Linux 4.1.18
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob8c0ec0f5a02702f1a3c5ed5db0bdf346ac7ae140
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
33 #ifdef CONFIG_RCU_BOOST
35 #include "../locking/rtmutex_common.h"
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
46 #endif /* #ifdef CONFIG_RCU_BOOST */
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
59 static void __init rcu_bootup_announce_oddness(void)
61 if (IS_ENABLED(CONFIG_RCU_TRACE))
62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
64 (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66 CONFIG_RCU_FANOUT);
67 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
68 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
69 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
70 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
71 if (IS_ENABLED(CONFIG_PROVE_RCU))
72 pr_info("\tRCU lockdep checking is enabled.\n");
73 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
74 pr_info("\tRCU torture testing starts during boot.\n");
75 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
76 pr_info("\tAdditional per-CPU info printed with stalls.\n");
77 if (NUM_RCU_LVL_4 != 0)
78 pr_info("\tFour-level hierarchy is enabled.\n");
79 if (CONFIG_RCU_FANOUT_LEAF != 16)
80 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
81 CONFIG_RCU_FANOUT_LEAF);
82 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
83 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
84 if (nr_cpu_ids != NR_CPUS)
85 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
86 if (IS_ENABLED(CONFIG_RCU_BOOST))
87 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
90 #ifdef CONFIG_PREEMPT_RCU
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
97 bool wake);
100 * Tell them what RCU they are running.
102 static void __init rcu_bootup_announce(void)
104 pr_info("Preemptible hierarchical RCU implementation.\n");
105 rcu_bootup_announce_oddness();
109 * Record a preemptible-RCU quiescent state for the specified CPU. Note
110 * that this just means that the task currently running on the CPU is
111 * not in a quiescent state. There might be any number of tasks blocked
112 * while in an RCU read-side critical section.
114 * As with the other rcu_*_qs() functions, callers to this function
115 * must disable preemption.
117 static void rcu_preempt_qs(void)
119 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
120 trace_rcu_grace_period(TPS("rcu_preempt"),
121 __this_cpu_read(rcu_preempt_data.gpnum),
122 TPS("cpuqs"));
123 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
124 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
125 current->rcu_read_unlock_special.b.need_qs = false;
130 * We have entered the scheduler, and the current task might soon be
131 * context-switched away from. If this task is in an RCU read-side
132 * critical section, we will no longer be able to rely on the CPU to
133 * record that fact, so we enqueue the task on the blkd_tasks list.
134 * The task will dequeue itself when it exits the outermost enclosing
135 * RCU read-side critical section. Therefore, the current grace period
136 * cannot be permitted to complete until the blkd_tasks list entries
137 * predating the current grace period drain, in other words, until
138 * rnp->gp_tasks becomes NULL.
140 * Caller must disable preemption.
142 static void rcu_preempt_note_context_switch(void)
144 struct task_struct *t = current;
145 unsigned long flags;
146 struct rcu_data *rdp;
147 struct rcu_node *rnp;
149 if (t->rcu_read_lock_nesting > 0 &&
150 !t->rcu_read_unlock_special.b.blocked) {
152 /* Possibly blocking in an RCU read-side critical section. */
153 rdp = this_cpu_ptr(rcu_preempt_state.rda);
154 rnp = rdp->mynode;
155 raw_spin_lock_irqsave(&rnp->lock, flags);
156 smp_mb__after_unlock_lock();
157 t->rcu_read_unlock_special.b.blocked = true;
158 t->rcu_blocked_node = rnp;
161 * If this CPU has already checked in, then this task
162 * will hold up the next grace period rather than the
163 * current grace period. Queue the task accordingly.
164 * If the task is queued for the current grace period
165 * (i.e., this CPU has not yet passed through a quiescent
166 * state for the current grace period), then as long
167 * as that task remains queued, the current grace period
168 * cannot end. Note that there is some uncertainty as
169 * to exactly when the current grace period started.
170 * We take a conservative approach, which can result
171 * in unnecessarily waiting on tasks that started very
172 * slightly after the current grace period began. C'est
173 * la vie!!!
175 * But first, note that the current CPU must still be
176 * on line!
178 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
179 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182 rnp->gp_tasks = &t->rcu_node_entry;
183 #ifdef CONFIG_RCU_BOOST
184 if (rnp->boost_tasks != NULL)
185 rnp->boost_tasks = rnp->gp_tasks;
186 #endif /* #ifdef CONFIG_RCU_BOOST */
187 } else {
188 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189 if (rnp->qsmask & rdp->grpmask)
190 rnp->gp_tasks = &t->rcu_node_entry;
192 trace_rcu_preempt_task(rdp->rsp->name,
193 t->pid,
194 (rnp->qsmask & rdp->grpmask)
195 ? rnp->gpnum
196 : rnp->gpnum + 1);
197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
198 } else if (t->rcu_read_lock_nesting < 0 &&
199 t->rcu_read_unlock_special.s) {
202 * Complete exit from RCU read-side critical section on
203 * behalf of preempted instance of __rcu_read_unlock().
205 rcu_read_unlock_special(t);
209 * Either we were not in an RCU read-side critical section to
210 * begin with, or we have now recorded that critical section
211 * globally. Either way, we can now note a quiescent state
212 * for this CPU. Again, if we were in an RCU read-side critical
213 * section, and if that critical section was blocking the current
214 * grace period, then the fact that the task has been enqueued
215 * means that we continue to block the current grace period.
217 rcu_preempt_qs();
221 * Check for preempted RCU readers blocking the current grace period
222 * for the specified rcu_node structure. If the caller needs a reliable
223 * answer, it must hold the rcu_node's ->lock.
225 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
227 return rnp->gp_tasks != NULL;
231 * Advance a ->blkd_tasks-list pointer to the next entry, instead
232 * returning NULL if at the end of the list.
234 static struct list_head *rcu_next_node_entry(struct task_struct *t,
235 struct rcu_node *rnp)
237 struct list_head *np;
239 np = t->rcu_node_entry.next;
240 if (np == &rnp->blkd_tasks)
241 np = NULL;
242 return np;
246 * Return true if the specified rcu_node structure has tasks that were
247 * preempted within an RCU read-side critical section.
249 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
251 return !list_empty(&rnp->blkd_tasks);
255 * Handle special cases during rcu_read_unlock(), such as needing to
256 * notify RCU core processing or task having blocked during the RCU
257 * read-side critical section.
259 void rcu_read_unlock_special(struct task_struct *t)
261 bool empty_exp;
262 bool empty_norm;
263 bool empty_exp_now;
264 unsigned long flags;
265 struct list_head *np;
266 #ifdef CONFIG_RCU_BOOST
267 bool drop_boost_mutex = false;
268 #endif /* #ifdef CONFIG_RCU_BOOST */
269 struct rcu_node *rnp;
270 union rcu_special special;
272 /* NMI handlers cannot block and cannot safely manipulate state. */
273 if (in_nmi())
274 return;
276 local_irq_save(flags);
279 * If RCU core is waiting for this CPU to exit critical section,
280 * let it know that we have done so. Because irqs are disabled,
281 * t->rcu_read_unlock_special cannot change.
283 special = t->rcu_read_unlock_special;
284 if (special.b.need_qs) {
285 rcu_preempt_qs();
286 t->rcu_read_unlock_special.b.need_qs = false;
287 if (!t->rcu_read_unlock_special.s) {
288 local_irq_restore(flags);
289 return;
293 /* Hardware IRQ handlers cannot block, complain if they get here. */
294 if (in_irq() || in_serving_softirq()) {
295 lockdep_rcu_suspicious(__FILE__, __LINE__,
296 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
297 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
298 t->rcu_read_unlock_special.s,
299 t->rcu_read_unlock_special.b.blocked,
300 t->rcu_read_unlock_special.b.need_qs);
301 local_irq_restore(flags);
302 return;
305 /* Clean up if blocked during RCU read-side critical section. */
306 if (special.b.blocked) {
307 t->rcu_read_unlock_special.b.blocked = false;
310 * Remove this task from the list it blocked on. The
311 * task can migrate while we acquire the lock, but at
312 * most one time. So at most two passes through loop.
314 for (;;) {
315 rnp = t->rcu_blocked_node;
316 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
317 smp_mb__after_unlock_lock();
318 if (rnp == t->rcu_blocked_node)
319 break;
320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
322 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
323 empty_exp = !rcu_preempted_readers_exp(rnp);
324 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
325 np = rcu_next_node_entry(t, rnp);
326 list_del_init(&t->rcu_node_entry);
327 t->rcu_blocked_node = NULL;
328 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
329 rnp->gpnum, t->pid);
330 if (&t->rcu_node_entry == rnp->gp_tasks)
331 rnp->gp_tasks = np;
332 if (&t->rcu_node_entry == rnp->exp_tasks)
333 rnp->exp_tasks = np;
334 #ifdef CONFIG_RCU_BOOST
335 if (&t->rcu_node_entry == rnp->boost_tasks)
336 rnp->boost_tasks = np;
337 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
338 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
339 #endif /* #ifdef CONFIG_RCU_BOOST */
342 * If this was the last task on the current list, and if
343 * we aren't waiting on any CPUs, report the quiescent state.
344 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
345 * so we must take a snapshot of the expedited state.
347 empty_exp_now = !rcu_preempted_readers_exp(rnp);
348 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
349 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
350 rnp->gpnum,
351 0, rnp->qsmask,
352 rnp->level,
353 rnp->grplo,
354 rnp->grphi,
355 !!rnp->gp_tasks);
356 rcu_report_unblock_qs_rnp(&rcu_preempt_state,
357 rnp, flags);
358 } else {
359 raw_spin_unlock_irqrestore(&rnp->lock, flags);
362 #ifdef CONFIG_RCU_BOOST
363 /* Unboost if we were boosted. */
364 if (drop_boost_mutex)
365 rt_mutex_unlock(&rnp->boost_mtx);
366 #endif /* #ifdef CONFIG_RCU_BOOST */
369 * If this was the last task on the expedited lists,
370 * then we need to report up the rcu_node hierarchy.
