Linux 4.1.18
[linux/fpc-iii.git] / kernel / rcu / update.c
blob1f133350da01e360bc6048b3a458e8b8cc0bdefc
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
53 #define CREATE_TRACE_POINTS
55 #include "rcu.h"
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
63 module_param(rcu_expedited, int, 0);
65 #ifndef CONFIG_TINY_RCU
67 static atomic_t rcu_expedited_nesting =
68 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
71 * Should normal grace-period primitives be expedited? Intended for
72 * use within RCU. Note that this function takes the rcu_expedited
73 * sysfs/boot variable into account as well as the rcu_expedite_gp()
74 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
75 * returns false is a -really- bad idea.
77 bool rcu_gp_is_expedited(void)
79 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
81 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
83 /**
84 * rcu_expedite_gp - Expedite future RCU grace periods
86 * After a call to this function, future calls to synchronize_rcu() and
87 * friends act as the corresponding synchronize_rcu_expedited() function
88 * had instead been called.
90 void rcu_expedite_gp(void)
92 atomic_inc(&rcu_expedited_nesting);
94 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
96 /**
97 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
99 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
100 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
101 * and if the rcu_expedited sysfs/boot parameter is not set, then all
102 * subsequent calls to synchronize_rcu() and friends will return to
103 * their normal non-expedited behavior.
105 void rcu_unexpedite_gp(void)
107 atomic_dec(&rcu_expedited_nesting);
109 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
111 #endif /* #ifndef CONFIG_TINY_RCU */
114 * Inform RCU of the end of the in-kernel boot sequence.
116 void rcu_end_inkernel_boot(void)
118 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
119 rcu_unexpedite_gp();
122 #ifdef CONFIG_PREEMPT_RCU
125 * Preemptible RCU implementation for rcu_read_lock().
126 * Just increment ->rcu_read_lock_nesting, shared state will be updated
127 * if we block.
129 void __rcu_read_lock(void)
131 current->rcu_read_lock_nesting++;
132 barrier(); /* critical section after entry code. */
134 EXPORT_SYMBOL_GPL(__rcu_read_lock);
137 * Preemptible RCU implementation for rcu_read_unlock().
138 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
139 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
140 * invoke rcu_read_unlock_special() to clean up after a context switch
141 * in an RCU read-side critical section and other special cases.
143 void __rcu_read_unlock(void)
145 struct task_struct *t = current;
147 if (t->rcu_read_lock_nesting != 1) {
148 --t->rcu_read_lock_nesting;
149 } else {
150 barrier(); /* critical section before exit code. */
151 t->rcu_read_lock_nesting = INT_MIN;
152 barrier(); /* assign before ->rcu_read_unlock_special load */
153 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s)))
154 rcu_read_unlock_special(t);
155 barrier(); /* ->rcu_read_unlock_special load before assign */
156 t->rcu_read_lock_nesting = 0;
158 #ifdef CONFIG_PROVE_LOCKING
160 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
162 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
164 #endif /* #ifdef CONFIG_PROVE_LOCKING */
166 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
168 #endif /* #ifdef CONFIG_PREEMPT_RCU */
170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
171 static struct lock_class_key rcu_lock_key;
172 struct lockdep_map rcu_lock_map =
173 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
174 EXPORT_SYMBOL_GPL(rcu_lock_map);
176 static struct lock_class_key rcu_bh_lock_key;
177 struct lockdep_map rcu_bh_lock_map =
178 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
179 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
181 static struct lock_class_key rcu_sched_lock_key;
182 struct lockdep_map rcu_sched_lock_map =
183 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
184 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
186 static struct lock_class_key rcu_callback_key;
187 struct lockdep_map rcu_callback_map =
188 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
189 EXPORT_SYMBOL_GPL(rcu_callback_map);
191 int notrace debug_lockdep_rcu_enabled(void)
193 return rcu_scheduler_active && debug_locks &&
194 current->lockdep_recursion == 0;
196 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
199 * rcu_read_lock_held() - might we be in RCU read-side critical section?
201 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
202 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
203 * this assumes we are in an RCU read-side critical section unless it can
204 * prove otherwise. This is useful for debug checks in functions that
205 * require that they be called within an RCU read-side critical section.
207 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
208 * and while lockdep is disabled.
