4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
96 ktime_t soft
, hard
, now
;
99 if (hrtimer_active(period_timer
))
102 now
= hrtimer_cb_get_time(period_timer
);
103 hrtimer_forward(period_timer
, now
, period
);
105 soft
= hrtimer_get_softexpires(period_timer
);
106 hard
= hrtimer_get_expires(period_timer
);
107 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
108 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
109 HRTIMER_MODE_ABS_PINNED
, 0);
113 DEFINE_MUTEX(sched_domains_mutex
);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
116 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
118 void update_rq_clock(struct rq
*rq
)
122 lockdep_assert_held(&rq
->lock
);
124 if (rq
->clock_skip_update
& RQCF_ACT_SKIP
)
127 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
131 update_rq_clock_task(rq
, delta
);
135 * Debugging: various feature bits
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
141 const_debug
unsigned int sysctl_sched_features
=
142 #include "features.h"
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
151 static const char * const sched_feat_names
[] = {
152 #include "features.h"
157 static int sched_feat_show(struct seq_file
*m
, void *v
)
161 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
162 if (!(sysctl_sched_features
& (1UL << i
)))
164 seq_printf(m
, "%s ", sched_feat_names
[i
]);
171 #ifdef HAVE_JUMP_LABEL
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
179 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
180 #include "features.h"
185 static void sched_feat_disable(int i
)
187 if (static_key_enabled(&sched_feat_keys
[i
]))
188 static_key_slow_dec(&sched_feat_keys
[i
]);
191 static void sched_feat_enable(int i
)
193 if (!static_key_enabled(&sched_feat_keys
[i
]))
194 static_key_slow_inc(&sched_feat_keys
[i
]);
197 static void sched_feat_disable(int i
) { };
198 static void sched_feat_enable(int i
) { };
199 #endif /* HAVE_JUMP_LABEL */
201 static int sched_feat_set(char *cmp
)
206 if (strncmp(cmp
, "NO_", 3) == 0) {
211 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
212 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
214 sysctl_sched_features
&= ~(1UL << i
);
215 sched_feat_disable(i
);
217 sysctl_sched_features
|= (1UL << i
);
218 sched_feat_enable(i
);
228 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
229 size_t cnt
, loff_t
*ppos
)
239 if (copy_from_user(&buf
, ubuf
, cnt
))
245 /* Ensure the static_key remains in a consistent state */
246 inode
= file_inode(filp
);
247 mutex_lock(&inode
->i_mutex
);
248 i
= sched_feat_set(cmp
);
249 mutex_unlock(&inode
->i_mutex
);
250 if (i
== __SCHED_FEAT_NR
)
258 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
260 return single_open(filp
, sched_feat_show
, NULL
);
263 static const struct file_operations sched_feat_fops
= {
264 .open
= sched_feat_open
,
265 .write
= sched_feat_write
,
268 .release
= single_release
,
271 static __init
int sched_init_debug(void)
273 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
278 late_initcall(sched_init_debug
);
279 #endif /* CONFIG_SCHED_DEBUG */
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
285 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
288 * period over which we average the RT time consumption, measured
293 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
296 * period over which we measure -rt task cpu usage in us.
299 unsigned int sysctl_sched_rt_period
= 1000000;
301 __read_mostly
int scheduler_running
;
304 * part of the period that we allow rt tasks to run in us.
307 int sysctl_sched_rt_runtime
= 950000;
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map
;
313 * this_rq_lock - lock this runqueue and disable interrupts.
315 static struct rq
*this_rq_lock(void)
322 raw_spin_lock(&rq
->lock
);
327 #ifdef CONFIG_SCHED_HRTICK
329 * Use HR-timers to deliver accurate preemption points.
332 static void hrtick_clear(struct rq
*rq
)
334 if (hrtimer_active(&rq
->hrtick_timer
))
335 hrtimer_cancel(&rq
->hrtick_timer
);
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
342 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
344 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
346 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
348 raw_spin_lock(&rq
->lock
);
350 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
351 raw_spin_unlock(&rq
->lock
);
353 return HRTIMER_NORESTART
;
358 static int __hrtick_restart(struct rq
*rq
)
360 struct hrtimer
*timer
= &rq
->hrtick_timer
;
361 ktime_t time
= hrtimer_get_softexpires(timer
);
363 return __hrtimer_start_range_ns(timer
, time
, 0, HRTIMER_MODE_ABS_PINNED
, 0);
367 * called from hardirq (IPI) context
369 static void __hrtick_start(void *arg
)
373 raw_spin_lock(&rq
->lock
);
374 __hrtick_restart(rq
);
375 rq
->hrtick_csd_pending
= 0;
376 raw_spin_unlock(&rq
->lock
);
380 * Called to set the hrtick timer state.
382 * called with rq->lock held and irqs disabled
384 void hrtick_start(struct rq
*rq
, u64 delay
)
386 struct hrtimer
*timer
= &rq
->hrtick_timer
;
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
394 delta
= max_t(s64
, delay
, 10000LL);
395 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
397 hrtimer_set_expires(timer
, time
);
399 if (rq
== this_rq()) {
400 __hrtick_restart(rq
);
401 } else if (!rq
->hrtick_csd_pending
) {
402 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
403 rq
->hrtick_csd_pending
= 1;
408 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
410 int cpu
= (int)(long)hcpu
;
413 case CPU_UP_CANCELED
:
414 case CPU_UP_CANCELED_FROZEN
:
415 case CPU_DOWN_PREPARE
:
416 case CPU_DOWN_PREPARE_FROZEN
:
418 case CPU_DEAD_FROZEN
:
419 hrtick_clear(cpu_rq(cpu
));
426 static __init
void init_hrtick(void)
428 hotcpu_notifier(hotplug_hrtick
, 0);
432 * Called to set the hrtick timer state.
434 * called with rq->lock held and irqs disabled
436 void hrtick_start(struct rq
*rq
, u64 delay
)
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
442 delay
= max_t(u64
, delay
, 10000LL);
443 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
444 HRTIMER_MODE_REL_PINNED
, 0);
447 static inline void init_hrtick(void)
450 #endif /* CONFIG_SMP */
452 static void init_rq_hrtick(struct rq
*rq
)
455 rq
->hrtick_csd_pending
= 0;
457 rq
->hrtick_csd
.flags
= 0;
458 rq
->hrtick_csd
.func
= __hrtick_start
;
459 rq
->hrtick_csd
.info
= rq
;
462 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
463 rq
->hrtick_timer
.function
= hrtick
;
465 #else /* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq
*rq
)
470 static inline void init_rq_hrtick(struct rq
*rq
)
474 static inline void init_hrtick(void)
477 #endif /* CONFIG_SCHED_HRTICK */
480 * cmpxchg based fetch_or, macro so it works for different integer types
482 #define fetch_or(ptr, val) \
483 ({ typeof(*(ptr)) __old, __val = *(ptr); \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
499 static bool set_nr_and_not_polling(struct task_struct
*p
)
501 struct thread_info
*ti
= task_thread_info(p
);
502 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
511 static bool set_nr_if_polling(struct task_struct
*p
)
513 struct thread_info
*ti
= task_thread_info(p
);
514 typeof(ti
->flags
) old
, val
= ACCESS_ONCE(ti
->flags
);
517 if (!(val
& _TIF_POLLING_NRFLAG
))
519 if (val
& _TIF_NEED_RESCHED
)
521 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
530 static bool set_nr_and_not_polling(struct task_struct
*p
)
532 set_tsk_need_resched(p
);
537 static bool set_nr_if_polling(struct task_struct
*p
)
545 * resched_curr - mark rq's current task 'to be rescheduled now'.
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
551 void resched_curr(struct rq
*rq
)
553 struct task_struct
*curr
= rq
->curr
;
556 lockdep_assert_held(&rq
->lock
);
558 if (test_tsk_need_resched(curr
))
563 if (cpu
== smp_processor_id()) {
564 set_tsk_need_resched(curr
);
565 set_preempt_need_resched();
569 if (set_nr_and_not_polling(curr
))
570 smp_send_reschedule(cpu
);
572 trace_sched_wake_idle_without_ipi(cpu
);
575 void resched_cpu(int cpu
)
577 struct rq
*rq
= cpu_rq(cpu
);
580 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
583 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
587 #ifdef CONFIG_NO_HZ_COMMON
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu. This is good for power-savings.
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
596 int get_nohz_timer_target(int pinned
)
598 int cpu
= smp_processor_id();
600 struct sched_domain
*sd
;
602 if (pinned
|| !get_sysctl_timer_migration() || !idle_cpu(cpu
))
606 for_each_domain(cpu
, sd
) {
607 for_each_cpu(i
, sched_domain_span(sd
)) {
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
628 static void wake_up_idle_cpu(int cpu
)
630 struct rq
*rq
= cpu_rq(cpu
);
632 if (cpu
== smp_processor_id())
635 if (set_nr_and_not_polling(rq
->idle
))
636 smp_send_reschedule(cpu
);
638 trace_sched_wake_idle_without_ipi(cpu
);
641 static bool wake_up_full_nohz_cpu(int cpu
)
644 * We just need the target to call irq_exit() and re-evaluate
645 * the next tick. The nohz full kick at least implies that.
646 * If needed we can still optimize that later with an
649 if (tick_nohz_full_cpu(cpu
)) {
650 if (cpu
!= smp_processor_id() ||
651 tick_nohz_tick_stopped())
652 tick_nohz_full_kick_cpu(cpu
);
659 void wake_up_nohz_cpu(int cpu
)
661 if (!wake_up_full_nohz_cpu(cpu
))
662 wake_up_idle_cpu(cpu
);
665 static inline bool got_nohz_idle_kick(void)
667 int cpu
= smp_processor_id();
669 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
672 if (idle_cpu(cpu
) && !need_resched())
676 * We can't run Idle Load Balance on this CPU for this time so we
677 * cancel it and clear NOHZ_BALANCE_KICK
679 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
683 #else /* CONFIG_NO_HZ_COMMON */
685 static inline bool got_nohz_idle_kick(void)
690 #endif /* CONFIG_NO_HZ_COMMON */
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
696 * FIFO realtime policy runs the highest priority task. Other runnable
697 * tasks are of a lower priority. The scheduler tick does nothing.
699 if (current
->policy
== SCHED_FIFO
)
703 * Round-robin realtime tasks time slice with other tasks at the same
704 * realtime priority. Is this task the only one at this priority?
706 if (current
->policy
== SCHED_RR
) {
707 struct sched_rt_entity
*rt_se
= ¤t
->rt
;
709 return rt_se
->run_list
.prev
== rt_se
->run_list
.next
;
713 * More than one running task need preemption.
714 * nr_running update is assumed to be visible
715 * after IPI is sent from wakers.
717 if (this_rq()->nr_running
> 1)
722 #endif /* CONFIG_NO_HZ_FULL */
724 void sched_avg_update(struct rq
*rq
)
726 s64 period
= sched_avg_period();
728 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
730 * Inline assembly required to prevent the compiler
731 * optimising this loop into a divmod call.
732 * See __iter_div_u64_rem() for another example of this.
734 asm("" : "+rm" (rq
->age_stamp
));
735 rq
->age_stamp
+= period
;
740 #endif /* CONFIG_SMP */
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
748 * Caller must hold rcu_lock or sufficient equivalent.
750 int walk_tg_tree_from(struct task_group
*from
,
751 tg_visitor down
, tg_visitor up
, void *data
)
753 struct task_group
*parent
, *child
;
759 ret
= (*down
)(parent
, data
);
762 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
769 ret
= (*up
)(parent
, data
);
770 if (ret
|| parent
== from
)
774 parent
= parent
->parent
;
781 int tg_nop(struct task_group
*tg
, void *data
)
787 static void set_load_weight(struct task_struct
*p
)
789 int prio
= p
->static_prio
- MAX_RT_PRIO
;
790 struct load_weight
*load
= &p
->se
.load
;
793 * SCHED_IDLE tasks get minimal weight:
795 if (p
->policy
== SCHED_IDLE
) {
796 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
797 load
->inv_weight
= WMULT_IDLEPRIO
;
801 load
->weight
= scale_load(prio_to_weight
[prio
]);
802 load
->inv_weight
= prio_to_wmult
[prio
];
805 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
808 sched_info_queued(rq
, p
);
809 p
->sched_class
->enqueue_task(rq
, p
, flags
);
812 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
815 sched_info_dequeued(rq
, p
);
816 p
->sched_class
->dequeue_task(rq
, p
, flags
);
819 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
821 if (task_contributes_to_load(p
))
822 rq
->nr_uninterruptible
--;
824 enqueue_task(rq
, p
, flags
);
827 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
829 if (task_contributes_to_load(p
))
830 rq
->nr_uninterruptible
++;
832 dequeue_task(rq
, p
, flags
);
835 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal
= 0, irq_delta
= 0;
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
862 if (irq_delta
> delta
)
865 rq
->prev_irq_time
+= irq_delta
;
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 if (static_key_false((¶virt_steal_rq_enabled
))) {
870 steal
= paravirt_steal_clock(cpu_of(rq
));
871 steal
-= rq
->prev_steal_time_rq
;
873 if (unlikely(steal
> delta
))
876 rq
->prev_steal_time_rq
+= steal
;
881 rq
->clock_task
+= delta
;
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
885 sched_rt_avg_update(rq
, irq_delta
+ steal
);
889 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
891 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
892 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
896 * Make it appear like a SCHED_FIFO task, its something
897 * userspace knows about and won't get confused about.
899 * Also, it will make PI more or less work without too
900 * much confusion -- but then, stop work should not
901 * rely on PI working anyway.
903 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
905 stop
->sched_class
= &stop_sched_class
;
908 cpu_rq(cpu
)->stop
= stop
;
912 * Reset it back to a normal scheduling class so that
913 * it can die in pieces.
915 old_stop
->sched_class
= &rt_sched_class
;
920 * __normal_prio - return the priority that is based on the static prio
922 static inline int __normal_prio(struct task_struct
*p
)
924 return p
->static_prio
;
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
934 static inline int normal_prio(struct task_struct
*p
)
938 if (task_has_dl_policy(p
))
939 prio
= MAX_DL_PRIO
-1;
940 else if (task_has_rt_policy(p
))
941 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
943 prio
= __normal_prio(p
);
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
954 static int effective_prio(struct task_struct
*p
)
956 p
->normal_prio
= normal_prio(p
);
958 * If we are RT tasks or we were boosted to RT priority,
959 * keep the priority unchanged. Otherwise, update priority
960 * to the normal priority:
962 if (!rt_prio(p
->prio
))
963 return p
->normal_prio
;
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
971 * Return: 1 if the task is currently executing. 0 otherwise.
973 inline int task_curr(const struct task_struct
*p
)
975 return cpu_curr(task_cpu(p
)) == p
;
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
981 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
982 const struct sched_class
*prev_class
,
985 if (prev_class
!= p
->sched_class
) {
986 if (prev_class
->switched_from
)
987 prev_class
->switched_from(rq
, p
);
988 /* Possble rq->lock 'hole'. */
989 p
->sched_class
->switched_to(rq
, p
);
990 } else if (oldprio
!= p
->prio
|| dl_task(p
))
991 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
994 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
996 const struct sched_class
*class;
998 if (p
->sched_class
== rq
->curr
->sched_class
) {
999 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1001 for_each_class(class) {
1002 if (class == rq
->curr
->sched_class
)
1004 if (class == p
->sched_class
) {
1012 * A queue event has occurred, and we're going to schedule. In
1013 * this case, we can save a useless back to back clock update.
1015 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1016 rq_clock_skip_update(rq
, true);
1020 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1022 #ifdef CONFIG_SCHED_DEBUG
1024 * We should never call set_task_cpu() on a blocked task,
1025 * ttwu() will sort out the placement.
1027 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1030 #ifdef CONFIG_LOCKDEP
1032 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1035 * sched_move_task() holds both and thus holding either pins the cgroup,
1038 * Furthermore, all task_rq users should acquire both locks, see
1041 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1042 lockdep_is_held(&task_rq(p
)->lock
)));
1046 trace_sched_migrate_task(p
, new_cpu
);
1048 if (task_cpu(p
) != new_cpu
) {
1049 if (p
->sched_class
->migrate_task_rq
)
1050 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1051 p
->se
.nr_migrations
++;
1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 0);
1055 __set_task_cpu(p
, new_cpu
);
1058 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1060 if (task_on_rq_queued(p
)) {
1061 struct rq
*src_rq
, *dst_rq
;
1063 src_rq
= task_rq(p
);
1064 dst_rq
= cpu_rq(cpu
);
1066 deactivate_task(src_rq
, p
, 0);
1067 set_task_cpu(p
, cpu
);
1068 activate_task(dst_rq
, p
, 0);
1069 check_preempt_curr(dst_rq
, p
, 0);
1072 * Task isn't running anymore; make it appear like we migrated
1073 * it before it went to sleep. This means on wakeup we make the
1074 * previous cpu our targer instead of where it really is.
1080 struct migration_swap_arg
{
1081 struct task_struct
*src_task
, *dst_task
;
1082 int src_cpu
, dst_cpu
;
1085 static int migrate_swap_stop(void *data
)
1087 struct migration_swap_arg
*arg
= data
;
1088 struct rq
*src_rq
, *dst_rq
;
1091 src_rq
= cpu_rq(arg
->src_cpu
);
1092 dst_rq
= cpu_rq(arg
->dst_cpu
);
1094 double_raw_lock(&arg
->src_task
->pi_lock
,
1095 &arg
->dst_task
->pi_lock
);
1096 double_rq_lock(src_rq
, dst_rq
);
1097 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1100 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1103 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1106 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1109 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1110 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1115 double_rq_unlock(src_rq
, dst_rq
);
1116 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1117 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1123 * Cross migrate two tasks
1125 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1127 struct migration_swap_arg arg
;
1130 arg
= (struct migration_swap_arg
){
1132 .src_cpu
= task_cpu(cur
),
1134 .dst_cpu
= task_cpu(p
),
1137 if (arg
.src_cpu
== arg
.dst_cpu
)
1141 * These three tests are all lockless; this is OK since all of them
1142 * will be re-checked with proper locks held further down the line.
1144 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1147 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1150 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1153 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1154 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1160 struct migration_arg
{
1161 struct task_struct
*task
;
1165 static int migration_cpu_stop(void *data
);
1168 * wait_task_inactive - wait for a thread to unschedule.
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change. If it changes, i.e. @p might have woken up,
1172 * then return zero. When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count). If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1183 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1185 unsigned long flags
;
1186 int running
, queued
;
1192 * We do the initial early heuristics without holding
1193 * any task-queue locks at all. We'll only try to get
1194 * the runqueue lock when things look like they will
1200 * If the task is actively running on another CPU
1201 * still, just relax and busy-wait without holding
1204 * NOTE! Since we don't hold any locks, it's not
1205 * even sure that "rq" stays as the right runqueue!
1206 * But we don't care, since "task_running()" will
1207 * return false if the runqueue has changed and p
1208 * is actually now running somewhere else!
1210 while (task_running(rq
, p
)) {
1211 if (match_state
&& unlikely(p
->state
!= match_state
))
1217 * Ok, time to look more closely! We need the rq
1218 * lock now, to be *sure*. If we're wrong, we'll
1219 * just go back and repeat.
1221 rq
= task_rq_lock(p
, &flags
);
1222 trace_sched_wait_task(p
);
1223 running
= task_running(rq
, p
);
1224 queued
= task_on_rq_queued(p
);
1226 if (!match_state
|| p
->state
== match_state
)
1227 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1228 task_rq_unlock(rq
, p
, &flags
);
1231 * If it changed from the expected state, bail out now.
1233 if (unlikely(!ncsw
))
1237 * Was it really running after all now that we
1238 * checked with the proper locks actually held?
1240 * Oops. Go back and try again..
1242 if (unlikely(running
)) {
1248 * It's not enough that it's not actively running,
1249 * it must be off the runqueue _entirely_, and not
1252 * So if it was still runnable (but just not actively
1253 * running right now), it's preempted, and we should
1254 * yield - it could be a while.
1256 if (unlikely(queued
)) {
1257 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1259 set_current_state(TASK_UNINTERRUPTIBLE
);
1260 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1265 * Ahh, all good. It wasn't running, and it wasn't
1266 * runnable, which means that it will never become
1267 * running in the future either. We're all done!
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1282 * NOTE: this function doesn't have to take the runqueue lock,
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1288 void kick_process(struct task_struct
*p
)
1294 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1295 smp_send_reschedule(cpu
);
1298 EXPORT_SYMBOL_GPL(kick_process
);
1299 #endif /* CONFIG_SMP */
1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1305 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1307 int nid
= cpu_to_node(cpu
);
1308 const struct cpumask
*nodemask
= NULL
;
1309 enum { cpuset
, possible
, fail
} state
= cpuset
;
1313 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 * will return -1. There is no cpu on the node, and we should
1315 * select the cpu on the other node.