372 if (!empty_exp && empty_exp_now)
373 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
374 } else {
375 local_irq_restore(flags);
380 * Dump detailed information for all tasks blocking the current RCU
381 * grace period on the specified rcu_node structure.
383 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
385 unsigned long flags;
386 struct task_struct *t;
388 raw_spin_lock_irqsave(&rnp->lock, flags);
389 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
390 raw_spin_unlock_irqrestore(&rnp->lock, flags);
391 return;
393 t = list_entry(rnp->gp_tasks,
394 struct task_struct, rcu_node_entry);
395 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
396 sched_show_task(t);
397 raw_spin_unlock_irqrestore(&rnp->lock, flags);
401 * Dump detailed information for all tasks blocking the current RCU
402 * grace period.
404 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
406 struct rcu_node *rnp = rcu_get_root(rsp);
408 rcu_print_detail_task_stall_rnp(rnp);
409 rcu_for_each_leaf_node(rsp, rnp)
410 rcu_print_detail_task_stall_rnp(rnp);
413 #ifdef CONFIG_RCU_CPU_STALL_INFO
415 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
417 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
418 rnp->level, rnp->grplo, rnp->grphi);
421 static void rcu_print_task_stall_end(void)
423 pr_cont("\n");
426 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
428 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
432 static void rcu_print_task_stall_end(void)
436 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
439 * Scan the current list of tasks blocked within RCU read-side critical
440 * sections, printing out the tid of each.
442 static int rcu_print_task_stall(struct rcu_node *rnp)
444 struct task_struct *t;
445 int ndetected = 0;
447 if (!rcu_preempt_blocked_readers_cgp(rnp))
448 return 0;
449 rcu_print_task_stall_begin(rnp);
450 t = list_entry(rnp->gp_tasks,
451 struct task_struct, rcu_node_entry);
452 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
453 pr_cont(" P%d", t->pid);
454 ndetected++;
456 rcu_print_task_stall_end();
457 return ndetected;
461 * Check that the list of blocked tasks for the newly completed grace
462 * period is in fact empty. It is a serious bug to complete a grace
463 * period that still has RCU readers blocked! This function must be
464 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
465 * must be held by the caller.
467 * Also, if there are blocked tasks on the list, they automatically
468 * block the newly created grace period, so set up ->gp_tasks accordingly.
470 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
472 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
473 if (rcu_preempt_has_tasks(rnp))
474 rnp->gp_tasks = rnp->blkd_tasks.next;
475 WARN_ON_ONCE(rnp->qsmask);
479 * Check for a quiescent state from the current CPU. When a task blocks,
480 * the task is recorded in the corresponding CPU's rcu_node structure,
481 * which is checked elsewhere.
483 * Caller must disable hard irqs.
485 static void rcu_preempt_check_callbacks(void)
487 struct task_struct *t = current;
489 if (t->rcu_read_lock_nesting == 0) {
490 rcu_preempt_qs();
491 return;
493 if (t->rcu_read_lock_nesting > 0 &&
494 __this_cpu_read(rcu_preempt_data.qs_pending) &&
495 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
496 t->rcu_read_unlock_special.b.need_qs = true;
499 #ifdef CONFIG_RCU_BOOST
501 static void rcu_preempt_do_callbacks(void)
503 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
506 #endif /* #ifdef CONFIG_RCU_BOOST */
509 * Queue a preemptible-RCU callback for invocation after a grace period.
511 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
513 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
515 EXPORT_SYMBOL_GPL(call_rcu);
518 * synchronize_rcu - wait until a grace period has elapsed.
520 * Control will return to the caller some time after a full grace
521 * period has elapsed, in other words after all currently executing RCU
522 * read-side critical sections have completed. Note, however, that
523 * upon return from synchronize_rcu(), the caller might well be executing
524 * concurrently with new RCU read-side critical sections that began while
525 * synchronize_rcu() was waiting. RCU read-side critical sections are
526 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
528 * See the description of synchronize_sched() for more detailed information
529 * on memory ordering guarantees.
531 void synchronize_rcu(void)
533 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
534 !lock_is_held(&rcu_lock_map) &&
535 !lock_is_held(&rcu_sched_lock_map),
536 "Illegal synchronize_rcu() in RCU read-side critical section");
537 if (!rcu_scheduler_active)
538 return;
539 if (rcu_gp_is_expedited())
540 synchronize_rcu_expedited();
541 else
542 wait_rcu_gp(call_rcu);
544 EXPORT_SYMBOL_GPL(synchronize_rcu);
546 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
547 static unsigned long sync_rcu_preempt_exp_count;
548 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
551 * Return non-zero if there are any tasks in RCU read-side critical
552 * sections blocking the current preemptible-RCU expedited grace period.
553 * If there is no preemptible-RCU expedited grace period currently in
554 * progress, returns zero unconditionally.
556 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
558 return rnp->exp_tasks != NULL;
562 * return non-zero if there is no RCU expedited grace period in progress
563 * for the specified rcu_node structure, in other words, if all CPUs and
564 * tasks covered by the specified rcu_node structure have done their bit
565 * for the current expedited grace period. Works only for preemptible
566 * RCU -- other RCU implementation use other means.
568 * Caller must hold sync_rcu_preempt_exp_mutex.
570 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
572 return !rcu_preempted_readers_exp(rnp) &&
573 ACCESS_ONCE(rnp->expmask) == 0;
577 * Report the exit from RCU read-side critical section for the last task
578 * that queued itself during or before the current expedited preemptible-RCU
579 * grace period. This event is reported either to the rcu_node structure on
580 * which the task was queued or to one of that rcu_node structure's ancestors,
581 * recursively up the tree. (Calm down, calm down, we do the recursion
582 * iteratively!)
584 * Caller must hold sync_rcu_preempt_exp_mutex.
586 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
587 bool wake)
589 unsigned long flags;
590 unsigned long mask;
592 raw_spin_lock_irqsave(&rnp->lock, flags);
593 smp_mb__after_unlock_lock();
594 for (;;) {
595 if (!sync_rcu_preempt_exp_done(rnp)) {
596 raw_spin_unlock_irqrestore(&rnp->lock, flags);
597 break;
599 if (rnp->parent == NULL) {
600 raw_spin_unlock_irqrestore(&rnp->lock, flags);
601 if (wake) {
602 smp_mb(); /* EGP done before wake_up(). */
603 wake_up(&sync_rcu_preempt_exp_wq);
605 break;
607 mask = rnp->grpmask;
608 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
609 rnp = rnp->parent;
610 raw_spin_lock(&rnp->lock); /* irqs already disabled */
611 smp_mb__after_unlock_lock();
612 rnp->expmask &= ~mask;
617 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
618 * grace period for the specified rcu_node structure, phase 1. If there
619 * are such tasks, set the ->expmask bits up the rcu_node tree and also
620 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
621 * that work is needed here.
623 * Caller must hold sync_rcu_preempt_exp_mutex.
625 static void
626 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
628 unsigned long flags;
629 unsigned long mask;
630 struct rcu_node *rnp_up;
632 raw_spin_lock_irqsave(&rnp->lock, flags);
633 smp_mb__after_unlock_lock();
634 WARN_ON_ONCE(rnp->expmask);
635 WARN_ON_ONCE(rnp->exp_tasks);
636 if (!rcu_preempt_has_tasks(rnp)) {
637 /* No blocked tasks, nothing to do. */
638 raw_spin_unlock_irqrestore(&rnp->lock, flags);
639 return;
641 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
642 rnp->expmask = 1;
643 rnp_up = rnp;
644 while (rnp_up->parent) {
645 mask = rnp_up->grpmask;
646 rnp_up = rnp_up->parent;
647 if (rnp_up->expmask & mask)
648 break;
649 raw_spin_lock(&rnp_up->lock); /* irqs already off */
650 smp_mb__after_unlock_lock();
651 rnp_up->expmask |= mask;
652 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
654 raw_spin_unlock_irqrestore(&rnp->lock, flags);
658 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
659 * grace period for the specified rcu_node structure, phase 2. If the
660 * leaf rcu_node structure has its ->expmask field set, check for tasks.
661 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
662 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
663 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
664 * enabling rcu_read_unlock_special() to do the bit-clearing.
666 * Caller must hold sync_rcu_preempt_exp_mutex.
668 static void
669 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
671 unsigned long flags;
673 raw_spin_lock_irqsave(&rnp->lock, flags);
674 smp_mb__after_unlock_lock();
675 if (!rnp->expmask) {
676 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
677 raw_spin_unlock_irqrestore(&rnp->lock, flags);
678 return;
681 /* Phase 1 is over. */
682 rnp->expmask = 0;
685 * If there are still blocked tasks, set up ->exp_tasks so that
686 * rcu_read_unlock_special() will wake us and then boost them.
688 if (rcu_preempt_has_tasks(rnp)) {
689 rnp->exp_tasks = rnp->blkd_tasks.next;
690 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
691 return;
694 /* No longer any blocked tasks, so undo bit setting. */
695 raw_spin_unlock_irqrestore(&rnp->lock, flags);
696 rcu_report_exp_rnp(rsp, rnp, false);
700 * synchronize_rcu_expedited - Brute-force RCU grace period
702 * Wait for an RCU-preempt grace period, but expedite it. The basic
703 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
704 * the ->blkd_tasks lists and wait for this list to drain. This consumes
705 * significant time on all CPUs and is unfriendly to real-time workloads,
706 * so is thus not recommended for any sort of common-case code.
707 * In fact, if you are using synchronize_rcu_expedited() in a loop,
708 * please restructure your code to batch your updates, and then Use a
709 * single synchronize_rcu() instead.
711 void synchronize_rcu_expedited(void)
713 struct rcu_node *rnp;
714 struct rcu_state *rsp = &rcu_preempt_state;
715 unsigned long snap;
716 int trycount = 0;
718 smp_mb(); /* Caller's modifications seen first by other CPUs. */
719 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
720 smp_mb(); /* Above access cannot bleed into critical section. */
723 * Block CPU-hotplug operations. This means that any CPU-hotplug
724 * operation that finds an rcu_node structure with tasks in the
725 * process of being boosted will know that all tasks blocking
726 * this expedited grace period will already be in the process of
727 * being boosted. This simplifies the process of moving tasks
728 * from leaf to root rcu_node structures.
