Linux 4.1.18
[linux/fpc-iii.git] / kernel / printk / printk.c
blob3c1aca0c3543829d7dc9574de3c6dbac9d43a0d3
1 /*
2 * linux/kernel/printk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
50 #include <asm/uaccess.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
55 #include "console_cmdline.h"
56 #include "braille.h"
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
66 * Low level drivers may need that to know if they can schedule in
67 * their unblank() callback or not. So let's export it.
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
73 * console_sem protects the console_drivers list, and also
74 * provides serialisation for access to the entire console
75 * driver system.
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 .name = "console_lock"
85 #endif
88 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
89 * macros instead of functions so that _RET_IP_ contains useful information.
91 #define down_console_sem() do { \
92 down(&console_sem);\
93 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
94 } while (0)
96 static int __down_trylock_console_sem(unsigned long ip)
98 if (down_trylock(&console_sem))
99 return 1;
100 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
101 return 0;
103 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
105 #define up_console_sem() do { \
106 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
107 up(&console_sem);\
108 } while (0)
111 * This is used for debugging the mess that is the VT code by
112 * keeping track if we have the console semaphore held. It's
113 * definitely not the perfect debug tool (we don't know if _WE_
114 * hold it and are racing, but it helps tracking those weird code
115 * paths in the console code where we end up in places I want
116 * locked without the console sempahore held).
118 static int console_locked, console_suspended;
121 * If exclusive_console is non-NULL then only this console is to be printed to.
123 static struct console *exclusive_console;
126 * Array of consoles built from command line options (console=)
129 #define MAX_CMDLINECONSOLES 8
131 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
133 static int selected_console = -1;
134 static int preferred_console = -1;
135 int console_set_on_cmdline;
136 EXPORT_SYMBOL(console_set_on_cmdline);
138 /* Flag: console code may call schedule() */
139 static int console_may_schedule;
142 * The printk log buffer consists of a chain of concatenated variable
143 * length records. Every record starts with a record header, containing
144 * the overall length of the record.
146 * The heads to the first and last entry in the buffer, as well as the
147 * sequence numbers of these entries are maintained when messages are
148 * stored.
150 * If the heads indicate available messages, the length in the header
151 * tells the start next message. A length == 0 for the next message
152 * indicates a wrap-around to the beginning of the buffer.
154 * Every record carries the monotonic timestamp in microseconds, as well as
155 * the standard userspace syslog level and syslog facility. The usual
156 * kernel messages use LOG_KERN; userspace-injected messages always carry
157 * a matching syslog facility, by default LOG_USER. The origin of every
158 * message can be reliably determined that way.
160 * The human readable log message directly follows the message header. The
161 * length of the message text is stored in the header, the stored message
162 * is not terminated.
164 * Optionally, a message can carry a dictionary of properties (key/value pairs),
165 * to provide userspace with a machine-readable message context.
167 * Examples for well-defined, commonly used property names are:
168 * DEVICE=b12:8 device identifier
169 * b12:8 block dev_t
170 * c127:3 char dev_t
171 * n8 netdev ifindex
172 * +sound:card0 subsystem:devname
173 * SUBSYSTEM=pci driver-core subsystem name
175 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
176 * follows directly after a '=' character. Every property is terminated by
177 * a '\0' character. The last property is not terminated.
179 * Example of a message structure:
180 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
181 * 0008 34 00 record is 52 bytes long
182 * 000a 0b 00 text is 11 bytes long
183 * 000c 1f 00 dictionary is 23 bytes long
184 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
185 * 0010 69 74 27 73 20 61 20 6c "it's a l"
186 * 69 6e 65 "ine"
187 * 001b 44 45 56 49 43 "DEVIC"
188 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
189 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
190 * 67 "g"
191 * 0032 00 00 00 padding to next message header
193 * The 'struct printk_log' buffer header must never be directly exported to
194 * userspace, it is a kernel-private implementation detail that might
195 * need to be changed in the future, when the requirements change.
197 * /dev/kmsg exports the structured data in the following line format:
198 * "level,sequnum,timestamp;<message text>\n"
200 * The optional key/value pairs are attached as continuation lines starting
201 * with a space character and terminated by a newline. All possible
202 * non-prinatable characters are escaped in the "\xff" notation.
204 * Users of the export format should ignore possible additional values
205 * separated by ',', and find the message after the ';' character.
208 enum log_flags {
209 LOG_NOCONS = 1, /* already flushed, do not print to console */
210 LOG_NEWLINE = 2, /* text ended with a newline */
211 LOG_PREFIX = 4, /* text started with a prefix */
212 LOG_CONT = 8, /* text is a fragment of a continuation line */
215 struct printk_log {
216 u64 ts_nsec; /* timestamp in nanoseconds */
217 u16 len; /* length of entire record */
218 u16 text_len; /* length of text buffer */
219 u16 dict_len; /* length of dictionary buffer */
220 u8 facility; /* syslog facility */
221 u8 flags:5; /* internal record flags */
222 u8 level:3; /* syslog level */
226 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
227 * within the scheduler's rq lock. It must be released before calling
228 * console_unlock() or anything else that might wake up a process.
230 static DEFINE_RAW_SPINLOCK(logbuf_lock);
232 #ifdef CONFIG_PRINTK
233 DECLARE_WAIT_QUEUE_HEAD(log_wait);
234 /* the next printk record to read by syslog(READ) or /proc/kmsg */
235 static u64 syslog_seq;
236 static u32 syslog_idx;
237 static enum log_flags syslog_prev;
238 static size_t syslog_partial;
240 /* index and sequence number of the first record stored in the buffer */
241 static u64 log_first_seq;
242 static u32 log_first_idx;
244 /* index and sequence number of the next record to store in the buffer */
245 static u64 log_next_seq;
246 static u32 log_next_idx;
248 /* the next printk record to write to the console */
249 static u64 console_seq;
250 static u32 console_idx;
251 static enum log_flags console_prev;
253 /* the next printk record to read after the last 'clear' command */
254 static u64 clear_seq;
255 static u32 clear_idx;
257 #define PREFIX_MAX 32
258 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
260 /* record buffer */
261 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
262 #define LOG_ALIGN 4
263 #else
264 #define LOG_ALIGN __alignof__(struct printk_log)
265 #endif
266 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
267 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
268 static char *log_buf = __log_buf;
269 static u32 log_buf_len = __LOG_BUF_LEN;
271 /* Return log buffer address */
272 char *log_buf_addr_get(void)
274 return log_buf;
277 /* Return log buffer size */
278 u32 log_buf_len_get(void)
280 return log_buf_len;
283 /* human readable text of the record */
284 static char *log_text(const struct printk_log *msg)
286 return (char *)msg + sizeof(struct printk_log);
289 /* optional key/value pair dictionary attached to the record */
290 static char *log_dict(const struct printk_log *msg)
292 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
295 /* get record by index; idx must point to valid msg */
296 static struct printk_log *log_from_idx(u32 idx)
298 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
301 * A length == 0 record is the end of buffer marker. Wrap around and
302 * read the message at the start of the buffer.
304 if (!msg->len)
305 return (struct printk_log *)log_buf;
306 return msg;
309 /* get next record; idx must point to valid msg */
310 static u32 log_next(u32 idx)
312 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
314 /* length == 0 indicates the end of the buffer; wrap */
316 * A length == 0 record is the end of buffer marker. Wrap around and
317 * read the message at the start of the buffer as *this* one, and
318 * return the one after that.
320 if (!msg->len) {
321 msg = (struct printk_log *)log_buf;
322 return msg->len;
324 return idx + msg->len;
328 * Check whether there is enough free space for the given message.
330 * The same values of first_idx and next_idx mean that the buffer
331 * is either empty or full.
333 * If the buffer is empty, we must respect the position of the indexes.
334 * They cannot be reset to the beginning of the buffer.
336 static int logbuf_has_space(u32 msg_size, bool empty)
338 u32 free;
340 if (log_next_idx > log_first_idx || empty)
341 free = max(log_buf_len - log_next_idx, log_first_idx);
342 else
343 free = log_first_idx - log_next_idx;
346 * We need space also for an empty header that signalizes wrapping
347 * of the buffer.
349 return free >= msg_size + sizeof(struct printk_log);
352 static int log_make_free_space(u32 msg_size)
354 while (log_first_seq < log_next_seq) {
355 if (logbuf_has_space(msg_size, false))
356 return 0;
357 /* drop old messages until we have enough contiguous space */
358 log_first_idx = log_next(log_first_idx);
359 log_first_seq++;
362 /* sequence numbers are equal, so the log buffer is empty */
363 if (logbuf_has_space(msg_size, true))
364 return 0;
366 return -ENOMEM;
369 /* compute the message size including the padding bytes */
370 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
372 u32 size;
374 size = sizeof(struct printk_log) + text_len + dict_len;
375 *pad_len = (-size) & (LOG_ALIGN - 1);
376 size += *pad_len;
378 return size;
382 * Define how much of the log buffer we could take at maximum. The value
383 * must be greater than two. Note that only half of the buffer is available
384 * when the index points to the middle.
386 #define MAX_LOG_TAKE_PART 4
387 static const char trunc_msg[] = "<truncated>";
389 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
390 u16 *dict_len, u32 *pad_len)
393 * The message should not take the whole buffer. Otherwise, it might
394 * get removed too soon.
396 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
397 if (*text_len > max_text_len)
398 *text_len = max_text_len;
399 /* enable the warning message */
400 *trunc_msg_len = strlen(trunc_msg);
401 /* disable the "dict" completely */
402 *dict_len = 0;
403 /* compute the size again, count also the warning message */
404 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
407 /* insert record into the buffer, discard old ones, update heads */
408 static int log_store(int facility, int level,
409 enum log_flags flags, u64 ts_nsec,
410 const char *dict, u16 dict_len,
411 const char *text, u16 text_len)
413 struct printk_log *msg;
414 u32 size, pad_len;
415 u16 trunc_msg_len = 0;
417 /* number of '\0' padding bytes to next message */
418 size = msg_used_size(text_len, dict_len, &pad_len);
420 if (log_make_free_space(size)) {
421 /* truncate the message if it is too long for empty buffer */
422 size = truncate_msg(&text_len, &trunc_msg_len,
423 &dict_len, &pad_len);
424 /* survive when the log buffer is too small for trunc_msg */
425 if (log_make_free_space(size))
426 return 0;
429 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
431 * This message + an additional empty header does not fit
432 * at the end of the buffer. Add an empty header with len == 0
433 * to signify a wrap around.
