacklist[];
2130 extern unsigned long __stop_kprobe_blacklist[];
2132 static int __init init_kprobes(void)
2134 int i, err = 0;
2136 /* FIXME allocate the probe table, currently defined statically */
2137 /* initialize all list heads */
2138 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2139 INIT_HLIST_HEAD(&kprobe_table[i]);
2140 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2141 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2144 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2145 __stop_kprobe_blacklist);
2146 if (err) {
2147 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2148 pr_err("Please take care of using kprobes.\n");
2151 if (kretprobe_blacklist_size) {
2152 /* lookup the function address from its name */
2153 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2154 kprobe_lookup_name(kretprobe_blacklist[i].name,
2155 kretprobe_blacklist[i].addr);
2156 if (!kretprobe_blacklist[i].addr)
2157 printk("kretprobe: lookup failed: %s\n",
2158 kretprobe_blacklist[i].name);
2162 #if defined(CONFIG_OPTPROBES)
2163 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2164 /* Init kprobe_optinsn_slots */
2165 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2166 #endif
2167 /* By default, kprobes can be optimized */
2168 kprobes_allow_optimization = true;
2169 #endif
2171 /* By default, kprobes are armed */
2172 kprobes_all_disarmed = false;
2174 err = arch_init_kprobes();
2175 if (!err)
2176 err = register_die_notifier(&kprobe_exceptions_nb);
2177 if (!err)
2178 err = register_module_notifier(&kprobe_module_nb);
2180 kprobes_initialized = (err == 0);
2182 if (!err)
2183 init_test_probes();
2184 return err;
2187 #ifdef CONFIG_DEBUG_FS
2188 static void report_probe(struct seq_file *pi, struct kprobe *p,
2189 const char *sym, int offset, char *modname, struct kprobe *pp)
2191 char *kprobe_type;
2193 if (p->pre_handler == pre_handler_kretprobe)
2194 kprobe_type = "r";
2195 else if (p->pre_handler == setjmp_pre_handler)
2196 kprobe_type = "j";
2197 else
2198 kprobe_type = "k";
2200 if (sym)
2201 seq_printf(pi, "%p %s %s+0x%x %s ",
2202 p->addr, kprobe_type, sym, offset,
2203 (modname ? modname : " "));
2204 else
2205 seq_printf(pi, "%p %s %p ",
2206 p->addr, kprobe_type, p->addr);
2208 if (!pp)
2209 pp = p;
2210 seq_printf(pi, "%s%s%s%s\n",
2211 (kprobe_gone(p) ? "[GONE]" : ""),
2212 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2213 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2214 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2217 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2219 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2222 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2224 (*pos)++;
2225 if (*pos >= KPROBE_TABLE_SIZE)
2226 return NULL;
2227 return pos;
2230 static void kprobe_seq_stop(struct seq_file *f, void *v)
2232 /* Nothing to do */
2235 static int show_kprobe_addr(struct seq_file *pi, void *v)
2237 struct hlist_head *head;
2238 struct kprobe *p, *kp;
2239 const char *sym = NULL;
2240 unsigned int i = *(loff_t *) v;
2241 unsigned long offset = 0;
2242 char *modname, namebuf[KSYM_NAME_LEN];
2244 head = &kprobe_table[i];
2245 preempt_disable();
2246 hlist_for_each_entry_rcu(p, head, hlist) {
2247 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2248 &offset, &modname, namebuf);
2249 if (kprobe_aggrprobe(p)) {
2250 list_for_each_entry_rcu(kp, &p->list, list)
2251 report_probe(pi, kp, sym, offset, modname, p);
2252 } else
2253 report_probe(pi, p, sym, offset, modname, NULL);
2255 preempt_enable();
2256 return 0;
2259 static const struct seq_operations kprobes_seq_ops = {
2260 .start = kprobe_seq_start,
2261 .next = kprobe_seq_next,
2262 .stop = kprobe_seq_stop,
2263 .show = show_kprobe_addr
2266 static int kprobes_open(struct inode *inode, struct file *filp)
2268 return seq_open(filp, &kprobes_seq_ops);
2271 static const struct file_operations debugfs_kprobes_operations = {
2272 .open = kprobes_open,
2273 .read = seq_read,
2274 .llseek = seq_lseek,
2275 .release = seq_release,
2278 /* kprobes/blacklist -- shows which functions can not be probed */
2279 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2281 return seq_list_start(&kprobe_blacklist, *pos);
2284 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2286 return seq_list_next(v, &kprobe_blacklist, pos);
2289 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2291 struct kprobe_blacklist_entry *ent =
2292 list_entry(v, struct kprobe_blacklist_entry, list);
2294 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2295 (void *)ent->end_addr, (void *)ent->start_addr);
2296 return 0;
2299 static const struct seq_operations kprobe_blacklist_seq_ops = {
2300 .start = kprobe_blacklist_seq_start,
2301 .next = kprobe_blacklist_seq_next,
2302 .stop = kprobe_seq_stop, /* Reuse void function */
2303 .show = kprobe_blacklist_seq_show,
2306 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2308 return seq_open(filp, &kprobe_blacklist_seq_ops);
2311 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2312 .open = kprobe_blacklist_open,
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .release = seq_release,
2318 static void arm_all_kprobes(void)
2320 struct hlist_head *head;
2321 struct kprobe *p;
2322 unsigned int i;
2324 mutex_lock(&kprobe_mutex);
2326 /* If kprobes are armed, just return */
2327 if (!kprobes_all_disarmed)
2328 goto already_enabled;
2331 * optimize_kprobe() called by arm_kprobe() checks
2332 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2333 * arm_kprobe.