730 if (!try_get_online_cpus()) {
731 /* CPU-hotplug operation in flight, fall back to normal GP. */
732 wait_rcu_gp(call_rcu);
733 return;
737 * Acquire lock, falling back to synchronize_rcu() if too many
738 * lock-acquisition failures. Of course, if someone does the
739 * expedited grace period for us, just leave.
741 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
742 if (ULONG_CMP_LT(snap,
743 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
744 put_online_cpus();
745 goto mb_ret; /* Others did our work for us. */
747 if (trycount++ < 10) {
748 udelay(trycount * num_online_cpus());
749 } else {
750 put_online_cpus();
751 wait_rcu_gp(call_rcu);
752 return;
755 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
756 put_online_cpus();
757 goto unlock_mb_ret; /* Others did our work for us. */
760 /* force all RCU readers onto ->blkd_tasks lists. */
761 synchronize_sched_expedited();
764 * Snapshot current state of ->blkd_tasks lists into ->expmask.
765 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
766 * to start clearing them. Doing this in one phase leads to
767 * strange races between setting and clearing bits, so just say "no"!
769 rcu_for_each_leaf_node(rsp, rnp)
770 sync_rcu_preempt_exp_init1(rsp, rnp);
771 rcu_for_each_leaf_node(rsp, rnp)
772 sync_rcu_preempt_exp_init2(rsp, rnp);
774 put_online_cpus();
776 /* Wait for snapshotted ->blkd_tasks lists to drain. */
777 rnp = rcu_get_root(rsp);
778 wait_event(sync_rcu_preempt_exp_wq,
779 sync_rcu_preempt_exp_done(rnp));
781 /* Clean up and exit. */
782 smp_mb(); /* ensure expedited GP seen before counter increment. */
783 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
784 sync_rcu_preempt_exp_count + 1;
785 unlock_mb_ret:
786 mutex_unlock(&sync_rcu_preempt_exp_mutex);
787 mb_ret:
788 smp_mb(); /* ensure subsequent action seen after grace period. */
790 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
793 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
795 * Note that this primitive does not necessarily wait for an RCU grace period
796 * to complete. For example, if there are no RCU callbacks queued anywhere
797 * in the system, then rcu_barrier() is within its rights to return
798 * immediately, without waiting for anything, much less an RCU grace period.
800 void rcu_barrier(void)
802 _rcu_barrier(&rcu_preempt_state);
804 EXPORT_SYMBOL_GPL(rcu_barrier);
807 * Initialize preemptible RCU's state structures.
809 static void __init __rcu_init_preempt(void)
811 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
815 * Check for a task exiting while in a preemptible-RCU read-side
816 * critical section, clean up if so. No need to issue warnings,
817 * as debug_check_no_locks_held() already does this if lockdep
818 * is enabled.
820 void exit_rcu(void)
822 struct task_struct *t = current;
824 if (likely(list_empty(&current->rcu_node_entry)))
825 return;
826 t->rcu_read_lock_nesting = 1;
827 barrier();
828 t->rcu_read_unlock_special.b.blocked = true;
829 __rcu_read_unlock();
832 #else /* #ifdef CONFIG_PREEMPT_RCU */
834 static struct rcu_state *rcu_state_p = &rcu_sched_state;
837 * Tell them what RCU they are running.
839 static void __init rcu_bootup_announce(void)
841 pr_info("Hierarchical RCU implementation.\n");
842 rcu_bootup_announce_oddness();
846 * Because preemptible RCU does not exist, we never have to check for
847 * CPUs being in quiescent states.
849 static void rcu_preempt_note_context_switch(void)
854 * Because preemptible RCU does not exist, there are never any preempted
855 * RCU readers.
857 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
859 return 0;
863 * Because there is no preemptible RCU, there can be no readers blocked.
865 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
867 return false;
871 * Because preemptible RCU does not exist, we never have to check for
872 * tasks blocked within RCU read-side critical sections.
874 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
879 * Because preemptible RCU does not exist, we never have to check for
880 * tasks blocked within RCU read-side critical sections.
882 static int rcu_print_task_stall(struct rcu_node *rnp)
884 return 0;
888 * Because there is no preemptible RCU, there can be no readers blocked,
889 * so there is no need to check for blocked tasks. So check only for
890 * bogus qsmask values.
892 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
894 WARN_ON_ONCE(rnp->qsmask);
898 * Because preemptible RCU does not exist, it never has any callbacks
899 * to check.
901 static void rcu_preempt_check_callbacks(void)
906 * Wait for an rcu-preempt grace period, but make it happen quickly.
907 * But because preemptible RCU does not exist, map to rcu-sched.
909 void synchronize_rcu_expedited(void)
911 synchronize_sched_expedited();
913 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
916 * Because preemptible RCU does not exist, rcu_barrier() is just
917 * another name for rcu_barrier_sched().
919 void rcu_barrier(void)
921 rcu_barrier_sched();
923 EXPORT_SYMBOL_GPL(rcu_barrier);
926 * Because preemptible RCU does not exist, it need not be initialized.
928 static void __init __rcu_init_preempt(void)
933 * Because preemptible RCU does not exist, tasks cannot possibly exit
934 * while in preemptible RCU read-side critical sections.
936 void exit_rcu(void)
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
942 #ifdef CONFIG_RCU_BOOST
944 #include "../locking/rtmutex_common.h"
946 #ifdef CONFIG_RCU_TRACE
948 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
950 if (!rcu_preempt_has_tasks(rnp))
951 rnp->n_balk_blkd_tasks++;
952 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
953 rnp->n_balk_exp_gp_tasks++;
954 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
955 rnp->n_balk_boost_tasks++;
956 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
957 rnp->n_balk_notblocked++;
958 else if (rnp->gp_tasks != NULL &&
959 ULONG_CMP_LT(jiffies, rnp->boost_time))
960 rnp->n_balk_notyet++;
961 else
962 rnp->n_balk_nos++;
965 #else /* #ifdef CONFIG_RCU_TRACE */
967 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
971 #endif /* #else #ifdef CONFIG_RCU_TRACE */
973 static void rcu_wake_cond(struct task_struct *t, int status)
976 * If the thread is yielding, only wake it when this
977 * is invoked from idle
979 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
980 wake_up_process(t);
984 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
985 * or ->boost_tasks, advancing the pointer to the next task in the
986 * ->blkd_tasks list.
988 * Note that irqs must be enabled: boosting the task can block.
989 * Returns 1 if there are more tasks needing to be boosted.
991 static int rcu_boost(struct rcu_node *rnp)
993 unsigned long flags;
994 struct task_struct *t;
995 struct list_head *tb;
997 if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
998 ACCESS_ONCE(rnp->boost_tasks) == NULL)
999 return 0; /* Nothing left to boost. */
1001 raw_spin_lock_irqsave(&rnp->lock, flags);
1002 smp_mb__after_unlock_lock();
1005 * Recheck under the lock: all tasks in need of boosting
1006 * might exit their RCU read-side critical sections on their own.
1008 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1009 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1010 return 0;
1014 * Preferentially boost tasks blocking expedited grace periods.
1015 * This cannot starve the normal grace periods because a second
1016 * expedited grace period must boost all blocked tasks, including
1017 * those blocking the pre-existing normal grace period.
1019 if (rnp->exp_tasks != NULL) {
1020 tb = rnp->exp_tasks;
1021 rnp->n_exp_boosts++;
1022 } else {
1023 tb = rnp->boost_tasks;
1024 rnp->n_normal_boosts++;
1026 rnp->n_tasks_boosted++;
1029 * We boost task t by manufacturing an rt_mutex that appears to
1030 * be held by task t. We leave a pointer to that rt_mutex where
1031 * task t can find it, and task t will release the mutex when it
1032 * exits its outermost RCU read-side critical section. Then
1033 * simply acquiring this artificial rt_mutex will boost task
1034 * t's priority. (Thanks to tglx for suggesting this approach!)
1036 * Note that task t must acquire rnp->lock to remove itself from
1037 * the ->blkd_tasks list, which it will do from exit() if from
1038 * nowhere else. We therefore are guaranteed that task t will
1039 * stay around at least until we drop rnp->lock. Note that
1040 * rnp->lock also resolves races between our priority boosting
1041 * and task t's exiting its outermost RCU read-side critical
1042 * section.
1044 t = container_of(tb, struct task_struct, rcu_node_entry);
1045 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1046 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1047 /* Lock only for side effect: boosts task t's priority. */
1048 rt_mutex_lock(&rnp->boost_mtx);
1049 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1051 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1052 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1056 * Priority-boosting kthread. One per leaf rcu_node and one for the
1057 * root rcu_node.
1059 static int rcu_boost_kthread(void *arg)
1061 struct rcu_node *rnp = (struct rcu_node *)arg;
1062 int spincnt = 0;
1063 int more2boost;
1065 trace_rcu_utilization(TPS("Start boost kthread@init"));
1066 for (;;) {
1067 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1068 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1069 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1070 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1071 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1072 more2boost = rcu_boost(rnp);
1073 if (more2boost)
1074 spincnt++;
1075 else
1076 spincnt = 0;
1077 if (spincnt > 10) {
1078 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1079 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1080 schedule_timeout_interruptible(2);
1081 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1082 spincnt = 0;
1085 /* NOTREACHED */
1086 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1087 return 0;
1091 * Check to see if it is time to start boosting RCU readers that are
1092 * blocking the current grace period, and, if so, tell the per-rcu_node
1093 * kthread to start boosting them. If there is an expedited grace
1094 * period in progress, it is always time to boost.
1096 * The caller must hold rnp->lock, which this function releases.
1097 * The ->boost_kthread_task is immortal, so we don't need to worry
1098 * about it going away.
1100 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1101 __releases(rnp->lock)
1103 struct task_struct *t;
1105 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1106 rnp->n_balk_exp_gp_tasks++;
1107 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108 return;
1110 if (rnp->exp_tasks != NULL ||
1111 (rnp->gp_tasks != NULL &&
1112 rnp->boost_tasks == NULL &&
1113 rnp->qsmask == 0 &&
1114 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1115 if (rnp->exp_tasks == NULL)
1116 rnp->boost_tasks = rnp->gp_tasks;
1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118 t = rnp->boost_kthread_task;
1119 if (t)
1120 rcu_wake_cond(t, rnp->boost_kthread_status);
1121 } else {
1122 rcu_initiate_boost_trace(rnp);
1123 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1128 * Wake up the per-CPU kthread to invoke RCU callbacks.