1318 nodemask
= cpumask_of_node(nid
);
1320 /* Look for allowed, online CPU in same node. */
1321 for_each_cpu(dest_cpu
, nodemask
) {
1322 if (!cpu_online(dest_cpu
))
1324 if (!cpu_active(dest_cpu
))
1326 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1332 /* Any allowed, online CPU? */
1333 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1334 if (!cpu_online(dest_cpu
))
1336 if (!cpu_active(dest_cpu
))
1343 /* No more Mr. Nice Guy. */
1344 cpuset_cpus_allowed_fallback(p
);
1349 do_set_cpus_allowed(p
, cpu_possible_mask
);
1360 if (state
!= cpuset
) {
1362 * Don't tell them about moving exiting tasks or
1363 * kernel threads (both mm NULL), since they never
1366 if (p
->mm
&& printk_ratelimit()) {
1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 task_pid_nr(p
), p
->comm
, cpu
);
1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1379 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1381 if (p
->nr_cpus_allowed
> 1)
1382 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1385 * In order not to call set_task_cpu() on a blocking task we need
1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1389 * Since this is common to all placement strategies, this lives here.
1391 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 * not worry about this generic constraint ]
1394 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1396 cpu
= select_fallback_rq(task_cpu(p
), p
);
1401 static void update_avg(u64
*avg
, u64 sample
)
1403 s64 diff
= sample
- *avg
;
1409 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1411 #ifdef CONFIG_SCHEDSTATS
1412 struct rq
*rq
= this_rq();
1415 int this_cpu
= smp_processor_id();
1417 if (cpu
== this_cpu
) {
1418 schedstat_inc(rq
, ttwu_local
);
1419 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1421 struct sched_domain
*sd
;
1423 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1425 for_each_domain(this_cpu
, sd
) {
1426 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1427 schedstat_inc(sd
, ttwu_wake_remote
);
1434 if (wake_flags
& WF_MIGRATED
)
1435 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1437 #endif /* CONFIG_SMP */
1439 schedstat_inc(rq
, ttwu_count
);
1440 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1442 if (wake_flags
& WF_SYNC
)
1443 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1445 #endif /* CONFIG_SCHEDSTATS */
1448 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1450 activate_task(rq
, p
, en_flags
);
1451 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1453 /* if a worker is waking up, notify workqueue */
1454 if (p
->flags
& PF_WQ_WORKER
)
1455 wq_worker_waking_up(p
, cpu_of(rq
));
1459 * Mark the task runnable and perform wakeup-preemption.
1462 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1464 check_preempt_curr(rq
, p
, wake_flags
);
1465 trace_sched_wakeup(p
, true);
1467 p
->state
= TASK_RUNNING
;
1469 if (p
->sched_class
->task_woken
)
1470 p
->sched_class
->task_woken(rq
, p
);
1472 if (rq
->idle_stamp
) {
1473 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1474 u64 max
= 2*rq
->max_idle_balance_cost
;
1476 update_avg(&rq
->avg_idle
, delta
);
1478 if (rq
->avg_idle
> max
)
1487 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1490 if (p
->sched_contributes_to_load
)
1491 rq
->nr_uninterruptible
--;
1494 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1495 ttwu_do_wakeup(rq
, p
, wake_flags
);
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1504 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1509 rq
= __task_rq_lock(p
);
1510 if (task_on_rq_queued(p
)) {
1511 /* check_preempt_curr() may use rq clock */
1512 update_rq_clock(rq
);
1513 ttwu_do_wakeup(rq
, p
, wake_flags
);
1516 __task_rq_unlock(rq
);
1522 void sched_ttwu_pending(void)
1524 struct rq
*rq
= this_rq();
1525 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1526 struct task_struct
*p
;
1527 unsigned long flags
;
1532 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1535 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1536 llist
= llist_next(llist
);
1537 ttwu_do_activate(rq
, p
, 0);
1540 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1543 void scheduler_ipi(void)
1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 * TIF_NEED_RESCHED remotely (for the first time) will also send
1550 preempt_fold_need_resched();
1552 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1561 * Some archs already do call them, luckily irq_enter/exit nest
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1569 sched_ttwu_pending();
1572 * Check if someone kicked us for doing the nohz idle load balance.
1574 if (unlikely(got_nohz_idle_kick())) {
1575 this_rq()->idle_balance
= 1;
1576 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1581 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1583 struct rq
*rq
= cpu_rq(cpu
);
1585 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1586 if (!set_nr_if_polling(rq
->idle
))
1587 smp_send_reschedule(cpu
);
1589 trace_sched_wake_idle_without_ipi(cpu
);
1593 void wake_up_if_idle(int cpu
)
1595 struct rq
*rq
= cpu_rq(cpu
);
1596 unsigned long flags
;
1600 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1603 if (set_nr_if_polling(rq
->idle
)) {
1604 trace_sched_wake_idle_without_ipi(cpu
);
1606 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1607 if (is_idle_task(rq
->curr
))
1608 smp_send_reschedule(cpu
);
1609 /* Else cpu is not in idle, do nothing here */
1610 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1617 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1619 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1621 #endif /* CONFIG_SMP */
1623 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1625 struct rq
*rq
= cpu_rq(cpu
);
1627 #if defined(CONFIG_SMP)
1628 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1629 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1630 ttwu_queue_remote(p
, cpu
);
1635 raw_spin_lock(&rq
->lock
);
1636 ttwu_do_activate(rq
, p
, 0);
1637 raw_spin_unlock(&rq
->lock
);
1641 * try_to_wake_up - wake up a thread
1642 * @p: the thread to be awakened
1643 * @state: the mask of task states that can be woken
1644 * @wake_flags: wake modifier flags (WF_*)
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1652 * Return: %true if @p was woken up, %false if it was already running.
1653 * or @state didn't match @p's state.
1656 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1658 unsigned long flags
;
1659 int cpu
, success
= 0;
1662 * If we are going to wake up a thread waiting for CONDITION we
1663 * need to ensure that CONDITION=1 done by the caller can not be
1664 * reordered with p->state check below. This pairs with mb() in
1665 * set_current_state() the waiting thread does.
1667 smp_mb__before_spinlock();
1668 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1669 if (!(p
->state
& state
))
1672 success
= 1; /* we're going to change ->state */
1675 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1680 * If the owning (remote) cpu is still in the middle of schedule() with
1681 * this task as prev, wait until its done referencing the task.
1686 * Pairs with the smp_wmb() in finish_lock_switch().
1690 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1691 p
->state
= TASK_WAKING
;
1693 if (p
->sched_class
->task_waking
)
1694 p
->sched_class
->task_waking(p
);
1696 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1697 if (task_cpu(p
) != cpu
) {
1698 wake_flags
|= WF_MIGRATED
;
1699 set_task_cpu(p
, cpu
);
1701 #endif /* CONFIG_SMP */
1705 ttwu_stat(p
, cpu
, wake_flags
);
1707 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1716 * Put @p on the run-queue if it's not already there. The caller must
1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1720 static void try_to_wake_up_local(struct task_struct
*p
)
1722 struct rq
*rq
= task_rq(p
);
1724 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1725 WARN_ON_ONCE(p
== current
))
1728 lockdep_assert_held(&rq
->lock
);
1730 if (!raw_spin_trylock(&p
->pi_lock
)) {
1731 raw_spin_unlock(&rq
->lock
);
1732 raw_spin_lock(&p
->pi_lock
);
1733 raw_spin_lock(&rq
->lock
);
1736 if (!(p
->state
& TASK_NORMAL
))
1739 if (!task_on_rq_queued(p
))
1740 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1742 ttwu_do_wakeup(rq
, p
, 0);
1743 ttwu_stat(p
, smp_processor_id(), 0);
1745 raw_spin_unlock(&p
->pi_lock
);
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1752 * Attempt to wake up the nominated process and move it to the set of runnable
1755 * Return: 1 if the process was woken up, 0 if it was already running.
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1760 int wake_up_process(struct task_struct
*p
)
1762 WARN_ON(task_is_stopped_or_traced(p
));
1763 return try_to_wake_up(p
, TASK_NORMAL
, 0);
1765 EXPORT_SYMBOL(wake_up_process
);
1767 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1769 return try_to_wake_up(p
, state
, 0);
1773 * This function clears the sched_dl_entity static params.
1775 void __dl_clear_params(struct task_struct
*p
)
1777 struct sched_dl_entity
*dl_se
= &p
->dl
;
1779 dl_se
->dl_runtime
= 0;
1780 dl_se
->dl_deadline
= 0;
1781 dl_se
->dl_period
= 0;
1785 dl_se
->dl_throttled
= 0;
1787 dl_se
->dl_yielded
= 0;
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
1794 * __sched_fork() is basic setup used by init_idle() too:
1796 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1801 p
->se
.exec_start
= 0;
1802 p
->se
.sum_exec_runtime
= 0;
1803 p
->se
.prev_sum_exec_runtime
= 0;
1804 p
->se
.nr_migrations
= 0;
1807 p
->se
.avg
.decay_count
= 0;
1809 INIT_LIST_HEAD(&p
->se
.group_node
);
1811 #ifdef CONFIG_SCHEDSTATS
1812 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1815 RB_CLEAR_NODE(&p
->dl
.rb_node
);
1816 init_dl_task_timer(&p
->dl
);
1817 __dl_clear_params(p
);
1819 INIT_LIST_HEAD(&p
->rt
.run_list
);
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1825 #ifdef CONFIG_NUMA_BALANCING
1826 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
1827 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1828 p
->mm
->numa_scan_seq
= 0;
1831 if (clone_flags
& CLONE_VM
)
1832 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
1834 p
->numa_preferred_nid
= -1;
1836 p
->node_stamp
= 0ULL;
1837 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
1838 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1839 p
->numa_work
.next
= &p
->numa_work
;
1840 p
->numa_faults
= NULL
;
1841 p
->last_task_numa_placement
= 0;
1842 p
->last_sum_exec_runtime
= 0;
1844 p
->numa_group
= NULL
;
1845 #endif /* CONFIG_NUMA_BALANCING */
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
1850 void set_numabalancing_state(bool enabled
)
1853 sched_feat_set("NUMA");
1855 sched_feat_set("NO_NUMA");
1858 __read_mostly
bool numabalancing_enabled
;
1860 void set_numabalancing_state(bool enabled
)
1862 numabalancing_enabled
= enabled
;
1864 #endif /* CONFIG_SCHED_DEBUG */
1866 #ifdef CONFIG_PROC_SYSCTL
1867 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
1868 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1872 int state
= numabalancing_enabled
;
1874 if (write
&& !capable(CAP_SYS_ADMIN
))
1879 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
1883 set_numabalancing_state(state
);
1890 * fork()/clone()-time setup:
1892 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1894 unsigned long flags
;
1895 int cpu
= get_cpu();
1897 __sched_fork(clone_flags
, p
);
1899 * We mark the process as running here. This guarantees that
1900 * nobody will actually run it, and a signal or other external
1901 * event cannot wake it up and insert it on the runqueue either.
1903 p
->state
= TASK_RUNNING
;
1906 * Make sure we do not leak PI boosting priority to the child.
1908 p
->prio
= current
->normal_prio
;
1911 * Revert to default priority/policy on fork if requested.
1913 if (unlikely(p
->sched_reset_on_fork
)) {
1914 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
1915 p
->policy
= SCHED_NORMAL
;
1916 p
->static_prio
= NICE_TO_PRIO(0);
1918 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1919 p
->static_prio
= NICE_TO_PRIO(0);
1921 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1925 * We don't need the reset flag anymore after the fork. It has
1926 * fulfilled its duty:
1928 p
->sched_reset_on_fork
= 0;
1931 if (dl_prio(p
->prio
)) {
1934 } else if (rt_prio(p
->prio
)) {
1935 p
->sched_class
= &rt_sched_class
;
1937 p
->sched_class
= &fair_sched_class
;
1940 if (p
->sched_class
->task_fork
)
1941 p
->sched_class
->task_fork(p
);
1944 * The child is not yet in the pid-hash so no cgroup attach races,
1945 * and the cgroup is pinned to this child due to cgroup_fork()
1946 * is ran before sched_fork().
1948 * Silence PROVE_RCU.
1950 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1951 set_task_cpu(p
, cpu
);
1952 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 if (likely(sched_info_on()))
1956 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1958 #if defined(CONFIG_SMP)
1961 init_task_preempt_count(p
);
1963 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1964 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
1971 unsigned long to_ratio(u64 period
, u64 runtime
)
1973 if (runtime
== RUNTIME_INF
)
1977 * Doing this here saves a lot of checks in all
1978 * the calling paths, and returning zero seems
1979 * safe for them anyway.
1984 return div64_u64(runtime
<< 20, period
);
1988 inline struct dl_bw
*dl_bw_of(int i
)
1990 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 "sched RCU must be held");
1992 return &cpu_rq(i
)->rd
->dl_bw
;
1995 static inline int dl_bw_cpus(int i
)
1997 struct root_domain
*rd
= cpu_rq(i
)->rd
;
2000 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 "sched RCU must be held");
2002 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
2008 inline struct dl_bw
*dl_bw_of(int i
)
2010 return &cpu_rq(i
)->dl
.dl_bw
;
2013 static inline int dl_bw_cpus(int i
)
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2025 * This function is called while holding p's rq->lock.
2027 * XXX we should delay bw change until the task's 0-lag point, see
2030 static int dl_overflow(struct task_struct
*p
, int policy
,
2031 const struct sched_attr
*attr
)
2034 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2035 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2036 u64 runtime
= attr
->sched_runtime
;
2037 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2040 if (new_bw
== p
->dl
.dl_bw
)
2044 * Either if a task, enters, leave, or stays -deadline but changes
2045 * its parameters, we may need to update accordingly the total
2046 * allocated bandwidth of the container.
2048 raw_spin_lock(&dl_b
->lock
);
2049 cpus
= dl_bw_cpus(task_cpu(p
));
2050 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2051 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2052 __dl_add(dl_b
, new_bw
);
2054 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2055 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2056 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2057 __dl_add(dl_b
, new_bw
);
2059 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2060 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2063 raw_spin_unlock(&dl_b
->lock
);
2068 extern void init_dl_bw(struct dl_bw
*dl_b
);
2071 * wake_up_new_task - wake up a newly created task for the first time.
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2077 void wake_up_new_task(struct task_struct
*p
)
2079 unsigned long flags
;
2082 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2085 * Fork balancing, do it here and not earlier because:
2086 * - cpus_allowed can change in the fork path
2087 * - any previously selected cpu might disappear through hotplug
2089 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2092 /* Initialize new task's runnable average */
2093 init_task_runnable_average(p
);
2094 rq
= __task_rq_lock(p
);
2095 activate_task(rq
, p
, 0);
2096 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2097 trace_sched_wakeup_new(p
, true);
2098 check_preempt_curr(rq
, p
, WF_FORK
);
2100 if (p
->sched_class
->task_woken
)
2101 p
->sched_class
->task_woken(rq
, p
);
2103 task_rq_unlock(rq
, p
, &flags
);
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110 * @notifier: notifier struct to register
2112 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2114 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
2120 * @notifier: notifier struct to unregister
2122 * This is safe to call from within a preemption notifier.
2124 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2126 hlist_del(¬ifier
->link
);
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2130 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2132 struct preempt_notifier
*notifier
;
2134 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2135 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2139 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2140 struct task_struct
*next
)
2142 struct preempt_notifier
*notifier
;
2144 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2145 notifier
->ops
->sched_out(notifier
, next
);
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2150 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2155 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2156 struct task_struct
*next
)
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
2165 * @prev: the current task that is being switched out
2166 * @next: the task we are going to switch to.
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2172 * prepare_task_switch sets up locking and calls architecture specific
2176 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2177 struct task_struct
*next
)
2179 trace_sched_switch(prev
, next
);
2180 sched_info_switch(rq
, prev
, next
);
2181 perf_event_task_sched_out(prev
, next
);
2182 fire_sched_out_preempt_notifiers(prev
, next
);
2183 prepare_lock_switch(rq
, next
);
2184 prepare_arch_switch(next
);
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
2196 * Note that we may have delayed dropping an mm in context_switch(). If
2197 * so, we finish that here outside of the runqueue lock. (Doing it
2198 * with the lock held can cause deadlocks; see schedule() for
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
2206 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2207 __releases(rq
->lock
)
2209 struct rq
*rq
= this_rq();
2210 struct mm_struct
*mm
= rq
->prev_mm
;
2216 * A task struct has one reference for the use as "current".
2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218 * schedule one last time. The schedule call will never return, and
2219 * the scheduled task must drop that reference.
2221 * We must observe prev->state before clearing prev->on_cpu (in
2222 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2223 * running on another CPU and we could rave with its RUNNING -> DEAD
2224 * transition, resulting in a double drop.
2226 prev_state
= prev
->state
;
2227 vtime_task_switch(prev
);
2228 finish_arch_switch(prev
);
2229 perf_event_task_sched_in(prev
, current
);
2230 finish_lock_switch(rq
, prev
);
2231 finish_arch_post_lock_switch();
2233 fire_sched_in_preempt_notifiers(current
);
2236 if (unlikely(prev_state
== TASK_DEAD
)) {
2237 if (prev
->sched_class
->task_dead
)
2238 prev
->sched_class
->task_dead(prev
);
2241 * Remove function-return probe instances associated with this
2242 * task and put them back on the free list.
2244 kprobe_flush_task(prev
);
2245 put_task_struct(prev
);
2248 tick_nohz_task_switch(current
);
2254 /* rq->lock is NOT held, but preemption is disabled */
2255 static inline void post_schedule(struct rq
*rq
)
2257 if (rq
->post_schedule
) {
2258 unsigned long flags
;
2260 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2261 if (rq
->curr
->sched_class
->post_schedule
)
2262 rq
->curr
->sched_class
->post_schedule(rq
);
2263 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2265 rq
->post_schedule
= 0;
2271 static inline void post_schedule(struct rq
*rq
)
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2281 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2282 __releases(rq
->lock
)
2286 /* finish_task_switch() drops rq->lock and enables preemtion */
2288 rq
= finish_task_switch(prev
);
2292 if (current
->set_child_tid
)
2293 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2297 * context_switch - switch to the new MM and the new thread's register state.
2299 static inline struct rq
*
2300 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2301 struct task_struct
*next
)
2303 struct mm_struct
*mm
, *oldmm
;
2305 prepare_task_switch(rq
, prev
, next
);
2308 oldmm
= prev
->active_mm
;
2310 * For paravirt, this is coupled with an exit in switch_to to
2311 * combine the page table reload and the switch backend into
2314 arch_start_context_switch(prev
);
2317 next
->active_mm
= oldmm
;
2318 atomic_inc(&oldmm
->mm_count
);
2319 enter_lazy_tlb(oldmm
, next
);
2321 switch_mm(oldmm
, mm
, next
);
2324 prev
->active_mm
= NULL
;
2325 rq
->prev_mm
= oldmm
;
2328 * Since the runqueue lock will be released by the next
2329 * task (which is an invalid locking op but in the case
2330 * of the scheduler it's an obvious special-case), so we
2331 * do an early lockdep release here:
2333 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2335 context_tracking_task_switch(prev
, next
);
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev
, next
, prev
);
2340 return finish_task_switch(prev
);
2344 * nr_running and nr_context_switches:
2346 * externally visible scheduler statistics: current number of runnable
2347 * threads, total number of context switches performed since bootup.
2349 unsigned long nr_running(void)
2351 unsigned long i
, sum
= 0;
2353 for_each_online_cpu(i
)
2354 sum
+= cpu_rq(i
)->nr_running
;
2360 * Check if only the current task is running on the cpu.
2362 * Caution: this function does not check that the caller has disabled
2363 * preemption, thus the result might have a time-of-check-to-time-of-use
2364 * race. The caller is responsible to use it correctly, for example:
2366 * - from a non-preemptable section (of course)
2368 * - from a thread that is bound to a single CPU
2370 * - in a loop with very short iterations (e.g. a polling loop)
2372 bool single_task_running(void)
2374 return raw_rq()->nr_running
== 1;
2376 EXPORT_SYMBOL(single_task_running
);
2378 unsigned long long nr_context_switches(void)
2381 unsigned long long sum
= 0;
2383 for_each_possible_cpu(i
)
2384 sum
+= cpu_rq(i
)->nr_switches
;
2389 unsigned long nr_iowait(void)
2391 unsigned long i
, sum
= 0;
2393 for_each_possible_cpu(i
)
2394 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2399 unsigned long nr_iowait_cpu(int cpu
)
2401 struct rq
*this = cpu_rq(cpu
);
2402 return atomic_read(&this->nr_iowait
);
2405 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2407 struct rq
*this = this_rq();
2408 *nr_waiters
= atomic_read(&this->nr_iowait
);
2409 *load
= this->cpu_load
[0];
2415 * sched_exec - execve() is a valuable balancing opportunity, because at
2416 * this point the task has the smallest effective memory and cache footprint.
2418 void sched_exec(void)
2420 struct task_struct
*p
= current
;
2421 unsigned long flags
;
2424 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2425 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2426 if (dest_cpu
== smp_processor_id())
2429 if (likely(cpu_active(dest_cpu
))) {
2430 struct migration_arg arg
= { p
, dest_cpu
};
2432 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2433 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2437 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2442 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2443 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2445 EXPORT_PER_CPU_SYMBOL(kstat
);
2446 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2449 * Return accounted runtime for the task.