2335 kprobes_all_disarmed = false;
2336 /* Arming kprobes doesn't optimize kprobe itself */
2337 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2338 head = &kprobe_table[i];
2339 hlist_for_each_entry_rcu(p, head, hlist)
2340 if (!kprobe_disabled(p))
2341 arm_kprobe(p);
2344 printk(KERN_INFO "Kprobes globally enabled\n");
2346 already_enabled:
2347 mutex_unlock(&kprobe_mutex);
2348 return;
2351 static void disarm_all_kprobes(void)
2353 struct hlist_head *head;
2354 struct kprobe *p;
2355 unsigned int i;
2357 mutex_lock(&kprobe_mutex);
2359 /* If kprobes are already disarmed, just return */
2360 if (kprobes_all_disarmed) {
2361 mutex_unlock(&kprobe_mutex);
2362 return;
2365 kprobes_all_disarmed = true;
2366 printk(KERN_INFO "Kprobes globally disabled\n");
2368 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2369 head = &kprobe_table[i];
2370 hlist_for_each_entry_rcu(p, head, hlist) {
2371 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2372 disarm_kprobe(p, false);
2375 mutex_unlock(&kprobe_mutex);
2377 /* Wait for disarming all kprobes by optimizer */
2378 wait_for_kprobe_optimizer();
2382 * XXX: The debugfs bool file interface doesn't allow for callbacks
2383 * when the bool state is switched. We can reuse that facility when
2384 * available
2386 static ssize_t read_enabled_file_bool(struct file *file,
2387 char __user *user_buf, size_t count, loff_t *ppos)
2389 char buf[3];
2391 if (!kprobes_all_disarmed)
2392 buf[0] = '1';
2393 else
2394 buf[0] = '0';
2395 buf[1] = '\n';
2396 buf[2] = 0x00;
2397 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2400 static ssize_t write_enabled_file_bool(struct file *file,
2401 const char __user *user_buf, size_t count, loff_t *ppos)
2403 char buf[32];
2404 size_t buf_size;
2406 buf_size = min(count, (sizeof(buf)-1));
2407 if (copy_from_user(buf, user_buf, buf_size))
2408 return -EFAULT;
2410 buf[buf_size] = '\0';
2411 switch (buf[0]) {
2412 case 'y':
2413 case 'Y':
2414 case '1':
2415 arm_all_kprobes();
2416 break;
2417 case 'n':
2418 case 'N':
2419 case '0':
2420 disarm_all_kprobes();
2421 break;
2422 default:
2423 return -EINVAL;
2426 return count;
2429 static const struct file_operations fops_kp = {
2430 .read = read_enabled_file_bool,
2431 .write = write_enabled_file_bool,
2432 .llseek = default_llseek,
2435 static int __init debugfs_kprobe_init(void)
2437 struct dentry *dir, *file;
2438 unsigned int value = 1;
2440 dir = debugfs_create_dir("kprobes", NULL);
2441 if (!dir)
2442 return -ENOMEM;
2444 file = debugfs_create_file("list", 0444, dir, NULL,
2445 &debugfs_kprobes_operations);
2446 if (!file)
2447 goto error;
2449 file = debugfs_create_file("enabled", 0600, dir,
2450 &value, &fops_kp);
2451 if (!file)
2452 goto error;
2454 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2455 &debugfs_kprobe_blacklist_ops);
2456 if (!file)
2457 goto error;
2459 return 0;
2461 error:
2462 debugfs_remove(dir);
2463 return -ENOMEM;
2466 late_initcall(debugfs_kprobe_init);
2467 #endif /* CONFIG_DEBUG_FS */
2469 module_init(init_kprobes);
2471 /* defined in arch/.../kernel/kprobes.c */
2472 EXPORT_SYMBOL_GPL(jprobe_return);