1130 static void invoke_rcu_callbacks_kthread(void)
1132 unsigned long flags;
1134 local_irq_save(flags);
1135 __this_cpu_write(rcu_cpu_has_work, 1);
1136 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1137 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1138 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1139 __this_cpu_read(rcu_cpu_kthread_status));
1141 local_irq_restore(flags);
1145 * Is the current CPU running the RCU-callbacks kthread?
1146 * Caller must have preemption disabled.
1148 static bool rcu_is_callbacks_kthread(void)
1150 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1153 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1156 * Do priority-boost accounting for the start of a new grace period.
1158 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1160 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1164 * Create an RCU-boost kthread for the specified node if one does not
1165 * already exist. We only create this kthread for preemptible RCU.
1166 * Returns zero if all is well, a negated errno otherwise.
1168 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1169 struct rcu_node *rnp)
1171 int rnp_index = rnp - &rsp->node[0];
1172 unsigned long flags;
1173 struct sched_param sp;
1174 struct task_struct *t;
1176 if (&rcu_preempt_state != rsp)
1177 return 0;
1179 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1180 return 0;
1182 rsp->boost = 1;
1183 if (rnp->boost_kthread_task != NULL)
1184 return 0;
1185 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1186 "rcub/%d", rnp_index);
1187 if (IS_ERR(t))
1188 return PTR_ERR(t);
1189 raw_spin_lock_irqsave(&rnp->lock, flags);
1190 smp_mb__after_unlock_lock();
1191 rnp->boost_kthread_task = t;
1192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1193 sp.sched_priority = kthread_prio;
1194 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1195 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1196 return 0;
1199 static void rcu_kthread_do_work(void)
1201 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1202 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1203 rcu_preempt_do_callbacks();
1206 static void rcu_cpu_kthread_setup(unsigned int cpu)
1208 struct sched_param sp;
1210 sp.sched_priority = kthread_prio;
1211 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1214 static void rcu_cpu_kthread_park(unsigned int cpu)
1216 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1219 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1221 return __this_cpu_read(rcu_cpu_has_work);
1225 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1226 * RCU softirq used in flavors and configurations of RCU that do not
1227 * support RCU priority boosting.
1229 static void rcu_cpu_kthread(unsigned int cpu)
1231 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1232 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1233 int spincnt;
1235 for (spincnt = 0; spincnt < 10; spincnt++) {
1236 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1237 local_bh_disable();
1238 *statusp = RCU_KTHREAD_RUNNING;
1239 this_cpu_inc(rcu_cpu_kthread_loops);
1240 local_irq_disable();
1241 work = *workp;
1242 *workp = 0;
1243 local_irq_enable();
1244 if (work)
1245 rcu_kthread_do_work();
1246 local_bh_enable();
1247 if (*workp == 0) {
1248 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1249 *statusp = RCU_KTHREAD_WAITING;
1250 return;
1253 *statusp = RCU_KTHREAD_YIELDING;
1254 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1255 schedule_timeout_interruptible(2);
1256 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1257 *statusp = RCU_KTHREAD_WAITING;
1261 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1262 * served by the rcu_node in question. The CPU hotplug lock is still
1263 * held, so the value of rnp->qsmaskinit will be stable.
1265 * We don't include outgoingcpu in the affinity set, use -1 if there is
1266 * no outgoing CPU. If there are no CPUs left in the affinity set,
1267 * this function allows the kthread to execute on any CPU.
1269 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1271 struct task_struct *t = rnp->boost_kthread_task;
1272 unsigned long mask = rcu_rnp_online_cpus(rnp);
1273 cpumask_var_t cm;
1274 int cpu;
1276 if (!t)
1277 return;
1278 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1279 return;
1280 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1281 if ((mask & 0x1) && cpu != outgoingcpu)
1282 cpumask_set_cpu(cpu, cm);
1283 if (cpumask_weight(cm) == 0)
1284 cpumask_setall(cm);
1285 set_cpus_allowed_ptr(t, cm);
1286 free_cpumask_var(cm);
1289 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1290 .store = &rcu_cpu_kthread_task,
1291 .thread_should_run = rcu_cpu_kthread_should_run,
1292 .thread_fn = rcu_cpu_kthread,
1293 .thread_comm = "rcuc/%u",
1294 .setup = rcu_cpu_kthread_setup,
1295 .park = rcu_cpu_kthread_park,
1299 * Spawn boost kthreads -- called as soon as the scheduler is running.
1301 static void __init rcu_spawn_boost_kthreads(void)
1303 struct rcu_node *rnp;
1304 int cpu;
1306 for_each_possible_cpu(cpu)
1307 per_cpu(rcu_cpu_has_work, cpu) = 0;
1308 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1309 rcu_for_each_leaf_node(rcu_state_p, rnp)
1310 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1313 static void rcu_prepare_kthreads(int cpu)
1315 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1316 struct rcu_node *rnp = rdp->mynode;
1318 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1319 if (rcu_scheduler_fully_active)
1320 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1323 #else /* #ifdef CONFIG_RCU_BOOST */
1325 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1326 __releases(rnp->lock)
1328 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1331 static void invoke_rcu_callbacks_kthread(void)
1333 WARN_ON_ONCE(1);
1336 static bool rcu_is_callbacks_kthread(void)
1338 return false;
1341 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1345 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1349 static void __init rcu_spawn_boost_kthreads(void)
1353 static void rcu_prepare_kthreads(int cpu)
1357 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1359 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1362 * Check to see if any future RCU-related work will need to be done
1363 * by the current CPU, even if none need be done immediately, returning
1364 * 1 if so. This function is part of the RCU implementation; it is -not-
1365 * an exported member of the RCU API.
1367 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1368 * any flavor of RCU.
1370 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1371 int rcu_needs_cpu(unsigned long *delta_jiffies)
1373 *delta_jiffies = ULONG_MAX;
1374 return rcu_cpu_has_callbacks(NULL);
1376 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1379 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1380 * after it.
1382 static void rcu_cleanup_after_idle(void)
1387 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1388 * is nothing.
1390 static void rcu_prepare_for_idle(void)
1395 * Don't bother keeping a running count of the number of RCU callbacks
1396 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1398 static void rcu_idle_count_callbacks_posted(void)
1402 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1405 * This code is invoked when a CPU goes idle, at which point we want
1406 * to have the CPU do everything required for RCU so that it can enter
1407 * the energy-efficient dyntick-idle mode. This is handled by a
1408 * state machine implemented by rcu_prepare_for_idle() below.
1410 * The following three proprocessor symbols control this state machine:
1412 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1413 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1414 * is sized to be roughly one RCU grace period. Those energy-efficiency
1415 * benchmarkers who might otherwise be tempted to set this to a large
1416 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1417 * system. And if you are -that- concerned about energy efficiency,
1418 * just power the system down and be done with it!
1419 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1420 * permitted to sleep in dyntick-idle mode with only lazy RCU
1421 * callbacks pending. Setting this too high can OOM your system.
1423 * The values below work well in practice. If future workloads require
1424 * adjustment, they can be converted into kernel config parameters, though
1425 * making the state machine smarter might be a better option.
1427 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1428 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1430 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1431 module_param(rcu_idle_gp_delay, int, 0644);
1432 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1433 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1435 extern int tick_nohz_active;
1438 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1439 * only if it has been awhile since the last time we did so. Afterwards,
1440 * if there are any callbacks ready for immediate invocation, return true.
1442 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1444 bool cbs_ready = false;
1445 struct rcu_data *rdp;
1446 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1447 struct rcu_node *rnp;
1448 struct rcu_state *rsp;
1450 /* Exit early if we advanced recently. */
1451 if (jiffies == rdtp->last_advance_all)
1452 return false;
1453 rdtp->last_advance_all = jiffies;
1455 for_each_rcu_flavor(rsp) {
1456 rdp = this_cpu_ptr(rsp->rda);
1457 rnp = rdp->mynode;
1460 * Don't bother checking unless a grace period has
1461 * completed since we last checked and there are
1462 * callbacks not yet ready to invoke.
1464 if ((rdp->completed != rnp->completed ||
1465 unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1466 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1467 note_gp_changes(rsp, rdp);
1469 if (cpu_has_callbacks_ready_to_invoke(rdp))
1470 cbs_ready = true;
1472 return cbs_ready;
1476 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1477 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1478 * caller to set the timeout based on whether or not there are non-lazy
1479 * callbacks.
1481 * The caller must have disabled interrupts.
1483 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1484 int rcu_needs_cpu(unsigned long *dj)
1486 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1488 /* Snapshot to detect later posting of non-lazy callback. */
1489 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1491 /* If no callbacks, RCU doesn't need the CPU. */
1492 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1493 *dj = ULONG_MAX;
1494 return 0;
1497 /* Attempt to advance callbacks. */
1498 if (rcu_try_advance_all_cbs()) {
1499 /* Some ready to invoke, so initiate later invocation. */
1500 invoke_rcu_core();
1501 return 1;
1503 rdtp->last_accelerate = jiffies;
1505 /* Request timer delay depending on laziness, and round. */
1506 if (!rdtp->all_lazy) {
1507 *dj = round_up(rcu_idle_gp_delay + jiffies,
1508 rcu_idle_gp_delay) - jiffies;
1509 } else {
1510 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1512 return 0;
1514 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1517 * Prepare a CPU for idle from an RCU perspective. The first major task
1518 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1519 * The second major task is to check to see if a non-lazy callback has
1520 * arrived at a CPU that previously had only lazy callbacks. The third
1521 * major task is to accelerate (that is, assign grace-period numbers to)
1522 * any recently arrived callbacks.
1524 * The caller must have disabled interrupts.