435 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
436 log_next_idx = 0;
439 /* fill message */
440 msg = (struct printk_log *)(log_buf + log_next_idx);
441 memcpy(log_text(msg), text, text_len);
442 msg->text_len = text_len;
443 if (trunc_msg_len) {
444 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
445 msg->text_len += trunc_msg_len;
447 memcpy(log_dict(msg), dict, dict_len);
448 msg->dict_len = dict_len;
449 msg->facility = facility;
450 msg->level = level & 7;
451 msg->flags = flags & 0x1f;
452 if (ts_nsec > 0)
453 msg->ts_nsec = ts_nsec;
454 else
455 msg->ts_nsec = local_clock();
456 memset(log_dict(msg) + dict_len, 0, pad_len);
457 msg->len = size;
459 /* insert message */
460 log_next_idx += msg->len;
461 log_next_seq++;
463 return msg->text_len;
466 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
468 static int syslog_action_restricted(int type)
470 if (dmesg_restrict)
471 return 1;
473 * Unless restricted, we allow "read all" and "get buffer size"
474 * for everybody.
476 return type != SYSLOG_ACTION_READ_ALL &&
477 type != SYSLOG_ACTION_SIZE_BUFFER;
480 int check_syslog_permissions(int type, bool from_file)
483 * If this is from /proc/kmsg and we've already opened it, then we've
484 * already done the capabilities checks at open time.
486 if (from_file && type != SYSLOG_ACTION_OPEN)
487 goto ok;
489 if (syslog_action_restricted(type)) {
490 if (capable(CAP_SYSLOG))
491 goto ok;
493 * For historical reasons, accept CAP_SYS_ADMIN too, with
494 * a warning.
496 if (capable(CAP_SYS_ADMIN)) {
497 pr_warn_once("%s (%d): Attempt to access syslog with "
498 "CAP_SYS_ADMIN but no CAP_SYSLOG "
499 "(deprecated).\n",
500 current->comm, task_pid_nr(current));
501 goto ok;
503 return -EPERM;
506 return security_syslog(type);
510 /* /dev/kmsg - userspace message inject/listen interface */
511 struct devkmsg_user {
512 u64 seq;
513 u32 idx;
514 enum log_flags prev;
515 struct mutex lock;
516 char buf[8192];
519 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
521 char *buf, *line;
522 int i;
523 int level = default_message_loglevel;
524 int facility = 1; /* LOG_USER */
525 size_t len = iov_iter_count(from);
526 ssize_t ret = len;
528 if (len > LOG_LINE_MAX)
529 return -EINVAL;
530 buf = kmalloc(len+1, GFP_KERNEL);
531 if (buf == NULL)
532 return -ENOMEM;
534 buf[len] = '\0';
535 if (copy_from_iter(buf, len, from) != len) {
536 kfree(buf);
537 return -EFAULT;
541 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
542 * the decimal value represents 32bit, the lower 3 bit are the log
543 * level, the rest are the log facility.
545 * If no prefix or no userspace facility is specified, we
546 * enforce LOG_USER, to be able to reliably distinguish
547 * kernel-generated messages from userspace-injected ones.
549 line = buf;
550 if (line[0] == '<') {
551 char *endp = NULL;
553 i = simple_strtoul(line+1, &endp, 10);
554 if (endp && endp[0] == '>') {
555 level = i & 7;
556 if (i >> 3)
557 facility = i >> 3;
558 endp++;
559 len -= endp - line;
560 line = endp;
564 printk_emit(facility, level, NULL, 0, "%s", line);
565 kfree(buf);
566 return ret;
569 static ssize_t devkmsg_read(struct file *file, char __user *buf,
570 size_t count, loff_t *ppos)
572 struct devkmsg_user *user = file->private_data;
573 struct printk_log *msg;
574 u64 ts_usec;
575 size_t i;
576 char cont = '-';
577 size_t len;
578 ssize_t ret;
580 if (!user)
581 return -EBADF;
583 ret = mutex_lock_interruptible(&user->lock);
584 if (ret)
585 return ret;
586 raw_spin_lock_irq(&logbuf_lock);
587 while (user->seq == log_next_seq) {
588 if (file->f_flags & O_NONBLOCK) {
589 ret = -EAGAIN;
590 raw_spin_unlock_irq(&logbuf_lock);
591 goto out;
594 raw_spin_unlock_irq(&logbuf_lock);
595 ret = wait_event_interruptible(log_wait,
596 user->seq != log_next_seq);
597 if (ret)
598 goto out;
599 raw_spin_lock_irq(&logbuf_lock);
602 if (user->seq < log_first_seq) {
603 /* our last seen message is gone, return error and reset */
604 user->idx = log_first_idx;
605 user->seq = log_first_seq;
606 ret = -EPIPE;
607 raw_spin_unlock_irq(&logbuf_lock);
608 goto out;
611 msg = log_from_idx(user->idx);
612 ts_usec = msg->ts_nsec;
613 do_div(ts_usec, 1000);
616 * If we couldn't merge continuation line fragments during the print,
617 * export the stored flags to allow an optional external merge of the
618 * records. Merging the records isn't always neccessarily correct, like
619 * when we hit a race during printing. In most cases though, it produces
620 * better readable output. 'c' in the record flags mark the first
621 * fragment of a line, '+' the following.
623 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
624 cont = 'c';
625 else if ((msg->flags & LOG_CONT) ||
626 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
627 cont = '+';
629 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
630 (msg->facility << 3) | msg->level,
631 user->seq, ts_usec, cont);
632 user->prev = msg->flags;
634 /* escape non-printable characters */
635 for (i = 0; i < msg->text_len; i++) {
636 unsigned char c = log_text(msg)[i];
638 if (c < ' ' || c >= 127 || c == '\\')
639 len += sprintf(user->buf + len, "\\x%02x", c);
640 else
641 user->buf[len++] = c;
643 user->buf[len++] = '\n';
645 if (msg->dict_len) {
646 bool line = true;
648 for (i = 0; i < msg->dict_len; i++) {
649 unsigned char c = log_dict(msg)[i];
651 if (line) {
652 user->buf[len++] = ' ';
653 line = false;
656 if (c == '\0') {
657 user->buf[len++] = '\n';
658 line = true;
659 continue;
662 if (c < ' ' || c >= 127 || c == '\\') {
663 len += sprintf(user->buf + len, "\\x%02x", c);
664 continue;
667 user->buf[len++] = c;
669 user->buf[len++] = '\n';
672 user->idx = log_next(user->idx);
673 user->seq++;
674 raw_spin_unlock_irq(&logbuf_lock);
676 if (len > count) {
677 ret = -EINVAL;
678 goto out;
681 if (copy_to_user(buf, user->buf, len)) {
682 ret = -EFAULT;
683 goto out;
685 ret = len;
686 out:
687 mutex_unlock(&user->lock);
688 return ret;
691 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
693 struct devkmsg_user *user = file->private_data;
694 loff_t ret = 0;
696 if (!user)
697 return -EBADF;
698 if (offset)
699 return -ESPIPE;
701 raw_spin_lock_irq(&logbuf_lock);
702 switch (whence) {
703 case SEEK_SET:
704 /* the first record */
705 user->idx = log_first_idx;
706 user->seq = log_first_seq;
707 break;
708 case SEEK_DATA:
710 * The first record after the last SYSLOG_ACTION_CLEAR,
711 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
712 * changes no global state, and does not clear anything.
714 user->idx = clear_idx;
715 user->seq = clear_seq;
716 break;
717 case SEEK_END:
718 /* after the last record */
719 user->idx = log_next_idx;
720 user->seq = log_next_seq;
721 break;
722 default:
723 ret = -EINVAL;
725 raw_spin_unlock_irq(&logbuf_lock);
726 return ret;
729 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
731 struct devkmsg_user *user = file->private_data;
732 int ret = 0;
734 if (!user)
735 return POLLERR|POLLNVAL;
737 poll_wait(file, &log_wait, wait);
739 raw_spin_lock_irq(&logbuf_lock);
740 if (user->seq < log_next_seq) {
741 /* return error when data has vanished underneath us */
742 if (user->seq < log_first_seq)
743 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
744 else
745 ret = POLLIN|POLLRDNORM;
747 raw_spin_unlock_irq(&logbuf_lock);
749 return ret;
752 static int devkmsg_open(struct inode *inode, struct file *file)
754 struct devkmsg_user *user;
755 int err;
757 /* write-only does not need any file context */
758 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
759 return 0;
761 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
762 SYSLOG_FROM_READER);
763 if (err)
764 return err;
766 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
767 if (!user)
768 return -ENOMEM;
770 mutex_init(&user->lock);
772 raw_spin_lock_irq(&logbuf_lock);
773 user->idx = log_first_idx;
774 user->seq = log_first_seq;
775 raw_spin_unlock_irq(&logbuf_lock);
777 file->private_data = user;
778 return 0;
781 static int devkmsg_release(struct inode *inode, struct file *file)
783 struct devkmsg_user *user = file->private_data;
785 if (!user)
786 return 0;
788 mutex_destroy(&user->lock);
789 kfree(user);
790 return 0;
793 const struct file_operations kmsg_fops = {
794 .open = devkmsg_open,
795 .read = devkmsg_read,
796 .write_iter = devkmsg_write,
797 .llseek = devkmsg_llseek,
798 .poll = devkmsg_poll,
799 .release = devkmsg_release,
802 #ifdef CONFIG_KEXEC
804 * This appends the listed symbols to /proc/vmcore
806 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
807 * obtain access to symbols that are otherwise very difficult to locate. These
808 * symbols are specifically used so that utilities can access and extract the
809 * dmesg log from a vmcore file after a crash.
811 void log_buf_kexec_setup(void)
813 VMCOREINFO_SYMBOL(log_buf);
814 VMCOREINFO_SYMBOL(log_buf_len);
815 VMCOREINFO_SYMBOL(log_first_idx);
816 VMCOREINFO_SYMBOL(log_next_idx);
818 * Export struct printk_log size and field offsets. User space tools can
819 * parse it and detect any changes to structure down the line.