2450 * In case the task is currently running, return the runtime plus current's
2451 * pending runtime that have not been accounted yet.
2453 unsigned long long task_sched_runtime(struct task_struct
*p
)
2455 unsigned long flags
;
2459 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2461 * 64-bit doesn't need locks to atomically read a 64bit value.
2462 * So we have a optimization chance when the task's delta_exec is 0.
2463 * Reading ->on_cpu is racy, but this is ok.
2465 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2466 * If we race with it entering cpu, unaccounted time is 0. This is
2467 * indistinguishable from the read occurring a few cycles earlier.
2468 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2469 * been accounted, so we're correct here as well.
2471 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2472 return p
->se
.sum_exec_runtime
;
2475 rq
= task_rq_lock(p
, &flags
);
2477 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2478 * project cycles that may never be accounted to this
2479 * thread, breaking clock_gettime().
2481 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2482 update_rq_clock(rq
);
2483 p
->sched_class
->update_curr(rq
);
2485 ns
= p
->se
.sum_exec_runtime
;
2486 task_rq_unlock(rq
, p
, &flags
);
2492 * This function gets called by the timer code, with HZ frequency.
2493 * We call it with interrupts disabled.
2495 void scheduler_tick(void)
2497 int cpu
= smp_processor_id();
2498 struct rq
*rq
= cpu_rq(cpu
);
2499 struct task_struct
*curr
= rq
->curr
;
2503 raw_spin_lock(&rq
->lock
);
2504 update_rq_clock(rq
);
2505 curr
->sched_class
->task_tick(rq
, curr
, 0);
2506 update_cpu_load_active(rq
);
2507 raw_spin_unlock(&rq
->lock
);
2509 perf_event_task_tick();
2512 rq
->idle_balance
= idle_cpu(cpu
);
2513 trigger_load_balance(rq
);
2515 rq_last_tick_reset(rq
);
2518 #ifdef CONFIG_NO_HZ_FULL
2520 * scheduler_tick_max_deferment
2522 * Keep at least one tick per second when a single
2523 * active task is running because the scheduler doesn't
2524 * yet completely support full dynticks environment.
2526 * This makes sure that uptime, CFS vruntime, load
2527 * balancing, etc... continue to move forward, even
2528 * with a very low granularity.
2530 * Return: Maximum deferment in nanoseconds.
2532 u64
scheduler_tick_max_deferment(void)
2534 struct rq
*rq
= this_rq();
2535 unsigned long next
, now
= ACCESS_ONCE(jiffies
);
2537 next
= rq
->last_sched_tick
+ HZ
;
2539 if (time_before_eq(next
, now
))
2542 return jiffies_to_nsecs(next
- now
);
2546 notrace
unsigned long get_parent_ip(unsigned long addr
)
2548 if (in_lock_functions(addr
)) {
2549 addr
= CALLER_ADDR2
;
2550 if (in_lock_functions(addr
))
2551 addr
= CALLER_ADDR3
;
2556 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2557 defined(CONFIG_PREEMPT_TRACER))
2559 void preempt_count_add(int val
)
2561 #ifdef CONFIG_DEBUG_PREEMPT
2565 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2568 __preempt_count_add(val
);
2569 #ifdef CONFIG_DEBUG_PREEMPT
2571 * Spinlock count overflowing soon?
2573 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2576 if (preempt_count() == val
) {
2577 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2578 #ifdef CONFIG_DEBUG_PREEMPT
2579 current
->preempt_disable_ip
= ip
;
2581 trace_preempt_off(CALLER_ADDR0
, ip
);
2584 EXPORT_SYMBOL(preempt_count_add
);
2585 NOKPROBE_SYMBOL(preempt_count_add
);
2587 void preempt_count_sub(int val
)
2589 #ifdef CONFIG_DEBUG_PREEMPT
2593 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2596 * Is the spinlock portion underflowing?
2598 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2599 !(preempt_count() & PREEMPT_MASK
)))
2603 if (preempt_count() == val
)
2604 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2605 __preempt_count_sub(val
);
2607 EXPORT_SYMBOL(preempt_count_sub
);
2608 NOKPROBE_SYMBOL(preempt_count_sub
);
2613 * Print scheduling while atomic bug:
2615 static noinline
void __schedule_bug(struct task_struct
*prev
)
2617 if (oops_in_progress
)
2620 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2621 prev
->comm
, prev
->pid
, preempt_count());
2623 debug_show_held_locks(prev
);
2625 if (irqs_disabled())
2626 print_irqtrace_events(prev
);
2627 #ifdef CONFIG_DEBUG_PREEMPT
2628 if (in_atomic_preempt_off()) {
2629 pr_err("Preemption disabled at:");
2630 print_ip_sym(current
->preempt_disable_ip
);
2635 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2639 * Various schedule()-time debugging checks and statistics:
2641 static inline void schedule_debug(struct task_struct
*prev
)
2643 #ifdef CONFIG_SCHED_STACK_END_CHECK
2644 BUG_ON(unlikely(task_stack_end_corrupted(prev
)));
2647 * Test if we are atomic. Since do_exit() needs to call into
2648 * schedule() atomically, we ignore that path. Otherwise whine
2649 * if we are scheduling when we should not.
2651 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2652 __schedule_bug(prev
);
2655 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2657 schedstat_inc(this_rq(), sched_count
);
2661 * Pick up the highest-prio task:
2663 static inline struct task_struct
*
2664 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
2666 const struct sched_class
*class = &fair_sched_class
;
2667 struct task_struct
*p
;
2670 * Optimization: we know that if all tasks are in
2671 * the fair class we can call that function directly:
2673 if (likely(prev
->sched_class
== class &&
2674 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2675 p
= fair_sched_class
.pick_next_task(rq
, prev
);
2676 if (unlikely(p
== RETRY_TASK
))
2679 /* assumes fair_sched_class->next == idle_sched_class */
2681 p
= idle_sched_class
.pick_next_task(rq
, prev
);
2687 for_each_class(class) {
2688 p
= class->pick_next_task(rq
, prev
);
2690 if (unlikely(p
== RETRY_TASK
))
2696 BUG(); /* the idle class will always have a runnable task */
2700 * __schedule() is the main scheduler function.
2702 * The main means of driving the scheduler and thus entering this function are:
2704 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2706 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2707 * paths. For example, see arch/x86/entry_64.S.
2709 * To drive preemption between tasks, the scheduler sets the flag in timer
2710 * interrupt handler scheduler_tick().
2712 * 3. Wakeups don't really cause entry into schedule(). They add a
2713 * task to the run-queue and that's it.
2715 * Now, if the new task added to the run-queue preempts the current
2716 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2717 * called on the nearest possible occasion:
2719 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2721 * - in syscall or exception context, at the next outmost
2722 * preempt_enable(). (this might be as soon as the wake_up()'s
2725 * - in IRQ context, return from interrupt-handler to
2726 * preemptible context
2728 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2731 * - cond_resched() call
2732 * - explicit schedule() call
2733 * - return from syscall or exception to user-space
2734 * - return from interrupt-handler to user-space
2736 * WARNING: all callers must re-check need_resched() afterward and reschedule
2737 * accordingly in case an event triggered the need for rescheduling (such as
2738 * an interrupt waking up a task) while preemption was disabled in __schedule().
2740 static void __sched
__schedule(void)
2742 struct task_struct
*prev
, *next
;
2743 unsigned long *switch_count
;
2748 cpu
= smp_processor_id();
2750 rcu_note_context_switch();
2753 schedule_debug(prev
);
2755 if (sched_feat(HRTICK
))
2759 * Make sure that signal_pending_state()->signal_pending() below
2760 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2761 * done by the caller to avoid the race with signal_wake_up().
2763 smp_mb__before_spinlock();
2764 raw_spin_lock_irq(&rq
->lock
);
2766 rq
->clock_skip_update
<<= 1; /* promote REQ to ACT */
2768 switch_count
= &prev
->nivcsw
;
2769 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2770 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
2771 prev
->state
= TASK_RUNNING
;
2773 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
2777 * If a worker went to sleep, notify and ask workqueue
2778 * whether it wants to wake up a task to maintain
2781 if (prev
->flags
& PF_WQ_WORKER
) {
2782 struct task_struct
*to_wakeup
;
2784 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
2786 try_to_wake_up_local(to_wakeup
);
2789 switch_count
= &prev
->nvcsw
;
2792 if (task_on_rq_queued(prev
))
2793 update_rq_clock(rq
);
2795 next
= pick_next_task(rq
, prev
);
2796 clear_tsk_need_resched(prev
);
2797 clear_preempt_need_resched();
2798 rq
->clock_skip_update
= 0;
2800 if (likely(prev
!= next
)) {
2805 rq
= context_switch(rq
, prev
, next
); /* unlocks the rq */
2808 raw_spin_unlock_irq(&rq
->lock
);
2812 sched_preempt_enable_no_resched();
2815 static inline void sched_submit_work(struct task_struct
*tsk
)
2817 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
2820 * If we are going to sleep and we have plugged IO queued,
2821 * make sure to submit it to avoid deadlocks.
2823 if (blk_needs_flush_plug(tsk
))
2824 blk_schedule_flush_plug(tsk
);
2827 asmlinkage __visible
void __sched
schedule(void)
2829 struct task_struct
*tsk
= current
;
2831 sched_submit_work(tsk
);
2834 } while (need_resched());
2836 EXPORT_SYMBOL(schedule
);
2838 #ifdef CONFIG_CONTEXT_TRACKING
2839 asmlinkage __visible
void __sched
schedule_user(void)
2842 * If we come here after a random call to set_need_resched(),
2843 * or we have been woken up remotely but the IPI has not yet arrived,
2844 * we haven't yet exited the RCU idle mode. Do it here manually until
2845 * we find a better solution.
2847 * NB: There are buggy callers of this function. Ideally we
2848 * should warn if prev_state != CONTEXT_USER, but that will trigger
2849 * too frequently to make sense yet.
2851 enum ctx_state prev_state
= exception_enter();
2853 exception_exit(prev_state
);
2858 * schedule_preempt_disabled - called with preemption disabled
2860 * Returns with preemption disabled. Note: preempt_count must be 1
2862 void __sched
schedule_preempt_disabled(void)
2864 sched_preempt_enable_no_resched();
2869 static void __sched notrace
preempt_schedule_common(void)
2872 __preempt_count_add(PREEMPT_ACTIVE
);
2874 __preempt_count_sub(PREEMPT_ACTIVE
);
2877 * Check again in case we missed a preemption opportunity
2878 * between schedule and now.
2881 } while (need_resched());
2884 #ifdef CONFIG_PREEMPT
2886 * this is the entry point to schedule() from in-kernel preemption
2887 * off of preempt_enable. Kernel preemptions off return from interrupt
2888 * occur there and call schedule directly.
2890 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
2893 * If there is a non-zero preempt_count or interrupts are disabled,
2894 * we do not want to preempt the current task. Just return..
2896 if (likely(!preemptible()))
2899 preempt_schedule_common();
2901 NOKPROBE_SYMBOL(preempt_schedule
);
2902 EXPORT_SYMBOL(preempt_schedule
);
2904 #ifdef CONFIG_CONTEXT_TRACKING
2906 * preempt_schedule_context - preempt_schedule called by tracing
2908 * The tracing infrastructure uses preempt_enable_notrace to prevent
2909 * recursion and tracing preempt enabling caused by the tracing
2910 * infrastructure itself. But as tracing can happen in areas coming
2911 * from userspace or just about to enter userspace, a preempt enable
2912 * can occur before user_exit() is called. This will cause the scheduler
2913 * to be called when the system is still in usermode.
2915 * To prevent this, the preempt_enable_notrace will use this function
2916 * instead of preempt_schedule() to exit user context if needed before
2917 * calling the scheduler.
2919 asmlinkage __visible
void __sched notrace
preempt_schedule_context(void)
2921 enum ctx_state prev_ctx
;
2923 if (likely(!preemptible()))
2927 __preempt_count_add(PREEMPT_ACTIVE
);
2929 * Needs preempt disabled in case user_exit() is traced
2930 * and the tracer calls preempt_enable_notrace() causing
2931 * an infinite recursion.
2933 prev_ctx
= exception_enter();
2935 exception_exit(prev_ctx
);
2937 __preempt_count_sub(PREEMPT_ACTIVE
);
2939 } while (need_resched());
2941 EXPORT_SYMBOL_GPL(preempt_schedule_context
);
2942 #endif /* CONFIG_CONTEXT_TRACKING */
2944 #endif /* CONFIG_PREEMPT */
2947 * this is the entry point to schedule() from kernel preemption
2948 * off of irq context.
2949 * Note, that this is called and return with irqs disabled. This will
2950 * protect us against recursive calling from irq.
2952 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
2954 enum ctx_state prev_state
;
2956 /* Catch callers which need to be fixed */
2957 BUG_ON(preempt_count() || !irqs_disabled());
2959 prev_state
= exception_enter();
2962 __preempt_count_add(PREEMPT_ACTIVE
);
2965 local_irq_disable();
2966 __preempt_count_sub(PREEMPT_ACTIVE
);
2969 * Check again in case we missed a preemption opportunity
2970 * between schedule and now.
2973 } while (need_resched());
2975 exception_exit(prev_state
);
2978 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
2981 return try_to_wake_up(curr
->private, mode
, wake_flags
);
2983 EXPORT_SYMBOL(default_wake_function
);
2985 #ifdef CONFIG_RT_MUTEXES
2988 * rt_mutex_setprio - set the current priority of a task
2990 * @prio: prio value (kernel-internal form)
2992 * This function changes the 'effective' priority of a task. It does
2993 * not touch ->normal_prio like __setscheduler().
2995 * Used by the rt_mutex code to implement priority inheritance
2996 * logic. Call site only calls if the priority of the task changed.
2998 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3000 int oldprio
, queued
, running
, enqueue_flag
= 0;
3002 const struct sched_class
*prev_class
;
3004 BUG_ON(prio
> MAX_PRIO
);
3006 rq
= __task_rq_lock(p
);
3009 * Idle task boosting is a nono in general. There is one
3010 * exception, when PREEMPT_RT and NOHZ is active:
3012 * The idle task calls get_next_timer_interrupt() and holds
3013 * the timer wheel base->lock on the CPU and another CPU wants
3014 * to access the timer (probably to cancel it). We can safely
3015 * ignore the boosting request, as the idle CPU runs this code
3016 * with interrupts disabled and will complete the lock
3017 * protected section without being interrupted. So there is no
3018 * real need to boost.
3020 if (unlikely(p
== rq
->idle
)) {
3021 WARN_ON(p
!= rq
->curr
);
3022 WARN_ON(p
->pi_blocked_on
);
3026 trace_sched_pi_setprio(p
, prio
);
3028 prev_class
= p
->sched_class
;
3029 queued
= task_on_rq_queued(p
);
3030 running
= task_current(rq
, p
);
3032 dequeue_task(rq
, p
, 0);
3034 put_prev_task(rq
, p
);
3037 * Boosting condition are:
3038 * 1. -rt task is running and holds mutex A
3039 * --> -dl task blocks on mutex A
3041 * 2. -dl task is running and holds mutex A
3042 * --> -dl task blocks on mutex A and could preempt the
3045 if (dl_prio(prio
)) {
3046 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3047 if (!dl_prio(p
->normal_prio
) ||
3048 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3049 p
->dl
.dl_boosted
= 1;
3050 p
->dl
.dl_throttled
= 0;
3051 enqueue_flag
= ENQUEUE_REPLENISH
;
3053 p
->dl
.dl_boosted
= 0;
3054 p
->sched_class
= &dl_sched_class
;
3055 } else if (rt_prio(prio
)) {
3056 if (dl_prio(oldprio
))
3057 p
->dl
.dl_boosted
= 0;
3059 enqueue_flag
= ENQUEUE_HEAD
;
3060 p
->sched_class
= &rt_sched_class
;
3062 if (dl_prio(oldprio
))
3063 p
->dl
.dl_boosted
= 0;
3064 if (rt_prio(oldprio
))
3066 p
->sched_class
= &fair_sched_class
;
3072 p
->sched_class
->set_curr_task(rq
);
3074 enqueue_task(rq
, p
, enqueue_flag
);
3076 check_class_changed(rq
, p
, prev_class
, oldprio
);
3078 __task_rq_unlock(rq
);
3082 void set_user_nice(struct task_struct
*p
, long nice
)
3084 int old_prio
, delta
, queued
;
3085 unsigned long flags
;
3088 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3091 * We have to be careful, if called from sys_setpriority(),
3092 * the task might be in the middle of scheduling on another CPU.
3094 rq
= task_rq_lock(p
, &flags
);
3096 * The RT priorities are set via sched_setscheduler(), but we still
3097 * allow the 'normal' nice value to be set - but as expected
3098 * it wont have any effect on scheduling until the task is
3099 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3101 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3102 p
->static_prio
= NICE_TO_PRIO(nice
);
3105 queued
= task_on_rq_queued(p
);
3107 dequeue_task(rq
, p
, 0);
3109 p
->static_prio
= NICE_TO_PRIO(nice
);
3112 p
->prio
= effective_prio(p
);
3113 delta
= p
->prio
- old_prio
;
3116 enqueue_task(rq
, p
, 0);
3118 * If the task increased its priority or is running and
3119 * lowered its priority, then reschedule its CPU:
3121 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3125 task_rq_unlock(rq
, p
, &flags
);
3127 EXPORT_SYMBOL(set_user_nice
);
3130 * can_nice - check if a task can reduce its nice value
3134 int can_nice(const struct task_struct
*p
, const int nice
)
3136 /* convert nice value [19,-20] to rlimit style value [1,40] */
3137 int nice_rlim
= nice_to_rlimit(nice
);
3139 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3140 capable(CAP_SYS_NICE
));
3143 #ifdef __ARCH_WANT_SYS_NICE
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3152 SYSCALL_DEFINE1(nice
, int, increment
)
3157 * Setpriority might change our priority at the same moment.
3158 * We don't have to worry. Conceptually one call occurs first
3159 * and we have a single winner.
3161 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3162 nice
= task_nice(current
) + increment
;
3164 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3165 if (increment
< 0 && !can_nice(current
, nice
))
3168 retval
= security_task_setnice(current
, nice
);
3172 set_user_nice(current
, nice
);
3179 * task_prio - return the priority value of a given task.
3180 * @p: the task in question.
3182 * Return: The priority value as seen by users in /proc.
3183 * RT tasks are offset by -200. Normal tasks are centered
3184 * around 0, value goes from -16 to +15.
3186 int task_prio(const struct task_struct
*p
)
3188 return p
->prio
- MAX_RT_PRIO
;
3192 * idle_cpu - is a given cpu idle currently?
3193 * @cpu: the processor in question.
3195 * Return: 1 if the CPU is currently idle. 0 otherwise.
3197 int idle_cpu(int cpu
)
3199 struct rq
*rq
= cpu_rq(cpu
);
3201 if (rq
->curr
!= rq
->idle
)
3208 if (!llist_empty(&rq
->wake_list
))
3216 * idle_task - return the idle task for a given cpu.
3217 * @cpu: the processor in question.
3219 * Return: The idle task for the cpu @cpu.
3221 struct task_struct
*idle_task(int cpu
)
3223 return cpu_rq(cpu
)->idle
;
3227 * find_process_by_pid - find a process with a matching PID value.
3228 * @pid: the pid in question.
3230 * The task of @pid, if found. %NULL otherwise.
3232 static struct task_struct
*find_process_by_pid(pid_t pid
)
3234 return pid
? find_task_by_vpid(pid
) : current
;
3238 * This function initializes the sched_dl_entity of a newly becoming
3239 * SCHED_DEADLINE task.
3241 * Only the static values are considered here, the actual runtime and the
3242 * absolute deadline will be properly calculated when the task is enqueued
3243 * for the first time with its new policy.
3246 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3248 struct sched_dl_entity
*dl_se
= &p
->dl
;
3250 dl_se
->dl_runtime
= attr
->sched_runtime
;
3251 dl_se
->dl_deadline
= attr
->sched_deadline
;
3252 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3253 dl_se
->flags
= attr
->sched_flags
;
3254 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3257 * Changing the parameters of a task is 'tricky' and we're not doing
3258 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3260 * What we SHOULD do is delay the bandwidth release until the 0-lag
3261 * point. This would include retaining the task_struct until that time
3262 * and change dl_overflow() to not immediately decrement the current
3265 * Instead we retain the current runtime/deadline and let the new
3266 * parameters take effect after the current reservation period lapses.
3267 * This is safe (albeit pessimistic) because the 0-lag point is always
3268 * before the current scheduling deadline.
3270 * We can still have temporary overloads because we do not delay the
3271 * change in bandwidth until that time; so admission control is
3272 * not on the safe side. It does however guarantee tasks will never
3273 * consume more than promised.
3278 * sched_setparam() passes in -1 for its policy, to let the functions
3279 * it calls know not to change it.