210 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
211 * occur in the same context, for example, it is illegal to invoke
212 * rcu_read_unlock() in process context if the matching rcu_read_lock()
213 * was invoked from within an irq handler.
215 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
216 * offline from an RCU perspective, so check for those as well.
218 int rcu_read_lock_held(void)
220 if (!debug_lockdep_rcu_enabled())
221 return 1;
222 if (!rcu_is_watching())
223 return 0;
224 if (!rcu_lockdep_current_cpu_online())
225 return 0;
226 return lock_is_held(&rcu_lock_map);
228 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
231 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
233 * Check for bottom half being disabled, which covers both the
234 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
235 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
236 * will show the situation. This is useful for debug checks in functions
237 * that require that they be called within an RCU read-side critical
238 * section.
240 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
242 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
243 * offline from an RCU perspective, so check for those as well.
245 int rcu_read_lock_bh_held(void)
247 if (!debug_lockdep_rcu_enabled())
248 return 1;
249 if (!rcu_is_watching())
250 return 0;
251 if (!rcu_lockdep_current_cpu_online())
252 return 0;
253 return in_softirq() || irqs_disabled();
255 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
257 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260 * wakeme_after_rcu() - Callback function to awaken a task after grace period
261 * @head: Pointer to rcu_head member within rcu_synchronize structure
263 * Awaken the corresponding task now that a grace period has elapsed.
265 void wakeme_after_rcu(struct rcu_head *head)
267 struct rcu_synchronize *rcu;
269 rcu = container_of(head, struct rcu_synchronize, head);
270 complete(&rcu->completion);
273 void wait_rcu_gp(call_rcu_func_t crf)
275 struct rcu_synchronize rcu;
277 init_rcu_head_on_stack(&rcu.head);
278 init_completion(&rcu.completion);
279 /* Will wake me after RCU finished. */
280 crf(&rcu.head, wakeme_after_rcu);
281 /* Wait for it. */
282 wait_for_completion(&rcu.completion);
283 destroy_rcu_head_on_stack(&rcu.head);
285 EXPORT_SYMBOL_GPL(wait_rcu_gp);
287 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
288 void init_rcu_head(struct rcu_head *head)
290 debug_object_init(head, &rcuhead_debug_descr);
293 void destroy_rcu_head(struct rcu_head *head)
295 debug_object_free(head, &rcuhead_debug_descr);
299 * fixup_activate is called when:
300 * - an active object is activated
301 * - an unknown object is activated (might be a statically initialized object)
302 * Activation is performed internally by call_rcu().
304 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
306 struct rcu_head *head = addr;
308 switch (state) {
310 case ODEBUG_STATE_NOTAVAILABLE:
312 * This is not really a fixup. We just make sure that it is
313 * tracked in the object tracker.
315 debug_object_init(head, &rcuhead_debug_descr);
316 debug_object_activate(head, &rcuhead_debug_descr);
317 return 0;
318 default:
319 return 1;
324 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
325 * @head: pointer to rcu_head structure to be initialized
327 * This function informs debugobjects of a new rcu_head structure that
328 * has been allocated as an auto variable on the stack. This function
329 * is not required for rcu_head structures that are statically defined or
330 * that are dynamically allocated on the heap. This function has no
331 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
333 void init_rcu_head_on_stack(struct rcu_head *head)
335 debug_object_init_on_stack(head, &rcuhead_debug_descr);
337 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
340 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
341 * @head: pointer to rcu_head structure to be initialized
343 * This function informs debugobjects that an on-stack rcu_head structure
344 * is about to go out of scope. As with init_rcu_head_on_stack(), this
345 * function is not required for rcu_head structures that are statically
346 * defined or that are dynamically allocated on the heap. Also as with
347 * init_rcu_head_on_stack(), this function has no effect for
348 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
350 void destroy_rcu_head_on_stack(struct rcu_head *head)
352 debug_object_free(head, &rcuhead_debug_descr);
354 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
356 struct debug_obj_descr rcuhead_debug_descr = {
357 .name = "rcu_head",
358 .fixup_activate = rcuhead_fixup_activate,
360 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
361 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
363 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
364 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
365 unsigned long secs,
366 unsigned long c_old, unsigned long c)
368 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
370 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
371 #else
372 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
373 do { } while (0)
374 #endif
376 #ifdef CONFIG_RCU_STALL_COMMON
378 #ifdef CONFIG_PROVE_RCU
379 #define RCU_STALL_DELAY_DELTA (5 * HZ)
380 #else
381 #define RCU_STALL_DELAY_DELTA 0
382 #endif
384 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