1526 static void rcu_prepare_for_idle(void)
1528 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1529 bool needwake;
1530 struct rcu_data *rdp;
1531 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1532 struct rcu_node *rnp;
1533 struct rcu_state *rsp;
1534 int tne;
1536 /* Handle nohz enablement switches conservatively. */
1537 tne = ACCESS_ONCE(tick_nohz_active);
1538 if (tne != rdtp->tick_nohz_enabled_snap) {
1539 if (rcu_cpu_has_callbacks(NULL))
1540 invoke_rcu_core(); /* force nohz to see update. */
1541 rdtp->tick_nohz_enabled_snap = tne;
1542 return;
1544 if (!tne)
1545 return;
1547 /* If this is a no-CBs CPU, no callbacks, just return. */
1548 if (rcu_is_nocb_cpu(smp_processor_id()))
1549 return;
1552 * If a non-lazy callback arrived at a CPU having only lazy
1553 * callbacks, invoke RCU core for the side-effect of recalculating
1554 * idle duration on re-entry to idle.
1556 if (rdtp->all_lazy &&
1557 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1558 rdtp->all_lazy = false;
1559 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1560 invoke_rcu_core();
1561 return;
1565 * If we have not yet accelerated this jiffy, accelerate all
1566 * callbacks on this CPU.
1568 if (rdtp->last_accelerate == jiffies)
1569 return;
1570 rdtp->last_accelerate = jiffies;
1571 for_each_rcu_flavor(rsp) {
1572 rdp = this_cpu_ptr(rsp->rda);
1573 if (!*rdp->nxttail[RCU_DONE_TAIL])
1574 continue;
1575 rnp = rdp->mynode;
1576 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1577 smp_mb__after_unlock_lock();
1578 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1579 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1580 if (needwake)
1581 rcu_gp_kthread_wake(rsp);
1583 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1587 * Clean up for exit from idle. Attempt to advance callbacks based on
1588 * any grace periods that elapsed while the CPU was idle, and if any
1589 * callbacks are now ready to invoke, initiate invocation.
1591 static void rcu_cleanup_after_idle(void)
1593 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1594 if (rcu_is_nocb_cpu(smp_processor_id()))
1595 return;
1596 if (rcu_try_advance_all_cbs())
1597 invoke_rcu_core();
1598 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1602 * Keep a running count of the number of non-lazy callbacks posted
1603 * on this CPU. This running counter (which is never decremented) allows
1604 * rcu_prepare_for_idle() to detect when something out of the idle loop
1605 * posts a callback, even if an equal number of callbacks are invoked.
1606 * Of course, callbacks should only be posted from within a trace event
1607 * designed to be called from idle or from within RCU_NONIDLE().
1609 static void rcu_idle_count_callbacks_posted(void)
1611 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1615 * Data for flushing lazy RCU callbacks at OOM time.
1617 static atomic_t oom_callback_count;
1618 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1621 * RCU OOM callback -- decrement the outstanding count and deliver the
1622 * wake-up if we are the last one.
1624 static void rcu_oom_callback(struct rcu_head *rhp)
1626 if (atomic_dec_and_test(&oom_callback_count))
1627 wake_up(&oom_callback_wq);
1631 * Post an rcu_oom_notify callback on the current CPU if it has at
1632 * least one lazy callback. This will unnecessarily post callbacks
1633 * to CPUs that already have a non-lazy callback at the end of their
1634 * callback list, but this is an infrequent operation, so accept some
1635 * extra overhead to keep things simple.
1637 static void rcu_oom_notify_cpu(void *unused)
1639 struct rcu_state *rsp;
1640 struct rcu_data *rdp;
1642 for_each_rcu_flavor(rsp) {
1643 rdp = raw_cpu_ptr(rsp->rda);
1644 if (rdp->qlen_lazy != 0) {
1645 atomic_inc(&oom_callback_count);
1646 rsp->call(&rdp->oom_head, rcu_oom_callback);
1652 * If low on memory, ensure that each CPU has a non-lazy callback.
1653 * This will wake up CPUs that have only lazy callbacks, in turn
1654 * ensuring that they free up the corresponding memory in a timely manner.
1655 * Because an uncertain amount of memory will be freed in some uncertain
1656 * timeframe, we do not claim to have freed anything.
1658 static int rcu_oom_notify(struct notifier_block *self,
1659 unsigned long notused, void *nfreed)
1661 int cpu;
1663 /* Wait for callbacks from earlier instance to complete. */
1664 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1665 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1668 * Prevent premature wakeup: ensure that all increments happen
1669 * before there is a chance of the counter reaching zero.
1671 atomic_set(&oom_callback_count, 1);
1673 get_online_cpus();
1674 for_each_online_cpu(cpu) {
1675 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1676 cond_resched_rcu_qs();
1678 put_online_cpus();
1680 /* Unconditionally decrement: no need to wake ourselves up. */
1681 atomic_dec(&oom_callback_count);
1683 return NOTIFY_OK;
1686 static struct notifier_block rcu_oom_nb = {
1687 .notifier_call = rcu_oom_notify
1690 static int __init rcu_register_oom_notifier(void)
1692 register_oom_notifier(&rcu_oom_nb);
1693 return 0;
1695 early_initcall(rcu_register_oom_notifier);
1697 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1699 #ifdef CONFIG_RCU_CPU_STALL_INFO
1701 #ifdef CONFIG_RCU_FAST_NO_HZ
1703 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1705 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1706 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1708 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1709 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1710 ulong2long(nlpd),
1711 rdtp->all_lazy ? 'L' : '.',
1712 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1715 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1717 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1719 *cp = '\0';
1722 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1724 /* Initiate the stall-info list. */
1725 static void print_cpu_stall_info_begin(void)
1727 pr_cont("\n");
1731 * Print out diagnostic information for the specified stalled CPU.
1733 * If the specified CPU is aware of the current RCU grace period
1734 * (flavor specified by rsp), then print the number of scheduling
1735 * clock interrupts the CPU has taken during the time that it has
1736 * been aware. Otherwise, print the number of RCU grace periods
1737 * that this CPU is ignorant of, for example, "1" if the CPU was
1738 * aware of the previous grace period.
1740 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1742 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1744 char fast_no_hz[72];
1745 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1746 struct rcu_dynticks *rdtp = rdp->dynticks;
1747 char *ticks_title;
1748 unsigned long ticks_value;
1750 if (rsp->gpnum == rdp->gpnum) {
1751 ticks_title = "ticks this GP";
1752 ticks_value = rdp->ticks_this_gp;
1753 } else {
1754 ticks_title = "GPs behind";
1755 ticks_value = rsp->gpnum - rdp->gpnum;
1757 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1758 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1759 cpu, ticks_value, ticks_title,
1760 atomic_read(&rdtp->dynticks) & 0xfff,
1761 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1762 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1763 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1764 fast_no_hz);
1767 /* Terminate the stall-info list. */
1768 static void print_cpu_stall_info_end(void)
1770 pr_err("\t");
1773 /* Zero ->ticks_this_gp for all flavors of RCU. */
1774 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1776 rdp->ticks_this_gp = 0;
1777 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1780 /* Increment ->ticks_this_gp for all flavors of RCU. */
1781 static void increment_cpu_stall_ticks(void)
1783 struct rcu_state *rsp;
1785 for_each_rcu_flavor(rsp)
1786 raw_cpu_inc(rsp->rda->ticks_this_gp);
1789 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1791 static void print_cpu_stall_info_begin(void)
1793 pr_cont(" {");
1796 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1798 pr_cont(" %d", cpu);
1801 static void print_cpu_stall_info_end(void)
1803 pr_cont("} ");
1806 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1810 static void increment_cpu_stall_ticks(void)
1814 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1816 #ifdef CONFIG_RCU_NOCB_CPU
1819 * Offload callback processing from the boot-time-specified set of CPUs
1820 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1821 * kthread created that pulls the callbacks from the corresponding CPU,
1822 * waits for a grace period to elapse, and invokes the callbacks.
1823 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1824 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1825 * has been specified, in which case each kthread actively polls its
1826 * CPU. (Which isn't so great for energy efficiency, but which does
1827 * reduce RCU's overhead on that CPU.)
1829 * This is intended to be used in conjunction with Frederic Weisbecker's
1830 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1831 * running CPU-bound user-mode computations.
1833 * Offloading of callback processing could also in theory be used as
1834 * an energy-efficiency measure because CPUs with no RCU callbacks
1835 * queued are more aggressive about entering dyntick-idle mode.
1839 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1840 static int __init rcu_nocb_setup(char *str)
1842 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1843 have_rcu_nocb_mask = true;
1844 cpulist_parse(str, rcu_nocb_mask);
1845 return 1;
1847 __setup("rcu_nocbs=", rcu_nocb_setup);
1849 static int __init parse_rcu_nocb_poll(char *arg)
1851 rcu_nocb_poll = 1;
1852 return 0;
1854 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1857 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1858 * grace period.
1860 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1862 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1866 * Set the root rcu_node structure's ->need_future_gp field
1867 * based on the sum of those of all rcu_node structures. This does
1868 * double-count the root rcu_node structure's requests, but this
1869 * is necessary to handle the possibility of a rcu_nocb_kthread()
1870 * having awakened during the time that the rcu_node structures
1871 * were being updated for the end of the previous grace period.
1873 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1875 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1878 static void rcu_init_one_nocb(struct rcu_node *rnp)
1880 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1881 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1884 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1885 /* Is the specified CPU a no-CBs CPU? */
1886 bool rcu_is_nocb_cpu(int cpu)
1888 if (have_rcu_nocb_mask)
1889 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1890 return false;
1892 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1895 * Kick the leader kthread for this NOCB group.
1897 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1899 struct rcu_data *rdp_leader = rdp->nocb_leader;
1901 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1902 return;
1903 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1904 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1905 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1906 wake_up(&rdp_leader->nocb_wq);
1911 * Does the specified CPU need an RCU callback for the specified flavor
1912 * of rcu_barrier()?
1914 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1916 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1917 unsigned long ret;
1918 #ifdef CONFIG_PROVE_RCU
1919 struct rcu_head *rhp;
1920 #endif /* #ifdef CONFIG_PROVE_RCU */
1923 * Check count of all no-CBs callbacks awaiting invocation.
