Linux 4.1.18
[linux/fpc-iii.git] / kernel / locking / mutex.c
blob4cccea6b8934f5697fa3dfa609ae4bd10db78b6f
1 /*
2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
55 mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock->osq);
58 #endif
60 debug_mutex_init(lock, name, key);
63 EXPORT_SYMBOL(__mutex_init);
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
74 /**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
93 * This function is similar to (but not equivalent to) down().
95 void __sched mutex_lock(struct mutex *lock)
97 might_sleep();
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 mutex_set_owner(lock);
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
112 #ifdef CONFIG_DEBUG_MUTEXES
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
117 * This should never happen, always use ww_mutex_unlock.
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
122 * Not quite done after calling ww_acquire_done() ?
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
126 if (ww_ctx->contending_lock) {
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
142 * Naughty, using a different class will lead to undefined behavior!
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 ww_ctx->acquired++;
150 * After acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
156 static __always_inline void
157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
160 unsigned long flags;
161 struct mutex_waiter *cur;
163 ww_mutex_lock_acquired(lock, ctx);
165 lock->ctx = ctx;
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
174 smp_mb(); /* ^^^ */
177 * Check if lock is contended, if not there is nobody to wake up
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
198 * Callers must hold the mutex wait_lock.
200 static __always_inline void
201 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 struct ww_acquire_ctx *ctx)
204 struct mutex_waiter *cur;
206 ww_mutex_lock_acquired(lock, ctx);
207 lock->ctx = ctx;
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
213 list_for_each_entry(cur, &lock->base.wait_list, list) {
214 debug_mutex_wake_waiter(&lock->base, cur);
215 wake_up_process(cur->task);
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
221 * Look out! "owner" is an entirely speculative pointer
222 * access and not reliable.
224 static noinline
225 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
227 bool ret = true;
229 rcu_read_lock();
230 while (lock->owner == owner) {
232 * Ensure we emit the owner->on_cpu, dereference _after_
233 * checking lock->owner still matches owner. If that fails,
234 * owner might point to freed memory. If it still matches,
235 * the rcu_read_lock() ensures the memory stays valid.
237 barrier();
239 if (!owner->on_cpu || need_resched()) {
240 ret = false;
241 break;
244 cpu_relax_lowlatency();
246 rcu_read_unlock();
248 return ret;
252 * Initial check for entering the mutex spinning loop
254 static inline int mutex_can_spin_on_owner(struct mutex *lock)
256 struct task_struct *owner;
257 int retval = 1;
259 if (need_resched())
260 return 0;
262 rcu_read_lock();
263 owner = READ_ONCE(lock->owner);
264 if (owner)
265 retval = owner->on_cpu;
266 rcu_read_unlock();
268 * if lock->owner is not set, the mutex owner may have just acquired
269 * it and not set the owner yet or the mutex has been released.
271 return retval;
275 * Atomically try to take the lock when it is available
277 static inline bool mutex_try_to_acquire(struct mutex *lock)
279 return !mutex_is_locked(lock) &&
280 (atomic_cmpxchg(&lock->count, 1, 0) == 1);
284 * Optimistic spinning.
286 * We try to spin for acquisition when we find that the lock owner
287 * is currently running on a (different) CPU and while we don't
288 * need to reschedule. The rationale is that if the lock owner is
289 * running, it is likely to release the lock soon.
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
301 * overhead.
303 * Returns true when the lock was taken, otherwise false, indicating
304 * that we need to jump to the slowpath and sleep.
306 static bool mutex_optimistic_spin(struct mutex *lock,
307 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
309 struct task_struct *task = current;
311 if (!mutex_can_spin_on_owner(lock))
312 goto done;
315 * In order to avoid a stampede of mutex spinners trying to
316 * acquire the mutex all at once, the spinners need to take a
317 * MCS (queued) lock first before spinning on the owner field.
319 if (!osq_lock(&lock->osq))
320 goto done;
322 while (true) {
323 struct task_struct *owner;
325 if (use_ww_ctx && ww_ctx->acquired > 0) {
326 struct ww_mutex *ww;
328 ww = container_of(lock, struct ww_mutex, base);
330 * If ww->ctx is set the contents are undefined, only
331 * by acquiring wait_lock there is a guarantee that
332 * they are not invalid when reading.