385 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
387 module_param(rcu_cpu_stall_suppress, int, 0644);
388 module_param(rcu_cpu_stall_timeout, int, 0644);
390 int rcu_jiffies_till_stall_check(void)
392 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
395 * Limit check must be consistent with the Kconfig limits
396 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
398 if (till_stall_check < 3) {
399 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
400 till_stall_check = 3;
401 } else if (till_stall_check > 300) {
402 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
403 till_stall_check = 300;
405 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
408 void rcu_sysrq_start(void)
410 if (!rcu_cpu_stall_suppress)
411 rcu_cpu_stall_suppress = 2;
414 void rcu_sysrq_end(void)
416 if (rcu_cpu_stall_suppress == 2)
417 rcu_cpu_stall_suppress = 0;
420 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
422 rcu_cpu_stall_suppress = 1;
423 return NOTIFY_DONE;
426 static struct notifier_block rcu_panic_block = {
427 .notifier_call = rcu_panic,
430 static int __init check_cpu_stall_init(void)
432 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
433 return 0;
435 early_initcall(check_cpu_stall_init);
437 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
439 #ifdef CONFIG_TASKS_RCU
442 * Simple variant of RCU whose quiescent states are voluntary context switch,
443 * user-space execution, and idle. As such, grace periods can take one good
444 * long time. There are no read-side primitives similar to rcu_read_lock()
445 * and rcu_read_unlock() because this implementation is intended to get
446 * the system into a safe state for some of the manipulations involved in
447 * tracing and the like. Finally, this implementation does not support
448 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
449 * per-CPU callback lists will be needed.
452 /* Global list of callbacks and associated lock. */
453 static struct rcu_head *rcu_tasks_cbs_head;
454 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
455 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
456 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
458 /* Track exiting tasks in order to allow them to be waited for. */
459 DEFINE_SRCU(tasks_rcu_exit_srcu);
461 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
462 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
463 module_param(rcu_task_stall_timeout, int, 0644);
465 static void rcu_spawn_tasks_kthread(void);
468 * Post an RCU-tasks callback. First call must be from process context
469 * after the scheduler if fully operational.
471 void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
473 unsigned long flags;
474 bool needwake;
476 rhp->next = NULL;
477 rhp->func = func;
478 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
479 needwake = !rcu_tasks_cbs_head;
480 *rcu_tasks_cbs_tail = rhp;
481 rcu_tasks_cbs_tail = &rhp->next;
482 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
483 if (needwake) {
484 rcu_spawn_tasks_kthread();
485 wake_up(&rcu_tasks_cbs_wq);
488 EXPORT_SYMBOL_GPL(call_rcu_tasks);
491 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
493 * Control will return to the caller some time after a full rcu-tasks
494 * grace period has elapsed, in other words after all currently
495 * executing rcu-tasks read-side critical sections have elapsed. These
496 * read-side critical sections are delimited by calls to schedule(),
497 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
498 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
500 * This is a very specialized primitive, intended only for a few uses in
501 * tracing and other situations requiring manipulation of function
502 * preambles and profiling hooks. The synchronize_rcu_tasks() function
503 * is not (yet) intended for heavy use from multiple CPUs.
505 * Note that this guarantee implies further memory-ordering guarantees.
506 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
507 * each CPU is guaranteed to have executed a full memory barrier since the
508 * end of its last RCU-tasks read-side critical section whose beginning
509 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
510 * having an RCU-tasks read-side critical section that extends beyond
511 * the return from synchronize_rcu_tasks() is guaranteed to have executed
512 * a full memory barrier after the beginning of synchronize_rcu_tasks()
513 * and before the beginning of that RCU-tasks read-side critical section.
514 * Note that these guarantees include CPUs that are offline, idle, or
515 * executing in user mode, as well as CPUs that are executing in the kernel.
517 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
518 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
519 * to have executed a full memory barrier during the execution of
520 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
521 * (but again only if the system has more than one CPU).
523 void synchronize_rcu_tasks(void)
525 /* Complain if the scheduler has not started. */
526 rcu_lockdep_assert(!rcu_scheduler_active,
527 "synchronize_rcu_tasks called too soon");
529 /* Wait for the grace period. */
530 wait_rcu_gp(call_rcu_tasks);
532 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
535 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
537 * Although the current implementation is guaranteed to wait, it is not
538 * obligated to, for example, if there are no pending callbacks.