3281 #define SETPARAM_POLICY -1
3283 static void __setscheduler_params(struct task_struct
*p
,
3284 const struct sched_attr
*attr
)
3286 int policy
= attr
->sched_policy
;
3288 if (policy
== SETPARAM_POLICY
)
3293 if (dl_policy(policy
))
3294 __setparam_dl(p
, attr
);
3295 else if (fair_policy(policy
))
3296 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3299 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3300 * !rt_policy. Always setting this ensures that things like
3301 * getparam()/getattr() don't report silly values for !rt tasks.
3303 p
->rt_priority
= attr
->sched_priority
;
3304 p
->normal_prio
= normal_prio(p
);
3308 /* Actually do priority change: must hold pi & rq lock. */
3309 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3310 const struct sched_attr
*attr
, bool keep_boost
)
3312 __setscheduler_params(p
, attr
);
3315 * Keep a potential priority boosting if called from
3316 * sched_setscheduler().
3319 p
->prio
= rt_mutex_get_effective_prio(p
, normal_prio(p
));
3321 p
->prio
= normal_prio(p
);
3323 if (dl_prio(p
->prio
))
3324 p
->sched_class
= &dl_sched_class
;
3325 else if (rt_prio(p
->prio
))
3326 p
->sched_class
= &rt_sched_class
;
3328 p
->sched_class
= &fair_sched_class
;
3332 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3334 struct sched_dl_entity
*dl_se
= &p
->dl
;
3336 attr
->sched_priority
= p
->rt_priority
;
3337 attr
->sched_runtime
= dl_se
->dl_runtime
;
3338 attr
->sched_deadline
= dl_se
->dl_deadline
;
3339 attr
->sched_period
= dl_se
->dl_period
;
3340 attr
->sched_flags
= dl_se
->flags
;
3344 * This function validates the new parameters of a -deadline task.
3345 * We ask for the deadline not being zero, and greater or equal
3346 * than the runtime, as well as the period of being zero or
3347 * greater than deadline. Furthermore, we have to be sure that
3348 * user parameters are above the internal resolution of 1us (we
3349 * check sched_runtime only since it is always the smaller one) and
3350 * below 2^63 ns (we have to check both sched_deadline and
3351 * sched_period, as the latter can be zero).
3354 __checkparam_dl(const struct sched_attr
*attr
)
3357 if (attr
->sched_deadline
== 0)
3361 * Since we truncate DL_SCALE bits, make sure we're at least
3364 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3368 * Since we use the MSB for wrap-around and sign issues, make
3369 * sure it's not set (mind that period can be equal to zero).
3371 if (attr
->sched_deadline
& (1ULL << 63) ||
3372 attr
->sched_period
& (1ULL << 63))
3375 /* runtime <= deadline <= period (if period != 0) */
3376 if ((attr
->sched_period
!= 0 &&
3377 attr
->sched_period
< attr
->sched_deadline
) ||
3378 attr
->sched_deadline
< attr
->sched_runtime
)
3385 * check the target process has a UID that matches the current process's
3387 static bool check_same_owner(struct task_struct
*p
)
3389 const struct cred
*cred
= current_cred(), *pcred
;
3393 pcred
= __task_cred(p
);
3394 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3395 uid_eq(cred
->euid
, pcred
->uid
));
3400 static bool dl_param_changed(struct task_struct
*p
,
3401 const struct sched_attr
*attr
)
3403 struct sched_dl_entity
*dl_se
= &p
->dl
;
3405 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
3406 dl_se
->dl_deadline
!= attr
->sched_deadline
||
3407 dl_se
->dl_period
!= attr
->sched_period
||
3408 dl_se
->flags
!= attr
->sched_flags
)
3414 static int __sched_setscheduler(struct task_struct
*p
,
3415 const struct sched_attr
*attr
,
3418 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3419 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3420 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3421 int new_effective_prio
, policy
= attr
->sched_policy
;
3422 unsigned long flags
;
3423 const struct sched_class
*prev_class
;
3427 /* may grab non-irq protected spin_locks */
3428 BUG_ON(in_interrupt());
3430 /* double check policy once rq lock held */
3432 reset_on_fork
= p
->sched_reset_on_fork
;
3433 policy
= oldpolicy
= p
->policy
;
3435 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3437 if (policy
!= SCHED_DEADLINE
&&
3438 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3439 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3440 policy
!= SCHED_IDLE
)
3444 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3448 * Valid priorities for SCHED_FIFO and SCHED_RR are
3449 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3450 * SCHED_BATCH and SCHED_IDLE is 0.
3452 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3453 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3455 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3456 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3460 * Allow unprivileged RT tasks to decrease priority:
3462 if (user
&& !capable(CAP_SYS_NICE
)) {
3463 if (fair_policy(policy
)) {
3464 if (attr
->sched_nice
< task_nice(p
) &&
3465 !can_nice(p
, attr
->sched_nice
))
3469 if (rt_policy(policy
)) {
3470 unsigned long rlim_rtprio
=
3471 task_rlimit(p
, RLIMIT_RTPRIO
);
3473 /* can't set/change the rt policy */
3474 if (policy
!= p
->policy
&& !rlim_rtprio
)
3477 /* can't increase priority */
3478 if (attr
->sched_priority
> p
->rt_priority
&&
3479 attr
->sched_priority
> rlim_rtprio
)
3484 * Can't set/change SCHED_DEADLINE policy at all for now
3485 * (safest behavior); in the future we would like to allow
3486 * unprivileged DL tasks to increase their relative deadline
3487 * or reduce their runtime (both ways reducing utilization)
3489 if (dl_policy(policy
))
3493 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3494 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3496 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3497 if (!can_nice(p
, task_nice(p
)))
3501 /* can't change other user's priorities */
3502 if (!check_same_owner(p
))
3505 /* Normal users shall not reset the sched_reset_on_fork flag */
3506 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3511 retval
= security_task_setscheduler(p
);
3517 * make sure no PI-waiters arrive (or leave) while we are
3518 * changing the priority of the task:
3520 * To be able to change p->policy safely, the appropriate
3521 * runqueue lock must be held.
3523 rq
= task_rq_lock(p
, &flags
);
3526 * Changing the policy of the stop threads its a very bad idea
3528 if (p
== rq
->stop
) {
3529 task_rq_unlock(rq
, p
, &flags
);
3534 * If not changing anything there's no need to proceed further,
3535 * but store a possible modification of reset_on_fork.
3537 if (unlikely(policy
== p
->policy
)) {
3538 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3540 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3542 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
3545 p
->sched_reset_on_fork
= reset_on_fork
;
3546 task_rq_unlock(rq
, p
, &flags
);
3552 #ifdef CONFIG_RT_GROUP_SCHED
3554 * Do not allow realtime tasks into groups that have no runtime
3557 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3558 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3559 !task_group_is_autogroup(task_group(p
))) {
3560 task_rq_unlock(rq
, p
, &flags
);
3565 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3566 cpumask_t
*span
= rq
->rd
->span
;
3569 * Don't allow tasks with an affinity mask smaller than
3570 * the entire root_domain to become SCHED_DEADLINE. We
3571 * will also fail if there's no bandwidth available.
3573 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3574 rq
->rd
->dl_bw
.bw
== 0) {
3575 task_rq_unlock(rq
, p
, &flags
);
3582 /* recheck policy now with rq lock held */
3583 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3584 policy
= oldpolicy
= -1;
3585 task_rq_unlock(rq
, p
, &flags
);
3590 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3591 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3594 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3595 task_rq_unlock(rq
, p
, &flags
);
3599 p
->sched_reset_on_fork
= reset_on_fork
;
3603 * Take priority boosted tasks into account. If the new
3604 * effective priority is unchanged, we just store the new
3605 * normal parameters and do not touch the scheduler class and
3606 * the runqueue. This will be done when the task deboost
3609 new_effective_prio
= rt_mutex_get_effective_prio(p
, newprio
);
3610 if (new_effective_prio
== oldprio
) {
3611 __setscheduler_params(p
, attr
);
3612 task_rq_unlock(rq
, p
, &flags
);
3616 queued
= task_on_rq_queued(p
);
3617 running
= task_current(rq
, p
);
3619 dequeue_task(rq
, p
, 0);
3621 put_prev_task(rq
, p
);
3623 prev_class
= p
->sched_class
;
3624 __setscheduler(rq
, p
, attr
, true);
3627 p
->sched_class
->set_curr_task(rq
);
3630 * We enqueue to tail when the priority of a task is
3631 * increased (user space view).
3633 enqueue_task(rq
, p
, oldprio
<= p
->prio
? ENQUEUE_HEAD
: 0);
3636 check_class_changed(rq
, p
, prev_class
, oldprio
);
3637 task_rq_unlock(rq
, p
, &flags
);
3639 rt_mutex_adjust_pi(p
);
3644 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3645 const struct sched_param
*param
, bool check
)
3647 struct sched_attr attr
= {
3648 .sched_policy
= policy
,
3649 .sched_priority
= param
->sched_priority
,
3650 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3653 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3654 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
3655 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3656 policy
&= ~SCHED_RESET_ON_FORK
;
3657 attr
.sched_policy
= policy
;
3660 return __sched_setscheduler(p
, &attr
, check
);
3663 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3664 * @p: the task in question.
3665 * @policy: new policy.
3666 * @param: structure containing the new RT priority.
3668 * Return: 0 on success. An error code otherwise.
3670 * NOTE that the task may be already dead.
3672 int sched_setscheduler(struct task_struct
*p
, int policy
,
3673 const struct sched_param
*param
)
3675 return _sched_setscheduler(p
, policy
, param
, true);
3677 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3679 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3681 return __sched_setscheduler(p
, attr
, true);
3683 EXPORT_SYMBOL_GPL(sched_setattr
);
3686 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3687 * @p: the task in question.
3688 * @policy: new policy.
3689 * @param: structure containing the new RT priority.
3691 * Just like sched_setscheduler, only don't bother checking if the
3692 * current context has permission. For example, this is needed in
3693 * stop_machine(): we create temporary high priority worker threads,
3694 * but our caller might not have that capability.
3696 * Return: 0 on success. An error code otherwise.
3698 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
3699 const struct sched_param
*param
)
3701 return _sched_setscheduler(p
, policy
, param
, false);
3705 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3707 struct sched_param lparam
;
3708 struct task_struct
*p
;
3711 if (!param
|| pid
< 0)
3713 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3718 p
= find_process_by_pid(pid
);
3720 retval
= sched_setscheduler(p
, policy
, &lparam
);
3727 * Mimics kernel/events/core.c perf_copy_attr().
3729 static int sched_copy_attr(struct sched_attr __user
*uattr
,
3730 struct sched_attr
*attr
)
3735 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
3739 * zero the full structure, so that a short copy will be nice.
3741 memset(attr
, 0, sizeof(*attr
));
3743 ret
= get_user(size
, &uattr
->size
);
3747 if (size
> PAGE_SIZE
) /* silly large */
3750 if (!size
) /* abi compat */
3751 size
= SCHED_ATTR_SIZE_VER0
;
3753 if (size
< SCHED_ATTR_SIZE_VER0
)
3757 * If we're handed a bigger struct than we know of,
3758 * ensure all the unknown bits are 0 - i.e. new
3759 * user-space does not rely on any kernel feature
3760 * extensions we dont know about yet.
3762 if (size
> sizeof(*attr
)) {
3763 unsigned char __user
*addr
;
3764 unsigned char __user
*end
;
3767 addr
= (void __user
*)uattr
+ sizeof(*attr
);
3768 end
= (void __user
*)uattr
+ size
;
3770 for (; addr
< end
; addr
++) {
3771 ret
= get_user(val
, addr
);
3777 size
= sizeof(*attr
);
3780 ret
= copy_from_user(attr
, uattr
, size
);
3785 * XXX: do we want to be lenient like existing syscalls; or do we want
3786 * to be strict and return an error on out-of-bounds values?
3788 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
3793 put_user(sizeof(*attr
), &uattr
->size
);
3798 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3799 * @pid: the pid in question.
3800 * @policy: new policy.
3801 * @param: structure containing the new RT priority.
3803 * Return: 0 on success. An error code otherwise.
3805 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
3806 struct sched_param __user
*, param
)
3808 /* negative values for policy are not valid */
3812 return do_sched_setscheduler(pid
, policy
, param
);
3816 * sys_sched_setparam - set/change the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the new RT priority.
3820 * Return: 0 on success. An error code otherwise.
3822 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3824 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
3828 * sys_sched_setattr - same as above, but with extended sched_attr
3829 * @pid: the pid in question.
3830 * @uattr: structure containing the extended parameters.
3831 * @flags: for future extension.
3833 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3834 unsigned int, flags
)
3836 struct sched_attr attr
;
3837 struct task_struct
*p
;
3840 if (!uattr
|| pid
< 0 || flags
)
3843 retval
= sched_copy_attr(uattr
, &attr
);
3847 if ((int)attr
.sched_policy
< 0)
3852 p
= find_process_by_pid(pid
);
3854 retval
= sched_setattr(p
, &attr
);
3861 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3862 * @pid: the pid in question.
3864 * Return: On success, the policy of the thread. Otherwise, a negative error
3867 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
3869 struct task_struct
*p
;
3877 p
= find_process_by_pid(pid
);
3879 retval
= security_task_getscheduler(p
);
3882 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
3889 * sys_sched_getparam - get the RT priority of a thread
3890 * @pid: the pid in question.
3891 * @param: structure containing the RT priority.
3893 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3896 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3898 struct sched_param lp
= { .sched_priority
= 0 };
3899 struct task_struct
*p
;
3902 if (!param
|| pid
< 0)
3906 p
= find_process_by_pid(pid
);
3911 retval
= security_task_getscheduler(p
);
3915 if (task_has_rt_policy(p
))
3916 lp
.sched_priority
= p
->rt_priority
;
3920 * This one might sleep, we cannot do it with a spinlock held ...
3922 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3931 static int sched_read_attr(struct sched_attr __user
*uattr
,
3932 struct sched_attr
*attr
,
3937 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
3941 * If we're handed a smaller struct than we know of,
3942 * ensure all the unknown bits are 0 - i.e. old
3943 * user-space does not get uncomplete information.
3945 if (usize
< sizeof(*attr
)) {
3946 unsigned char *addr
;
3949 addr
= (void *)attr
+ usize
;
3950 end
= (void *)attr
+ sizeof(*attr
);
3952 for (; addr
< end
; addr
++) {
3960 ret
= copy_to_user(uattr
, attr
, attr
->size
);
3968 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3969 * @pid: the pid in question.
3970 * @uattr: structure containing the extended parameters.
3971 * @size: sizeof(attr) for fwd/bwd comp.
3972 * @flags: for future extension.
3974 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3975 unsigned int, size
, unsigned int, flags
)
3977 struct sched_attr attr
= {
3978 .size
= sizeof(struct sched_attr
),
3980 struct task_struct
*p
;
3983 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
3984 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
3988 p
= find_process_by_pid(pid
);
3993 retval
= security_task_getscheduler(p
);
3997 attr
.sched_policy
= p
->policy
;
3998 if (p
->sched_reset_on_fork
)
3999 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4000 if (task_has_dl_policy(p
))
4001 __getparam_dl(p
, &attr
);
4002 else if (task_has_rt_policy(p
))
4003 attr
.sched_priority
= p
->rt_priority
;
4005 attr
.sched_nice
= task_nice(p
);
4009 retval
= sched_read_attr(uattr
, &attr
, size
);
4017 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4019 cpumask_var_t cpus_allowed
, new_mask
;
4020 struct task_struct
*p
;
4025 p
= find_process_by_pid(pid
);
4031 /* Prevent p going away */
4035 if (p
->flags
& PF_NO_SETAFFINITY
) {
4039 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4043 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4045 goto out_free_cpus_allowed
;
4048 if (!check_same_owner(p
)) {
4050 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4052 goto out_free_new_mask
;
4057 retval
= security_task_setscheduler(p
);
4059 goto out_free_new_mask
;
4062 cpuset_cpus_allowed(p
, cpus_allowed
);
4063 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4066 * Since bandwidth control happens on root_domain basis,
4067 * if admission test is enabled, we only admit -deadline
4068 * tasks allowed to run on all the CPUs in the task's
4072 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4074 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4077 goto out_free_new_mask
;
4083 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4086 cpuset_cpus_allowed(p
, cpus_allowed
);
4087 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4089 * We must have raced with a concurrent cpuset
4090 * update. Just reset the cpus_allowed to the
4091 * cpuset's cpus_allowed
4093 cpumask_copy(new_mask
, cpus_allowed
);
4098 free_cpumask_var(new_mask
);
4099 out_free_cpus_allowed
:
4100 free_cpumask_var(cpus_allowed
);
4106 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4107 struct cpumask
*new_mask
)
4109 if (len
< cpumask_size())
4110 cpumask_clear(new_mask
);
4111 else if (len
> cpumask_size())
4112 len
= cpumask_size();
4114 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4118 * sys_sched_setaffinity - set the cpu affinity of a process
4119 * @pid: pid of the process
4120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4121 * @user_mask_ptr: user-space pointer to the new cpu mask
4123 * Return: 0 on success. An error code otherwise.
4125 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4126 unsigned long __user
*, user_mask_ptr
)
4128 cpumask_var_t new_mask
;
4131 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4134 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4136 retval
= sched_setaffinity(pid
, new_mask
);
4137 free_cpumask_var(new_mask
);
4141 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4143 struct task_struct
*p
;
4144 unsigned long flags
;
4150 p
= find_process_by_pid(pid
);
4154 retval
= security_task_getscheduler(p
);
4158 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4159 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4160 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4169 * sys_sched_getaffinity - get the cpu affinity of a process
4170 * @pid: pid of the process
4171 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4172 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4174 * Return: 0 on success. An error code otherwise.
4176 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4177 unsigned long __user
*, user_mask_ptr
)
4182 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4184 if (len
& (sizeof(unsigned long)-1))
4187 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4190 ret
= sched_getaffinity(pid
, mask
);
4192 size_t retlen
= min_t(size_t, len
, cpumask_size());
4194 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4199 free_cpumask_var(mask
);
4205 * sys_sched_yield - yield the current processor to other threads.
4207 * This function yields the current CPU to other tasks. If there are no
4208 * other threads running on this CPU then this function will return.
4212 SYSCALL_DEFINE0(sched_yield
)
4214 struct rq
*rq
= this_rq_lock();
4216 schedstat_inc(rq
, yld_count
);
4217 current
->sched_class
->yield_task(rq
);
4220 * Since we are going to call schedule() anyway, there's
4221 * no need to preempt or enable interrupts:
4223 __release(rq
->lock
);
4224 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4225 do_raw_spin_unlock(&rq
->lock
);
4226 sched_preempt_enable_no_resched();
4233 int __sched
_cond_resched(void)
4235 if (should_resched(0)) {
4236 preempt_schedule_common();
4241 EXPORT_SYMBOL(_cond_resched
);
4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4245 * call schedule, and on return reacquire the lock.
4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4251 int __cond_resched_lock(spinlock_t
*lock
)
4253 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4256 lockdep_assert_held(lock
);
4258 if (spin_needbreak(lock
) || resched
) {
4261 preempt_schedule_common();
4269 EXPORT_SYMBOL(__cond_resched_lock
);
4271 int __sched
__cond_resched_softirq(void)
4273 BUG_ON(!in_softirq());
4275 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4277 preempt_schedule_common();
4283 EXPORT_SYMBOL(__cond_resched_softirq
);
4286 * yield - yield the current processor to other threads.
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4294 * Typical broken usage is:
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
4307 void __sched
yield(void)
4309 set_current_state(TASK_RUNNING
);
4312 EXPORT_SYMBOL(yield
);
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
4319 * @preempt: whether task preemption is allowed or not
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4325 * true (>0) if we indeed boosted the target task.
4326 * false (0) if we failed to boost the target.
4327 * -ESRCH if there's no task to yield to.
4329 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4331 struct task_struct
*curr
= current
;
4332 struct rq
*rq
, *p_rq
;
4333 unsigned long flags
;
4336 local_irq_save(flags
);
4342 * If we're the only runnable task on the rq and target rq also
4343 * has only one task, there's absolutely no point in yielding.
4345 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4350 double_rq_lock(rq
, p_rq
);
4351 if (task_rq(p
) != p_rq
) {
4352 double_rq_unlock(rq
, p_rq
);
4356 if (!curr
->sched_class
->yield_to_task
)
4359 if (curr
->sched_class
!= p
->sched_class
)
4362 if (task_running(p_rq
, p
) || p
->state
)
4365 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4367 schedstat_inc(rq
, yld_count
);
4369 * Make p's CPU reschedule; pick_next_entity takes care of
4372 if (preempt
&& rq
!= p_rq
)
4377 double_rq_unlock(rq
, p_rq
);
4379 local_irq_restore(flags
);
4386 EXPORT_SYMBOL_GPL(yield_to
);
4389 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4390 * that process accounting knows that this is a task in IO wait state.