334 * As such, when deadlock detection needs to be
335 * performed the optimistic spinning cannot be done.
337 if (READ_ONCE(ww->ctx))
338 break;
342 * If there's an owner, wait for it to either
343 * release the lock or go to sleep.
345 owner = READ_ONCE(lock->owner);
346 if (owner && !mutex_spin_on_owner(lock, owner))
347 break;
349 /* Try to acquire the mutex if it is unlocked. */
350 if (mutex_try_to_acquire(lock)) {
351 lock_acquired(&lock->dep_map, ip);
353 if (use_ww_ctx) {
354 struct ww_mutex *ww;
355 ww = container_of(lock, struct ww_mutex, base);
357 ww_mutex_set_context_fastpath(ww, ww_ctx);
360 mutex_set_owner(lock);
361 osq_unlock(&lock->osq);
362 return true;
366 * When there's no owner, we might have preempted between the
367 * owner acquiring the lock and setting the owner field. If
368 * we're an RT task that will live-lock because we won't let
369 * the owner complete.
371 if (!owner && (need_resched() || rt_task(task)))
372 break;
375 * The cpu_relax() call is a compiler barrier which forces
376 * everything in this loop to be re-loaded. We don't need
377 * memory barriers as we'll eventually observe the right
378 * values at the cost of a few extra spins.
380 cpu_relax_lowlatency();
383 osq_unlock(&lock->osq);
384 done:
386 * If we fell out of the spin path because of need_resched(),
387 * reschedule now, before we try-lock the mutex. This avoids getting
388 * scheduled out right after we obtained the mutex.
390 if (need_resched()) {
392 * We _should_ have TASK_RUNNING here, but just in case
393 * we do not, make it so, otherwise we might get stuck.
395 __set_current_state(TASK_RUNNING);
396 schedule_preempt_disabled();
399 return false;
401 #else
402 static bool mutex_optimistic_spin(struct mutex *lock,
403 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
405 return false;
407 #endif
409 __visible __used noinline
410 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
413 * mutex_unlock - release the mutex
414 * @lock: the mutex to be released
416 * Unlock a mutex that has been locked by this task previously.
418 * This function must not be used in interrupt context. Unlocking
419 * of a not locked mutex is not allowed.
421 * This function is similar to (but not equivalent to) up().
423 void __sched mutex_unlock(struct mutex *lock)
426 * The unlocking fastpath is the 0->1 transition from 'locked'
427 * into 'unlocked' state:
429 #ifndef CONFIG_DEBUG_MUTEXES
431 * When debugging is enabled we must not clear the owner before time,
432 * the slow path will always be taken, and that clears the owner field
433 * after verifying that it was indeed current.
435 mutex_clear_owner(lock);
436 #endif
437 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
440 EXPORT_SYMBOL(mutex_unlock);
443 * ww_mutex_unlock - release the w/w mutex
444 * @lock: the mutex to be released
446 * Unlock a mutex that has been locked by this task previously with any of the
447 * ww_mutex_lock* functions (with or without an acquire context). It is
448 * forbidden to release the locks after releasing the acquire context.
450 * This function must not be used in interrupt context. Unlocking
451 * of a unlocked mutex is not allowed.
453 void __sched ww_mutex_unlock(struct ww_mutex *lock)
456 * The unlocking fastpath is the 0->1 transition from 'locked'
457 * into 'unlocked' state:
459 if (lock->ctx) {
460 #ifdef CONFIG_DEBUG_MUTEXES
461 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
462 #endif
463 if (lock->ctx->acquired > 0)
464 lock->ctx->acquired--;
465 lock->ctx = NULL;
468 #ifndef CONFIG_DEBUG_MUTEXES
470 * When debugging is enabled we must not clear the owner before time,
471 * the slow path will always be taken, and that clears the owner field
472 * after verifying that it was indeed current.