540 void rcu_barrier_tasks(void)
542 /* There is only one callback queue, so this is easy. ;-) */
543 synchronize_rcu_tasks();
545 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
547 /* See if tasks are still holding out, complain if so. */
548 static void check_holdout_task(struct task_struct *t,
549 bool needreport, bool *firstreport)
551 int cpu;
553 if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
554 t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
555 !ACCESS_ONCE(t->on_rq) ||
556 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
557 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
558 ACCESS_ONCE(t->rcu_tasks_holdout) = false;
559 list_del_init(&t->rcu_tasks_holdout_list);
560 put_task_struct(t);
561 return;
563 if (!needreport)
564 return;
565 if (*firstreport) {
566 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
567 *firstreport = false;
569 cpu = task_cpu(t);
570 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
571 t, ".I"[is_idle_task(t)],
572 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
573 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
574 t->rcu_tasks_idle_cpu, cpu);
575 sched_show_task(t);
578 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
579 static int __noreturn rcu_tasks_kthread(void *arg)
581 unsigned long flags;
582 struct task_struct *g, *t;
583 unsigned long lastreport;
584 struct rcu_head *list;
585 struct rcu_head *next;
586 LIST_HEAD(rcu_tasks_holdouts);
588 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
589 housekeeping_affine(current);
592 * Each pass through the following loop makes one check for
593 * newly arrived callbacks, and, if there are some, waits for
594 * one RCU-tasks grace period and then invokes the callbacks.
595 * This loop is terminated by the system going down. ;-)
597 for (;;) {
599 /* Pick up any new callbacks. */
600 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
601 list = rcu_tasks_cbs_head;
602 rcu_tasks_cbs_head = NULL;
603 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
604 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
606 /* If there were none, wait a bit and start over. */
607 if (!list) {
608 wait_event_interruptible(rcu_tasks_cbs_wq,
609 rcu_tasks_cbs_head);
610 if (!rcu_tasks_cbs_head) {
611 WARN_ON(signal_pending(current));
612 schedule_timeout_interruptible(HZ/10);
614 continue;
618 * Wait for all pre-existing t->on_rq and t->nvcsw
619 * transitions to complete. Invoking synchronize_sched()
620 * suffices because all these transitions occur with
621 * interrupts disabled. Without this synchronize_sched(),
622 * a read-side critical section that started before the
623 * grace period might be incorrectly seen as having started
624 * after the grace period.
626 * This synchronize_sched() also dispenses with the
627 * need for a memory barrier on the first store to
628 * ->rcu_tasks_holdout, as it forces the store to happen
629 * after the beginning of the grace period.
631 synchronize_sched();
634 * There were callbacks, so we need to wait for an
635 * RCU-tasks grace period. Start off by scanning
636 * the task list for tasks that are not already
637 * voluntarily blocked. Mark these tasks and make
638 * a list of them in rcu_tasks_holdouts.
640 rcu_read_lock();
641 for_each_process_thread(g, t) {
642 if (t != current && ACCESS_ONCE(t->on_rq) &&
643 !is_idle_task(t)) {
644 get_task_struct(t);
645 t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
646 ACCESS_ONCE(t->rcu_tasks_holdout) = true;
647 list_add(&t->rcu_tasks_holdout_list,
648 &rcu_tasks_holdouts);
651 rcu_read_unlock();
654 * Wait for tasks that are in the process of exiting.
655 * This does only part of the job, ensuring that all
656 * tasks that were previously exiting reach the point
657 * where they have disabled preemption, allowing the
658 * later synchronize_sched() to finish the job.
660 synchronize_srcu(&tasks_rcu_exit_srcu);
663 * Each pass through the following loop scans the list
664 * of holdout tasks, removing any that are no longer
665 * holdouts. When the list is empty, we are done.