821 VMCOREINFO_STRUCT_SIZE(printk_log);
822 VMCOREINFO_OFFSET(printk_log, ts_nsec);
823 VMCOREINFO_OFFSET(printk_log, len);
824 VMCOREINFO_OFFSET(printk_log, text_len);
825 VMCOREINFO_OFFSET(printk_log, dict_len);
827 #endif
829 /* requested log_buf_len from kernel cmdline */
830 static unsigned long __initdata new_log_buf_len;
832 /* we practice scaling the ring buffer by powers of 2 */
833 static void __init log_buf_len_update(unsigned size)
835 if (size)
836 size = roundup_pow_of_two(size);
837 if (size > log_buf_len)
838 new_log_buf_len = size;
841 /* save requested log_buf_len since it's too early to process it */
842 static int __init log_buf_len_setup(char *str)
844 unsigned size = memparse(str, &str);
846 log_buf_len_update(size);
848 return 0;
850 early_param("log_buf_len", log_buf_len_setup);
852 #ifdef CONFIG_SMP
853 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
855 static void __init log_buf_add_cpu(void)
857 unsigned int cpu_extra;
860 * archs should set up cpu_possible_bits properly with
861 * set_cpu_possible() after setup_arch() but just in
862 * case lets ensure this is valid.
864 if (num_possible_cpus() == 1)
865 return;
867 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
869 /* by default this will only continue through for large > 64 CPUs */
870 if (cpu_extra <= __LOG_BUF_LEN / 2)
871 return;
873 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
874 __LOG_CPU_MAX_BUF_LEN);
875 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
876 cpu_extra);
877 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
879 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
881 #else /* !CONFIG_SMP */
882 static inline void log_buf_add_cpu(void) {}
883 #endif /* CONFIG_SMP */
885 void __init setup_log_buf(int early)
887 unsigned long flags;
888 char *new_log_buf;
889 int free;
891 if (log_buf != __log_buf)
892 return;
894 if (!early && !new_log_buf_len)
895 log_buf_add_cpu();
897 if (!new_log_buf_len)
898 return;
900 if (early) {
901 new_log_buf =
902 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
903 } else {
904 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
905 LOG_ALIGN);
908 if (unlikely(!new_log_buf)) {
909 pr_err("log_buf_len: %ld bytes not available\n",
910 new_log_buf_len);
911 return;
914 raw_spin_lock_irqsave(&logbuf_lock, flags);
915 log_buf_len = new_log_buf_len;
916 log_buf = new_log_buf;
917 new_log_buf_len = 0;
918 free = __LOG_BUF_LEN - log_next_idx;
919 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
920 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
922 pr_info("log_buf_len: %d bytes\n", log_buf_len);
923 pr_info("early log buf free: %d(%d%%)\n",
924 free, (free * 100) / __LOG_BUF_LEN);
927 static bool __read_mostly ignore_loglevel;
929 static int __init ignore_loglevel_setup(char *str)
931 ignore_loglevel = true;
932 pr_info("debug: ignoring loglevel setting.\n");
934 return 0;
937 early_param("ignore_loglevel", ignore_loglevel_setup);
938 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
939 MODULE_PARM_DESC(ignore_loglevel,
940 "ignore loglevel setting (prints all kernel messages to the console)");
942 #ifdef CONFIG_BOOT_PRINTK_DELAY
944 static int boot_delay; /* msecs delay after each printk during bootup */
945 static unsigned long long loops_per_msec; /* based on boot_delay */
947 static int __init boot_delay_setup(char *str)
949 unsigned long lpj;
951 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
952 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
954 get_option(&str, &boot_delay);
955 if (boot_delay > 10 * 1000)
956 boot_delay = 0;
958 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
959 "HZ: %d, loops_per_msec: %llu\n",
960 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
961 return 0;
963 early_param("boot_delay", boot_delay_setup);
965 static void boot_delay_msec(int level)
967 unsigned long long k;
968 unsigned long timeout;
970 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
971 || (level >= console_loglevel && !ignore_loglevel)) {
972 return;
975 k = (unsigned long long)loops_per_msec * boot_delay;
977 timeout = jiffies + msecs_to_jiffies(boot_delay);
978 while (k) {
979 k--;
980 cpu_relax();
982 * use (volatile) jiffies to prevent
983 * compiler reduction; loop termination via jiffies
984 * is secondary and may or may not happen.
986 if (time_after(jiffies, timeout))
987 break;
988 touch_nmi_watchdog();
991 #else
992 static inline void boot_delay_msec(int level)
995 #endif
997 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
998 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1000 static size_t print_time(u64 ts, char *buf)
1002 unsigned long rem_nsec;
1004 if (!printk_time)
1005 return 0;
1007 rem_nsec = do_div(ts, 1000000000);
1009 if (!buf)
1010 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1012 return sprintf(buf, "[%5lu.%06lu] ",
1013 (unsigned long)ts, rem_nsec / 1000);
1016 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1018 size_t len = 0;
1019 unsigned int prefix = (msg->facility << 3) | msg->level;
1021 if (syslog) {
1022 if (buf) {
1023 len += sprintf(buf, "<%u>", prefix);
1024 } else {
1025 len += 3;
1026 if (prefix > 999)
1027 len += 3;
1028 else if (prefix > 99)
1029 len += 2;
1030 else if (prefix > 9)
1031 len++;
1035 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1036 return len;
1039 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1040 bool syslog, char *buf, size_t size)
1042 const char *text = log_text(msg);
1043 size_t text_size = msg->text_len;
1044 bool prefix = true;
1045 bool newline = true;
1046 size_t len = 0;
1048 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1049 prefix = false;
1051 if (msg->flags & LOG_CONT) {
1052 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1053 prefix = false;
1055 if (!(msg->flags & LOG_NEWLINE))
1056 newline = false;
1059 do {
1060 const char *next = memchr(text, '\n', text_size);
1061 size_t text_len;
1063 if (next) {
1064 text_len = next - text;
1065 next++;
1066 text_size -= next - text;
1067 } else {
1068 text_len = text_size;
1071 if (buf) {
1072 if (print_prefix(msg, syslog, NULL) +
1073 text_len + 1 >= size - len)
1074 break;
1076 if (prefix)
1077 len += print_prefix(msg, syslog, buf + len);
1078 memcpy(buf + len, text, text_len);
1079 len += text_len;
1080 if (next || newline)
1081 buf[len++] = '\n';
1082 } else {
1083 /* SYSLOG_ACTION_* buffer size only calculation */
1084 if (prefix)
1085 len += print_prefix(msg, syslog, NULL);
1086 len += text_len;
1087 if (next || newline)
1088 len++;
1091 prefix = true;
1092 text = next;
1093 } while (text);
1095 return len;
1098 static int syslog_print(char __user *buf, int size)
1100 char *text;
1101 struct printk_log *msg;
1102 int len = 0;
1104 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1105 if (!text)
1106 return -ENOMEM;
1108 while (size > 0) {
1109 size_t n;
1110 size_t skip;
1112 raw_spin_lock_irq(&logbuf_lock);
1113 if (syslog_seq < log_first_seq) {
1114 /* messages are gone, move to first one */
1115 syslog_seq = log_first_seq;
1116 syslog_idx = log_first_idx;
1117 syslog_prev = 0;
1118 syslog_partial = 0;
1120 if (syslog_seq == log_next_seq) {
1121 raw_spin_unlock_irq(&logbuf_lock);
1122 break;
1125 skip = syslog_partial;
1126 msg = log_from_idx(syslog_idx);
1127 n = msg_print_text(msg, syslog_prev, true, text,
1128 LOG_LINE_MAX + PREFIX_MAX);
1129 if (n - syslog_partial <= size) {
1130 /* message fits into buffer, move forward */
1131 syslog_idx = log_next(syslog_idx);
1132 syslog_seq++;
1133 syslog_prev = msg->flags;
1134 n -= syslog_partial;
1135 syslog_partial = 0;
1136 } else if (!len){
1137 /* partial read(), remember position */
1138 n = size;
1139 syslog_partial += n;
1140 } else
1141 n = 0;
1142 raw_spin_unlock_irq(&logbuf_lock);
1144 if (!n)
1145 break;
1147 if (copy_to_user(buf, text + skip, n)) {
1148 if (!len)
1149 len = -EFAULT;
1150 break;
1153 len += n;
1154 size -= n;
1155 buf += n;
1158 kfree(text);
1159 return len;
1162 static int syslog_print_all(char __user *buf, int size, bool clear)
1164 char *text;
1165 int len = 0;
1167 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1168 if (!text)
1169 return -ENOMEM;
1171 raw_spin_lock_irq(&logbuf_lock);
1172 if (buf) {
1173 u64 next_seq;
1174 u64 seq;
1175 u32 idx;
1176 enum log_flags prev;
1178 if (clear_seq < log_first_seq) {
1179 /* messages are gone, move to first available one */
1180 clear_seq = log_first_seq;
1181 clear_idx = log_first_idx;
1185 * Find first record that fits, including all following records,
1186 * into the user-provided buffer for this dump.