474 mutex_clear_owner(&lock->base);
475 #endif
476 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
478 EXPORT_SYMBOL(ww_mutex_unlock);
480 static inline int __sched
481 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
483 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
484 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
486 if (!hold_ctx)
487 return 0;
489 if (unlikely(ctx == hold_ctx))
490 return -EALREADY;
492 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
493 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
494 #ifdef CONFIG_DEBUG_MUTEXES
495 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
496 ctx->contending_lock = ww;
497 #endif
498 return -EDEADLK;
501 return 0;
505 * Lock a mutex (possibly interruptible), slowpath:
507 static __always_inline int __sched
508 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
509 struct lockdep_map *nest_lock, unsigned long ip,
510 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
512 struct task_struct *task = current;
513 struct mutex_waiter waiter;
514 unsigned long flags;
515 int ret;
517 preempt_disable();
518 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
520 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
521 /* got the lock, yay! */
522 preempt_enable();
523 return 0;
526 spin_lock_mutex(&lock->wait_lock, flags);
529 * Once more, try to acquire the lock. Only try-lock the mutex if
530 * it is unlocked to reduce unnecessary xchg() operations.
532 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
533 goto skip_wait;
535 debug_mutex_lock_common(lock, &waiter);
536 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
538 /* add waiting tasks to the end of the waitqueue (FIFO): */
539 list_add_tail(&waiter.list, &lock->wait_list);
540 waiter.task = task;
542 lock_contended(&lock->dep_map, ip);
544 for (;;) {
546 * Lets try to take the lock again - this is needed even if
547 * we get here for the first time (shortly after failing to
548 * acquire the lock), to make sure that we get a wakeup once
549 * it's unlocked. Later on, if we sleep, this is the
550 * operation that gives us the lock. We xchg it to -1, so
551 * that when we release the lock, we properly wake up the
552 * other waiters. We only attempt the xchg if the count is
553 * non-negative in order to avoid unnecessary xchg operations:
555 if (atomic_read(&lock->count) >= 0 &&
556 (atomic_xchg(&lock->count, -1) == 1))
557 break;
560 * got a signal? (This code gets eliminated in the
561 * TASK_UNINTERRUPTIBLE case.)
563 if (unlikely(signal_pending_state(state, task))) {
564 ret = -EINTR;
565 goto err;
568 if (use_ww_ctx && ww_ctx->acquired > 0) {
569 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
570 if (ret)
571 goto err;
574 __set_task_state(task, state);
576 /* didn't get the lock, go to sleep: */
577 spin_unlock_mutex(&lock->wait_lock, flags);
578 schedule_preempt_disabled();
579 spin_lock_mutex(&lock->wait_lock, flags);
581 __set_task_state(task, TASK_RUNNING);
583 mutex_remove_waiter(lock, &waiter, current_thread_info());
584 /* set it to 0 if there are no waiters left: */
585 if (likely(list_empty(&lock->wait_list)))
586 atomic_set(&lock->count, 0);
587 debug_mutex_free_waiter(&waiter);
589 skip_wait:
590 /* got the lock - cleanup and rejoice! */
591 lock_acquired(&lock->dep_map, ip);
592 mutex_set_owner(lock);
594 if (use_ww_ctx) {
595 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
596 ww_mutex_set_context_slowpath(ww, ww_ctx);
599 spin_unlock_mutex(&lock->wait_lock, flags);
600 preempt_enable();
601 return 0;
603 err:
604 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
605 spin_unlock_mutex(&lock->wait_lock, flags);
606 debug_mutex_free_waiter(&waiter);
607 mutex_release(&lock->dep_map, 1, ip);
608 preempt_enable();
609 return ret;
612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 void __sched
614 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
616 might_sleep();
617 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
618 subclass, NULL, _RET_IP_, NULL, 0);
621 EXPORT_SYMBOL_GPL(mutex_lock_nested);
623 void __sched
624 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