4392 long __sched
io_schedule_timeout(long timeout
)
4394 int old_iowait
= current
->in_iowait
;
4398 current
->in_iowait
= 1;
4399 blk_schedule_flush_plug(current
);
4401 delayacct_blkio_start();
4403 atomic_inc(&rq
->nr_iowait
);
4404 ret
= schedule_timeout(timeout
);
4405 current
->in_iowait
= old_iowait
;
4406 atomic_dec(&rq
->nr_iowait
);
4407 delayacct_blkio_end();
4411 EXPORT_SYMBOL(io_schedule_timeout
);
4414 * sys_sched_get_priority_max - return maximum RT priority.
4415 * @policy: scheduling class.
4417 * Return: On success, this syscall returns the maximum
4418 * rt_priority that can be used by a given scheduling class.
4419 * On failure, a negative error code is returned.
4421 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4428 ret
= MAX_USER_RT_PRIO
-1;
4430 case SCHED_DEADLINE
:
4441 * sys_sched_get_priority_min - return minimum RT priority.
4442 * @policy: scheduling class.
4444 * Return: On success, this syscall returns the minimum
4445 * rt_priority that can be used by a given scheduling class.
4446 * On failure, a negative error code is returned.
4448 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4457 case SCHED_DEADLINE
:
4467 * sys_sched_rr_get_interval - return the default timeslice of a process.
4468 * @pid: pid of the process.
4469 * @interval: userspace pointer to the timeslice value.
4471 * this syscall writes the default timeslice value of a given process
4472 * into the user-space timespec buffer. A value of '0' means infinity.
4474 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4477 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4478 struct timespec __user
*, interval
)
4480 struct task_struct
*p
;
4481 unsigned int time_slice
;
4482 unsigned long flags
;
4492 p
= find_process_by_pid(pid
);
4496 retval
= security_task_getscheduler(p
);
4500 rq
= task_rq_lock(p
, &flags
);
4502 if (p
->sched_class
->get_rr_interval
)
4503 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4504 task_rq_unlock(rq
, p
, &flags
);
4507 jiffies_to_timespec(time_slice
, &t
);
4508 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4516 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4518 void sched_show_task(struct task_struct
*p
)
4520 unsigned long free
= 0;
4522 unsigned long state
= p
->state
;
4525 state
= __ffs(state
) + 1;
4526 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4527 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4528 #if BITS_PER_LONG == 32
4529 if (state
== TASK_RUNNING
)
4530 printk(KERN_CONT
" running ");
4532 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4534 if (state
== TASK_RUNNING
)
4535 printk(KERN_CONT
" running task ");
4537 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4539 #ifdef CONFIG_DEBUG_STACK_USAGE
4540 free
= stack_not_used(p
);
4545 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4547 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4548 task_pid_nr(p
), ppid
,
4549 (unsigned long)task_thread_info(p
)->flags
);
4551 print_worker_info(KERN_INFO
, p
);
4552 show_stack(p
, NULL
);
4555 void show_state_filter(unsigned long state_filter
)
4557 struct task_struct
*g
, *p
;
4559 #if BITS_PER_LONG == 32
4561 " task PC stack pid father\n");
4564 " task PC stack pid father\n");
4567 for_each_process_thread(g
, p
) {
4569 * reset the NMI-timeout, listing all files on a slow
4570 * console might take a lot of time:
4572 touch_nmi_watchdog();
4573 if (!state_filter
|| (p
->state
& state_filter
))
4577 touch_all_softlockup_watchdogs();
4579 #ifdef CONFIG_SCHED_DEBUG
4580 sysrq_sched_debug_show();
4584 * Only show locks if all tasks are dumped:
4587 debug_show_all_locks();
4590 void init_idle_bootup_task(struct task_struct
*idle
)
4592 idle
->sched_class
= &idle_sched_class
;
4596 * init_idle - set up an idle thread for a given CPU
4597 * @idle: task in question
4598 * @cpu: cpu the idle task belongs to
4600 * NOTE: this function does not set the idle thread's NEED_RESCHED
4601 * flag, to make booting more robust.
4603 void init_idle(struct task_struct
*idle
, int cpu
)
4605 struct rq
*rq
= cpu_rq(cpu
);
4606 unsigned long flags
;
4608 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4610 __sched_fork(0, idle
);
4611 idle
->state
= TASK_RUNNING
;
4612 idle
->se
.exec_start
= sched_clock();
4614 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4616 * We're having a chicken and egg problem, even though we are
4617 * holding rq->lock, the cpu isn't yet set to this cpu so the
4618 * lockdep check in task_group() will fail.
4620 * Similar case to sched_fork(). / Alternatively we could
4621 * use task_rq_lock() here and obtain the other rq->lock.
4626 __set_task_cpu(idle
, cpu
);
4629 rq
->curr
= rq
->idle
= idle
;
4630 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
4631 #if defined(CONFIG_SMP)
4634 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4636 /* Set the preempt count _outside_ the spinlocks! */
4637 init_idle_preempt_count(idle
, cpu
);
4640 * The idle tasks have their own, simple scheduling class:
4642 idle
->sched_class
= &idle_sched_class
;
4643 ftrace_graph_init_idle_task(idle
, cpu
);
4644 vtime_init_idle(idle
, cpu
);
4645 #if defined(CONFIG_SMP)
4646 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4650 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
4651 const struct cpumask
*trial
)
4653 int ret
= 1, trial_cpus
;
4654 struct dl_bw
*cur_dl_b
;
4655 unsigned long flags
;
4657 if (!cpumask_weight(cur
))
4660 rcu_read_lock_sched();
4661 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
4662 trial_cpus
= cpumask_weight(trial
);
4664 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
4665 if (cur_dl_b
->bw
!= -1 &&
4666 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
4668 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
4669 rcu_read_unlock_sched();
4674 int task_can_attach(struct task_struct
*p
,
4675 const struct cpumask
*cs_cpus_allowed
)
4680 * Kthreads which disallow setaffinity shouldn't be moved
4681 * to a new cpuset; we don't want to change their cpu
4682 * affinity and isolating such threads by their set of
4683 * allowed nodes is unnecessary. Thus, cpusets are not
4684 * applicable for such threads. This prevents checking for
4685 * success of set_cpus_allowed_ptr() on all attached tasks
4686 * before cpus_allowed may be changed.
4688 if (p
->flags
& PF_NO_SETAFFINITY
) {
4694 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
4696 unsigned int dest_cpu
= cpumask_any_and(cpu_active_mask
,
4701 unsigned long flags
;
4703 rcu_read_lock_sched();
4704 dl_b
= dl_bw_of(dest_cpu
);
4705 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
4706 cpus
= dl_bw_cpus(dest_cpu
);
4707 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
4712 * We reserve space for this task in the destination
4713 * root_domain, as we can't fail after this point.
4714 * We will free resources in the source root_domain
4715 * later on (see set_cpus_allowed_dl()).
4717 __dl_add(dl_b
, p
->dl
.dl_bw
);
4719 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
4720 rcu_read_unlock_sched();
4730 * move_queued_task - move a queued task to new rq.
4732 * Returns (locked) new rq. Old rq's lock is released.
4734 static struct rq
*move_queued_task(struct task_struct
*p
, int new_cpu
)
4736 struct rq
*rq
= task_rq(p
);
4738 lockdep_assert_held(&rq
->lock
);
4740 dequeue_task(rq
, p
, 0);
4741 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
4742 set_task_cpu(p
, new_cpu
);
4743 raw_spin_unlock(&rq
->lock
);
4745 rq
= cpu_rq(new_cpu
);
4747 raw_spin_lock(&rq
->lock
);
4748 BUG_ON(task_cpu(p
) != new_cpu
);
4749 p
->on_rq
= TASK_ON_RQ_QUEUED
;
4750 enqueue_task(rq
, p
, 0);
4751 check_preempt_curr(rq
, p
, 0);
4756 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4758 if (p
->sched_class
->set_cpus_allowed
)
4759 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4761 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4762 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
4766 * This is how migration works:
4768 * 1) we invoke migration_cpu_stop() on the target CPU using
4770 * 2) stopper starts to run (implicitly forcing the migrated thread
4772 * 3) it checks whether the migrated task is still in the wrong runqueue.
4773 * 4) if it's in the wrong runqueue then the migration thread removes
4774 * it and puts it into the right queue.
4775 * 5) stopper completes and stop_one_cpu() returns and the migration
4780 * Change a given task's CPU affinity. Migrate the thread to a
4781 * proper CPU and schedule it away if the CPU it's executing on
4782 * is removed from the allowed bitmask.
4784 * NOTE: the caller must have a valid reference to the task, the
4785 * task must not exit() & deallocate itself prematurely. The
4786 * call is not atomic; no spinlocks may be held.
4788 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4790 unsigned long flags
;
4792 unsigned int dest_cpu
;
4795 rq
= task_rq_lock(p
, &flags
);
4797 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4800 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4805 do_set_cpus_allowed(p
, new_mask
);
4807 /* Can the task run on the task's current CPU? If so, we're done */
4808 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4811 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4812 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
4813 struct migration_arg arg
= { p
, dest_cpu
};
4814 /* Need help from migration thread: drop lock and wait. */
4815 task_rq_unlock(rq
, p
, &flags
);
4816 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4817 tlb_migrate_finish(p
->mm
);
4819 } else if (task_on_rq_queued(p
))
4820 rq
= move_queued_task(p
, dest_cpu
);
4822 task_rq_unlock(rq
, p
, &flags
);
4826 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4829 * Move (not current) task off this cpu, onto dest cpu. We're doing
4830 * this because either it can't run here any more (set_cpus_allowed()
4831 * away from this CPU, or CPU going down), or because we're
4832 * attempting to rebalance this task on exec (sched_exec).
4834 * So we race with normal scheduler movements, but that's OK, as long
4835 * as the task is no longer on this CPU.
4837 * Returns non-zero if task was successfully migrated.
4839 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4844 if (unlikely(!cpu_active(dest_cpu
)))
4847 rq
= cpu_rq(src_cpu
);
4849 raw_spin_lock(&p
->pi_lock
);
4850 raw_spin_lock(&rq
->lock
);
4851 /* Already moved. */
4852 if (task_cpu(p
) != src_cpu
)
4855 /* Affinity changed (again). */
4856 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4860 * If we're not on a rq, the next wake-up will ensure we're
4863 if (task_on_rq_queued(p
))
4864 rq
= move_queued_task(p
, dest_cpu
);
4868 raw_spin_unlock(&rq
->lock
);
4869 raw_spin_unlock(&p
->pi_lock
);
4873 #ifdef CONFIG_NUMA_BALANCING
4874 /* Migrate current task p to target_cpu */
4875 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
4877 struct migration_arg arg
= { p
, target_cpu
};
4878 int curr_cpu
= task_cpu(p
);
4880 if (curr_cpu
== target_cpu
)
4883 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
4886 /* TODO: This is not properly updating schedstats */
4888 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
4889 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
4893 * Requeue a task on a given node and accurately track the number of NUMA
4894 * tasks on the runqueues
4896 void sched_setnuma(struct task_struct
*p
, int nid
)
4899 unsigned long flags
;
4900 bool queued
, running
;
4902 rq
= task_rq_lock(p
, &flags
);
4903 queued
= task_on_rq_queued(p
);
4904 running
= task_current(rq
, p
);
4907 dequeue_task(rq
, p
, 0);
4909 put_prev_task(rq
, p
);
4911 p
->numa_preferred_nid
= nid
;
4914 p
->sched_class
->set_curr_task(rq
);
4916 enqueue_task(rq
, p
, 0);
4917 task_rq_unlock(rq
, p
, &flags
);
4922 * migration_cpu_stop - this will be executed by a highprio stopper thread
4923 * and performs thread migration by bumping thread off CPU then
4924 * 'pushing' onto another runqueue.
4926 static int migration_cpu_stop(void *data
)
4928 struct migration_arg
*arg
= data
;
4931 * The original target cpu might have gone down and we might
4932 * be on another cpu but it doesn't matter.
4934 local_irq_disable();
4936 * We need to explicitly wake pending tasks before running
4937 * __migrate_task() such that we will not miss enforcing cpus_allowed
4938 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4940 sched_ttwu_pending();
4941 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
4946 #ifdef CONFIG_HOTPLUG_CPU
4949 * Ensures that the idle task is using init_mm right before its cpu goes
4952 void idle_task_exit(void)
4954 struct mm_struct
*mm
= current
->active_mm
;
4956 BUG_ON(cpu_online(smp_processor_id()));
4958 if (mm
!= &init_mm
) {
4959 switch_mm(mm
, &init_mm
, current
);
4960 finish_arch_post_lock_switch();
4966 * Since this CPU is going 'away' for a while, fold any nr_active delta
4967 * we might have. Assumes we're called after migrate_tasks() so that the
4968 * nr_active count is stable.
4970 * Also see the comment "Global load-average calculations".
4972 static void calc_load_migrate(struct rq
*rq
)
4974 long delta
= calc_load_fold_active(rq
);
4976 atomic_long_add(delta
, &calc_load_tasks
);
4979 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
4983 static const struct sched_class fake_sched_class
= {
4984 .put_prev_task
= put_prev_task_fake
,
4987 static struct task_struct fake_task
= {
4989 * Avoid pull_{rt,dl}_task()
4991 .prio
= MAX_PRIO
+ 1,
4992 .sched_class
= &fake_sched_class
,
4996 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4997 * try_to_wake_up()->select_task_rq().
4999 * Called with rq->lock held even though we'er in stop_machine() and
5000 * there's no concurrency possible, we hold the required locks anyway
5001 * because of lock validation efforts.
5003 static void migrate_tasks(unsigned int dead_cpu
)
5005 struct rq
*rq
= cpu_rq(dead_cpu
);
5006 struct task_struct
*next
, *stop
= rq
->stop
;
5010 * Fudge the rq selection such that the below task selection loop
5011 * doesn't get stuck on the currently eligible stop task.
5013 * We're currently inside stop_machine() and the rq is either stuck
5014 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5015 * either way we should never end up calling schedule() until we're
5021 * put_prev_task() and pick_next_task() sched
5022 * class method both need to have an up-to-date
5023 * value of rq->clock[_task]
5025 update_rq_clock(rq
);
5029 * There's this thread running, bail when that's the only
5032 if (rq
->nr_running
== 1)
5035 next
= pick_next_task(rq
, &fake_task
);
5037 next
->sched_class
->put_prev_task(rq
, next
);
5039 /* Find suitable destination for @next, with force if needed. */
5040 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
5041 raw_spin_unlock(&rq
->lock
);
5043 __migrate_task(next
, dead_cpu
, dest_cpu
);
5045 raw_spin_lock(&rq
->lock
);
5051 #endif /* CONFIG_HOTPLUG_CPU */
5053 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5055 static struct ctl_table sd_ctl_dir
[] = {
5057 .procname
= "sched_domain",
5063 static struct ctl_table sd_ctl_root
[] = {
5065 .procname
= "kernel",
5067 .child
= sd_ctl_dir
,
5072 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5074 struct ctl_table
*entry
=
5075 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5080 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5082 struct ctl_table
*entry
;
5085 * In the intermediate directories, both the child directory and
5086 * procname are dynamically allocated and could fail but the mode
5087 * will always be set. In the lowest directory the names are
5088 * static strings and all have proc handlers.
5090 for (entry
= *tablep
; entry
->mode
; entry
++) {
5092 sd_free_ctl_entry(&entry
->child
);
5093 if (entry
->proc_handler
== NULL
)
5094 kfree(entry
->procname
);
5101 static int min_load_idx
= 0;
5102 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
5105 set_table_entry(struct ctl_table
*entry
,
5106 const char *procname
, void *data
, int maxlen
,
5107 umode_t mode
, proc_handler
*proc_handler
,
5110 entry
->procname
= procname
;
5112 entry
->maxlen
= maxlen
;
5114 entry
->proc_handler
= proc_handler
;
5117 entry
->extra1
= &min_load_idx
;
5118 entry
->extra2
= &max_load_idx
;
5122 static struct ctl_table
*
5123 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5125 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5130 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5131 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5132 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5133 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5134 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5135 sizeof(int), 0644, proc_dointvec_minmax
, true);
5136 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5137 sizeof(int), 0644, proc_dointvec_minmax
, true);
5138 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5139 sizeof(int), 0644, proc_dointvec_minmax
, true);
5140 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5141 sizeof(int), 0644, proc_dointvec_minmax
, true);
5142 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5143 sizeof(int), 0644, proc_dointvec_minmax
, true);
5144 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5145 sizeof(int), 0644, proc_dointvec_minmax
, false);
5146 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5147 sizeof(int), 0644, proc_dointvec_minmax
, false);
5148 set_table_entry(&table
[9], "cache_nice_tries",
5149 &sd
->cache_nice_tries
,
5150 sizeof(int), 0644, proc_dointvec_minmax
, false);
5151 set_table_entry(&table
[10], "flags", &sd
->flags
,
5152 sizeof(int), 0644, proc_dointvec_minmax
, false);
5153 set_table_entry(&table
[11], "max_newidle_lb_cost",
5154 &sd
->max_newidle_lb_cost
,
5155 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5156 set_table_entry(&table
[12], "name", sd
->name
,
5157 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
5158 /* &table[13] is terminator */
5163 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5165 struct ctl_table
*entry
, *table
;
5166 struct sched_domain
*sd
;
5167 int domain_num
= 0, i
;
5170 for_each_domain(cpu
, sd
)
5172 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5177 for_each_domain(cpu
, sd
) {
5178 snprintf(buf
, 32, "domain%d", i
);
5179 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5181 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5188 static struct ctl_table_header
*sd_sysctl_header
;
5189 static void register_sched_domain_sysctl(void)
5191 int i
, cpu_num
= num_possible_cpus();
5192 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5195 WARN_ON(sd_ctl_dir
[0].child
);
5196 sd_ctl_dir
[0].child
= entry
;
5201 for_each_possible_cpu(i
) {
5202 snprintf(buf
, 32, "cpu%d", i
);
5203 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5205 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5209 WARN_ON(sd_sysctl_header
);
5210 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5213 /* may be called multiple times per register */
5214 static void unregister_sched_domain_sysctl(void)
5216 if (sd_sysctl_header
)
5217 unregister_sysctl_table(sd_sysctl_header
);
5218 sd_sysctl_header
= NULL
;
5219 if (sd_ctl_dir
[0].child
)
5220 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5223 static void register_sched_domain_sysctl(void)
5226 static void unregister_sched_domain_sysctl(void)
5231 static void set_rq_online(struct rq
*rq
)
5234 const struct sched_class
*class;
5236 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5239 for_each_class(class) {
5240 if (class->rq_online
)
5241 class->rq_online(rq
);
5246 static void set_rq_offline(struct rq
*rq
)
5249 const struct sched_class
*class;
5251 for_each_class(class) {
5252 if (class->rq_offline
)
5253 class->rq_offline(rq
);
5256 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5262 * migration_call - callback that gets triggered when a CPU is added.
5263 * Here we can start up the necessary migration thread for the new CPU.
5266 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5268 int cpu
= (long)hcpu
;
5269 unsigned long flags
;
5270 struct rq
*rq
= cpu_rq(cpu
);
5272 switch (action
& ~CPU_TASKS_FROZEN
) {
5274 case CPU_UP_PREPARE
:
5275 rq
->calc_load_update
= calc_load_update
;
5279 /* Update our root-domain */
5280 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5282 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5286 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5289 #ifdef CONFIG_HOTPLUG_CPU
5291 sched_ttwu_pending();
5292 /* Update our root-domain */
5293 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5295 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5299 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5300 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5304 calc_load_migrate(rq
);
5309 update_max_interval();
5315 * Register at high priority so that task migration (migrate_all_tasks)
5316 * happens before everything else. This has to be lower priority than
5317 * the notifier in the perf_event subsystem, though.
5319 static struct notifier_block migration_notifier
= {
5320 .notifier_call
= migration_call
,
5321 .priority
= CPU_PRI_MIGRATION
,
5324 static void __cpuinit
set_cpu_rq_start_time(void)
5326 int cpu
= smp_processor_id();
5327 struct rq
*rq
= cpu_rq(cpu
);
5328 rq
->age_stamp
= sched_clock_cpu(cpu
);
5331 static int sched_cpu_active(struct notifier_block
*nfb
,
5332 unsigned long action
, void *hcpu
)
5334 switch (action
& ~CPU_TASKS_FROZEN
) {
5336 set_cpu_rq_start_time();
5340 * At this point a starting CPU has marked itself as online via
5341 * set_cpu_online(). But it might not yet have marked itself
5342 * as active, which is essential from here on.
5344 * Thus, fall-through and help the starting CPU along.