1188 seq = clear_seq;
1189 idx = clear_idx;
1190 prev = 0;
1191 while (seq < log_next_seq) {
1192 struct printk_log *msg = log_from_idx(idx);
1194 len += msg_print_text(msg, prev, true, NULL, 0);
1195 prev = msg->flags;
1196 idx = log_next(idx);
1197 seq++;
1200 /* move first record forward until length fits into the buffer */
1201 seq = clear_seq;
1202 idx = clear_idx;
1203 prev = 0;
1204 while (len > size && seq < log_next_seq) {
1205 struct printk_log *msg = log_from_idx(idx);
1207 len -= msg_print_text(msg, prev, true, NULL, 0);
1208 prev = msg->flags;
1209 idx = log_next(idx);
1210 seq++;
1213 /* last message fitting into this dump */
1214 next_seq = log_next_seq;
1216 len = 0;
1217 while (len >= 0 && seq < next_seq) {
1218 struct printk_log *msg = log_from_idx(idx);
1219 int textlen;
1221 textlen = msg_print_text(msg, prev, true, text,
1222 LOG_LINE_MAX + PREFIX_MAX);
1223 if (textlen < 0) {
1224 len = textlen;
1225 break;
1227 idx = log_next(idx);
1228 seq++;
1229 prev = msg->flags;
1231 raw_spin_unlock_irq(&logbuf_lock);
1232 if (copy_to_user(buf + len, text, textlen))
1233 len = -EFAULT;
1234 else
1235 len += textlen;
1236 raw_spin_lock_irq(&logbuf_lock);
1238 if (seq < log_first_seq) {
1239 /* messages are gone, move to next one */
1240 seq = log_first_seq;
1241 idx = log_first_idx;
1242 prev = 0;
1247 if (clear) {
1248 clear_seq = log_next_seq;
1249 clear_idx = log_next_idx;
1251 raw_spin_unlock_irq(&logbuf_lock);
1253 kfree(text);
1254 return len;
1257 int do_syslog(int type, char __user *buf, int len, bool from_file)
1259 bool clear = false;
1260 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1261 int error;
1263 error = check_syslog_permissions(type, from_file);
1264 if (error)
1265 goto out;
1267 switch (type) {
1268 case SYSLOG_ACTION_CLOSE: /* Close log */
1269 break;
1270 case SYSLOG_ACTION_OPEN: /* Open log */
1271 break;
1272 case SYSLOG_ACTION_READ: /* Read from log */
1273 error = -EINVAL;
1274 if (!buf || len < 0)
1275 goto out;
1276 error = 0;
1277 if (!len)
1278 goto out;
1279 if (!access_ok(VERIFY_WRITE, buf, len)) {
1280 error = -EFAULT;
1281 goto out;
1283 error = wait_event_interruptible(log_wait,
1284 syslog_seq != log_next_seq);
1285 if (error)
1286 goto out;
1287 error = syslog_print(buf, len);
1288 break;
1289 /* Read/clear last kernel messages */
1290 case SYSLOG_ACTION_READ_CLEAR:
1291 clear = true;
1292 /* FALL THRU */
1293 /* Read last kernel messages */
1294 case SYSLOG_ACTION_READ_ALL:
1295 error = -EINVAL;
1296 if (!buf || len < 0)
1297 goto out;
1298 error = 0;
1299 if (!len)
1300 goto out;
1301 if (!access_ok(VERIFY_WRITE, buf, len)) {
1302 error = -EFAULT;
1303 goto out;
1305 error = syslog_print_all(buf, len, clear);
1306 break;
1307 /* Clear ring buffer */
1308 case SYSLOG_ACTION_CLEAR:
1309 syslog_print_all(NULL, 0, true);
1310 break;
1311 /* Disable logging to console */
1312 case SYSLOG_ACTION_CONSOLE_OFF:
1313 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1314 saved_console_loglevel = console_loglevel;
1315 console_loglevel = minimum_console_loglevel;
1316 break;
1317 /* Enable logging to console */
1318 case SYSLOG_ACTION_CONSOLE_ON:
1319 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1320 console_loglevel = saved_console_loglevel;
1321 saved_console_loglevel = LOGLEVEL_DEFAULT;
1323 break;
1324 /* Set level of messages printed to console */
1325 case SYSLOG_ACTION_CONSOLE_LEVEL:
1326 error = -EINVAL;
1327 if (len < 1 || len > 8)
1328 goto out;
1329 if (len < minimum_console_loglevel)
1330 len = minimum_console_loglevel;
1331 console_loglevel = len;
1332 /* Implicitly re-enable logging to console */
1333 saved_console_loglevel = LOGLEVEL_DEFAULT;
1334 error = 0;
1335 break;
1336 /* Number of chars in the log buffer */
1337 case SYSLOG_ACTION_SIZE_UNREAD:
1338 raw_spin_lock_irq(&logbuf_lock);
1339 if (syslog_seq < log_first_seq) {
1340 /* messages are gone, move to first one */
1341 syslog_seq = log_first_seq;
1342 syslog_idx = log_first_idx;
1343 syslog_prev = 0;
1344 syslog_partial = 0;
1346 if (from_file) {
1348 * Short-cut for poll(/"proc/kmsg") which simply checks
1349 * for pending data, not the size; return the count of
1350 * records, not the length.
1352 error = log_next_seq - syslog_seq;
1353 } else {
1354 u64 seq = syslog_seq;
1355 u32 idx = syslog_idx;
1356 enum log_flags prev = syslog_prev;
1358 error = 0;
1359 while (seq < log_next_seq) {
1360 struct printk_log *msg = log_from_idx(idx);
1362 error += msg_print_text(msg, prev, true, NULL, 0);
1363 idx = log_next(idx);
1364 seq++;
1365 prev = msg->flags;
1367 error -= syslog_partial;
1369 raw_spin_unlock_irq(&logbuf_lock);
1370 break;
1371 /* Size of the log buffer */
1372 case SYSLOG_ACTION_SIZE_BUFFER:
1373 error = log_buf_len;
1374 break;
1375 default:
1376 error = -EINVAL;
1377 break;
1379 out:
1380 return error;
1383 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1385 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1389 * Call the console drivers, asking them to write out
1390 * log_buf[start] to log_buf[end - 1].
1391 * The console_lock must be held.
1393 static void call_console_drivers(int level, const char *text, size_t len)
1395 struct console *con;
1397 trace_console(text, len);
1399 if (level >= console_loglevel && !ignore_loglevel)
1400 return;
1401 if (!console_drivers)
1402 return;
1404 for_each_console(con) {
1405 if (exclusive_console && con != exclusive_console)
1406 continue;
1407 if (!(con->flags & CON_ENABLED))
1408 continue;
1409 if (!con->write)
1410 continue;
1411 if (!cpu_online(smp_processor_id()) &&
1412 !(con->flags & CON_ANYTIME))
1413 continue;
1414 con->write(con, text, len);
1419 * Zap console related locks when oopsing.
1420 * To leave time for slow consoles to print a full oops,
1421 * only zap at most once every 30 seconds.
1423 static void zap_locks(void)
1425 static unsigned long oops_timestamp;
1427 if (time_after_eq(jiffies, oops_timestamp) &&
1428 !time_after(jiffies, oops_timestamp + 30 * HZ))
1429 return;
1431 oops_timestamp = jiffies;
1433 debug_locks_off();
1434 /* If a crash is occurring, make sure we can't deadlock */
1435 raw_spin_lock_init(&logbuf_lock);
1436 /* And make sure that we print immediately */
1437 sema_init(&console_sem, 1);
1441 * Check if we have any console that is capable of printing while cpu is
1442 * booting or shutting down. Requires console_sem.
1444 static int have_callable_console(void)
1446 struct console *con;
1448 for_each_console(con)
1449 if (con->flags & CON_ANYTIME)
1450 return 1;
1452 return 0;
1456 * Can we actually use the console at this time on this cpu?
1458 * Console drivers may assume that per-cpu resources have been allocated. So
1459 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1460 * call them until this CPU is officially up.
1462 static inline int can_use_console(unsigned int cpu)
1464 return cpu_online(cpu) || have_callable_console();
1468 * Try to get console ownership to actually show the kernel
1469 * messages from a 'printk'. Return true (and with the
1470 * console_lock held, and 'console_locked' set) if it
1471 * is successful, false otherwise.
1473 static int console_trylock_for_printk(void)
1475 unsigned int cpu = smp_processor_id();
1477 if (!console_trylock())
1478 return 0;
1480 * If we can't use the console, we need to release the console
1481 * semaphore by hand to avoid flushing the buffer. We need to hold the
1482 * console semaphore in order to do this test safely.
1484 if (!can_use_console(cpu)) {
1485 console_locked = 0;
1486 up_console_sem();
1487 return 0;
1489 return 1;
1492 int printk_delay_msec __read_mostly;
1494 static inline void printk_delay(void)
1496 if (unlikely(printk_delay_msec)) {
1497 int m = printk_delay_msec;
1499 while (m--) {
1500 mdelay(1);
1501 touch_nmi_watchdog();
1507 * Continuation lines are buffered, and not committed to the record buffer
1508 * until the line is complete, or a race forces it. The line fragments
1509 * though, are printed immediately to the consoles to ensure everything has
1510 * reached the console in case of a kernel crash.
1512 static struct cont {
1513 char buf[LOG_LINE_MAX];
1514 size_t len; /* length == 0 means unused buffer */
1515 size_t cons; /* bytes written to console */
1516 struct task_struct *owner; /* task of first print*/
1517 u64 ts_nsec; /* time of first print */
1518 u8 level; /* log level of first message */
1519 u8 facility; /* log facility of first message */
1520 enum log_flags flags; /* prefix, newline flags */
1521 bool flushed:1; /* buffer sealed and committed */
1522 } cont;
1524 static void cont_flush(enum log_flags flags)
1526 if (cont.flushed)
1527 return;
1528 if (cont.len == 0)
1529 return;
1531 if (cont.cons) {
1533 * If a fragment of this line was directly flushed to the
1534 * console; wait for the console to pick up the rest of the
1535 * line. LOG_NOCONS suppresses a duplicated output.
1537 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1538 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1539 cont.flags = flags;
1540 cont.flushed = true;
1541 } else {
1543 * If no fragment of this line ever reached the console,
1544 * just submit it to the store and free the buffer.