626 might_sleep();
627 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
628 0, nest, _RET_IP_, NULL, 0);
631 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
633 int __sched
634 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
636 might_sleep();
637 return __mutex_lock_common(lock, TASK_KILLABLE,
638 subclass, NULL, _RET_IP_, NULL, 0);
640 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
642 int __sched
643 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
645 might_sleep();
646 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
647 subclass, NULL, _RET_IP_, NULL, 0);
650 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
652 static inline int
653 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
655 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
656 unsigned tmp;
658 if (ctx->deadlock_inject_countdown-- == 0) {
659 tmp = ctx->deadlock_inject_interval;
660 if (tmp > UINT_MAX/4)
661 tmp = UINT_MAX;
662 else
663 tmp = tmp*2 + tmp + tmp/2;
665 ctx->deadlock_inject_interval = tmp;
666 ctx->deadlock_inject_countdown = tmp;
667 ctx->contending_lock = lock;
669 ww_mutex_unlock(lock);
671 return -EDEADLK;
673 #endif
675 return 0;
678 int __sched
679 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
681 int ret;
683 might_sleep();
684 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
685 0, &ctx->dep_map, _RET_IP_, ctx, 1);
686 if (!ret && ctx->acquired > 1)
687 return ww_mutex_deadlock_injection(lock, ctx);
689 return ret;
691 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
693 int __sched
694 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
696 int ret;
698 might_sleep();
699 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
700 0, &ctx->dep_map, _RET_IP_, ctx, 1);
702 if (!ret && ctx->acquired > 1)
703 return ww_mutex_deadlock_injection(lock, ctx);
705 return ret;
707 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
709 #endif
712 * Release the lock, slowpath:
714 static inline void
715 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
717 unsigned long flags;
720 * As a performance measurement, release the lock before doing other
721 * wakeup related duties to follow. This allows other tasks to acquire
722 * the lock sooner, while still handling cleanups in past unlock calls.
723 * This can be done as we do not enforce strict equivalence between the
724 * mutex counter and wait_list.
727 * Some architectures leave the lock unlocked in the fastpath failure
728 * case, others need to leave it locked. In the later case we have to
729 * unlock it here - as the lock counter is currently 0 or negative.
731 if (__mutex_slowpath_needs_to_unlock())
732 atomic_set(&lock->count, 1);
734 spin_lock_mutex(&lock->wait_lock, flags);
735 mutex_release(&lock->dep_map, nested, _RET_IP_);
736 debug_mutex_unlock(lock);
738 if (!list_empty(&lock->wait_list)) {
739 /* get the first entry from the wait-list: */
740 struct mutex_waiter *waiter =
741 list_entry(lock->wait_list.next,
742 struct mutex_waiter, list);
744 debug_mutex_wake_waiter(lock, waiter);
746 wake_up_process(waiter->task);
749 spin_unlock_mutex(&lock->wait_lock, flags);
753 * Release the lock, slowpath:
755 __visible void
756 __mutex_unlock_slowpath(atomic_t *lock_count)
758 struct mutex *lock = container_of(lock_count, struct mutex, count);
760 __mutex_unlock_common_slowpath(lock, 1);
763 #ifndef CONFIG_DEBUG_LOCK_ALLOC
765 * Here come the less common (and hence less performance-critical) APIs:
766 * mutex_lock_interruptible() and mutex_trylock().
768 static noinline int __sched
769 __mutex_lock_killable_slowpath(struct mutex *lock);
771 static noinline int __sched
772 __mutex_lock_interruptible_slowpath(struct mutex *lock);
775 * mutex_lock_interruptible - acquire the mutex, interruptible
776 * @lock: the mutex to be acquired
778 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
779 * been acquired or sleep until the mutex becomes available. If a
780 * signal arrives while waiting for the lock then this function
781 * returns -EINTR.
783 * This function is similar to (but not equivalent to) down_interruptible().