5346 case CPU_DOWN_FAILED
:
5347 set_cpu_active((long)hcpu
, true);
5354 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5355 unsigned long action
, void *hcpu
)
5357 switch (action
& ~CPU_TASKS_FROZEN
) {
5358 case CPU_DOWN_PREPARE
:
5359 set_cpu_active((long)hcpu
, false);
5366 static int __init
migration_init(void)
5368 void *cpu
= (void *)(long)smp_processor_id();
5371 /* Initialize migration for the boot CPU */
5372 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5373 BUG_ON(err
== NOTIFY_BAD
);
5374 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5375 register_cpu_notifier(&migration_notifier
);
5377 /* Register cpu active notifiers */
5378 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5379 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5383 early_initcall(migration_init
);
5388 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5390 #ifdef CONFIG_SCHED_DEBUG
5392 static __read_mostly
int sched_debug_enabled
;
5394 static int __init
sched_debug_setup(char *str
)
5396 sched_debug_enabled
= 1;
5400 early_param("sched_debug", sched_debug_setup
);
5402 static inline bool sched_debug(void)
5404 return sched_debug_enabled
;
5407 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5408 struct cpumask
*groupmask
)
5410 struct sched_group
*group
= sd
->groups
;
5412 cpumask_clear(groupmask
);
5414 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5416 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5417 printk("does not load-balance\n");
5419 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5424 printk(KERN_CONT
"span %*pbl level %s\n",
5425 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
5427 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5428 printk(KERN_ERR
"ERROR: domain->span does not contain "
5431 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5432 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5436 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5440 printk(KERN_ERR
"ERROR: group is NULL\n");
5444 if (!cpumask_weight(sched_group_cpus(group
))) {
5445 printk(KERN_CONT
"\n");
5446 printk(KERN_ERR
"ERROR: empty group\n");
5450 if (!(sd
->flags
& SD_OVERLAP
) &&
5451 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5452 printk(KERN_CONT
"\n");
5453 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5457 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5459 printk(KERN_CONT
" %*pbl",
5460 cpumask_pr_args(sched_group_cpus(group
)));
5461 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5462 printk(KERN_CONT
" (cpu_capacity = %d)",
5463 group
->sgc
->capacity
);
5466 group
= group
->next
;
5467 } while (group
!= sd
->groups
);
5468 printk(KERN_CONT
"\n");
5470 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5471 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5474 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5475 printk(KERN_ERR
"ERROR: parent span is not a superset "
5476 "of domain->span\n");
5480 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5484 if (!sched_debug_enabled
)
5488 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5492 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5495 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5503 #else /* !CONFIG_SCHED_DEBUG */
5504 # define sched_domain_debug(sd, cpu) do { } while (0)
5505 static inline bool sched_debug(void)
5509 #endif /* CONFIG_SCHED_DEBUG */
5511 static int sd_degenerate(struct sched_domain
*sd
)
5513 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5516 /* Following flags need at least 2 groups */
5517 if (sd
->flags
& (SD_LOAD_BALANCE
|
5518 SD_BALANCE_NEWIDLE
|
5521 SD_SHARE_CPUCAPACITY
|
5522 SD_SHARE_PKG_RESOURCES
|
5523 SD_SHARE_POWERDOMAIN
)) {
5524 if (sd
->groups
!= sd
->groups
->next
)
5528 /* Following flags don't use groups */
5529 if (sd
->flags
& (SD_WAKE_AFFINE
))
5536 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5538 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5540 if (sd_degenerate(parent
))
5543 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5546 /* Flags needing groups don't count if only 1 group in parent */
5547 if (parent
->groups
== parent
->groups
->next
) {
5548 pflags
&= ~(SD_LOAD_BALANCE
|
5549 SD_BALANCE_NEWIDLE
|
5552 SD_SHARE_CPUCAPACITY
|
5553 SD_SHARE_PKG_RESOURCES
|
5555 SD_SHARE_POWERDOMAIN
);
5556 if (nr_node_ids
== 1)
5557 pflags
&= ~SD_SERIALIZE
;
5559 if (~cflags
& pflags
)
5565 static void free_rootdomain(struct rcu_head
*rcu
)
5567 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5569 cpupri_cleanup(&rd
->cpupri
);
5570 cpudl_cleanup(&rd
->cpudl
);
5571 free_cpumask_var(rd
->dlo_mask
);
5572 free_cpumask_var(rd
->rto_mask
);
5573 free_cpumask_var(rd
->online
);
5574 free_cpumask_var(rd
->span
);
5578 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5580 struct root_domain
*old_rd
= NULL
;
5581 unsigned long flags
;
5583 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5588 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5591 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5594 * If we dont want to free the old_rd yet then
5595 * set old_rd to NULL to skip the freeing later
5598 if (!atomic_dec_and_test(&old_rd
->refcount
))
5602 atomic_inc(&rd
->refcount
);
5605 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5606 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5609 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5612 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5615 static int init_rootdomain(struct root_domain
*rd
)
5617 memset(rd
, 0, sizeof(*rd
));
5619 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5621 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5623 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5625 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5628 init_dl_bw(&rd
->dl_bw
);
5629 if (cpudl_init(&rd
->cpudl
) != 0)
5632 if (cpupri_init(&rd
->cpupri
) != 0)
5637 free_cpumask_var(rd
->rto_mask
);
5639 free_cpumask_var(rd
->dlo_mask
);
5641 free_cpumask_var(rd
->online
);
5643 free_cpumask_var(rd
->span
);
5649 * By default the system creates a single root-domain with all cpus as
5650 * members (mimicking the global state we have today).
5652 struct root_domain def_root_domain
;
5654 static void init_defrootdomain(void)
5656 init_rootdomain(&def_root_domain
);
5658 atomic_set(&def_root_domain
.refcount
, 1);
5661 static struct root_domain
*alloc_rootdomain(void)
5663 struct root_domain
*rd
;
5665 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5669 if (init_rootdomain(rd
) != 0) {
5677 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5679 struct sched_group
*tmp
, *first
;
5688 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5693 } while (sg
!= first
);
5696 static void free_sched_domain(struct rcu_head
*rcu
)
5698 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5701 * If its an overlapping domain it has private groups, iterate and
5704 if (sd
->flags
& SD_OVERLAP
) {
5705 free_sched_groups(sd
->groups
, 1);
5706 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5707 kfree(sd
->groups
->sgc
);
5713 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5715 call_rcu(&sd
->rcu
, free_sched_domain
);
5718 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5720 for (; sd
; sd
= sd
->parent
)
5721 destroy_sched_domain(sd
, cpu
);
5725 * Keep a special pointer to the highest sched_domain that has
5726 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5727 * allows us to avoid some pointer chasing select_idle_sibling().
5729 * Also keep a unique ID per domain (we use the first cpu number in
5730 * the cpumask of the domain), this allows us to quickly tell if
5731 * two cpus are in the same cache domain, see cpus_share_cache().
5733 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5734 DEFINE_PER_CPU(int, sd_llc_size
);
5735 DEFINE_PER_CPU(int, sd_llc_id
);
5736 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5737 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5738 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5740 static void update_top_cache_domain(int cpu
)
5742 struct sched_domain
*sd
;
5743 struct sched_domain
*busy_sd
= NULL
;
5747 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5749 id
= cpumask_first(sched_domain_span(sd
));
5750 size
= cpumask_weight(sched_domain_span(sd
));
5751 busy_sd
= sd
->parent
; /* sd_busy */
5753 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5755 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5756 per_cpu(sd_llc_size
, cpu
) = size
;
5757 per_cpu(sd_llc_id
, cpu
) = id
;
5759 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5760 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5762 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5763 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5767 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5768 * hold the hotplug lock.
5771 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5773 struct rq
*rq
= cpu_rq(cpu
);
5774 struct sched_domain
*tmp
;
5776 /* Remove the sched domains which do not contribute to scheduling. */
5777 for (tmp
= sd
; tmp
; ) {
5778 struct sched_domain
*parent
= tmp
->parent
;
5782 if (sd_parent_degenerate(tmp
, parent
)) {
5783 tmp
->parent
= parent
->parent
;
5785 parent
->parent
->child
= tmp
;
5787 * Transfer SD_PREFER_SIBLING down in case of a
5788 * degenerate parent; the spans match for this
5789 * so the property transfers.
5791 if (parent
->flags
& SD_PREFER_SIBLING
)
5792 tmp
->flags
|= SD_PREFER_SIBLING
;
5793 destroy_sched_domain(parent
, cpu
);
5798 if (sd
&& sd_degenerate(sd
)) {
5801 destroy_sched_domain(tmp
, cpu
);
5806 sched_domain_debug(sd
, cpu
);
5808 rq_attach_root(rq
, rd
);
5810 rcu_assign_pointer(rq
->sd
, sd
);
5811 destroy_sched_domains(tmp
, cpu
);
5813 update_top_cache_domain(cpu
);
5816 /* Setup the mask of cpus configured for isolated domains */
5817 static int __init
isolated_cpu_setup(char *str
)
5819 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5820 cpulist_parse(str
, cpu_isolated_map
);
5824 __setup("isolcpus=", isolated_cpu_setup
);
5827 struct sched_domain
** __percpu sd
;
5828 struct root_domain
*rd
;
5839 * Build an iteration mask that can exclude certain CPUs from the upwards
5842 * Asymmetric node setups can result in situations where the domain tree is of
5843 * unequal depth, make sure to skip domains that already cover the entire
5846 * In that case build_sched_domains() will have terminated the iteration early
5847 * and our sibling sd spans will be empty. Domains should always include the
5848 * cpu they're built on, so check that.
5851 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
5853 const struct cpumask
*span
= sched_domain_span(sd
);
5854 struct sd_data
*sdd
= sd
->private;
5855 struct sched_domain
*sibling
;
5858 for_each_cpu(i
, span
) {
5859 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5860 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5863 cpumask_set_cpu(i
, sched_group_mask(sg
));
5868 * Return the canonical balance cpu for this group, this is the first cpu
5869 * of this group that's also in the iteration mask.
5871 int group_balance_cpu(struct sched_group
*sg
)
5873 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
5877 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5879 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5880 const struct cpumask
*span
= sched_domain_span(sd
);
5881 struct cpumask
*covered
= sched_domains_tmpmask
;
5882 struct sd_data
*sdd
= sd
->private;
5883 struct sched_domain
*sibling
;
5886 cpumask_clear(covered
);
5888 for_each_cpu(i
, span
) {
5889 struct cpumask
*sg_span
;
5891 if (cpumask_test_cpu(i
, covered
))
5894 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5896 /* See the comment near build_group_mask(). */
5897 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5900 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5901 GFP_KERNEL
, cpu_to_node(cpu
));
5906 sg_span
= sched_group_cpus(sg
);
5908 cpumask_copy(sg_span
, sched_domain_span(sibling
->child
));
5910 cpumask_set_cpu(i
, sg_span
);
5912 cpumask_or(covered
, covered
, sg_span
);
5914 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
5915 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
5916 build_group_mask(sd
, sg
);
5919 * Initialize sgc->capacity such that even if we mess up the
5920 * domains and no possible iteration will get us here, we won't
5923 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
5926 * Make sure the first group of this domain contains the
5927 * canonical balance cpu. Otherwise the sched_domain iteration
5928 * breaks. See update_sg_lb_stats().
5930 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
5931 group_balance_cpu(sg
) == cpu
)
5941 sd
->groups
= groups
;
5946 free_sched_groups(first
, 0);
5951 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
5953 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
5954 struct sched_domain
*child
= sd
->child
;
5957 cpu
= cpumask_first(sched_domain_span(child
));
5960 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
5961 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
5962 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
5969 * build_sched_groups will build a circular linked list of the groups
5970 * covered by the given span, and will set each group's ->cpumask correctly,
5971 * and ->cpu_capacity to 0.
5973 * Assumes the sched_domain tree is fully constructed
5976 build_sched_groups(struct sched_domain
*sd
, int cpu
)
5978 struct sched_group
*first
= NULL
, *last
= NULL
;
5979 struct sd_data
*sdd
= sd
->private;
5980 const struct cpumask
*span
= sched_domain_span(sd
);
5981 struct cpumask
*covered
;
5984 get_group(cpu
, sdd
, &sd
->groups
);
5985 atomic_inc(&sd
->groups
->ref
);
5987 if (cpu
!= cpumask_first(span
))
5990 lockdep_assert_held(&sched_domains_mutex
);
5991 covered
= sched_domains_tmpmask
;
5993 cpumask_clear(covered
);
5995 for_each_cpu(i
, span
) {
5996 struct sched_group
*sg
;
5999 if (cpumask_test_cpu(i
, covered
))
6002 group
= get_group(i
, sdd
, &sg
);
6003 cpumask_setall(sched_group_mask(sg
));
6005 for_each_cpu(j
, span
) {
6006 if (get_group(j
, sdd
, NULL
) != group
)
6009 cpumask_set_cpu(j
, covered
);
6010 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6025 * Initialize sched groups cpu_capacity.
6027 * cpu_capacity indicates the capacity of sched group, which is used while
6028 * distributing the load between different sched groups in a sched domain.
6029 * Typically cpu_capacity for all the groups in a sched domain will be same
6030 * unless there are asymmetries in the topology. If there are asymmetries,
6031 * group having more cpu_capacity will pickup more load compared to the
6032 * group having less cpu_capacity.
6034 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
6036 struct sched_group
*sg
= sd
->groups
;
6041 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6043 } while (sg
!= sd
->groups
);
6045 if (cpu
!= group_balance_cpu(sg
))
6048 update_group_capacity(sd
, cpu
);
6049 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
6053 * Initializers for schedule domains
6054 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6057 static int default_relax_domain_level
= -1;
6058 int sched_domain_level_max
;
6060 static int __init
setup_relax_domain_level(char *str
)
6062 if (kstrtoint(str
, 0, &default_relax_domain_level
))
6063 pr_warn("Unable to set relax_domain_level\n");
6067 __setup("relax_domain_level=", setup_relax_domain_level
);
6069 static void set_domain_attribute(struct sched_domain
*sd
,
6070 struct sched_domain_attr
*attr
)
6074 if (!attr
|| attr
->relax_domain_level
< 0) {
6075 if (default_relax_domain_level
< 0)
6078 request
= default_relax_domain_level
;
6080 request
= attr
->relax_domain_level
;
6081 if (request
< sd
->level
) {
6082 /* turn off idle balance on this domain */
6083 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6085 /* turn on idle balance on this domain */
6086 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6090 static void __sdt_free(const struct cpumask
*cpu_map
);
6091 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6093 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6094 const struct cpumask
*cpu_map
)
6098 if (!atomic_read(&d
->rd
->refcount
))
6099 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6101 free_percpu(d
->sd
); /* fall through */
6103 __sdt_free(cpu_map
); /* fall through */
6109 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6110 const struct cpumask
*cpu_map
)
6112 memset(d
, 0, sizeof(*d
));
6114 if (__sdt_alloc(cpu_map
))
6115 return sa_sd_storage
;
6116 d
->sd
= alloc_percpu(struct sched_domain
*);
6118 return sa_sd_storage
;
6119 d
->rd
= alloc_rootdomain();
6122 return sa_rootdomain
;
6126 * NULL the sd_data elements we've used to build the sched_domain and
6127 * sched_group structure so that the subsequent __free_domain_allocs()
6128 * will not free the data we're using.
6130 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6132 struct sd_data
*sdd
= sd
->private;
6134 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6135 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6137 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6138 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6140 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
6141 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
6145 static int sched_domains_numa_levels
;
6146 enum numa_topology_type sched_numa_topology_type
;
6147 static int *sched_domains_numa_distance
;
6148 int sched_max_numa_distance
;
6149 static struct cpumask
***sched_domains_numa_masks
;
6150 static int sched_domains_curr_level
;
6154 * SD_flags allowed in topology descriptions.
6156 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6157 * SD_SHARE_PKG_RESOURCES - describes shared caches
6158 * SD_NUMA - describes NUMA topologies
6159 * SD_SHARE_POWERDOMAIN - describes shared power domain
6162 * SD_ASYM_PACKING - describes SMT quirks
6164 #define TOPOLOGY_SD_FLAGS \
6165 (SD_SHARE_CPUCAPACITY | \
6166 SD_SHARE_PKG_RESOURCES | \
6169 SD_SHARE_POWERDOMAIN)
6171 static struct sched_domain
*
6172 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6174 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6175 int sd_weight
, sd_flags
= 0;
6179 * Ugly hack to pass state to sd_numa_mask()...
6181 sched_domains_curr_level
= tl
->numa_level
;
6184 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6187 sd_flags
= (*tl
->sd_flags
)();
6188 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6189 "wrong sd_flags in topology description\n"))
6190 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6192 *sd
= (struct sched_domain
){
6193 .min_interval
= sd_weight
,
6194 .max_interval
= 2*sd_weight
,
6196 .imbalance_pct
= 125,
6198 .cache_nice_tries
= 0,
6205 .flags
= 1*SD_LOAD_BALANCE
6206 | 1*SD_BALANCE_NEWIDLE
6211 | 0*SD_SHARE_CPUCAPACITY
6212 | 0*SD_SHARE_PKG_RESOURCES
6214 | 0*SD_PREFER_SIBLING
6219 .last_balance
= jiffies
,
6220 .balance_interval
= sd_weight
,
6222 .max_newidle_lb_cost
= 0,
6223 .next_decay_max_lb_cost
= jiffies
,
6224 #ifdef CONFIG_SCHED_DEBUG
6230 * Convert topological properties into behaviour.
6233 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6234 sd
->flags
|= SD_PREFER_SIBLING
;
6235 sd
->imbalance_pct
= 110;
6236 sd
->smt_gain
= 1178; /* ~15% */
6238 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6239 sd
->imbalance_pct
= 117;
6240 sd
->cache_nice_tries
= 1;
6244 } else if (sd
->flags
& SD_NUMA
) {
6245 sd
->cache_nice_tries
= 2;
6249 sd
->flags
|= SD_SERIALIZE
;
6250 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6251 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6258 sd
->flags
|= SD_PREFER_SIBLING
;
6259 sd
->cache_nice_tries
= 1;
6264 sd
->private = &tl
->data
;
6270 * Topology list, bottom-up.
6272 static struct sched_domain_topology_level default_topology
[] = {
6273 #ifdef CONFIG_SCHED_SMT
6274 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6276 #ifdef CONFIG_SCHED_MC
6277 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6279 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6283 struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6285 #define for_each_sd_topology(tl) \
6286 for (tl = sched_domain_topology; tl->mask; tl++)
6288 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6290 sched_domain_topology
= tl
;
6295 static const struct cpumask
*sd_numa_mask(int cpu
)
6297 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6300 static void sched_numa_warn(const char *str
)
6302 static int done
= false;
6310 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6312 for (i
= 0; i
< nr_node_ids
; i
++) {
6313 printk(KERN_WARNING
" ");
6314 for (j
= 0; j
< nr_node_ids
; j
++)
6315 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6316 printk(KERN_CONT
"\n");
6318 printk(KERN_WARNING
"\n");
6321 bool find_numa_distance(int distance
)
6325 if (distance
== node_distance(0, 0))
6328 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6329 if (sched_domains_numa_distance
[i
] == distance
)
6337 * A system can have three types of NUMA topology:
6338 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6339 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6340 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6342 * The difference between a glueless mesh topology and a backplane
6343 * topology lies in whether communication between not directly
6344 * connected nodes goes through intermediary nodes (where programs
6345 * could run), or through backplane controllers. This affects
6346 * placement of programs.
6348 * The type of topology can be discerned with the following tests:
6349 * - If the maximum distance between any nodes is 1 hop, the system
6350 * is directly connected.
6351 * - If for two nodes A and B, located N > 1 hops away from each other,
6352 * there is an intermediary node C, which is < N hops away from both
6353 * nodes A and B, the system is a glueless mesh.
6355 static void init_numa_topology_type(void)
6359 n
= sched_max_numa_distance
;
6362 sched_numa_topology_type
= NUMA_DIRECT
;
6364 for_each_online_node(a
) {
6365 for_each_online_node(b
) {
6366 /* Find two nodes furthest removed from each other. */
6367 if (node_distance(a
, b
) < n
)
6370 /* Is there an intermediary node between a and b? */
6371 for_each_online_node(c
) {
6372 if (node_distance(a
, c
) < n
&&
6373 node_distance(b
, c
) < n
) {
6374 sched_numa_topology_type
=
6380 sched_numa_topology_type
= NUMA_BACKPLANE
;
6386 static void sched_init_numa(void)
6388 int next_distance
, curr_distance
= node_distance(0, 0);
6389 struct sched_domain_topology_level
*tl
;
6393 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6394 if (!sched_domains_numa_distance
)
6398 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6399 * unique distances in the node_distance() table.
6401 * Assumes node_distance(0,j) includes all distances in
6402 * node_distance(i,j) in order to avoid cubic time.
6404 next_distance
= curr_distance
;
6405 for (i
= 0; i
< nr_node_ids
; i
++) {
6406 for (j
= 0; j
< nr_node_ids
; j
++) {
6407 for (k
= 0; k
< nr_node_ids
; k
++) {
6408 int distance
= node_distance(i
, k
);
6410 if (distance
> curr_distance
&&
6411 (distance
< next_distance
||
6412 next_distance
== curr_distance
))
6413 next_distance
= distance
;
6416 * While not a strong assumption it would be nice to know
6417 * about cases where if node A is connected to B, B is not
6418 * equally connected to A.
6420 if (sched_debug() && node_distance(k
, i
) != distance
)
6421 sched_numa_warn("Node-distance not symmetric");
6423 if (sched_debug() && i
&& !find_numa_distance(distance
))
6424 sched_numa_warn("Node-0 not representative");
6426 if (next_distance
!= curr_distance
) {
6427 sched_domains_numa_distance
[level
++] = next_distance
;
6428 sched_domains_numa_levels
= level
;
6429 curr_distance
= next_distance
;
6434 * In case of sched_debug() we verify the above assumption.