1546 log_store(cont.facility, cont.level, flags, 0,
1547 NULL, 0, cont.buf, cont.len);
1548 cont.len = 0;
1552 static bool cont_add(int facility, int level, const char *text, size_t len)
1554 if (cont.len && cont.flushed)
1555 return false;
1557 if (cont.len + len > sizeof(cont.buf)) {
1558 /* the line gets too long, split it up in separate records */
1559 cont_flush(LOG_CONT);
1560 return false;
1563 if (!cont.len) {
1564 cont.facility = facility;
1565 cont.level = level;
1566 cont.owner = current;
1567 cont.ts_nsec = local_clock();
1568 cont.flags = 0;
1569 cont.cons = 0;
1570 cont.flushed = false;
1573 memcpy(cont.buf + cont.len, text, len);
1574 cont.len += len;
1576 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1577 cont_flush(LOG_CONT);
1579 return true;
1582 static size_t cont_print_text(char *text, size_t size)
1584 size_t textlen = 0;
1585 size_t len;
1587 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1588 textlen += print_time(cont.ts_nsec, text);
1589 size -= textlen;
1592 len = cont.len - cont.cons;
1593 if (len > 0) {
1594 if (len+1 > size)
1595 len = size-1;
1596 memcpy(text + textlen, cont.buf + cont.cons, len);
1597 textlen += len;
1598 cont.cons = cont.len;
1601 if (cont.flushed) {
1602 if (cont.flags & LOG_NEWLINE)
1603 text[textlen++] = '\n';
1604 /* got everything, release buffer */
1605 cont.len = 0;
1607 return textlen;
1610 asmlinkage int vprintk_emit(int facility, int level,
1611 const char *dict, size_t dictlen,
1612 const char *fmt, va_list args)
1614 static int recursion_bug;
1615 static char textbuf[LOG_LINE_MAX];
1616 char *text = textbuf;
1617 size_t text_len = 0;
1618 enum log_flags lflags = 0;
1619 unsigned long flags;
1620 int this_cpu;
1621 int printed_len = 0;
1622 bool in_sched = false;
1623 /* cpu currently holding logbuf_lock in this function */
1624 static unsigned int logbuf_cpu = UINT_MAX;
1626 if (level == LOGLEVEL_SCHED) {
1627 level = LOGLEVEL_DEFAULT;
1628 in_sched = true;
1631 boot_delay_msec(level);
1632 printk_delay();
1634 /* This stops the holder of console_sem just where we want him */
1635 local_irq_save(flags);
1636 this_cpu = smp_processor_id();
1639 * Ouch, printk recursed into itself!
1641 if (unlikely(logbuf_cpu == this_cpu)) {
1643 * If a crash is occurring during printk() on this CPU,
1644 * then try to get the crash message out but make sure
1645 * we can't deadlock. Otherwise just return to avoid the
1646 * recursion and return - but flag the recursion so that
1647 * it can be printed at the next appropriate moment:
1649 if (!oops_in_progress && !lockdep_recursing(current)) {
1650 recursion_bug = 1;
1651 local_irq_restore(flags);
1652 return 0;
1654 zap_locks();
1657 lockdep_off();
1658 raw_spin_lock(&logbuf_lock);
1659 logbuf_cpu = this_cpu;
1661 if (unlikely(recursion_bug)) {
1662 static const char recursion_msg[] =
1663 "BUG: recent printk recursion!";
1665 recursion_bug = 0;
1666 /* emit KERN_CRIT message */
1667 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1668 NULL, 0, recursion_msg,
1669 strlen(recursion_msg));
1673 * The printf needs to come first; we need the syslog
1674 * prefix which might be passed-in as a parameter.
1676 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1678 /* mark and strip a trailing newline */
1679 if (text_len && text[text_len-1] == '\n') {
1680 text_len--;
1681 lflags |= LOG_NEWLINE;
1684 /* strip kernel syslog prefix and extract log level or control flags */
1685 if (facility == 0) {
1686 int kern_level = printk_get_level(text);
1688 if (kern_level) {
1689 const char *end_of_header = printk_skip_level(text);
1690 switch (kern_level) {
1691 case '0' ... '7':
1692 if (level == LOGLEVEL_DEFAULT)
1693 level = kern_level - '0';
1694 /* fallthrough */
1695 case 'd': /* KERN_DEFAULT */
1696 lflags |= LOG_PREFIX;
1699 * No need to check length here because vscnprintf
1700 * put '\0' at the end of the string. Only valid and
1701 * newly printed level is detected.
1703 text_len -= end_of_header - text;
1704 text = (char *)end_of_header;
1708 if (level == LOGLEVEL_DEFAULT)
1709 level = default_message_loglevel;
1711 if (dict)
1712 lflags |= LOG_PREFIX|LOG_NEWLINE;
1714 if (!(lflags & LOG_NEWLINE)) {
1716 * Flush the conflicting buffer. An earlier newline was missing,
1717 * or another task also prints continuation lines.
1719 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1720 cont_flush(LOG_NEWLINE);
1722 /* buffer line if possible, otherwise store it right away */
1723 if (cont_add(facility, level, text, text_len))
1724 printed_len += text_len;
1725 else
1726 printed_len += log_store(facility, level,
1727 lflags | LOG_CONT, 0,
1728 dict, dictlen, text, text_len);
1729 } else {
1730 bool stored = false;
1733 * If an earlier newline was missing and it was the same task,
1734 * either merge it with the current buffer and flush, or if
1735 * there was a race with interrupts (prefix == true) then just
1736 * flush it out and store this line separately.
1737 * If the preceding printk was from a different task and missed
1738 * a newline, flush and append the newline.
1740 if (cont.len) {
1741 if (cont.owner == current && !(lflags & LOG_PREFIX))
1742 stored = cont_add(facility, level, text,
1743 text_len);
1744 cont_flush(LOG_NEWLINE);
1747 if (stored)
1748 printed_len += text_len;
1749 else
1750 printed_len += log_store(facility, level, lflags, 0,
1751 dict, dictlen, text, text_len);
1754 logbuf_cpu = UINT_MAX;
1755 raw_spin_unlock(&logbuf_lock);
1756 lockdep_on();
1757 local_irq_restore(flags);
1759 /* If called from the scheduler, we can not call up(). */
1760 if (!in_sched) {
1761 lockdep_off();
1763 * Disable preemption to avoid being preempted while holding
1764 * console_sem which would prevent anyone from printing to
1765 * console
1767 preempt_disable();
1770 * Try to acquire and then immediately release the console
1771 * semaphore. The release will print out buffers and wake up
1772 * /dev/kmsg and syslog() users.
1774 if (console_trylock_for_printk())
1775 console_unlock();
1776 preempt_enable();
1777 lockdep_on();
1780 return printed_len;
1782 EXPORT_SYMBOL(vprintk_emit);
1784 asmlinkage int vprintk(const char *fmt, va_list args)
1786 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1788 EXPORT_SYMBOL(vprintk);
1790 asmlinkage int printk_emit(int facility, int level,
1791 const char *dict, size_t dictlen,
1792 const char *fmt, ...)
1794 va_list args;
1795 int r;
1797 va_start(args, fmt);
1798 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1799 va_end(args);
1801 return r;
1803 EXPORT_SYMBOL(printk_emit);
1805 int vprintk_default(const char *fmt, va_list args)
1807 int r;
1809 #ifdef CONFIG_KGDB_KDB
1810 if (unlikely(kdb_trap_printk)) {
1811 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1812 return r;
1814 #endif
1815 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1817 return r;
1819 EXPORT_SYMBOL_GPL(vprintk_default);
1822 * This allows printk to be diverted to another function per cpu.
1823 * This is useful for calling printk functions from within NMI
1824 * without worrying about race conditions that can lock up the
1825 * box.
1827 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1830 * printk - print a kernel message
1831 * @fmt: format string
1833 * This is printk(). It can be called from any context. We want it to work.
1835 * We try to grab the console_lock. If we succeed, it's easy - we log the
1836 * output and call the console drivers. If we fail to get the semaphore, we
1837 * place the output into the log buffer and return. The current holder of
1838 * the console_sem will notice the new output in console_unlock(); and will
1839 * send it to the consoles before releasing the lock.
1841 * One effect of this deferred printing is that code which calls printk() and
1842 * then changes console_loglevel may break. This is because console_loglevel
1843 * is inspected when the actual printing occurs.
1845 * See also:
1846 * printf(3)
1848 * See the vsnprintf() documentation for format string extensions over C99.
1850 asmlinkage __visible int printk(const char *fmt, ...)
1852 printk_func_t vprintk_func;
1853 va_list args;
1854 int r;
1856 va_start(args, fmt);
1859 * If a caller overrides the per_cpu printk_func, then it needs
1860 * to disable preemption when calling printk(). Otherwise
1861 * the printk_func should be set to the default. No need to
1862 * disable preemption here.
1864 vprintk_func = this_cpu_read(printk_func);
1865 r = vprintk_func(fmt, args);
1867 va_end(args);
1869 return r;
1871 EXPORT_SYMBOL(printk);
1873 #else /* CONFIG_PRINTK */
1875 #define LOG_LINE_MAX 0
1876 #define PREFIX_MAX 0
1878 static u64 syslog_seq;
1879 static u32 syslog_idx;
1880 static u64 console_seq;
1881 static u32 console_idx;
1882 static enum log_flags syslog_prev;
1883 static u64 log_first_seq;
1884 static u32 log_first_idx;
1885 static u64 log_next_seq;
1886 static enum log_flags console_prev;
1887 static struct cont {
1888 size_t len;
1889 size_t cons;
1890 u8 level;
1891 bool flushed:1;
1892 } cont;
1893 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1894 static u32 log_next(u32 idx) { return 0; }
1895 static void call_console_drivers(int level, const char *text, size_t len) {}
1896 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1897 bool syslog, char *buf, size_t size) { return 0; }
1898 static size_t cont_print_text(char *text, size_t size) { return 0; }
1900 /* Still needs to be defined for users */
1901 DEFINE_PER_CPU(printk_func_t, printk_func);
1903 #endif /* CONFIG_PRINTK */
1905 #ifdef CONFIG_EARLY_PRINTK
1906 struct console *early_console;
1908 asmlinkage __visible void early_printk(const char *fmt, ...)
1910 va_list ap;
1911 char buf[512];
1912 int n;
1914 if (!early_console)
1915 return;
1917 va_start(ap, fmt);
1918 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1919 va_end(ap);
1921 early_console->write(early_console, buf, n);
1923 #endif
1925 static int __add_preferred_console(char *name, int idx, char *options,
1926 char *brl_options)
1928 struct console_cmdline *c;
1929 int i;
1932 * See if this tty is not yet registered, and
1933 * if we have a slot free.
1935 for (i = 0, c = console_cmdline;
1936 i < MAX_CMDLINECONSOLES && c->name[0];
1937 i++, c++) {
1938 if (strcmp(c->name, name) == 0 && c->index == idx) {
1939 if (!brl_options)
1940 selected_console = i;
1941 return 0;
1944 if (i == MAX_CMDLINECONSOLES)
1945 return -E2BIG;
1946 if (!brl_options)
1947 selected_console = i;
1948 strlcpy(c->name, name, sizeof(c->name));
1949 c->options = options;
1950 braille_set_options(c, brl_options);
1952 c->index = idx;
1953 return 0;
1956 * Set up a console. Called via do_early_param() in init/main.c
1957 * for each "console=" parameter in the boot command line.