785 int __sched mutex_lock_interruptible(struct mutex *lock)
787 int ret;
789 might_sleep();
790 ret = __mutex_fastpath_lock_retval(&lock->count);
791 if (likely(!ret)) {
792 mutex_set_owner(lock);
793 return 0;
794 } else
795 return __mutex_lock_interruptible_slowpath(lock);
798 EXPORT_SYMBOL(mutex_lock_interruptible);
800 int __sched mutex_lock_killable(struct mutex *lock)
802 int ret;
804 might_sleep();
805 ret = __mutex_fastpath_lock_retval(&lock->count);
806 if (likely(!ret)) {
807 mutex_set_owner(lock);
808 return 0;
809 } else
810 return __mutex_lock_killable_slowpath(lock);
812 EXPORT_SYMBOL(mutex_lock_killable);
814 __visible void __sched
815 __mutex_lock_slowpath(atomic_t *lock_count)
817 struct mutex *lock = container_of(lock_count, struct mutex, count);
819 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
820 NULL, _RET_IP_, NULL, 0);
823 static noinline int __sched
824 __mutex_lock_killable_slowpath(struct mutex *lock)
826 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
827 NULL, _RET_IP_, NULL, 0);
830 static noinline int __sched
831 __mutex_lock_interruptible_slowpath(struct mutex *lock)
833 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
834 NULL, _RET_IP_, NULL, 0);
837 static noinline int __sched
838 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
840 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
841 NULL, _RET_IP_, ctx, 1);
844 static noinline int __sched
845 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
846 struct ww_acquire_ctx *ctx)
848 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
849 NULL, _RET_IP_, ctx, 1);
852 #endif
855 * Spinlock based trylock, we take the spinlock and check whether we
856 * can get the lock:
858 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
860 struct mutex *lock = container_of(lock_count, struct mutex, count);
861 unsigned long flags;
862 int prev;
864 /* No need to trylock if the mutex is locked. */
865 if (mutex_is_locked(lock))
866 return 0;
868 spin_lock_mutex(&lock->wait_lock, flags);
870 prev = atomic_xchg(&lock->count, -1);
871 if (likely(prev == 1)) {
872 mutex_set_owner(lock);
873 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
876 /* Set it back to 0 if there are no waiters: */
877 if (likely(list_empty(&lock->wait_list)))
878 atomic_set(&lock->count, 0);
880 spin_unlock_mutex(&lock->wait_lock, flags);
882 return prev == 1;
886 * mutex_trylock - try to acquire the mutex, without waiting
887 * @lock: the mutex to be acquired
889 * Try to acquire the mutex atomically. Returns 1 if the mutex
890 * has been acquired successfully, and 0 on contention.
892 * NOTE: this function follows the spin_trylock() convention, so
893 * it is negated from the down_trylock() return values! Be careful
894 * about this when converting semaphore users to mutexes.
896 * This function must not be used in interrupt context. The
897 * mutex must be released by the same task that acquired it.
899 int __sched mutex_trylock(struct mutex *lock)
901 int ret;
903 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
904 if (ret)
905 mutex_set_owner(lock);
907 return ret;
909 EXPORT_SYMBOL(mutex_trylock);
911 #ifndef CONFIG_DEBUG_LOCK_ALLOC
912 int __sched
913 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
915 int ret;
917 might_sleep();
919 ret = __mutex_fastpath_lock_retval(&lock->base.count);
921 if (likely(!ret)) {
922 ww_mutex_set_context_fastpath(lock, ctx);
923 mutex_set_owner(&lock->base);
924 } else
925 ret = __ww_mutex_lock_slowpath(lock, ctx);
926 return ret;
928 EXPORT_SYMBOL(__ww_mutex_lock);
930 int __sched
931 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
933 int ret;
935 might_sleep();
937 ret = __mutex_fastpath_lock_retval(&lock->base.count);
939 if (likely(!ret)) {
940 ww_mutex_set_context_fastpath(lock, ctx);
941 mutex_set_owner(&lock->base);
942 } else
943 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
944 return ret;
946 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
948 #endif
951 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
952 * @cnt: the atomic which we are to dec
953 * @lock: the mutex to return holding if we dec to 0
955 * return true and hold lock if we dec to 0, return false otherwise
957 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
959 /* dec if we can't possibly hit 0 */
960 if (atomic_add_unless(cnt, -1, 1))
961 return 0;
962 /* we might hit 0, so take the lock */
963 mutex_lock(lock);
964 if (!atomic_dec_and_test(cnt)) {
965 /* when we actually did the dec, we didn't hit 0 */
966 mutex_unlock(lock);
967 return 0;
969 /* we hit 0, and we hold the lock */
970 return 1;
972 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);