6444 * 'level' contains the number of unique distances, excluding the
6445 * identity distance node_distance(i,i).
6447 * The sched_domains_numa_distance[] array includes the actual distance
6452 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6453 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6454 * the array will contain less then 'level' members. This could be
6455 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6456 * in other functions.
6458 * We reset it to 'level' at the end of this function.
6460 sched_domains_numa_levels
= 0;
6462 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6463 if (!sched_domains_numa_masks
)
6467 * Now for each level, construct a mask per node which contains all
6468 * cpus of nodes that are that many hops away from us.
6470 for (i
= 0; i
< level
; i
++) {
6471 sched_domains_numa_masks
[i
] =
6472 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6473 if (!sched_domains_numa_masks
[i
])
6476 for (j
= 0; j
< nr_node_ids
; j
++) {
6477 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6481 sched_domains_numa_masks
[i
][j
] = mask
;
6483 for (k
= 0; k
< nr_node_ids
; k
++) {
6484 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6487 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6492 /* Compute default topology size */
6493 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6495 tl
= kzalloc((i
+ level
+ 1) *
6496 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6501 * Copy the default topology bits..
6503 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6504 tl
[i
] = sched_domain_topology
[i
];
6507 * .. and append 'j' levels of NUMA goodness.
6509 for (j
= 0; j
< level
; i
++, j
++) {
6510 tl
[i
] = (struct sched_domain_topology_level
){
6511 .mask
= sd_numa_mask
,
6512 .sd_flags
= cpu_numa_flags
,
6513 .flags
= SDTL_OVERLAP
,
6519 sched_domain_topology
= tl
;
6521 sched_domains_numa_levels
= level
;
6522 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
6524 init_numa_topology_type();
6527 static void sched_domains_numa_masks_set(int cpu
)
6530 int node
= cpu_to_node(cpu
);
6532 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6533 for (j
= 0; j
< nr_node_ids
; j
++) {
6534 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6535 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6540 static void sched_domains_numa_masks_clear(int cpu
)
6543 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6544 for (j
= 0; j
< nr_node_ids
; j
++)
6545 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6550 * Update sched_domains_numa_masks[level][node] array when new cpus
6553 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6554 unsigned long action
,
6557 int cpu
= (long)hcpu
;
6559 switch (action
& ~CPU_TASKS_FROZEN
) {
6561 sched_domains_numa_masks_set(cpu
);
6565 sched_domains_numa_masks_clear(cpu
);
6575 static inline void sched_init_numa(void)
6579 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6580 unsigned long action
,
6585 #endif /* CONFIG_NUMA */
6587 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6589 struct sched_domain_topology_level
*tl
;
6592 for_each_sd_topology(tl
) {
6593 struct sd_data
*sdd
= &tl
->data
;
6595 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6599 sdd
->sg
= alloc_percpu(struct sched_group
*);
6603 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6607 for_each_cpu(j
, cpu_map
) {
6608 struct sched_domain
*sd
;
6609 struct sched_group
*sg
;
6610 struct sched_group_capacity
*sgc
;
6612 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6613 GFP_KERNEL
, cpu_to_node(j
));
6617 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6619 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6620 GFP_KERNEL
, cpu_to_node(j
));
6626 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6628 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6629 GFP_KERNEL
, cpu_to_node(j
));
6633 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6640 static void __sdt_free(const struct cpumask
*cpu_map
)
6642 struct sched_domain_topology_level
*tl
;
6645 for_each_sd_topology(tl
) {
6646 struct sd_data
*sdd
= &tl
->data
;
6648 for_each_cpu(j
, cpu_map
) {
6649 struct sched_domain
*sd
;
6652 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6653 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6654 free_sched_groups(sd
->groups
, 0);
6655 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6659 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6661 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6663 free_percpu(sdd
->sd
);
6665 free_percpu(sdd
->sg
);
6667 free_percpu(sdd
->sgc
);
6672 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6673 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6674 struct sched_domain
*child
, int cpu
)
6676 struct sched_domain
*sd
= sd_init(tl
, cpu
);
6680 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6682 sd
->level
= child
->level
+ 1;
6683 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6687 if (!cpumask_subset(sched_domain_span(child
),
6688 sched_domain_span(sd
))) {
6689 pr_err("BUG: arch topology borken\n");
6690 #ifdef CONFIG_SCHED_DEBUG
6691 pr_err(" the %s domain not a subset of the %s domain\n",
6692 child
->name
, sd
->name
);
6694 /* Fixup, ensure @sd has at least @child cpus. */
6695 cpumask_or(sched_domain_span(sd
),
6696 sched_domain_span(sd
),
6697 sched_domain_span(child
));
6701 set_domain_attribute(sd
, attr
);
6707 * Build sched domains for a given set of cpus and attach the sched domains
6708 * to the individual cpus
6710 static int build_sched_domains(const struct cpumask
*cpu_map
,
6711 struct sched_domain_attr
*attr
)
6713 enum s_alloc alloc_state
;
6714 struct sched_domain
*sd
;
6716 int i
, ret
= -ENOMEM
;
6718 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6719 if (alloc_state
!= sa_rootdomain
)
6722 /* Set up domains for cpus specified by the cpu_map. */
6723 for_each_cpu(i
, cpu_map
) {
6724 struct sched_domain_topology_level
*tl
;
6727 for_each_sd_topology(tl
) {
6728 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6729 if (tl
== sched_domain_topology
)
6730 *per_cpu_ptr(d
.sd
, i
) = sd
;
6731 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6732 sd
->flags
|= SD_OVERLAP
;
6733 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6738 /* Build the groups for the domains */
6739 for_each_cpu(i
, cpu_map
) {
6740 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6741 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6742 if (sd
->flags
& SD_OVERLAP
) {
6743 if (build_overlap_sched_groups(sd
, i
))
6746 if (build_sched_groups(sd
, i
))
6752 /* Calculate CPU capacity for physical packages and nodes */
6753 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6754 if (!cpumask_test_cpu(i
, cpu_map
))
6757 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6758 claim_allocations(i
, sd
);
6759 init_sched_groups_capacity(i
, sd
);
6763 /* Attach the domains */
6765 for_each_cpu(i
, cpu_map
) {
6766 sd
= *per_cpu_ptr(d
.sd
, i
);
6767 cpu_attach_domain(sd
, d
.rd
, i
);
6773 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6777 static cpumask_var_t
*doms_cur
; /* current sched domains */
6778 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6779 static struct sched_domain_attr
*dattr_cur
;
6780 /* attribues of custom domains in 'doms_cur' */
6783 * Special case: If a kmalloc of a doms_cur partition (array of
6784 * cpumask) fails, then fallback to a single sched domain,
6785 * as determined by the single cpumask fallback_doms.
6787 static cpumask_var_t fallback_doms
;
6790 * arch_update_cpu_topology lets virtualized architectures update the
6791 * cpu core maps. It is supposed to return 1 if the topology changed
6792 * or 0 if it stayed the same.
6794 int __weak
arch_update_cpu_topology(void)
6799 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6802 cpumask_var_t
*doms
;
6804 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6807 for (i
= 0; i
< ndoms
; i
++) {
6808 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6809 free_sched_domains(doms
, i
);
6816 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6819 for (i
= 0; i
< ndoms
; i
++)
6820 free_cpumask_var(doms
[i
]);
6825 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6826 * For now this just excludes isolated cpus, but could be used to
6827 * exclude other special cases in the future.
6829 static int init_sched_domains(const struct cpumask
*cpu_map
)
6833 arch_update_cpu_topology();
6835 doms_cur
= alloc_sched_domains(ndoms_cur
);
6837 doms_cur
= &fallback_doms
;
6838 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6839 err
= build_sched_domains(doms_cur
[0], NULL
);
6840 register_sched_domain_sysctl();
6846 * Detach sched domains from a group of cpus specified in cpu_map
6847 * These cpus will now be attached to the NULL domain
6849 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6854 for_each_cpu(i
, cpu_map
)
6855 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6859 /* handle null as "default" */
6860 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6861 struct sched_domain_attr
*new, int idx_new
)
6863 struct sched_domain_attr tmp
;
6870 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6871 new ? (new + idx_new
) : &tmp
,
6872 sizeof(struct sched_domain_attr
));
6876 * Partition sched domains as specified by the 'ndoms_new'
6877 * cpumasks in the array doms_new[] of cpumasks. This compares
6878 * doms_new[] to the current sched domain partitioning, doms_cur[].
6879 * It destroys each deleted domain and builds each new domain.
6881 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6882 * The masks don't intersect (don't overlap.) We should setup one
6883 * sched domain for each mask. CPUs not in any of the cpumasks will
6884 * not be load balanced. If the same cpumask appears both in the
6885 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6888 * The passed in 'doms_new' should be allocated using
6889 * alloc_sched_domains. This routine takes ownership of it and will
6890 * free_sched_domains it when done with it. If the caller failed the
6891 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6892 * and partition_sched_domains() will fallback to the single partition
6893 * 'fallback_doms', it also forces the domains to be rebuilt.
6895 * If doms_new == NULL it will be replaced with cpu_online_mask.
6896 * ndoms_new == 0 is a special case for destroying existing domains,
6897 * and it will not create the default domain.
6899 * Call with hotplug lock held
6901 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6902 struct sched_domain_attr
*dattr_new
)
6907 mutex_lock(&sched_domains_mutex
);
6909 /* always unregister in case we don't destroy any domains */
6910 unregister_sched_domain_sysctl();
6912 /* Let architecture update cpu core mappings. */
6913 new_topology
= arch_update_cpu_topology();
6915 n
= doms_new
? ndoms_new
: 0;
6917 /* Destroy deleted domains */
6918 for (i
= 0; i
< ndoms_cur
; i
++) {
6919 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6920 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6921 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6924 /* no match - a current sched domain not in new doms_new[] */
6925 detach_destroy_domains(doms_cur
[i
]);
6931 if (doms_new
== NULL
) {
6933 doms_new
= &fallback_doms
;
6934 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6935 WARN_ON_ONCE(dattr_new
);
6938 /* Build new domains */
6939 for (i
= 0; i
< ndoms_new
; i
++) {
6940 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6941 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6942 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6945 /* no match - add a new doms_new */
6946 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6951 /* Remember the new sched domains */
6952 if (doms_cur
!= &fallback_doms
)
6953 free_sched_domains(doms_cur
, ndoms_cur
);
6954 kfree(dattr_cur
); /* kfree(NULL) is safe */
6955 doms_cur
= doms_new
;
6956 dattr_cur
= dattr_new
;
6957 ndoms_cur
= ndoms_new
;
6959 register_sched_domain_sysctl();
6961 mutex_unlock(&sched_domains_mutex
);
6964 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
6967 * Update cpusets according to cpu_active mask. If cpusets are
6968 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6969 * around partition_sched_domains().
6971 * If we come here as part of a suspend/resume, don't touch cpusets because we
6972 * want to restore it back to its original state upon resume anyway.
6974 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6978 case CPU_ONLINE_FROZEN
:
6979 case CPU_DOWN_FAILED_FROZEN
:
6982 * num_cpus_frozen tracks how many CPUs are involved in suspend
6983 * resume sequence. As long as this is not the last online
6984 * operation in the resume sequence, just build a single sched
6985 * domain, ignoring cpusets.
6988 if (likely(num_cpus_frozen
)) {
6989 partition_sched_domains(1, NULL
, NULL
);
6994 * This is the last CPU online operation. So fall through and
6995 * restore the original sched domains by considering the
6996 * cpuset configurations.
7000 cpuset_update_active_cpus(true);
7008 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7011 unsigned long flags
;
7012 long cpu
= (long)hcpu
;
7018 case CPU_DOWN_PREPARE
:
7019 rcu_read_lock_sched();
7020 dl_b
= dl_bw_of(cpu
);
7022 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7023 cpus
= dl_bw_cpus(cpu
);
7024 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
7025 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7027 rcu_read_unlock_sched();
7030 return notifier_from_errno(-EBUSY
);
7031 cpuset_update_active_cpus(false);
7033 case CPU_DOWN_PREPARE_FROZEN
:
7035 partition_sched_domains(1, NULL
, NULL
);
7043 void __init
sched_init_smp(void)
7045 cpumask_var_t non_isolated_cpus
;
7047 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7048 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7053 * There's no userspace yet to cause hotplug operations; hence all the
7054 * cpu masks are stable and all blatant races in the below code cannot
7057 mutex_lock(&sched_domains_mutex
);
7058 init_sched_domains(cpu_active_mask
);
7059 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7060 if (cpumask_empty(non_isolated_cpus
))
7061 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7062 mutex_unlock(&sched_domains_mutex
);
7064 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
7065 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7066 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7070 /* Move init over to a non-isolated CPU */
7071 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7073 sched_init_granularity();
7074 free_cpumask_var(non_isolated_cpus
);
7076 init_sched_rt_class();
7077 init_sched_dl_class();
7080 void __init
sched_init_smp(void)
7082 sched_init_granularity();
7084 #endif /* CONFIG_SMP */
7086 const_debug
unsigned int sysctl_timer_migration
= 1;
7088 int in_sched_functions(unsigned long addr
)
7090 return in_lock_functions(addr
) ||
7091 (addr
>= (unsigned long)__sched_text_start
7092 && addr
< (unsigned long)__sched_text_end
);
7095 #ifdef CONFIG_CGROUP_SCHED
7097 * Default task group.
7098 * Every task in system belongs to this group at bootup.
7100 struct task_group root_task_group
;
7101 LIST_HEAD(task_groups
);
7104 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7106 void __init
sched_init(void)
7109 unsigned long alloc_size
= 0, ptr
;
7111 #ifdef CONFIG_FAIR_GROUP_SCHED
7112 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7114 #ifdef CONFIG_RT_GROUP_SCHED
7115 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7118 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7120 #ifdef CONFIG_FAIR_GROUP_SCHED
7121 root_task_group
.se
= (struct sched_entity
**)ptr
;
7122 ptr
+= nr_cpu_ids
* sizeof(void **);
7124 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7125 ptr
+= nr_cpu_ids
* sizeof(void **);
7127 #endif /* CONFIG_FAIR_GROUP_SCHED */
7128 #ifdef CONFIG_RT_GROUP_SCHED
7129 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7130 ptr
+= nr_cpu_ids
* sizeof(void **);
7132 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7133 ptr
+= nr_cpu_ids
* sizeof(void **);
7135 #endif /* CONFIG_RT_GROUP_SCHED */
7137 #ifdef CONFIG_CPUMASK_OFFSTACK
7138 for_each_possible_cpu(i
) {
7139 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
7140 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
7142 #endif /* CONFIG_CPUMASK_OFFSTACK */
7144 init_rt_bandwidth(&def_rt_bandwidth
,
7145 global_rt_period(), global_rt_runtime());
7146 init_dl_bandwidth(&def_dl_bandwidth
,
7147 global_rt_period(), global_rt_runtime());
7150 init_defrootdomain();
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7155 global_rt_period(), global_rt_runtime());
7156 #endif /* CONFIG_RT_GROUP_SCHED */
7158 #ifdef CONFIG_CGROUP_SCHED
7159 list_add(&root_task_group
.list
, &task_groups
);
7160 INIT_LIST_HEAD(&root_task_group
.children
);
7161 INIT_LIST_HEAD(&root_task_group
.siblings
);
7162 autogroup_init(&init_task
);
7164 #endif /* CONFIG_CGROUP_SCHED */
7166 for_each_possible_cpu(i
) {
7170 raw_spin_lock_init(&rq
->lock
);
7172 rq
->calc_load_active
= 0;
7173 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7174 init_cfs_rq(&rq
->cfs
);
7175 init_rt_rq(&rq
->rt
);
7176 init_dl_rq(&rq
->dl
);
7177 #ifdef CONFIG_FAIR_GROUP_SCHED
7178 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7179 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7181 * How much cpu bandwidth does root_task_group get?
7183 * In case of task-groups formed thr' the cgroup filesystem, it
7184 * gets 100% of the cpu resources in the system. This overall
7185 * system cpu resource is divided among the tasks of
7186 * root_task_group and its child task-groups in a fair manner,
7187 * based on each entity's (task or task-group's) weight
7188 * (se->load.weight).
7190 * In other words, if root_task_group has 10 tasks of weight
7191 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7192 * then A0's share of the cpu resource is:
7194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7196 * We achieve this by letting root_task_group's tasks sit
7197 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7199 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7200 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7201 #endif /* CONFIG_FAIR_GROUP_SCHED */
7203 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7204 #ifdef CONFIG_RT_GROUP_SCHED
7205 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7208 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7209 rq
->cpu_load
[j
] = 0;
7211 rq
->last_load_update_tick
= jiffies
;
7216 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
7217 rq
->post_schedule
= 0;
7218 rq
->active_balance
= 0;
7219 rq
->next_balance
= jiffies
;
7224 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7225 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7227 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7229 rq_attach_root(rq
, &def_root_domain
);
7230 #ifdef CONFIG_NO_HZ_COMMON
7233 #ifdef CONFIG_NO_HZ_FULL
7234 rq
->last_sched_tick
= 0;
7238 atomic_set(&rq
->nr_iowait
, 0);
7241 set_load_weight(&init_task
);
7243 #ifdef CONFIG_PREEMPT_NOTIFIERS
7244 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7248 * The boot idle thread does lazy MMU switching as well:
7250 atomic_inc(&init_mm
.mm_count
);
7251 enter_lazy_tlb(&init_mm
, current
);
7254 * During early bootup we pretend to be a normal task:
7256 current
->sched_class
= &fair_sched_class
;
7259 * Make us the idle thread. Technically, schedule() should not be
7260 * called from this thread, however somewhere below it might be,
7261 * but because we are the idle thread, we just pick up running again
7262 * when this runqueue becomes "idle".
7264 init_idle(current
, smp_processor_id());
7266 calc_load_update
= jiffies
+ LOAD_FREQ
;
7269 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7270 /* May be allocated at isolcpus cmdline parse time */
7271 if (cpu_isolated_map
== NULL
)
7272 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7273 idle_thread_set_boot_cpu();
7274 set_cpu_rq_start_time();
7276 init_sched_fair_class();
7278 scheduler_running
= 1;
7281 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7282 static inline int preempt_count_equals(int preempt_offset
)
7284 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7286 return (nested
== preempt_offset
);
7289 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7292 * Blocking primitives will set (and therefore destroy) current->state,
7293 * since we will exit with TASK_RUNNING make sure we enter with it,
7294 * otherwise we will destroy state.
7296 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
7297 "do not call blocking ops when !TASK_RUNNING; "
7298 "state=%lx set at [<%p>] %pS\n",
7300 (void *)current
->task_state_change
,
7301 (void *)current
->task_state_change
);
7303 ___might_sleep(file
, line
, preempt_offset
);
7305 EXPORT_SYMBOL(__might_sleep
);
7307 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
7309 static unsigned long prev_jiffy
; /* ratelimiting */
7311 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7312 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7313 !is_idle_task(current
)) ||
7314 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7316 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7318 prev_jiffy
= jiffies
;
7321 "BUG: sleeping function called from invalid context at %s:%d\n",
7324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7325 in_atomic(), irqs_disabled(),
7326 current
->pid
, current
->comm
);
7328 if (task_stack_end_corrupted(current
))
7329 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
7331 debug_show_held_locks(current
);
7332 if (irqs_disabled())
7333 print_irqtrace_events(current
);
7334 #ifdef CONFIG_DEBUG_PREEMPT
7335 if (!preempt_count_equals(preempt_offset
)) {
7336 pr_err("Preemption disabled at:");
7337 print_ip_sym(current
->preempt_disable_ip
);
7343 EXPORT_SYMBOL(___might_sleep
);
7346 #ifdef CONFIG_MAGIC_SYSRQ
7347 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7349 const struct sched_class
*prev_class
= p
->sched_class
;
7350 struct sched_attr attr
= {
7351 .sched_policy
= SCHED_NORMAL
,
7353 int old_prio
= p
->prio
;
7356 queued
= task_on_rq_queued(p
);
7358 dequeue_task(rq
, p
, 0);
7359 __setscheduler(rq
, p
, &attr
, false);
7361 enqueue_task(rq
, p
, 0);
7365 check_class_changed(rq
, p
, prev_class
, old_prio
);
7368 void normalize_rt_tasks(void)
7370 struct task_struct
*g
, *p
;
7371 unsigned long flags
;
7374 read_lock(&tasklist_lock
);
7375 for_each_process_thread(g
, p
) {
7377 * Only normalize user tasks:
7379 if (p
->flags
& PF_KTHREAD
)
7382 p
->se
.exec_start
= 0;
7383 #ifdef CONFIG_SCHEDSTATS
7384 p
->se
.statistics
.wait_start
= 0;
7385 p
->se
.statistics
.sleep_start
= 0;
7386 p
->se
.statistics
.block_start
= 0;
7389 if (!dl_task(p
) && !rt_task(p
)) {
7391 * Renice negative nice level userspace
7394 if (task_nice(p
) < 0)
7395 set_user_nice(p
, 0);
7399 rq
= task_rq_lock(p
, &flags
);
7400 normalize_task(rq
, p
);
7401 task_rq_unlock(rq
, p
, &flags
);
7403 read_unlock(&tasklist_lock
);
7406 #endif /* CONFIG_MAGIC_SYSRQ */
7408 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7410 * These functions are only useful for the IA64 MCA handling, or kdb.