667 lastreport = jiffies;
668 while (!list_empty(&rcu_tasks_holdouts)) {
669 bool firstreport;
670 bool needreport;
671 int rtst;
672 struct task_struct *t1;
674 schedule_timeout_interruptible(HZ);
675 rtst = ACCESS_ONCE(rcu_task_stall_timeout);
676 needreport = rtst > 0 &&
677 time_after(jiffies, lastreport + rtst);
678 if (needreport)
679 lastreport = jiffies;
680 firstreport = true;
681 WARN_ON(signal_pending(current));
682 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
683 rcu_tasks_holdout_list) {
684 check_holdout_task(t, needreport, &firstreport);
685 cond_resched();
690 * Because ->on_rq and ->nvcsw are not guaranteed
691 * to have a full memory barriers prior to them in the
692 * schedule() path, memory reordering on other CPUs could
693 * cause their RCU-tasks read-side critical sections to
694 * extend past the end of the grace period. However,
695 * because these ->nvcsw updates are carried out with
696 * interrupts disabled, we can use synchronize_sched()
697 * to force the needed ordering on all such CPUs.
699 * This synchronize_sched() also confines all
700 * ->rcu_tasks_holdout accesses to be within the grace
701 * period, avoiding the need for memory barriers for
702 * ->rcu_tasks_holdout accesses.
704 * In addition, this synchronize_sched() waits for exiting
705 * tasks to complete their final preempt_disable() region
706 * of execution, cleaning up after the synchronize_srcu()
707 * above.
709 synchronize_sched();
711 /* Invoke the callbacks. */
712 while (list) {
713 next = list->next;
714 local_bh_disable();
715 list->func(list);
716 local_bh_enable();
717 list = next;
718 cond_resched();
720 schedule_timeout_uninterruptible(HZ/10);
724 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
725 static void rcu_spawn_tasks_kthread(void)
727 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
728 static struct task_struct *rcu_tasks_kthread_ptr;
729 struct task_struct *t;
731 if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) {
732 smp_mb(); /* Ensure caller sees full kthread. */
733 return;
735 mutex_lock(&rcu_tasks_kthread_mutex);
736 if (rcu_tasks_kthread_ptr) {
737 mutex_unlock(&rcu_tasks_kthread_mutex);
738 return;
740 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
741 BUG_ON(IS_ERR(t));
742 smp_mb(); /* Ensure others see full kthread. */
743 ACCESS_ONCE(rcu_tasks_kthread_ptr) = t;
744 mutex_unlock(&rcu_tasks_kthread_mutex);
747 #endif /* #ifdef CONFIG_TASKS_RCU */
749 #ifdef CONFIG_PROVE_RCU
752 * Early boot self test parameters, one for each flavor
754 static bool rcu_self_test;
755 static bool rcu_self_test_bh;
756 static bool rcu_self_test_sched;
758 module_param(rcu_self_test, bool, 0444);
759 module_param(rcu_self_test_bh, bool, 0444);
760 module_param(rcu_self_test_sched, bool, 0444);
762 static int rcu_self_test_counter;
764 static void test_callback(struct rcu_head *r)
766 rcu_self_test_counter++;
767 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
770 static void early_boot_test_call_rcu(void)
772 static struct rcu_head head;
774 call_rcu(&head, test_callback);
777 static void early_boot_test_call_rcu_bh(void)
779 static struct rcu_head head;
781 call_rcu_bh(&head, test_callback);
784 static void early_boot_test_call_rcu_sched(void)
786 static struct rcu_head head;
788 call_rcu_sched(&head, test_callback);
791 void rcu_early_boot_tests(void)
793 pr_info("Running RCU self tests\n");
795 if (rcu_self_test)
796 early_boot_test_call_rcu();
797 if (rcu_self_test_bh)
798 early_boot_test_call_rcu_bh();
799 if (rcu_self_test_sched)
800 early_boot_test_call_rcu_sched();
803 static int rcu_verify_early_boot_tests(void)
805 int ret = 0;
806 int early_boot_test_counter = 0;
808 if (rcu_self_test) {
809 early_boot_test_counter++;
810 rcu_barrier();
812 if (rcu_self_test_bh) {
813 early_boot_test_counter++;
814 rcu_barrier_bh();
816 if (rcu_self_test_sched) {
817 early_boot_test_counter++;
818 rcu_barrier_sched();
821 if (rcu_self_test_counter != early_boot_test_counter) {
822 WARN_ON(1);
823 ret = -1;
826 return ret;
828 late_initcall(rcu_verify_early_boot_tests);
829 #else
830 void rcu_early_boot_tests(void) {}
831 #endif /* CONFIG_PROVE_RCU */