1959 static int __init console_setup(char *str)
1961 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1962 char *s, *options, *brl_options = NULL;
1963 int idx;
1965 if (_braille_console_setup(&str, &brl_options))
1966 return 1;
1969 * Decode str into name, index, options.
1971 if (str[0] >= '0' && str[0] <= '9') {
1972 strcpy(buf, "ttyS");
1973 strncpy(buf + 4, str, sizeof(buf) - 5);
1974 } else {
1975 strncpy(buf, str, sizeof(buf) - 1);
1977 buf[sizeof(buf) - 1] = 0;
1978 options = strchr(str, ',');
1979 if (options)
1980 *(options++) = 0;
1981 #ifdef __sparc__
1982 if (!strcmp(str, "ttya"))
1983 strcpy(buf, "ttyS0");
1984 if (!strcmp(str, "ttyb"))
1985 strcpy(buf, "ttyS1");
1986 #endif
1987 for (s = buf; *s; s++)
1988 if (isdigit(*s) || *s == ',')
1989 break;
1990 idx = simple_strtoul(s, NULL, 10);
1991 *s = 0;
1993 __add_preferred_console(buf, idx, options, brl_options);
1994 console_set_on_cmdline = 1;
1995 return 1;
1997 __setup("console=", console_setup);
2000 * add_preferred_console - add a device to the list of preferred consoles.
2001 * @name: device name
2002 * @idx: device index
2003 * @options: options for this console
2005 * The last preferred console added will be used for kernel messages
2006 * and stdin/out/err for init. Normally this is used by console_setup
2007 * above to handle user-supplied console arguments; however it can also
2008 * be used by arch-specific code either to override the user or more
2009 * commonly to provide a default console (ie from PROM variables) when
2010 * the user has not supplied one.
2012 int add_preferred_console(char *name, int idx, char *options)
2014 return __add_preferred_console(name, idx, options, NULL);
2017 bool console_suspend_enabled = true;
2018 EXPORT_SYMBOL(console_suspend_enabled);
2020 static int __init console_suspend_disable(char *str)
2022 console_suspend_enabled = false;
2023 return 1;
2025 __setup("no_console_suspend", console_suspend_disable);
2026 module_param_named(console_suspend, console_suspend_enabled,
2027 bool, S_IRUGO | S_IWUSR);
2028 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2029 " and hibernate operations");
2032 * suspend_console - suspend the console subsystem
2034 * This disables printk() while we go into suspend states
2036 void suspend_console(void)
2038 if (!console_suspend_enabled)
2039 return;
2040 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2041 console_lock();
2042 console_suspended = 1;
2043 up_console_sem();
2046 void resume_console(void)
2048 if (!console_suspend_enabled)
2049 return;
2050 down_console_sem();
2051 console_suspended = 0;
2052 console_unlock();
2056 * console_cpu_notify - print deferred console messages after CPU hotplug
2057 * @self: notifier struct
2058 * @action: CPU hotplug event
2059 * @hcpu: unused
2061 * If printk() is called from a CPU that is not online yet, the messages
2062 * will be spooled but will not show up on the console. This function is
2063 * called when a new CPU comes online (or fails to come up), and ensures
2064 * that any such output gets printed.
2066 static int console_cpu_notify(struct notifier_block *self,
2067 unsigned long action, void *hcpu)
2069 switch (action) {
2070 case CPU_ONLINE:
2071 case CPU_DEAD:
2072 case CPU_DOWN_FAILED:
2073 case CPU_UP_CANCELED:
2074 console_lock();
2075 console_unlock();
2077 return NOTIFY_OK;
2081 * console_lock - lock the console system for exclusive use.
2083 * Acquires a lock which guarantees that the caller has
2084 * exclusive access to the console system and the console_drivers list.
2086 * Can sleep, returns nothing.
2088 void console_lock(void)
2090 might_sleep();
2092 down_console_sem();
2093 if (console_suspended)
2094 return;
2095 console_locked = 1;
2096 console_may_schedule = 1;
2098 EXPORT_SYMBOL(console_lock);
2101 * console_trylock - try to lock the console system for exclusive use.
2103 * Try to acquire a lock which guarantees that the caller has exclusive
2104 * access to the console system and the console_drivers list.
2106 * returns 1 on success, and 0 on failure to acquire the lock.
2108 int console_trylock(void)
2110 if (down_trylock_console_sem())
2111 return 0;
2112 if (console_suspended) {
2113 up_console_sem();
2114 return 0;
2116 console_locked = 1;
2117 console_may_schedule = 0;
2118 return 1;
2120 EXPORT_SYMBOL(console_trylock);
2122 int is_console_locked(void)
2124 return console_locked;
2127 static void console_cont_flush(char *text, size_t size)
2129 unsigned long flags;
2130 size_t len;
2132 raw_spin_lock_irqsave(&logbuf_lock, flags);
2134 if (!cont.len)
2135 goto out;
2138 * We still queue earlier records, likely because the console was
2139 * busy. The earlier ones need to be printed before this one, we
2140 * did not flush any fragment so far, so just let it queue up.
2142 if (console_seq < log_next_seq && !cont.cons)
2143 goto out;
2145 len = cont_print_text(text, size);
2146 raw_spin_unlock(&logbuf_lock);
2147 stop_critical_timings();
2148 call_console_drivers(cont.level, text, len);
2149 start_critical_timings();
2150 local_irq_restore(flags);
2151 return;
2152 out:
2153 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2157 * console_unlock - unlock the console system
2159 * Releases the console_lock which the caller holds on the console system
2160 * and the console driver list.
2162 * While the console_lock was held, console output may have been buffered
2163 * by printk(). If this is the case, console_unlock(); emits
2164 * the output prior to releasing the lock.
2166 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2168 * console_unlock(); may be called from any context.
2170 void console_unlock(void)
2172 static char text[LOG_LINE_MAX + PREFIX_MAX];
2173 static u64 seen_seq;
2174 unsigned long flags;
2175 bool wake_klogd = false;
2176 bool do_cond_resched, retry;
2178 if (console_suspended) {
2179 up_console_sem();
2180 return;
2184 * Console drivers are called under logbuf_lock, so
2185 * @console_may_schedule should be cleared before; however, we may
2186 * end up dumping a lot of lines, for example, if called from
2187 * console registration path, and should invoke cond_resched()
2188 * between lines if allowable. Not doing so can cause a very long
2189 * scheduling stall on a slow console leading to RCU stall and
2190 * softlockup warnings which exacerbate the issue with more
2191 * messages practically incapacitating the system.
2193 do_cond_resched = console_may_schedule;
2194 console_may_schedule = 0;
2196 /* flush buffered message fragment immediately to console */
2197 console_cont_flush(text, sizeof(text));
2198 again:
2199 for (;;) {
2200 struct printk_log *msg;
2201 size_t len;
2202 int level;
2204 raw_spin_lock_irqsave(&logbuf_lock, flags);
2205 if (seen_seq != log_next_seq) {
2206 wake_klogd = true;
2207 seen_seq = log_next_seq;
2210 if (console_seq < log_first_seq) {
2211 len = sprintf(text, "** %u printk messages dropped ** ",
2212 (unsigned)(log_first_seq - console_seq));
2214 /* messages are gone, move to first one */
2215 console_seq = log_first_seq;
2216 console_idx = log_first_idx;
2217 console_prev = 0;
2218 } else {
2219 len = 0;
2221 skip:
2222 if (console_seq == log_next_seq)
2223 break;
2225 msg = log_from_idx(console_idx);
2226 if (msg->flags & LOG_NOCONS) {
2228 * Skip record we have buffered and already printed
2229 * directly to the console when we received it.
2231 console_idx = log_next(console_idx);
2232 console_seq++;
2234 * We will get here again when we register a new
2235 * CON_PRINTBUFFER console. Clear the flag so we
2236 * will properly dump everything later.
2238 msg->flags &= ~LOG_NOCONS;
2239 console_prev = msg->flags;
2240 goto skip;
2243 level = msg->level;
2244 len += msg_print_text(msg, console_prev, false,
2245 text + len, sizeof(text) - len);
2246 console_idx = log_next(console_idx);
2247 console_seq++;
2248 console_prev = msg->flags;
2249 raw_spin_unlock(&logbuf_lock);
2251 stop_critical_timings(); /* don't trace print latency */
2252 call_console_drivers(level, text, len);
2253 start_critical_timings();
2254 local_irq_restore(flags);
2256 if (do_cond_resched)
2257 cond_resched();
2259 console_locked = 0;
2261 /* Release the exclusive_console once it is used */
2262 if (unlikely(exclusive_console))
2263 exclusive_console = NULL;
2265 raw_spin_unlock(&logbuf_lock);
2267 up_console_sem();
2270 * Someone could have filled up the buffer again, so re-check if there's
2271 * something to flush. In case we cannot trylock the console_sem again,
2272 * there's a new owner and the console_unlock() from them will do the
2273 * flush, no worries.
2275 raw_spin_lock(&logbuf_lock);
2276 retry = console_seq != log_next_seq;
2277 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2279 if (retry && console_trylock())
2280 goto again;
2282 if (wake_klogd)
2283 wake_up_klogd();
2285 EXPORT_SYMBOL(console_unlock);
2288 * console_conditional_schedule - yield the CPU if required
2290 * If the console code is currently allowed to sleep, and
2291 * if this CPU should yield the CPU to another task, do
2292 * so here.
2294 * Must be called within console_lock();.
2296 void __sched console_conditional_schedule(void)
2298 if (console_may_schedule)
2299 cond_resched();
2301 EXPORT_SYMBOL(console_conditional_schedule);
2303 void console_unblank(void)
2305 struct console *c;
2308 * console_unblank can no longer be called in interrupt context unless
2309 * oops_in_progress is set to 1..
2311 if (oops_in_progress) {
2312 if (down_trylock_console_sem() != 0)
2313 return;
2314 } else
2315 console_lock();
2317 console_locked = 1;
2318 console_may_schedule = 0;
2319 for_each_console(c)
2320 if ((c->flags & CON_ENABLED) && c->unblank)
2321 c->unblank();
2322 console_unlock();
2326 * console_flush_on_panic - flush console content on panic
2328 * Immediately output all pending messages no matter what.