1924 * There needs to be a barrier before this function is called,
1925 * but associated with a prior determination that no more
1926 * callbacks would be posted. In the worst case, the first
1927 * barrier in _rcu_barrier() suffices (but the caller cannot
1928 * necessarily rely on this, not a substitute for the caller
1929 * getting the concurrency design right!). There must also be
1930 * a barrier between the following load an posting of a callback
1931 * (if a callback is in fact needed). This is associated with an
1932 * atomic_inc() in the caller.
1934 ret = atomic_long_read(&rdp->nocb_q_count);
1936 #ifdef CONFIG_PROVE_RCU
1937 rhp = ACCESS_ONCE(rdp->nocb_head);
1938 if (!rhp)
1939 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1940 if (!rhp)
1941 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1943 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1944 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp &&
1945 rcu_scheduler_fully_active) {
1946 /* RCU callback enqueued before CPU first came online??? */
1947 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1948 cpu, rhp->func);
1949 WARN_ON_ONCE(1);
1951 #endif /* #ifdef CONFIG_PROVE_RCU */
1953 return !!ret;
1957 * Enqueue the specified string of rcu_head structures onto the specified
1958 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1959 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1960 * counts are supplied by rhcount and rhcount_lazy.
1962 * If warranted, also wake up the kthread servicing this CPUs queues.
1964 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1965 struct rcu_head *rhp,
1966 struct rcu_head **rhtp,
1967 int rhcount, int rhcount_lazy,
1968 unsigned long flags)
1970 int len;
1971 struct rcu_head **old_rhpp;
1972 struct task_struct *t;
1974 /* Enqueue the callback on the nocb list and update counts. */
1975 atomic_long_add(rhcount, &rdp->nocb_q_count);
1976 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1977 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1978 ACCESS_ONCE(*old_rhpp) = rhp;
1979 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1980 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1982 /* If we are not being polled and there is a kthread, awaken it ... */
1983 t = ACCESS_ONCE(rdp->nocb_kthread);
1984 if (rcu_nocb_poll || !t) {
1985 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1986 TPS("WakeNotPoll"));
1987 return;
1989 len = atomic_long_read(&rdp->nocb_q_count);
1990 if (old_rhpp == &rdp->nocb_head) {
1991 if (!irqs_disabled_flags(flags)) {
1992 /* ... if queue was empty ... */
1993 wake_nocb_leader(rdp, false);
1994 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1995 TPS("WakeEmpty"));
1996 } else {
1997 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1998 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1999 TPS("WakeEmptyIsDeferred"));
2001 rdp->qlen_last_fqs_check = 0;
2002 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2003 /* ... or if many callbacks queued. */
2004 if (!irqs_disabled_flags(flags)) {
2005 wake_nocb_leader(rdp, true);
2006 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2007 TPS("WakeOvf"));
2008 } else {
2009 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2010 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2011 TPS("WakeOvfIsDeferred"));
2013 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2014 } else {
2015 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2017 return;
2021 * This is a helper for __call_rcu(), which invokes this when the normal
2022 * callback queue is inoperable. If this is not a no-CBs CPU, this
2023 * function returns failure back to __call_rcu(), which can complain
2024 * appropriately.
2026 * Otherwise, this function queues the callback where the corresponding
2027 * "rcuo" kthread can find it.
2029 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2030 bool lazy, unsigned long flags)
2033 if (!rcu_is_nocb_cpu(rdp->cpu))
2034 return false;
2035 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2036 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2037 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2038 (unsigned long)rhp->func,
2039 -atomic_long_read(&rdp->nocb_q_count_lazy),
2040 -atomic_long_read(&rdp->nocb_q_count));
2041 else
2042 trace_rcu_callback(rdp->rsp->name, rhp,
2043 -atomic_long_read(&rdp->nocb_q_count_lazy),
2044 -atomic_long_read(&rdp->nocb_q_count));
2047 * If called from an extended quiescent state with interrupts
2048 * disabled, invoke the RCU core in order to allow the idle-entry
2049 * deferred-wakeup check to function.
2051 if (irqs_disabled_flags(flags) &&
2052 !rcu_is_watching() &&
2053 cpu_online(smp_processor_id()))
2054 invoke_rcu_core();
2056 return true;
2060 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2061 * not a no-CBs CPU.
2063 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2064 struct rcu_data *rdp,
2065 unsigned long flags)
2067 long ql = rsp->qlen;
2068 long qll = rsp->qlen_lazy;
2070 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2071 if (!rcu_is_nocb_cpu(smp_processor_id()))
2072 return false;
2073 rsp->qlen = 0;
2074 rsp->qlen_lazy = 0;
2076 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2077 if (rsp->orphan_donelist != NULL) {
2078 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2079 rsp->orphan_donetail, ql, qll, flags);
2080 ql = qll = 0;
2081 rsp->orphan_donelist = NULL;
2082 rsp->orphan_donetail = &rsp->orphan_donelist;
2084 if (rsp->orphan_nxtlist != NULL) {
2085 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2086 rsp->orphan_nxttail, ql, qll, flags);
2087 ql = qll = 0;
2088 rsp->orphan_nxtlist = NULL;
2089 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2091 return true;
2095 * If necessary, kick off a new grace period, and either way wait
2096 * for a subsequent grace period to complete.
2098 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2100 unsigned long c;
2101 bool d;
2102 unsigned long flags;
2103 bool needwake;
2104 struct rcu_node *rnp = rdp->mynode;
2106 raw_spin_lock_irqsave(&rnp->lock, flags);
2107 smp_mb__after_unlock_lock();
2108 needwake = rcu_start_future_gp(rnp, rdp, &c);
2109 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2110 if (needwake)
2111 rcu_gp_kthread_wake(rdp->rsp);
2114 * Wait for the grace period. Do so interruptibly to avoid messing
2115 * up the load average.
2117 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2118 for (;;) {
2119 wait_event_interruptible(
2120 rnp->nocb_gp_wq[c & 0x1],
2121 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2122 if (likely(d))
2123 break;
2124 WARN_ON(signal_pending(current));
2125 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2127 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2128 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2132 * Leaders come here to wait for additional callbacks to show up.
2133 * This function does not return until callbacks appear.
2135 static void nocb_leader_wait(struct rcu_data *my_rdp)
2137 bool firsttime = true;
2138 bool gotcbs;
2139 struct rcu_data *rdp;
2140 struct rcu_head **tail;
2142 wait_again:
2144 /* Wait for callbacks to appear. */
2145 if (!rcu_nocb_poll) {
2146 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2147 wait_event_interruptible(my_rdp->nocb_wq,
2148 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2149 /* Memory barrier handled by smp_mb() calls below and repoll. */
2150 } else if (firsttime) {
2151 firsttime = false; /* Don't drown trace log with "Poll"! */
2152 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2156 * Each pass through the following loop checks a follower for CBs.
2157 * We are our own first follower. Any CBs found are moved to
2158 * nocb_gp_head, where they await a grace period.
2160 gotcbs = false;
2161 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2162 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2163 if (!rdp->nocb_gp_head)
2164 continue; /* No CBs here, try next follower. */
2166 /* Move callbacks to wait-for-GP list, which is empty. */
2167 ACCESS_ONCE(rdp->nocb_head) = NULL;
2168 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2169 gotcbs = true;
2173 * If there were no callbacks, sleep a bit, rescan after a
2174 * memory barrier, and go retry.
2176 if (unlikely(!gotcbs)) {
2177 if (!rcu_nocb_poll)
2178 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2179 "WokeEmpty");
2180 WARN_ON(signal_pending(current));
2181 schedule_timeout_interruptible(1);
2183 /* Rescan in case we were a victim of memory ordering. */
2184 my_rdp->nocb_leader_sleep = true;
2185 smp_mb(); /* Ensure _sleep true before scan. */
2186 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2187 if (ACCESS_ONCE(rdp->nocb_head)) {
2188 /* Found CB, so short-circuit next wait. */
2189 my_rdp->nocb_leader_sleep = false;
2190 break;
2192 goto wait_again;
2195 /* Wait for one grace period. */
2196 rcu_nocb_wait_gp(my_rdp);
2199 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2200 * We set it now, but recheck for new callbacks while
2201 * traversing our follower list.
2203 my_rdp->nocb_leader_sleep = true;
2204 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2206 /* Each pass through the following loop wakes a follower, if needed. */
2207 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2208 if (ACCESS_ONCE(rdp->nocb_head))
2209 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2210 if (!rdp->nocb_gp_head)
2211 continue; /* No CBs, so no need to wake follower. */
2213 /* Append callbacks to follower's "done" list. */
2214 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2215 *tail = rdp->nocb_gp_head;
2216 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2217 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2219 * List was empty, wake up the follower.
2220 * Memory barriers supplied by atomic_long_add().
2222 wake_up(&rdp->nocb_wq);
2226 /* If we (the leader) don't have CBs, go wait some more. */
2227 if (!my_rdp->nocb_follower_head)
2228 goto wait_again;
2232 * Followers come here to wait for additional callbacks to show up.
2233 * This function does not return until callbacks appear.
2235 static void nocb_follower_wait(struct rcu_data *rdp)
2237 bool firsttime = true;
2239 for (;;) {
2240 if (!rcu_nocb_poll) {
2241 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2242 "FollowerSleep");
2243 wait_event_interruptible(rdp->nocb_wq,
2244 ACCESS_ONCE(rdp->nocb_follower_head));
2245 } else if (firsttime) {
2246 /* Don't drown trace log with "Poll"! */
2247 firsttime = false;
2248 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2250 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2251 /* ^^^ Ensure CB invocation follows _head test. */
2252 return;
2254 if (!rcu_nocb_poll)
2255 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2256 "WokeEmpty");
2257 WARN_ON(signal_pending(current));
2258 schedule_timeout_interruptible(1);
2263 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2264 * callbacks queued by the corresponding no-CBs CPU, however, there is
2265 * an optional leader-follower relationship so that the grace-period
2266 * kthreads don't have to do quite so many wakeups.