7412 * They can only be called when the whole system has been
7413 * stopped - every CPU needs to be quiescent, and no scheduling
7414 * activity can take place. Using them for anything else would
7415 * be a serious bug, and as a result, they aren't even visible
7416 * under any other configuration.
7420 * curr_task - return the current task for a given cpu.
7421 * @cpu: the processor in question.
7423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7425 * Return: The current task for @cpu.
7427 struct task_struct
*curr_task(int cpu
)
7429 return cpu_curr(cpu
);
7432 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7436 * set_curr_task - set the current task for a given cpu.
7437 * @cpu: the processor in question.
7438 * @p: the task pointer to set.
7440 * Description: This function must only be used when non-maskable interrupts
7441 * are serviced on a separate stack. It allows the architecture to switch the
7442 * notion of the current task on a cpu in a non-blocking manner. This function
7443 * must be called with all CPU's synchronized, and interrupts disabled, the
7444 * and caller must save the original value of the current task (see
7445 * curr_task() above) and restore that value before reenabling interrupts and
7446 * re-starting the system.
7448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7450 void set_curr_task(int cpu
, struct task_struct
*p
)
7457 #ifdef CONFIG_CGROUP_SCHED
7458 /* task_group_lock serializes the addition/removal of task groups */
7459 static DEFINE_SPINLOCK(task_group_lock
);
7461 static void free_sched_group(struct task_group
*tg
)
7463 free_fair_sched_group(tg
);
7464 free_rt_sched_group(tg
);
7469 /* allocate runqueue etc for a new task group */
7470 struct task_group
*sched_create_group(struct task_group
*parent
)
7472 struct task_group
*tg
;
7474 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7476 return ERR_PTR(-ENOMEM
);
7478 if (!alloc_fair_sched_group(tg
, parent
))
7481 if (!alloc_rt_sched_group(tg
, parent
))
7487 free_sched_group(tg
);
7488 return ERR_PTR(-ENOMEM
);
7491 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7493 unsigned long flags
;
7495 spin_lock_irqsave(&task_group_lock
, flags
);
7496 list_add_rcu(&tg
->list
, &task_groups
);
7498 WARN_ON(!parent
); /* root should already exist */
7500 tg
->parent
= parent
;
7501 INIT_LIST_HEAD(&tg
->children
);
7502 list_add_rcu(&tg
->siblings
, &parent
->children
);
7503 spin_unlock_irqrestore(&task_group_lock
, flags
);
7506 /* rcu callback to free various structures associated with a task group */
7507 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7509 /* now it should be safe to free those cfs_rqs */
7510 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7513 /* Destroy runqueue etc associated with a task group */
7514 void sched_destroy_group(struct task_group
*tg
)
7516 /* wait for possible concurrent references to cfs_rqs complete */
7517 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7520 void sched_offline_group(struct task_group
*tg
)
7522 unsigned long flags
;
7525 /* end participation in shares distribution */
7526 for_each_possible_cpu(i
)
7527 unregister_fair_sched_group(tg
, i
);
7529 spin_lock_irqsave(&task_group_lock
, flags
);
7530 list_del_rcu(&tg
->list
);
7531 list_del_rcu(&tg
->siblings
);
7532 spin_unlock_irqrestore(&task_group_lock
, flags
);
7535 /* change task's runqueue when it moves between groups.
7536 * The caller of this function should have put the task in its new group
7537 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7538 * reflect its new group.
7540 void sched_move_task(struct task_struct
*tsk
)
7542 struct task_group
*tg
;
7543 int queued
, running
;
7544 unsigned long flags
;
7547 rq
= task_rq_lock(tsk
, &flags
);
7549 running
= task_current(rq
, tsk
);
7550 queued
= task_on_rq_queued(tsk
);
7553 dequeue_task(rq
, tsk
, 0);
7554 if (unlikely(running
))
7555 put_prev_task(rq
, tsk
);
7558 * All callers are synchronized by task_rq_lock(); we do not use RCU
7559 * which is pointless here. Thus, we pass "true" to task_css_check()
7560 * to prevent lockdep warnings.
7562 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
7563 struct task_group
, css
);
7564 tg
= autogroup_task_group(tsk
, tg
);
7565 tsk
->sched_task_group
= tg
;
7567 #ifdef CONFIG_FAIR_GROUP_SCHED
7568 if (tsk
->sched_class
->task_move_group
)
7569 tsk
->sched_class
->task_move_group(tsk
, queued
);
7572 set_task_rq(tsk
, task_cpu(tsk
));
7574 if (unlikely(running
))
7575 tsk
->sched_class
->set_curr_task(rq
);
7577 enqueue_task(rq
, tsk
, 0);
7579 task_rq_unlock(rq
, tsk
, &flags
);
7581 #endif /* CONFIG_CGROUP_SCHED */
7583 #ifdef CONFIG_RT_GROUP_SCHED
7585 * Ensure that the real time constraints are schedulable.
7587 static DEFINE_MUTEX(rt_constraints_mutex
);
7589 /* Must be called with tasklist_lock held */
7590 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7592 struct task_struct
*g
, *p
;
7595 * Autogroups do not have RT tasks; see autogroup_create().
7597 if (task_group_is_autogroup(tg
))
7600 for_each_process_thread(g
, p
) {
7601 if (rt_task(p
) && task_group(p
) == tg
)
7608 struct rt_schedulable_data
{
7609 struct task_group
*tg
;
7614 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7616 struct rt_schedulable_data
*d
= data
;
7617 struct task_group
*child
;
7618 unsigned long total
, sum
= 0;
7619 u64 period
, runtime
;
7621 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7622 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7625 period
= d
->rt_period
;
7626 runtime
= d
->rt_runtime
;
7630 * Cannot have more runtime than the period.
7632 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7636 * Ensure we don't starve existing RT tasks.
7638 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7641 total
= to_ratio(period
, runtime
);
7644 * Nobody can have more than the global setting allows.
7646 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7650 * The sum of our children's runtime should not exceed our own.
7652 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7653 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7654 runtime
= child
->rt_bandwidth
.rt_runtime
;
7656 if (child
== d
->tg
) {
7657 period
= d
->rt_period
;
7658 runtime
= d
->rt_runtime
;
7661 sum
+= to_ratio(period
, runtime
);
7670 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7674 struct rt_schedulable_data data
= {
7676 .rt_period
= period
,
7677 .rt_runtime
= runtime
,
7681 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7687 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7688 u64 rt_period
, u64 rt_runtime
)
7693 * Disallowing the root group RT runtime is BAD, it would disallow the
7694 * kernel creating (and or operating) RT threads.
7696 if (tg
== &root_task_group
&& rt_runtime
== 0)
7699 /* No period doesn't make any sense. */
7703 mutex_lock(&rt_constraints_mutex
);
7704 read_lock(&tasklist_lock
);
7705 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7709 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7710 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7711 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7713 for_each_possible_cpu(i
) {
7714 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7716 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7717 rt_rq
->rt_runtime
= rt_runtime
;
7718 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7720 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7722 read_unlock(&tasklist_lock
);
7723 mutex_unlock(&rt_constraints_mutex
);
7728 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7730 u64 rt_runtime
, rt_period
;
7732 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7733 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7734 if (rt_runtime_us
< 0)
7735 rt_runtime
= RUNTIME_INF
;
7737 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7740 static long sched_group_rt_runtime(struct task_group
*tg
)
7744 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7747 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7748 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7749 return rt_runtime_us
;
7752 static int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7754 u64 rt_runtime
, rt_period
;
7756 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7757 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7759 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7762 static long sched_group_rt_period(struct task_group
*tg
)
7766 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7767 do_div(rt_period_us
, NSEC_PER_USEC
);
7768 return rt_period_us
;
7770 #endif /* CONFIG_RT_GROUP_SCHED */
7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 static int sched_rt_global_constraints(void)
7777 mutex_lock(&rt_constraints_mutex
);
7778 read_lock(&tasklist_lock
);
7779 ret
= __rt_schedulable(NULL
, 0, 0);
7780 read_unlock(&tasklist_lock
);
7781 mutex_unlock(&rt_constraints_mutex
);
7786 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7788 /* Don't accept realtime tasks when there is no way for them to run */
7789 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7795 #else /* !CONFIG_RT_GROUP_SCHED */
7796 static int sched_rt_global_constraints(void)
7798 unsigned long flags
;
7801 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7802 for_each_possible_cpu(i
) {
7803 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7805 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7806 rt_rq
->rt_runtime
= global_rt_runtime();
7807 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7809 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7813 #endif /* CONFIG_RT_GROUP_SCHED */
7815 static int sched_dl_global_validate(void)
7817 u64 runtime
= global_rt_runtime();
7818 u64 period
= global_rt_period();
7819 u64 new_bw
= to_ratio(period
, runtime
);
7822 unsigned long flags
;
7825 * Here we want to check the bandwidth not being set to some
7826 * value smaller than the currently allocated bandwidth in
7827 * any of the root_domains.
7829 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7830 * cycling on root_domains... Discussion on different/better
7831 * solutions is welcome!
7833 for_each_possible_cpu(cpu
) {
7834 rcu_read_lock_sched();
7835 dl_b
= dl_bw_of(cpu
);
7837 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7838 if (new_bw
< dl_b
->total_bw
)
7840 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7842 rcu_read_unlock_sched();
7851 static void sched_dl_do_global(void)
7856 unsigned long flags
;
7858 def_dl_bandwidth
.dl_period
= global_rt_period();
7859 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7861 if (global_rt_runtime() != RUNTIME_INF
)
7862 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7865 * FIXME: As above...
7867 for_each_possible_cpu(cpu
) {
7868 rcu_read_lock_sched();
7869 dl_b
= dl_bw_of(cpu
);
7871 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7873 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7875 rcu_read_unlock_sched();
7879 static int sched_rt_global_validate(void)
7881 if (sysctl_sched_rt_period
<= 0)
7884 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
7885 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
7891 static void sched_rt_do_global(void)
7893 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7894 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
7897 int sched_rt_handler(struct ctl_table
*table
, int write
,
7898 void __user
*buffer
, size_t *lenp
,
7901 int old_period
, old_runtime
;
7902 static DEFINE_MUTEX(mutex
);
7906 old_period
= sysctl_sched_rt_period
;
7907 old_runtime
= sysctl_sched_rt_runtime
;
7909 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7911 if (!ret
&& write
) {
7912 ret
= sched_rt_global_validate();
7916 ret
= sched_dl_global_validate();
7920 ret
= sched_rt_global_constraints();
7924 sched_rt_do_global();
7925 sched_dl_do_global();
7929 sysctl_sched_rt_period
= old_period
;
7930 sysctl_sched_rt_runtime
= old_runtime
;
7932 mutex_unlock(&mutex
);
7937 int sched_rr_handler(struct ctl_table
*table
, int write
,
7938 void __user
*buffer
, size_t *lenp
,
7942 static DEFINE_MUTEX(mutex
);
7945 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7946 /* make sure that internally we keep jiffies */
7947 /* also, writing zero resets timeslice to default */
7948 if (!ret
&& write
) {
7949 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
7950 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
7952 mutex_unlock(&mutex
);
7956 #ifdef CONFIG_CGROUP_SCHED
7958 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7960 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7963 static struct cgroup_subsys_state
*
7964 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7966 struct task_group
*parent
= css_tg(parent_css
);
7967 struct task_group
*tg
;
7970 /* This is early initialization for the top cgroup */
7971 return &root_task_group
.css
;
7974 tg
= sched_create_group(parent
);
7976 return ERR_PTR(-ENOMEM
);
7981 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7983 struct task_group
*tg
= css_tg(css
);
7984 struct task_group
*parent
= css_tg(css
->parent
);
7987 sched_online_group(tg
, parent
);
7991 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7993 struct task_group
*tg
= css_tg(css
);
7995 sched_destroy_group(tg
);
7998 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
8000 struct task_group
*tg
= css_tg(css
);
8002 sched_offline_group(tg
);
8005 static void cpu_cgroup_fork(struct task_struct
*task
)
8007 sched_move_task(task
);
8010 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
8011 struct cgroup_taskset
*tset
)
8013 struct task_struct
*task
;
8015 cgroup_taskset_for_each(task
, tset
) {
8016 #ifdef CONFIG_RT_GROUP_SCHED
8017 if (!sched_rt_can_attach(css_tg(css
), task
))
8020 /* We don't support RT-tasks being in separate groups */
8021 if (task
->sched_class
!= &fair_sched_class
)
8028 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
8029 struct cgroup_taskset
*tset
)
8031 struct task_struct
*task
;
8033 cgroup_taskset_for_each(task
, tset
)
8034 sched_move_task(task
);
8037 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
8038 struct cgroup_subsys_state
*old_css
,
8039 struct task_struct
*task
)
8042 * cgroup_exit() is called in the copy_process() failure path.
8043 * Ignore this case since the task hasn't ran yet, this avoids
8044 * trying to poke a half freed task state from generic code.
8046 if (!(task
->flags
& PF_EXITING
))
8049 sched_move_task(task
);
8052 #ifdef CONFIG_FAIR_GROUP_SCHED
8053 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
8054 struct cftype
*cftype
, u64 shareval
)
8056 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
8059 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
8062 struct task_group
*tg
= css_tg(css
);
8064 return (u64
) scale_load_down(tg
->shares
);
8067 #ifdef CONFIG_CFS_BANDWIDTH
8068 static DEFINE_MUTEX(cfs_constraints_mutex
);
8070 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
8071 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
8073 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
8075 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
8077 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
8078 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8080 if (tg
== &root_task_group
)
8084 * Ensure we have at some amount of bandwidth every period. This is
8085 * to prevent reaching a state of large arrears when throttled via
8086 * entity_tick() resulting in prolonged exit starvation.
8088 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
8092 * Likewise, bound things on the otherside by preventing insane quota
8093 * periods. This also allows us to normalize in computing quota
8096 if (period
> max_cfs_quota_period
)
8100 * Prevent race between setting of cfs_rq->runtime_enabled and
8101 * unthrottle_offline_cfs_rqs().
8104 mutex_lock(&cfs_constraints_mutex
);
8105 ret
= __cfs_schedulable(tg
, period
, quota
);
8109 runtime_enabled
= quota
!= RUNTIME_INF
;
8110 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
8112 * If we need to toggle cfs_bandwidth_used, off->on must occur
8113 * before making related changes, and on->off must occur afterwards
8115 if (runtime_enabled
&& !runtime_was_enabled
)
8116 cfs_bandwidth_usage_inc();
8117 raw_spin_lock_irq(&cfs_b
->lock
);
8118 cfs_b
->period
= ns_to_ktime(period
);
8119 cfs_b
->quota
= quota
;
8121 __refill_cfs_bandwidth_runtime(cfs_b
);
8122 /* restart the period timer (if active) to handle new period expiry */
8123 if (runtime_enabled
&& cfs_b
->timer_active
) {
8124 /* force a reprogram */
8125 __start_cfs_bandwidth(cfs_b
, true);
8127 raw_spin_unlock_irq(&cfs_b
->lock
);
8129 for_each_online_cpu(i
) {
8130 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
8131 struct rq
*rq
= cfs_rq
->rq
;
8133 raw_spin_lock_irq(&rq
->lock
);
8134 cfs_rq
->runtime_enabled
= runtime_enabled
;
8135 cfs_rq
->runtime_remaining
= 0;
8137 if (cfs_rq
->throttled
)
8138 unthrottle_cfs_rq(cfs_rq
);
8139 raw_spin_unlock_irq(&rq
->lock
);
8141 if (runtime_was_enabled
&& !runtime_enabled
)
8142 cfs_bandwidth_usage_dec();
8144 mutex_unlock(&cfs_constraints_mutex
);
8150 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
8154 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8155 if (cfs_quota_us
< 0)
8156 quota
= RUNTIME_INF
;
8158 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
8160 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8163 long tg_get_cfs_quota(struct task_group
*tg
)
8167 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
8170 quota_us
= tg
->cfs_bandwidth
.quota
;
8171 do_div(quota_us
, NSEC_PER_USEC
);
8176 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
8180 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
8181 quota
= tg
->cfs_bandwidth
.quota
;
8183 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8186 long tg_get_cfs_period(struct task_group
*tg
)
8190 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8191 do_div(cfs_period_us
, NSEC_PER_USEC
);
8193 return cfs_period_us
;
8196 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
8199 return tg_get_cfs_quota(css_tg(css
));
8202 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
8203 struct cftype
*cftype
, s64 cfs_quota_us
)
8205 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
8208 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
8211 return tg_get_cfs_period(css_tg(css
));
8214 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
8215 struct cftype
*cftype
, u64 cfs_period_us
)
8217 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
8220 struct cfs_schedulable_data
{
8221 struct task_group
*tg
;
8226 * normalize group quota/period to be quota/max_period
8227 * note: units are usecs
8229 static u64
normalize_cfs_quota(struct task_group
*tg
,
8230 struct cfs_schedulable_data
*d
)
8238 period
= tg_get_cfs_period(tg
);
8239 quota
= tg_get_cfs_quota(tg
);
8242 /* note: these should typically be equivalent */
8243 if (quota
== RUNTIME_INF
|| quota
== -1)
8246 return to_ratio(period
, quota
);
8249 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8251 struct cfs_schedulable_data
*d
= data
;
8252 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8253 s64 quota
= 0, parent_quota
= -1;
8256 quota
= RUNTIME_INF
;
8258 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8260 quota
= normalize_cfs_quota(tg
, d
);
8261 parent_quota
= parent_b
->hierarchical_quota
;
8264 * ensure max(child_quota) <= parent_quota, inherit when no
8267 if (quota
== RUNTIME_INF
)
8268 quota
= parent_quota
;
8269 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8272 cfs_b
->hierarchical_quota
= quota
;
8277 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8280 struct cfs_schedulable_data data
= {
8286 if (quota
!= RUNTIME_INF
) {
8287 do_div(data
.period
, NSEC_PER_USEC
);
8288 do_div(data
.quota
, NSEC_PER_USEC
);
8292 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8298 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8300 struct task_group
*tg
= css_tg(seq_css(sf
));
8301 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8303 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8304 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8305 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8309 #endif /* CONFIG_CFS_BANDWIDTH */
8310 #endif /* CONFIG_FAIR_GROUP_SCHED */
8312 #ifdef CONFIG_RT_GROUP_SCHED
8313 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8314 struct cftype
*cft
, s64 val
)
8316 return sched_group_set_rt_runtime(css_tg(css
), val
);
8319 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8322 return sched_group_rt_runtime(css_tg(css
));
8325 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8326 struct cftype
*cftype
, u64 rt_period_us
)
8328 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8331 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8334 return sched_group_rt_period(css_tg(css
));
8336 #endif /* CONFIG_RT_GROUP_SCHED */
8338 static struct cftype cpu_files
[] = {
8339 #ifdef CONFIG_FAIR_GROUP_SCHED
8342 .read_u64
= cpu_shares_read_u64
,
8343 .write_u64
= cpu_shares_write_u64
,
8346 #ifdef CONFIG_CFS_BANDWIDTH
8348 .name
= "cfs_quota_us",
8349 .read_s64
= cpu_cfs_quota_read_s64
,
8350 .write_s64
= cpu_cfs_quota_write_s64
,
8353 .name
= "cfs_period_us",
8354 .read_u64
= cpu_cfs_period_read_u64
,
8355 .write_u64
= cpu_cfs_period_write_u64
,
8359 .seq_show
= cpu_stats_show
,
8362 #ifdef CONFIG_RT_GROUP_SCHED
8364 .name
= "rt_runtime_us",
8365 .read_s64
= cpu_rt_runtime_read
,
8366 .write_s64
= cpu_rt_runtime_write
,
8369 .name
= "rt_period_us",
8370 .read_u64
= cpu_rt_period_read_uint
,
8371 .write_u64
= cpu_rt_period_write_uint
,
8377 struct cgroup_subsys cpu_cgrp_subsys
= {
8378 .css_alloc
= cpu_cgroup_css_alloc
,
8379 .css_free
= cpu_cgroup_css_free
,
8380 .css_online
= cpu_cgroup_css_online
,
8381 .css_offline
= cpu_cgroup_css_offline
,
8382 .fork
= cpu_cgroup_fork
,
8383 .can_attach
= cpu_cgroup_can_attach
,
8384 .attach
= cpu_cgroup_attach
,
8385 .exit
= cpu_cgroup_exit
,
8386 .legacy_cftypes
= cpu_files
,
8390 #endif /* CONFIG_CGROUP_SCHED */
8392 void dump_cpu_task(int cpu
)
8394 pr_info("Task dump for CPU %d:\n", cpu
);
8395 sched_show_task(cpu_curr(cpu
));