2330 void console_flush_on_panic(void)
2333 * If someone else is holding the console lock, trylock will fail
2334 * and may_schedule may be set. Ignore and proceed to unlock so
2335 * that messages are flushed out. As this can be called from any
2336 * context and we don't want to get preempted while flushing,
2337 * ensure may_schedule is cleared.
2339 console_trylock();
2340 console_may_schedule = 0;
2341 console_unlock();
2345 * Return the console tty driver structure and its associated index
2347 struct tty_driver *console_device(int *index)
2349 struct console *c;
2350 struct tty_driver *driver = NULL;
2352 console_lock();
2353 for_each_console(c) {
2354 if (!c->device)
2355 continue;
2356 driver = c->device(c, index);
2357 if (driver)
2358 break;
2360 console_unlock();
2361 return driver;
2365 * Prevent further output on the passed console device so that (for example)
2366 * serial drivers can disable console output before suspending a port, and can
2367 * re-enable output afterwards.
2369 void console_stop(struct console *console)
2371 console_lock();
2372 console->flags &= ~CON_ENABLED;
2373 console_unlock();
2375 EXPORT_SYMBOL(console_stop);
2377 void console_start(struct console *console)
2379 console_lock();
2380 console->flags |= CON_ENABLED;
2381 console_unlock();
2383 EXPORT_SYMBOL(console_start);
2385 static int __read_mostly keep_bootcon;
2387 static int __init keep_bootcon_setup(char *str)
2389 keep_bootcon = 1;
2390 pr_info("debug: skip boot console de-registration.\n");
2392 return 0;
2395 early_param("keep_bootcon", keep_bootcon_setup);
2398 * The console driver calls this routine during kernel initialization
2399 * to register the console printing procedure with printk() and to
2400 * print any messages that were printed by the kernel before the
2401 * console driver was initialized.
2403 * This can happen pretty early during the boot process (because of
2404 * early_printk) - sometimes before setup_arch() completes - be careful
2405 * of what kernel features are used - they may not be initialised yet.
2407 * There are two types of consoles - bootconsoles (early_printk) and
2408 * "real" consoles (everything which is not a bootconsole) which are
2409 * handled differently.
2410 * - Any number of bootconsoles can be registered at any time.
2411 * - As soon as a "real" console is registered, all bootconsoles
2412 * will be unregistered automatically.
2413 * - Once a "real" console is registered, any attempt to register a
2414 * bootconsoles will be rejected
2416 void register_console(struct console *newcon)
2418 int i;
2419 unsigned long flags;
2420 struct console *bcon = NULL;
2421 struct console_cmdline *c;
2423 if (console_drivers)
2424 for_each_console(bcon)
2425 if (WARN(bcon == newcon,
2426 "console '%s%d' already registered\n",
2427 bcon->name, bcon->index))
2428 return;
2431 * before we register a new CON_BOOT console, make sure we don't
2432 * already have a valid console
2434 if (console_drivers && newcon->flags & CON_BOOT) {
2435 /* find the last or real console */
2436 for_each_console(bcon) {
2437 if (!(bcon->flags & CON_BOOT)) {
2438 pr_info("Too late to register bootconsole %s%d\n",
2439 newcon->name, newcon->index);
2440 return;
2445 if (console_drivers && console_drivers->flags & CON_BOOT)
2446 bcon = console_drivers;
2448 if (preferred_console < 0 || bcon || !console_drivers)
2449 preferred_console = selected_console;
2452 * See if we want to use this console driver. If we
2453 * didn't select a console we take the first one
2454 * that registers here.
2456 if (preferred_console < 0) {
2457 if (newcon->index < 0)
2458 newcon->index = 0;
2459 if (newcon->setup == NULL ||
2460 newcon->setup(newcon, NULL) == 0) {
2461 newcon->flags |= CON_ENABLED;
2462 if (newcon->device) {
2463 newcon->flags |= CON_CONSDEV;
2464 preferred_console = 0;
2470 * See if this console matches one we selected on
2471 * the command line.
2473 for (i = 0, c = console_cmdline;
2474 i < MAX_CMDLINECONSOLES && c->name[0];
2475 i++, c++) {
2476 if (!newcon->match ||
2477 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2478 /* default matching */
2479 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2480 if (strcmp(c->name, newcon->name) != 0)
2481 continue;
2482 if (newcon->index >= 0 &&
2483 newcon->index != c->index)
2484 continue;
2485 if (newcon->index < 0)
2486 newcon->index = c->index;
2488 if (_braille_register_console(newcon, c))
2489 return;
2491 if (newcon->setup &&
2492 newcon->setup(newcon, c->options) != 0)
2493 break;
2496 newcon->flags |= CON_ENABLED;
2497 if (i == selected_console) {
2498 newcon->flags |= CON_CONSDEV;
2499 preferred_console = selected_console;
2501 break;
2504 if (!(newcon->flags & CON_ENABLED))
2505 return;
2508 * If we have a bootconsole, and are switching to a real console,
2509 * don't print everything out again, since when the boot console, and
2510 * the real console are the same physical device, it's annoying to
2511 * see the beginning boot messages twice
2513 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2514 newcon->flags &= ~CON_PRINTBUFFER;
2517 * Put this console in the list - keep the
2518 * preferred driver at the head of the list.
2520 console_lock();
2521 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2522 newcon->next = console_drivers;
2523 console_drivers = newcon;
2524 if (newcon->next)
2525 newcon->next->flags &= ~CON_CONSDEV;
2526 } else {
2527 newcon->next = console_drivers->next;
2528 console_drivers->next = newcon;
2530 if (newcon->flags & CON_PRINTBUFFER) {
2532 * console_unlock(); will print out the buffered messages
2533 * for us.
2535 raw_spin_lock_irqsave(&logbuf_lock, flags);
2536 console_seq = syslog_seq;
2537 console_idx = syslog_idx;
2538 console_prev = syslog_prev;
2539 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2541 * We're about to replay the log buffer. Only do this to the
2542 * just-registered console to avoid excessive message spam to
2543 * the already-registered consoles.
2545 exclusive_console = newcon;
2547 console_unlock();
2548 console_sysfs_notify();
2551 * By unregistering the bootconsoles after we enable the real console
2552 * we get the "console xxx enabled" message on all the consoles -
2553 * boot consoles, real consoles, etc - this is to ensure that end
2554 * users know there might be something in the kernel's log buffer that
2555 * went to the bootconsole (that they do not see on the real console)
2557 pr_info("%sconsole [%s%d] enabled\n",
2558 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2559 newcon->name, newcon->index);
2560 if (bcon &&
2561 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2562 !keep_bootcon) {
2563 /* We need to iterate through all boot consoles, to make
2564 * sure we print everything out, before we unregister them.
2566 for_each_console(bcon)
2567 if (bcon->flags & CON_BOOT)
2568 unregister_console(bcon);
2571 EXPORT_SYMBOL(register_console);
2573 int unregister_console(struct console *console)
2575 struct console *a, *b;
2576 int res;
2578 pr_info("%sconsole [%s%d] disabled\n",
2579 (console->flags & CON_BOOT) ? "boot" : "" ,
2580 console->name, console->index);
2582 res = _braille_unregister_console(console);
2583 if (res)
2584 return res;
2586 res = 1;
2587 console_lock();
2588 if (console_drivers == console) {
2589 console_drivers=console->next;
2590 res = 0;
2591 } else if (console_drivers) {
2592 for (a=console_drivers->next, b=console_drivers ;
2593 a; b=a, a=b->next) {
2594 if (a == console) {
2595 b->next = a->next;
2596 res = 0;
2597 break;
2603 * If this isn't the last console and it has CON_CONSDEV set, we
2604 * need to set it on the next preferred console.
2606 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2607 console_drivers->flags |= CON_CONSDEV;
2609 console->flags &= ~CON_ENABLED;
2610 console_unlock();
2611 console_sysfs_notify();
2612 return res;
2614 EXPORT_SYMBOL(unregister_console);
2616 static int __init printk_late_init(void)
2618 struct console *con;
2620 for_each_console(con) {
2621 if (!keep_bootcon && con->flags & CON_BOOT) {
2622 unregister_console(con);
2625 hotcpu_notifier(console_cpu_notify, 0);
2626 return 0;
2628 late_initcall(printk_late_init);
2630 #if defined CONFIG_PRINTK
2632 * Delayed printk version, for scheduler-internal messages:
2634 #define PRINTK_PENDING_WAKEUP 0x01
2635 #define PRINTK_PENDING_OUTPUT 0x02
2637 static DEFINE_PER_CPU(int, printk_pending);
2639 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2641 int pending = __this_cpu_xchg(printk_pending, 0);
2643 if (pending & PRINTK_PENDING_OUTPUT) {
2644 /* If trylock fails, someone else is doing the printing */
2645 if (console_trylock())
2646 console_unlock();
2649 if (pending & PRINTK_PENDING_WAKEUP)
2650 wake_up_interruptible(&log_wait);
2653 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2654 .func = wake_up_klogd_work_func,
2655 .flags = IRQ_WORK_LAZY,
2658 void wake_up_klogd(void)
2660 preempt_disable();
2661 if (waitqueue_active(&log_wait)) {
2662 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2663 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2665 preempt_enable();
2668 int printk_deferred(const char *fmt, ...)
2670 va_list args;
2671 int r;
2673 preempt_disable();
2674 va_start(args, fmt);
2675 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2676 va_end(args);
2678 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2679 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2680 preempt_enable();
2682 return r;
2686 * printk rate limiting, lifted from the networking subsystem.
2688 * This enforces a rate limit: not more than 10 kernel messages
2689 * every 5s to make a denial-of-service attack impossible.
2691 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2693 int __printk_ratelimit(const char *func)
2695 return ___ratelimit(&printk_ratelimit_state, func);
2697 EXPORT_SYMBOL(__printk_ratelimit);
2700 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2701 * @caller_jiffies: pointer to caller's state
2702 * @interval_msecs: minimum interval between prints
2704 * printk_timed_ratelimit() returns true if more than @interval_msecs
2705 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2706 * returned true.
2708 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2709 unsigned int interval_msecs)
2711 unsigned long elapsed = jiffies - *caller_jiffies;
2713 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2714 return false;
2716 *caller_jiffies = jiffies;
2717 return true;
2719 EXPORT_SYMBOL(printk_timed_ratelimit);
2721 static DEFINE_SPINLOCK(dump_list_lock);
2722 static LIST_HEAD(dump_list);
2725 * kmsg_dump_register - register a kernel log dumper.