2268 static int rcu_nocb_kthread(void *arg)
2270 int c, cl;
2271 struct rcu_head *list;
2272 struct rcu_head *next;
2273 struct rcu_head **tail;
2274 struct rcu_data *rdp = arg;
2276 /* Each pass through this loop invokes one batch of callbacks */
2277 for (;;) {
2278 /* Wait for callbacks. */
2279 if (rdp->nocb_leader == rdp)
2280 nocb_leader_wait(rdp);
2281 else
2282 nocb_follower_wait(rdp);
2284 /* Pull the ready-to-invoke callbacks onto local list. */
2285 list = ACCESS_ONCE(rdp->nocb_follower_head);
2286 BUG_ON(!list);
2287 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2288 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2289 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2291 /* Each pass through the following loop invokes a callback. */
2292 trace_rcu_batch_start(rdp->rsp->name,
2293 atomic_long_read(&rdp->nocb_q_count_lazy),
2294 atomic_long_read(&rdp->nocb_q_count), -1);
2295 c = cl = 0;
2296 while (list) {
2297 next = list->next;
2298 /* Wait for enqueuing to complete, if needed. */
2299 while (next == NULL && &list->next != tail) {
2300 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2301 TPS("WaitQueue"));
2302 schedule_timeout_interruptible(1);
2303 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2304 TPS("WokeQueue"));
2305 next = list->next;
2307 debug_rcu_head_unqueue(list);
2308 local_bh_disable();
2309 if (__rcu_reclaim(rdp->rsp->name, list))
2310 cl++;
2311 c++;
2312 local_bh_enable();
2313 list = next;
2315 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2316 smp_mb__before_atomic(); /* _add after CB invocation. */
2317 atomic_long_add(-c, &rdp->nocb_q_count);
2318 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2319 rdp->n_nocbs_invoked += c;
2321 return 0;
2324 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2325 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2327 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2330 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2331 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2333 int ndw;
2335 if (!rcu_nocb_need_deferred_wakeup(rdp))
2336 return;
2337 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2338 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2339 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2340 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2343 void __init rcu_init_nohz(void)
2345 int cpu;
2346 bool need_rcu_nocb_mask = true;
2347 struct rcu_state *rsp;
2349 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2350 need_rcu_nocb_mask = false;
2351 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2353 #if defined(CONFIG_NO_HZ_FULL)
2354 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2355 need_rcu_nocb_mask = true;
2356 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2358 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2359 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2360 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2361 return;
2363 have_rcu_nocb_mask = true;
2365 if (!have_rcu_nocb_mask)
2366 return;
2368 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2369 pr_info("\tOffload RCU callbacks from CPU 0\n");
2370 cpumask_set_cpu(0, rcu_nocb_mask);
2371 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2372 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2373 pr_info("\tOffload RCU callbacks from all CPUs\n");
2374 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2375 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2376 #if defined(CONFIG_NO_HZ_FULL)
2377 if (tick_nohz_full_running)
2378 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2379 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2381 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2382 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2383 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2384 rcu_nocb_mask);
2386 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2387 cpumask_pr_args(rcu_nocb_mask));
2388 if (rcu_nocb_poll)
2389 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2391 for_each_rcu_flavor(rsp) {
2392 for_each_cpu(cpu, rcu_nocb_mask)
2393 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2394 rcu_organize_nocb_kthreads(rsp);
2398 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2399 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2401 rdp->nocb_tail = &rdp->nocb_head;
2402 init_waitqueue_head(&rdp->nocb_wq);
2403 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2407 * If the specified CPU is a no-CBs CPU that does not already have its
2408 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2409 * brought online out of order, this can require re-organizing the
2410 * leader-follower relationships.
2412 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2414 struct rcu_data *rdp;
2415 struct rcu_data *rdp_last;
2416 struct rcu_data *rdp_old_leader;
2417 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2418 struct task_struct *t;
2421 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2422 * then nothing to do.
2424 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2425 return;
2427 /* If we didn't spawn the leader first, reorganize! */
2428 rdp_old_leader = rdp_spawn->nocb_leader;
2429 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2430 rdp_last = NULL;
2431 rdp = rdp_old_leader;
2432 do {
2433 rdp->nocb_leader = rdp_spawn;
2434 if (rdp_last && rdp != rdp_spawn)
2435 rdp_last->nocb_next_follower = rdp;
2436 if (rdp == rdp_spawn) {
2437 rdp = rdp->nocb_next_follower;
2438 } else {
2439 rdp_last = rdp;
2440 rdp = rdp->nocb_next_follower;
2441 rdp_last->nocb_next_follower = NULL;
2443 } while (rdp);
2444 rdp_spawn->nocb_next_follower = rdp_old_leader;
2447 /* Spawn the kthread for this CPU and RCU flavor. */
2448 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2449 "rcuo%c/%d", rsp->abbr, cpu);
2450 BUG_ON(IS_ERR(t));
2451 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2455 * If the specified CPU is a no-CBs CPU that does not already have its
2456 * rcuo kthreads, spawn them.
2458 static void rcu_spawn_all_nocb_kthreads(int cpu)
2460 struct rcu_state *rsp;
2462 if (rcu_scheduler_fully_active)
2463 for_each_rcu_flavor(rsp)
2464 rcu_spawn_one_nocb_kthread(rsp, cpu);
2468 * Once the scheduler is running, spawn rcuo kthreads for all online
2469 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2470 * non-boot CPUs come online -- if this changes, we will need to add
2471 * some mutual exclusion.
2473 static void __init rcu_spawn_nocb_kthreads(void)
2475 int cpu;
2477 for_each_online_cpu(cpu)
2478 rcu_spawn_all_nocb_kthreads(cpu);
2481 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2482 static int rcu_nocb_leader_stride = -1;
2483 module_param(rcu_nocb_leader_stride, int, 0444);
2486 * Initialize leader-follower relationships for all no-CBs CPU.
2488 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2490 int cpu;
2491 int ls = rcu_nocb_leader_stride;
2492 int nl = 0; /* Next leader. */
2493 struct rcu_data *rdp;
2494 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2495 struct rcu_data *rdp_prev = NULL;
2497 if (!have_rcu_nocb_mask)
2498 return;
2499 if (ls == -1) {
2500 ls = int_sqrt(nr_cpu_ids);
2501 rcu_nocb_leader_stride = ls;
2505 * Each pass through this loop sets up one rcu_data structure and
2506 * spawns one rcu_nocb_kthread().
2508 for_each_cpu(cpu, rcu_nocb_mask) {
2509 rdp = per_cpu_ptr(rsp->rda, cpu);
2510 if (rdp->cpu >= nl) {
2511 /* New leader, set up for followers & next leader. */
2512 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2513 rdp->nocb_leader = rdp;
2514 rdp_leader = rdp;
2515 } else {
2516 /* Another follower, link to previous leader. */
2517 rdp->nocb_leader = rdp_leader;
2518 rdp_prev->nocb_next_follower = rdp;
2520 rdp_prev = rdp;
2524 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2525 static bool init_nocb_callback_list(struct rcu_data *rdp)
2527 if (!rcu_is_nocb_cpu(rdp->cpu))
2528 return false;
2530 /* If there are early-boot callbacks, move them to nocb lists. */
2531 if (rdp->nxtlist) {
2532 rdp->nocb_head = rdp->nxtlist;
2533 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2534 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2535 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2536 rdp->nxtlist = NULL;
2537 rdp->qlen = 0;
2538 rdp->qlen_lazy = 0;
2540 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2541 return true;
2544 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2546 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2548 WARN_ON_ONCE(1); /* Should be dead code. */
2549 return false;
2552 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2556 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2560 static void rcu_init_one_nocb(struct rcu_node *rnp)
2564 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2565 bool lazy, unsigned long flags)
2567 return false;
2570 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2571 struct rcu_data *rdp,
2572 unsigned long flags)
2574 return false;
2577 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2581 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2583 return false;
2586 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2590 static void rcu_spawn_all_nocb_kthreads(int cpu)
2594 static void __init rcu_spawn_nocb_kthreads(void)
2598 static bool init_nocb_callback_list(struct rcu_data *rdp)
2600 return false;
2603 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2606 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2607 * arbitrarily long period of time with the scheduling-clock tick turned
2608 * off. RCU will be paying attention to this CPU because it is in the
2609 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2610 * machine because the scheduling-clock tick has been disabled. Therefore,
2611 * if an adaptive-ticks CPU is failing to respond to the current grace
2612 * period and has not be idle from an RCU perspective, kick it.
2614 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2616 #ifdef CONFIG_NO_HZ_FULL
2617 if (tick_nohz_full_cpu(cpu))
2618 smp_send_reschedule(cpu);
2619 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2623 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2625 static int full_sysidle_state; /* Current system-idle state. */
2626 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2627 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2628 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2629 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2630 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2633 * Invoked to note exit from irq or task transition to idle. Note that
2634 * usermode execution does -not- count as idle here! After all, we want
2635 * to detect full-system idle states, not RCU quiescent states and grace
2636 * periods. The caller must have disabled interrupts.
2638 static void rcu_sysidle_enter(int irq)
2640 unsigned long j;
2641 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2643 /* If there are no nohz_full= CPUs, no need to track this. */
2644 if (!tick_nohz_full_enabled())
2645 return;
2647 /* Adjust nesting, check for fully idle. */
2648 if (irq) {
2649 rdtp->dynticks_idle_nesting--;
2650 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2651 if (rdtp->dynticks_idle_nesting != 0)
2652 return; /* Still not fully idle. */
2653 } else {
2654 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2655 DYNTICK_TASK_NEST_VALUE) {
2656 rdtp->dynticks_idle_nesting = 0;
2657 } else {
2658 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2659 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2660 return; /* Still not fully idle. */
2664 /* Record start of fully idle period. */
2665 j = jiffies;
2666 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2667 smp_mb__before_atomic();
2668 atomic_inc(&rdtp->dynticks_idle);
2669 smp_mb__after_atomic();
2670 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2674 * Unconditionally force exit from full system-idle state. This is
2675 * invoked when a normal CPU exits idle, but must be called separately
2676 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2677 * is that the timekeeping CPU is permitted to take scheduling-clock
2678 * interrupts while the system is in system-idle state, and of course
2679 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2680 * interrupt from any other type of interrupt.