2726 * @dumper: pointer to the kmsg_dumper structure
2728 * Adds a kernel log dumper to the system. The dump callback in the
2729 * structure will be called when the kernel oopses or panics and must be
2730 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2732 int kmsg_dump_register(struct kmsg_dumper *dumper)
2734 unsigned long flags;
2735 int err = -EBUSY;
2737 /* The dump callback needs to be set */
2738 if (!dumper->dump)
2739 return -EINVAL;
2741 spin_lock_irqsave(&dump_list_lock, flags);
2742 /* Don't allow registering multiple times */
2743 if (!dumper->registered) {
2744 dumper->registered = 1;
2745 list_add_tail_rcu(&dumper->list, &dump_list);
2746 err = 0;
2748 spin_unlock_irqrestore(&dump_list_lock, flags);
2750 return err;
2752 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2755 * kmsg_dump_unregister - unregister a kmsg dumper.
2756 * @dumper: pointer to the kmsg_dumper structure
2758 * Removes a dump device from the system. Returns zero on success and
2759 * %-EINVAL otherwise.
2761 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2763 unsigned long flags;
2764 int err = -EINVAL;
2766 spin_lock_irqsave(&dump_list_lock, flags);
2767 if (dumper->registered) {
2768 dumper->registered = 0;
2769 list_del_rcu(&dumper->list);
2770 err = 0;
2772 spin_unlock_irqrestore(&dump_list_lock, flags);
2773 synchronize_rcu();
2775 return err;
2777 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2779 static bool always_kmsg_dump;
2780 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2783 * kmsg_dump - dump kernel log to kernel message dumpers.
2784 * @reason: the reason (oops, panic etc) for dumping
2786 * Call each of the registered dumper's dump() callback, which can
2787 * retrieve the kmsg records with kmsg_dump_get_line() or
2788 * kmsg_dump_get_buffer().
2790 void kmsg_dump(enum kmsg_dump_reason reason)
2792 struct kmsg_dumper *dumper;
2793 unsigned long flags;
2795 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2796 return;
2798 rcu_read_lock();
2799 list_for_each_entry_rcu(dumper, &dump_list, list) {
2800 if (dumper->max_reason && reason > dumper->max_reason)
2801 continue;
2803 /* initialize iterator with data about the stored records */
2804 dumper->active = true;
2806 raw_spin_lock_irqsave(&logbuf_lock, flags);
2807 dumper->cur_seq = clear_seq;
2808 dumper->cur_idx = clear_idx;
2809 dumper->next_seq = log_next_seq;
2810 dumper->next_idx = log_next_idx;
2811 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2813 /* invoke dumper which will iterate over records */
2814 dumper->dump(dumper, reason);
2816 /* reset iterator */
2817 dumper->active = false;
2819 rcu_read_unlock();
2823 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2824 * @dumper: registered kmsg dumper
2825 * @syslog: include the "<4>" prefixes
2826 * @line: buffer to copy the line to
2827 * @size: maximum size of the buffer
2828 * @len: length of line placed into buffer
2830 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2831 * record, and copy one record into the provided buffer.
2833 * Consecutive calls will return the next available record moving
2834 * towards the end of the buffer with the youngest messages.
2836 * A return value of FALSE indicates that there are no more records to
2837 * read.
2839 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2841 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2842 char *line, size_t size, size_t *len)
2844 struct printk_log *msg;
2845 size_t l = 0;
2846 bool ret = false;
2848 if (!dumper->active)
2849 goto out;
2851 if (dumper->cur_seq < log_first_seq) {
2852 /* messages are gone, move to first available one */
2853 dumper->cur_seq = log_first_seq;
2854 dumper->cur_idx = log_first_idx;
2857 /* last entry */
2858 if (dumper->cur_seq >= log_next_seq)
2859 goto out;
2861 msg = log_from_idx(dumper->cur_idx);
2862 l = msg_print_text(msg, 0, syslog, line, size);
2864 dumper->cur_idx = log_next(dumper->cur_idx);
2865 dumper->cur_seq++;
2866 ret = true;
2867 out:
2868 if (len)
2869 *len = l;
2870 return ret;
2874 * kmsg_dump_get_line - retrieve one kmsg log line
2875 * @dumper: registered kmsg dumper
2876 * @syslog: include the "<4>" prefixes
2877 * @line: buffer to copy the line to
2878 * @size: maximum size of the buffer
2879 * @len: length of line placed into buffer
2881 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2882 * record, and copy one record into the provided buffer.
2884 * Consecutive calls will return the next available record moving
2885 * towards the end of the buffer with the youngest messages.
2887 * A return value of FALSE indicates that there are no more records to
2888 * read.
2890 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2891 char *line, size_t size, size_t *len)
2893 unsigned long flags;
2894 bool ret;
2896 raw_spin_lock_irqsave(&logbuf_lock, flags);
2897 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2898 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2900 return ret;
2902 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2905 * kmsg_dump_get_buffer - copy kmsg log lines
2906 * @dumper: registered kmsg dumper
2907 * @syslog: include the "<4>" prefixes
2908 * @buf: buffer to copy the line to
2909 * @size: maximum size of the buffer
2910 * @len: length of line placed into buffer
2912 * Start at the end of the kmsg buffer and fill the provided buffer
2913 * with as many of the the *youngest* kmsg records that fit into it.
2914 * If the buffer is large enough, all available kmsg records will be
2915 * copied with a single call.
2917 * Consecutive calls will fill the buffer with the next block of
2918 * available older records, not including the earlier retrieved ones.
2920 * A return value of FALSE indicates that there are no more records to
2921 * read.
2923 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2924 char *buf, size_t size, size_t *len)
2926 unsigned long flags;
2927 u64 seq;
2928 u32 idx;
2929 u64 next_seq;
2930 u32 next_idx;
2931 enum log_flags prev;
2932 size_t l = 0;
2933 bool ret = false;
2935 if (!dumper->active)
2936 goto out;
2938 raw_spin_lock_irqsave(&logbuf_lock, flags);
2939 if (dumper->cur_seq < log_first_seq) {
2940 /* messages are gone, move to first available one */
2941 dumper->cur_seq = log_first_seq;
2942 dumper->cur_idx = log_first_idx;
2945 /* last entry */
2946 if (dumper->cur_seq >= dumper->next_seq) {
2947 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2948 goto out;
2951 /* calculate length of entire buffer */
2952 seq = dumper->cur_seq;
2953 idx = dumper->cur_idx;
2954 prev = 0;
2955 while (seq < dumper->next_seq) {
2956 struct printk_log *msg = log_from_idx(idx);
2958 l += msg_print_text(msg, prev, true, NULL, 0);
2959 idx = log_next(idx);
2960 seq++;
2961 prev = msg->flags;
2964 /* move first record forward until length fits into the buffer */
2965 seq = dumper->cur_seq;
2966 idx = dumper->cur_idx;
2967 prev = 0;
2968 while (l > size && seq < dumper->next_seq) {
2969 struct printk_log *msg = log_from_idx(idx);
2971 l -= msg_print_text(msg, prev, true, NULL, 0);
2972 idx = log_next(idx);
2973 seq++;
2974 prev = msg->flags;
2977 /* last message in next interation */
2978 next_seq = seq;
2979 next_idx = idx;
2981 l = 0;
2982 while (seq < dumper->next_seq) {
2983 struct printk_log *msg = log_from_idx(idx);
2985 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2986 idx = log_next(idx);
2987 seq++;
2988 prev = msg->flags;
2991 dumper->next_seq = next_seq;
2992 dumper->next_idx = next_idx;
2993 ret = true;
2994 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2995 out:
2996 if (len)
2997 *len = l;
2998 return ret;
3000 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3003 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3004 * @dumper: registered kmsg dumper
3006 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3007 * kmsg_dump_get_buffer() can be called again and used multiple
3008 * times within the same dumper.dump() callback.
3010 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3012 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3014 dumper->cur_seq = clear_seq;
3015 dumper->cur_idx = clear_idx;
3016 dumper->next_seq = log_next_seq;
3017 dumper->next_idx = log_next_idx;
3021 * kmsg_dump_rewind - reset the interator
3022 * @dumper: registered kmsg dumper
3024 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3025 * kmsg_dump_get_buffer() can be called again and used multiple
3026 * times within the same dumper.dump() callback.
3028 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3030 unsigned long flags;
3032 raw_spin_lock_irqsave(&logbuf_lock, flags);
3033 kmsg_dump_rewind_nolock(dumper);
3034 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3036 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3038 static char dump_stack_arch_desc_str[128];
3041 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3042 * @fmt: printf-style format string
3043 * @...: arguments for the format string
3045 * The configured string will be printed right after utsname during task
3046 * dumps. Usually used to add arch-specific system identifiers. If an
3047 * arch wants to make use of such an ID string, it should initialize this
3048 * as soon as possible during boot.
3050 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3052 va_list args;
3054 va_start(args, fmt);
3055 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3056 fmt, args);
3057 va_end(args);
3061 * dump_stack_print_info - print generic debug info for dump_stack()
3062 * @log_lvl: log level
3064 * Arch-specific dump_stack() implementations can use this function to
3065 * print out the same debug information as the generic dump_stack().
3067 void dump_stack_print_info(const char *log_lvl)
3069 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3070 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3071 print_tainted(), init_utsname()->release,
3072 (int)strcspn(init_utsname()->version, " "),
3073 init_utsname()->version);
3075 if (dump_stack_arch_desc_str[0] != '\0')
3076 printk("%sHardware name: %s\n",
3077 log_lvl, dump_stack_arch_desc_str);
3079 print_worker_info(log_lvl, current);
3083 * show_regs_print_info - print generic debug info for show_regs()
3084 * @log_lvl: log level
3086 * show_regs() implementations can use this function to print out generic
3087 * debug information.
3089 void show_regs_print_info(const char *log_lvl)
3091 dump_stack_print_info(log_lvl);
3093 printk("%stask: %p ti: %p task.ti: %p\n",
3094 log_lvl, current, current_thread_info(),
3095 task_thread_info(current));
3098 #endif