2682 void rcu_sysidle_force_exit(void)
2684 int oldstate = ACCESS_ONCE(full_sysidle_state);
2685 int newoldstate;
2688 * Each pass through the following loop attempts to exit full
2689 * system-idle state. If contention proves to be a problem,
2690 * a trylock-based contention tree could be used here.
2692 while (oldstate > RCU_SYSIDLE_SHORT) {
2693 newoldstate = cmpxchg(&full_sysidle_state,
2694 oldstate, RCU_SYSIDLE_NOT);
2695 if (oldstate == newoldstate &&
2696 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2697 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2698 return; /* We cleared it, done! */
2700 oldstate = newoldstate;
2702 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2706 * Invoked to note entry to irq or task transition from idle. Note that
2707 * usermode execution does -not- count as idle here! The caller must
2708 * have disabled interrupts.
2710 static void rcu_sysidle_exit(int irq)
2712 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2714 /* If there are no nohz_full= CPUs, no need to track this. */
2715 if (!tick_nohz_full_enabled())
2716 return;
2718 /* Adjust nesting, check for already non-idle. */
2719 if (irq) {
2720 rdtp->dynticks_idle_nesting++;
2721 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2722 if (rdtp->dynticks_idle_nesting != 1)
2723 return; /* Already non-idle. */
2724 } else {
2726 * Allow for irq misnesting. Yes, it really is possible
2727 * to enter an irq handler then never leave it, and maybe
2728 * also vice versa. Handle both possibilities.
2730 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2731 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2732 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2733 return; /* Already non-idle. */
2734 } else {
2735 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2739 /* Record end of idle period. */
2740 smp_mb__before_atomic();
2741 atomic_inc(&rdtp->dynticks_idle);
2742 smp_mb__after_atomic();
2743 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2746 * If we are the timekeeping CPU, we are permitted to be non-idle
2747 * during a system-idle state. This must be the case, because
2748 * the timekeeping CPU has to take scheduling-clock interrupts
2749 * during the time that the system is transitioning to full
2750 * system-idle state. This means that the timekeeping CPU must
2751 * invoke rcu_sysidle_force_exit() directly if it does anything
2752 * more than take a scheduling-clock interrupt.
2754 if (smp_processor_id() == tick_do_timer_cpu)
2755 return;
2757 /* Update system-idle state: We are clearly no longer fully idle! */
2758 rcu_sysidle_force_exit();
2762 * Check to see if the current CPU is idle. Note that usermode execution
2763 * does not count as idle. The caller must have disabled interrupts,
2764 * and must be running on tick_do_timer_cpu.
2766 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2767 unsigned long *maxj)
2769 int cur;
2770 unsigned long j;
2771 struct rcu_dynticks *rdtp = rdp->dynticks;
2773 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2774 if (!tick_nohz_full_enabled())
2775 return;
2778 * If some other CPU has already reported non-idle, if this is
2779 * not the flavor of RCU that tracks sysidle state, or if this
2780 * is an offline or the timekeeping CPU, nothing to do.
2782 if (!*isidle || rdp->rsp != rcu_state_p ||
2783 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2784 return;
2785 /* Verify affinity of current kthread. */
2786 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2788 /* Pick up current idle and NMI-nesting counter and check. */
2789 cur = atomic_read(&rdtp->dynticks_idle);
2790 if (cur & 0x1) {
2791 *isidle = false; /* We are not idle! */
2792 return;
2794 smp_mb(); /* Read counters before timestamps. */
2796 /* Pick up timestamps. */
2797 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2798 /* If this CPU entered idle more recently, update maxj timestamp. */
2799 if (ULONG_CMP_LT(*maxj, j))
2800 *maxj = j;
2804 * Is this the flavor of RCU that is handling full-system idle?
2806 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2808 return rsp == rcu_state_p;
2812 * Return a delay in jiffies based on the number of CPUs, rcu_node
2813 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2814 * systems more time to transition to full-idle state in order to
2815 * avoid the cache thrashing that otherwise occur on the state variable.
2816 * Really small systems (less than a couple of tens of CPUs) should
2817 * instead use a single global atomically incremented counter, and later
2818 * versions of this will automatically reconfigure themselves accordingly.
2820 static unsigned long rcu_sysidle_delay(void)
2822 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2823 return 0;
2824 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2828 * Advance the full-system-idle state. This is invoked when all of
2829 * the non-timekeeping CPUs are idle.
2831 static void rcu_sysidle(unsigned long j)
2833 /* Check the current state. */
2834 switch (ACCESS_ONCE(full_sysidle_state)) {
2835 case RCU_SYSIDLE_NOT:
2837 /* First time all are idle, so note a short idle period. */
2838 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2839 break;
2841 case RCU_SYSIDLE_SHORT:
2844 * Idle for a bit, time to advance to next state?
2845 * cmpxchg failure means race with non-idle, let them win.
2847 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848 (void)cmpxchg(&full_sysidle_state,
2849 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2850 break;
2852 case RCU_SYSIDLE_LONG:
2855 * Do an additional check pass before advancing to full.
2856 * cmpxchg failure means race with non-idle, let them win.
2858 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2859 (void)cmpxchg(&full_sysidle_state,
2860 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2861 break;
2863 default:
2864 break;
2869 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2870 * back to the beginning.
2872 static void rcu_sysidle_cancel(void)
2874 smp_mb();
2875 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2876 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2880 * Update the sysidle state based on the results of a force-quiescent-state
2881 * scan of the CPUs' dyntick-idle state.
2883 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2884 unsigned long maxj, bool gpkt)
2886 if (rsp != rcu_state_p)
2887 return; /* Wrong flavor, ignore. */
2888 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2889 return; /* Running state machine from timekeeping CPU. */
2890 if (isidle)
2891 rcu_sysidle(maxj); /* More idle! */
2892 else
2893 rcu_sysidle_cancel(); /* Idle is over. */
2897 * Wrapper for rcu_sysidle_report() when called from the grace-period
2898 * kthread's context.
2900 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2901 unsigned long maxj)
2903 /* If there are no nohz_full= CPUs, no need to track this. */
2904 if (!tick_nohz_full_enabled())
2905 return;
2907 rcu_sysidle_report(rsp, isidle, maxj, true);
2910 /* Callback and function for forcing an RCU grace period. */
2911 struct rcu_sysidle_head {
2912 struct rcu_head rh;
2913 int inuse;
2916 static void rcu_sysidle_cb(struct rcu_head *rhp)
2918 struct rcu_sysidle_head *rshp;
2921 * The following memory barrier is needed to replace the
2922 * memory barriers that would normally be in the memory
2923 * allocator.
2925 smp_mb(); /* grace period precedes setting inuse. */
2927 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2928 ACCESS_ONCE(rshp->inuse) = 0;
2932 * Check to see if the system is fully idle, other than the timekeeping CPU.
2933 * The caller must have disabled interrupts. This is not intended to be
2934 * called unless tick_nohz_full_enabled().
2936 bool rcu_sys_is_idle(void)
2938 static struct rcu_sysidle_head rsh;
2939 int rss = ACCESS_ONCE(full_sysidle_state);
2941 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2942 return false;
2944 /* Handle small-system case by doing a full scan of CPUs. */
2945 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2946 int oldrss = rss - 1;
2949 * One pass to advance to each state up to _FULL.
2950 * Give up if any pass fails to advance the state.
2952 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2953 int cpu;
2954 bool isidle = true;
2955 unsigned long maxj = jiffies - ULONG_MAX / 4;
2956 struct rcu_data *rdp;
2958 /* Scan all the CPUs looking for nonidle CPUs. */
2959 for_each_possible_cpu(cpu) {
2960 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2961 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2962 if (!isidle)
2963 break;
2965 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2966 oldrss = rss;
2967 rss = ACCESS_ONCE(full_sysidle_state);
2971 /* If this is the first observation of an idle period, record it. */
2972 if (rss == RCU_SYSIDLE_FULL) {
2973 rss = cmpxchg(&full_sysidle_state,
2974 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2975 return rss == RCU_SYSIDLE_FULL;
2978 smp_mb(); /* ensure rss load happens before later caller actions. */
2980 /* If already fully idle, tell the caller (in case of races). */
2981 if (rss == RCU_SYSIDLE_FULL_NOTED)
2982 return true;
2985 * If we aren't there yet, and a grace period is not in flight,
2986 * initiate a grace period. Either way, tell the caller that
2987 * we are not there yet. We use an xchg() rather than an assignment
2988 * to make up for the memory barriers that would otherwise be
2989 * provided by the memory allocator.
2991 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2992 !rcu_gp_in_progress(rcu_state_p) &&
2993 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2994 call_rcu(&rsh.rh, rcu_sysidle_cb);
2995 return false;
2999 * Initialize dynticks sysidle state for CPUs coming online.
3001 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3003 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3006 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3008 static void rcu_sysidle_enter(int irq)
3012 static void rcu_sysidle_exit(int irq)
3016 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3017 unsigned long *maxj)
3021 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3023 return false;
3026 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3027 unsigned long maxj)
3031 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3035 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3038 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3039 * grace-period kthread will do force_quiescent_state() processing?
3040 * The idea is to avoid waking up RCU core processing on such a
3041 * CPU unless the grace period has extended for too long.
3043 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3044 * CONFIG_RCU_NOCB_CPU CPUs.
3046 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3048 #ifdef CONFIG_NO_HZ_FULL
3049 if (tick_nohz_full_cpu(smp_processor_id()) &&
3050 (!rcu_gp_in_progress(rsp) ||
3051 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3052 return 1;
3053 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3054 return 0;
3058 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3059 * timekeeping CPU.
3061 static void rcu_bind_gp_kthread(void)
3063 int __maybe_unused cpu;
3065 if (!tick_nohz_full_enabled())
3066 return;
3067 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3068 cpu = tick_do_timer_cpu;
3069 if (cpu >= 0 && cpu < nr_cpu_ids)
3070 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3071 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3072 housekeeping_affine(current);
3073 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3076 /* Record the current task on dyntick-idle entry. */
3077 static void rcu_dynticks_task_enter(void)
3079 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3080 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3081 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3084 /* Record no current task on dyntick-idle exit. */
3085 static void rcu_dynticks_task_exit(void)
3087 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3088 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3089 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */