2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 void init_dl_bw(struct dl_bw
*dl_b
)
62 raw_spin_lock_init(&dl_b
->lock
);
63 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
64 if (global_rt_runtime() == RUNTIME_INF
)
67 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
72 void init_dl_rq(struct dl_rq
*dl_rq
)
74 dl_rq
->rb_root
= RB_ROOT
;
77 /* zero means no -deadline tasks */
78 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
80 dl_rq
->dl_nr_migratory
= 0;
81 dl_rq
->overloaded
= 0;
82 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
84 init_dl_bw(&dl_rq
->dl_bw
);
90 static inline int dl_overloaded(struct rq
*rq
)
92 return atomic_read(&rq
->rd
->dlo_count
);
95 static inline void dl_set_overload(struct rq
*rq
)
100 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq
->rd
->dlo_count
);
111 static inline void dl_clear_overload(struct rq
*rq
)
116 atomic_dec(&rq
->rd
->dlo_count
);
117 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
120 static void update_dl_migration(struct dl_rq
*dl_rq
)
122 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
123 if (!dl_rq
->overloaded
) {
124 dl_set_overload(rq_of_dl_rq(dl_rq
));
125 dl_rq
->overloaded
= 1;
127 } else if (dl_rq
->overloaded
) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq
));
129 dl_rq
->overloaded
= 0;
133 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
135 struct task_struct
*p
= dl_task_of(dl_se
);
137 if (p
->nr_cpus_allowed
> 1)
138 dl_rq
->dl_nr_migratory
++;
140 update_dl_migration(dl_rq
);
143 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 struct task_struct
*p
= dl_task_of(dl_se
);
147 if (p
->nr_cpus_allowed
> 1)
148 dl_rq
->dl_nr_migratory
--;
150 update_dl_migration(dl_rq
);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
159 struct dl_rq
*dl_rq
= &rq
->dl
;
160 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct task_struct
*entry
;
165 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
169 entry
= rb_entry(parent
, struct task_struct
,
171 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
172 link
= &parent
->rb_left
;
174 link
= &parent
->rb_right
;
180 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
182 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
183 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
186 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
188 struct dl_rq
*dl_rq
= &rq
->dl
;
190 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
193 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
194 struct rb_node
*next_node
;
196 next_node
= rb_next(&p
->pushable_dl_tasks
);
197 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
200 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
201 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
204 static inline int has_pushable_dl_tasks(struct rq
*rq
)
206 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
209 static int push_dl_task(struct rq
*rq
);
211 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
213 return dl_task(prev
);
216 static inline void set_post_schedule(struct rq
*rq
)
218 rq
->post_schedule
= has_pushable_dl_tasks(rq
);
221 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
223 static void dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
225 struct rq
*later_rq
= NULL
;
226 bool fallback
= false;
228 later_rq
= find_lock_later_rq(p
, rq
);
234 * If we cannot preempt any rq, fall back to pick any
238 cpu
= cpumask_any_and(cpu_active_mask
, tsk_cpus_allowed(p
));
239 if (cpu
>= nr_cpu_ids
) {
241 * Fail to find any suitable cpu.
242 * The task will never come back!
244 BUG_ON(dl_bandwidth_enabled());
247 * If admission control is disabled we
248 * try a little harder to let the task
251 cpu
= cpumask_any(cpu_active_mask
);
253 later_rq
= cpu_rq(cpu
);
254 double_lock_balance(rq
, later_rq
);
257 deactivate_task(rq
, p
, 0);
258 set_task_cpu(p
, later_rq
->cpu
);
259 activate_task(later_rq
, p
, ENQUEUE_REPLENISH
);
262 resched_curr(later_rq
);
264 double_unlock_balance(rq
, later_rq
);
270 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
275 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
280 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
285 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
289 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
294 static inline int pull_dl_task(struct rq
*rq
)
299 static inline void set_post_schedule(struct rq
*rq
)
302 #endif /* CONFIG_SMP */
304 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
305 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
306 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
310 * We are being explicitly informed that a new instance is starting,
311 * and this means that:
312 * - the absolute deadline of the entity has to be placed at
313 * current time + relative deadline;
314 * - the runtime of the entity has to be set to the maximum value.
316 * The capability of specifying such event is useful whenever a -deadline
317 * entity wants to (try to!) synchronize its behaviour with the scheduler's
318 * one, and to (try to!) reconcile itself with its own scheduling
321 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
,
322 struct sched_dl_entity
*pi_se
)
324 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
325 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
327 WARN_ON(!dl_se
->dl_new
|| dl_se
->dl_throttled
);
330 * We use the regular wall clock time to set deadlines in the
331 * future; in fact, we must consider execution overheads (time
332 * spent on hardirq context, etc.).
334 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
335 dl_se
->runtime
= pi_se
->dl_runtime
;
340 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
341 * possibility of a entity lasting more than what it declared, and thus
342 * exhausting its runtime.
344 * Here we are interested in making runtime overrun possible, but we do
345 * not want a entity which is misbehaving to affect the scheduling of all
347 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
348 * is used, in order to confine each entity within its own bandwidth.
350 * This function deals exactly with that, and ensures that when the runtime
351 * of a entity is replenished, its deadline is also postponed. That ensures
352 * the overrunning entity can't interfere with other entity in the system and
353 * can't make them miss their deadlines. Reasons why this kind of overruns
354 * could happen are, typically, a entity voluntarily trying to overcome its
355 * runtime, or it just underestimated it during sched_setattr().
357 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
358 struct sched_dl_entity
*pi_se
)
360 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
361 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
363 BUG_ON(pi_se
->dl_runtime
<= 0);
366 * This could be the case for a !-dl task that is boosted.
367 * Just go with full inherited parameters.
369 if (dl_se
->dl_deadline
== 0) {
370 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
371 dl_se
->runtime
= pi_se
->dl_runtime
;
375 * We keep moving the deadline away until we get some
376 * available runtime for the entity. This ensures correct
377 * handling of situations where the runtime overrun is
380 while (dl_se
->runtime
<= 0) {
381 dl_se
->deadline
+= pi_se
->dl_period
;
382 dl_se
->runtime
+= pi_se
->dl_runtime
;
386 * At this point, the deadline really should be "in
387 * the future" with respect to rq->clock. If it's
388 * not, we are, for some reason, lagging too much!
389 * Anyway, after having warn userspace abut that,
390 * we still try to keep the things running by
391 * resetting the deadline and the budget of the
394 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
395 printk_deferred_once("sched: DL replenish lagged to much\n");
396 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
397 dl_se
->runtime
= pi_se
->dl_runtime
;
400 if (dl_se
->dl_yielded
)
401 dl_se
->dl_yielded
= 0;
402 if (dl_se
->dl_throttled
)
403 dl_se
->dl_throttled
= 0;
407 * Here we check if --at time t-- an entity (which is probably being
408 * [re]activated or, in general, enqueued) can use its remaining runtime
409 * and its current deadline _without_ exceeding the bandwidth it is
410 * assigned (function returns true if it can't). We are in fact applying
411 * one of the CBS rules: when a task wakes up, if the residual runtime
412 * over residual deadline fits within the allocated bandwidth, then we
413 * can keep the current (absolute) deadline and residual budget without
414 * disrupting the schedulability of the system. Otherwise, we should
415 * refill the runtime and set the deadline a period in the future,
416 * because keeping the current (absolute) deadline of the task would
417 * result in breaking guarantees promised to other tasks (refer to
418 * Documentation/scheduler/sched-deadline.txt for more informations).
420 * This function returns true if:
422 * runtime / (deadline - t) > dl_runtime / dl_period ,
424 * IOW we can't recycle current parameters.
426 * Notice that the bandwidth check is done against the period. For
427 * task with deadline equal to period this is the same of using
428 * dl_deadline instead of dl_period in the equation above.
430 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
431 struct sched_dl_entity
*pi_se
, u64 t
)
436 * left and right are the two sides of the equation above,
437 * after a bit of shuffling to use multiplications instead
440 * Note that none of the time values involved in the two
441 * multiplications are absolute: dl_deadline and dl_runtime
442 * are the relative deadline and the maximum runtime of each
443 * instance, runtime is the runtime left for the last instance
444 * and (deadline - t), since t is rq->clock, is the time left
445 * to the (absolute) deadline. Even if overflowing the u64 type
446 * is very unlikely to occur in both cases, here we scale down
447 * as we want to avoid that risk at all. Scaling down by 10
448 * means that we reduce granularity to 1us. We are fine with it,
449 * since this is only a true/false check and, anyway, thinking
450 * of anything below microseconds resolution is actually fiction
451 * (but still we want to give the user that illusion >;).
453 left
= (pi_se
->dl_period
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
454 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
455 (pi_se
->dl_runtime
>> DL_SCALE
);
457 return dl_time_before(right
, left
);
461 * When a -deadline entity is queued back on the runqueue, its runtime and
462 * deadline might need updating.
464 * The policy here is that we update the deadline of the entity only if:
465 * - the current deadline is in the past,
466 * - using the remaining runtime with the current deadline would make
467 * the entity exceed its bandwidth.
469 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
470 struct sched_dl_entity
*pi_se
)
472 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
473 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
476 * The arrival of a new instance needs special treatment, i.e.,
477 * the actual scheduling parameters have to be "renewed".
480 setup_new_dl_entity(dl_se
, pi_se
);
484 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
485 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
486 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
487 dl_se
->runtime
= pi_se
->dl_runtime
;
492 * If the entity depleted all its runtime, and if we want it to sleep
493 * while waiting for some new execution time to become available, we
494 * set the bandwidth enforcement timer to the replenishment instant
495 * and try to activate it.
497 * Notice that it is important for the caller to know if the timer
498 * actually started or not (i.e., the replenishment instant is in
499 * the future or in the past).
501 static int start_dl_timer(struct sched_dl_entity
*dl_se
, bool boosted
)
503 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
504 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
513 * We want the timer to fire at the deadline, but considering
514 * that it is actually coming from rq->clock and not from
515 * hrtimer's time base reading.
517 act
= ns_to_ktime(dl_se
->deadline
);
518 now
= hrtimer_cb_get_time(&dl_se
->dl_timer
);
519 delta
= ktime_to_ns(now
) - rq_clock(rq
);
520 act
= ktime_add_ns(act
, delta
);
523 * If the expiry time already passed, e.g., because the value
524 * chosen as the deadline is too small, don't even try to
525 * start the timer in the past!
527 if (ktime_us_delta(act
, now
) < 0)
530 hrtimer_set_expires(&dl_se
->dl_timer
, act
);
532 soft
= hrtimer_get_softexpires(&dl_se
->dl_timer
);
533 hard
= hrtimer_get_expires(&dl_se
->dl_timer
);
534 range
= ktime_to_ns(ktime_sub(hard
, soft
));
535 __hrtimer_start_range_ns(&dl_se
->dl_timer
, soft
,
536 range
, HRTIMER_MODE_ABS
, 0);
538 return hrtimer_active(&dl_se
->dl_timer
);
542 * This is the bandwidth enforcement timer callback. If here, we know
543 * a task is not on its dl_rq, since the fact that the timer was running
544 * means the task is throttled and needs a runtime replenishment.
546 * However, what we actually do depends on the fact the task is active,
547 * (it is on its rq) or has been removed from there by a call to
548 * dequeue_task_dl(). In the former case we must issue the runtime
549 * replenishment and add the task back to the dl_rq; in the latter, we just
550 * do nothing but clearing dl_throttled, so that runtime and deadline
551 * updating (and the queueing back to dl_rq) will be done by the
552 * next call to enqueue_task_dl().
554 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
556 struct sched_dl_entity
*dl_se
= container_of(timer
,
557 struct sched_dl_entity
,
559 struct task_struct
*p
= dl_task_of(dl_se
);
563 rq
= task_rq_lock(p
, &flags
);
566 * We need to take care of several possible races here:
568 * - the task might have changed its scheduling policy
569 * to something different than SCHED_DEADLINE
570 * - the task might have changed its reservation parameters
571 * (through sched_setattr())
572 * - the task might have been boosted by someone else and
573 * might be in the boosting/deboosting path
575 * In all this cases we bail out, as the task is already
576 * in the runqueue or is going to be enqueued back anyway.
578 if (!dl_task(p
) || dl_se
->dl_new
||
579 dl_se
->dl_boosted
|| !dl_se
->dl_throttled
)
587 * If we find that the rq the task was on is no longer
588 * available, we need to select a new rq.
590 if (unlikely(!rq
->online
)) {
591 dl_task_offline_migration(rq
, p
);
597 * If the throttle happened during sched-out; like:
604 * __dequeue_task_dl()
607 * We can be both throttled and !queued. Replenish the counter
608 * but do not enqueue -- wait for our wakeup to do that.
610 if (!task_on_rq_queued(p
)) {
611 replenish_dl_entity(dl_se
, dl_se
);
615 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
616 if (dl_task(rq
->curr
))
617 check_preempt_curr_dl(rq
, p
, 0);
622 * Queueing this task back might have overloaded rq,
623 * check if we need to kick someone away.
625 if (has_pushable_dl_tasks(rq
))
629 task_rq_unlock(rq
, p
, &flags
);
631 return HRTIMER_NORESTART
;
634 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
636 struct hrtimer
*timer
= &dl_se
->dl_timer
;
638 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
639 timer
->function
= dl_task_timer
;
643 int dl_runtime_exceeded(struct rq
*rq
, struct sched_dl_entity
*dl_se
)
645 return (dl_se
->runtime
<= 0);
648 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
651 * Update the current task's runtime statistics (provided it is still
652 * a -deadline task and has not been removed from the dl_rq).
654 static void update_curr_dl(struct rq
*rq
)
656 struct task_struct
*curr
= rq
->curr
;
657 struct sched_dl_entity
*dl_se
= &curr
->dl
;
660 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
664 * Consumed budget is computed considering the time as
665 * observed by schedulable tasks (excluding time spent
666 * in hardirq context, etc.). Deadlines are instead
667 * computed using hard walltime. This seems to be the more
668 * natural solution, but the full ramifications of this
669 * approach need further study.
671 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
672 if (unlikely((s64
)delta_exec
<= 0))
675 schedstat_set(curr
->se
.statistics
.exec_max
,
676 max(curr
->se
.statistics
.exec_max
, delta_exec
));
678 curr
->se
.sum_exec_runtime
+= delta_exec
;
679 account_group_exec_runtime(curr
, delta_exec
);
681 curr
->se
.exec_start
= rq_clock_task(rq
);
682 cpuacct_charge(curr
, delta_exec
);
684 sched_rt_avg_update(rq
, delta_exec
);
686 dl_se
->runtime
-= dl_se
->dl_yielded
? 0 : delta_exec
;
687 if (dl_runtime_exceeded(rq
, dl_se
)) {
688 dl_se
->dl_throttled
= 1;
689 __dequeue_task_dl(rq
, curr
, 0);
690 if (unlikely(!start_dl_timer(dl_se
, curr
->dl
.dl_boosted
)))
691 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
693 if (!is_leftmost(curr
, &rq
->dl
))
698 * Because -- for now -- we share the rt bandwidth, we need to
699 * account our runtime there too, otherwise actual rt tasks
700 * would be able to exceed the shared quota.
702 * Account to the root rt group for now.
704 * The solution we're working towards is having the RT groups scheduled
705 * using deadline servers -- however there's a few nasties to figure
706 * out before that can happen.
708 if (rt_bandwidth_enabled()) {
709 struct rt_rq
*rt_rq
= &rq
->rt
;
711 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
713 * We'll let actual RT tasks worry about the overflow here, we
714 * have our own CBS to keep us inline; only account when RT
715 * bandwidth is relevant.
717 if (sched_rt_bandwidth_account(rt_rq
))
718 rt_rq
->rt_time
+= delta_exec
;
719 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
725 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
);
727 static inline u64
next_deadline(struct rq
*rq
)
729 struct task_struct
*next
= pick_next_earliest_dl_task(rq
, rq
->cpu
);
731 if (next
&& dl_prio(next
->prio
))
732 return next
->dl
.deadline
;
737 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
739 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
741 if (dl_rq
->earliest_dl
.curr
== 0 ||
742 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
744 * If the dl_rq had no -deadline tasks, or if the new task
745 * has shorter deadline than the current one on dl_rq, we
746 * know that the previous earliest becomes our next earliest,
747 * as the new task becomes the earliest itself.
749 dl_rq
->earliest_dl
.next
= dl_rq
->earliest_dl
.curr
;
750 dl_rq
->earliest_dl
.curr
= deadline
;
751 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
, 1);
752 } else if (dl_rq
->earliest_dl
.next
== 0 ||
753 dl_time_before(deadline
, dl_rq
->earliest_dl
.next
)) {
755 * On the other hand, if the new -deadline task has a
756 * a later deadline than the earliest one on dl_rq, but
757 * it is earlier than the next (if any), we must
758 * recompute the next-earliest.
760 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
764 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
766 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
769 * Since we may have removed our earliest (and/or next earliest)
770 * task we must recompute them.
772 if (!dl_rq
->dl_nr_running
) {
773 dl_rq
->earliest_dl
.curr
= 0;
774 dl_rq
->earliest_dl
.next
= 0;
775 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
777 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
778 struct sched_dl_entity
*entry
;
780 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
781 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
782 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
783 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
, 1);
789 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
790 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
792 #endif /* CONFIG_SMP */
795 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
797 int prio
= dl_task_of(dl_se
)->prio
;
798 u64 deadline
= dl_se
->deadline
;
800 WARN_ON(!dl_prio(prio
));
801 dl_rq
->dl_nr_running
++;
802 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
804 inc_dl_deadline(dl_rq
, deadline
);
805 inc_dl_migration(dl_se
, dl_rq
);
809 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
811 int prio
= dl_task_of(dl_se
)->prio
;
813 WARN_ON(!dl_prio(prio
));
814 WARN_ON(!dl_rq
->dl_nr_running
);
815 dl_rq
->dl_nr_running
--;
816 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
818 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
819 dec_dl_migration(dl_se
, dl_rq
);
822 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
824 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
825 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
826 struct rb_node
*parent
= NULL
;
827 struct sched_dl_entity
*entry
;
830 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
834 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
835 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
836 link
= &parent
->rb_left
;
838 link
= &parent
->rb_right
;
844 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
846 rb_link_node(&dl_se
->rb_node
, parent
, link
);
847 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
849 inc_dl_tasks(dl_se
, dl_rq
);
852 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
854 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
856 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
859 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
860 struct rb_node
*next_node
;
862 next_node
= rb_next(&dl_se
->rb_node
);
863 dl_rq
->rb_leftmost
= next_node
;
866 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
867 RB_CLEAR_NODE(&dl_se
->rb_node
);
869 dec_dl_tasks(dl_se
, dl_rq
);
873 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
874 struct sched_dl_entity
*pi_se
, int flags
)
876 BUG_ON(on_dl_rq(dl_se
));
879 * If this is a wakeup or a new instance, the scheduling
880 * parameters of the task might need updating. Otherwise,
881 * we want a replenishment of its runtime.
883 if (dl_se
->dl_new
|| flags
& ENQUEUE_WAKEUP
)
884 update_dl_entity(dl_se
, pi_se
);
885 else if (flags
& ENQUEUE_REPLENISH
)
886 replenish_dl_entity(dl_se
, pi_se
);
888 __enqueue_dl_entity(dl_se
);
891 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
893 __dequeue_dl_entity(dl_se
);
896 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
898 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
899 struct sched_dl_entity
*pi_se
= &p
->dl
;
902 * Use the scheduling parameters of the top pi-waiter
903 * task if we have one and its (relative) deadline is
904 * smaller than our one... OTW we keep our runtime and
907 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
)) {
908 pi_se
= &pi_task
->dl
;
909 } else if (!dl_prio(p
->normal_prio
)) {
911 * Special case in which we have a !SCHED_DEADLINE task
912 * that is going to be deboosted, but exceedes its
913 * runtime while doing so. No point in replenishing
914 * it, as it's going to return back to its original
915 * scheduling class after this.
917 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
922 * If p is throttled, we do nothing. In fact, if it exhausted
923 * its budget it needs a replenishment and, since it now is on
924 * its rq, the bandwidth timer callback (which clearly has not
925 * run yet) will take care of this.
927 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
))
930 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
932 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
933 enqueue_pushable_dl_task(rq
, p
);
936 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
938 dequeue_dl_entity(&p
->dl
);
939 dequeue_pushable_dl_task(rq
, p
);
942 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
945 __dequeue_task_dl(rq
, p
, flags
);
949 * Yield task semantic for -deadline tasks is:
951 * get off from the CPU until our next instance, with
952 * a new runtime. This is of little use now, since we
953 * don't have a bandwidth reclaiming mechanism. Anyway,
954 * bandwidth reclaiming is planned for the future, and
955 * yield_task_dl will indicate that some spare budget
956 * is available for other task instances to use it.
958 static void yield_task_dl(struct rq
*rq
)
960 struct task_struct
*p
= rq
->curr
;
963 * We make the task go to sleep until its current deadline by
964 * forcing its runtime to zero. This way, update_curr_dl() stops
965 * it and the bandwidth timer will wake it up and will give it
966 * new scheduling parameters (thanks to dl_yielded=1).
968 if (p
->dl
.runtime
> 0) {
969 rq
->curr
->dl
.dl_yielded
= 1;
975 * Tell update_rq_clock() that we've just updated,
976 * so we don't do microscopic update in schedule()
977 * and double the fastpath cost.
979 rq_clock_skip_update(rq
, true);
984 static int find_later_rq(struct task_struct
*task
);
987 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
989 struct task_struct
*curr
;
992 if (sd_flag
!= SD_BALANCE_WAKE
)
998 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1001 * If we are dealing with a -deadline task, we must
1002 * decide where to wake it up.
1003 * If it has a later deadline and the current task
1004 * on this rq can't move (provided the waking task
1005 * can!) we prefer to send it somewhere else. On the
1006 * other hand, if it has a shorter deadline, we
1007 * try to make it stay here, it might be important.
1009 if (unlikely(dl_task(curr
)) &&
1010 (curr
->nr_cpus_allowed
< 2 ||
1011 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1012 (p
->nr_cpus_allowed
> 1)) {
1013 int target
= find_later_rq(p
);
1024 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1027 * Current can't be migrated, useless to reschedule,
1028 * let's hope p can move out.
1030 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1031 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
1035 * p is migratable, so let's not schedule it and
1036 * see if it is pushed or pulled somewhere else.
1038 if (p
->nr_cpus_allowed
!= 1 &&
1039 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
1045 static int pull_dl_task(struct rq
*this_rq
);
1047 #endif /* CONFIG_SMP */
1050 * Only called when both the current and waking task are -deadline
1053 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1056 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1063 * In the unlikely case current and p have the same deadline
1064 * let us try to decide what's the best thing to do...
1066 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1067 !test_tsk_need_resched(rq
->curr
))
1068 check_preempt_equal_dl(rq
, p
);
1069 #endif /* CONFIG_SMP */
1072 #ifdef CONFIG_SCHED_HRTICK
1073 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1075 hrtick_start(rq
, p
->dl
.runtime
);
1077 #else /* !CONFIG_SCHED_HRTICK */
1078 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1083 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1084 struct dl_rq
*dl_rq
)
1086 struct rb_node
*left
= dl_rq
->rb_leftmost
;
1091 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1094 struct task_struct
*pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
)
1096 struct sched_dl_entity
*dl_se
;
1097 struct task_struct
*p
;
1098 struct dl_rq
*dl_rq
;
1102 if (need_pull_dl_task(rq
, prev
)) {
1105 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1106 * means a stop task can slip in, in which case we need to
1107 * re-start task selection.
1109 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1114 * When prev is DL, we may throttle it in put_prev_task().
1115 * So, we update time before we check for dl_nr_running.
1117 if (prev
->sched_class
== &dl_sched_class
)
1120 if (unlikely(!dl_rq
->dl_nr_running
))
1123 put_prev_task(rq
, prev
);
1125 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1128 p
= dl_task_of(dl_se
);
1129 p
->se
.exec_start
= rq_clock_task(rq
);
1131 /* Running task will never be pushed. */
1132 dequeue_pushable_dl_task(rq
, p
);
1134 if (hrtick_enabled(rq
))
1135 start_hrtick_dl(rq
, p
);
1137 set_post_schedule(rq
);
1142 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1146 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1147 enqueue_pushable_dl_task(rq
, p
);
1150 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1155 * Even when we have runtime, update_curr_dl() might have resulted in us
1156 * not being the leftmost task anymore. In that case NEED_RESCHED will
1157 * be set and schedule() will start a new hrtick for the next task.
1159 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1160 is_leftmost(p
, &rq
->dl
))
1161 start_hrtick_dl(rq
, p
);
1164 static void task_fork_dl(struct task_struct
*p
)
1167 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1172 static void task_dead_dl(struct task_struct
*p
)
1174 struct hrtimer
*timer
= &p
->dl
.dl_timer
;
1175 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1178 * Since we are TASK_DEAD we won't slip out of the domain!
1180 raw_spin_lock_irq(&dl_b
->lock
);
1181 /* XXX we should retain the bw until 0-lag */
1182 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1183 raw_spin_unlock_irq(&dl_b
->lock
);
1185 hrtimer_cancel(timer
);
1188 static void set_curr_task_dl(struct rq
*rq
)
1190 struct task_struct
*p
= rq
->curr
;
1192 p
->se
.exec_start
= rq_clock_task(rq
);
1194 /* You can't push away the running task */
1195 dequeue_pushable_dl_task(rq
, p
);
1200 /* Only try algorithms three times */
1201 #define DL_MAX_TRIES 3
1203 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1205 if (!task_running(rq
, p
) &&
1206 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1211 /* Returns the second earliest -deadline task, NULL otherwise */
1212 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
)
1214 struct rb_node
*next_node
= rq
->dl
.rb_leftmost
;
1215 struct sched_dl_entity
*dl_se
;
1216 struct task_struct
*p
= NULL
;
1219 next_node
= rb_next(next_node
);
1221 dl_se
= rb_entry(next_node
, struct sched_dl_entity
, rb_node
);
1222 p
= dl_task_of(dl_se
);
1224 if (pick_dl_task(rq
, p
, cpu
))
1233 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1235 static int find_later_rq(struct task_struct
*task
)
1237 struct sched_domain
*sd
;
1238 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1239 int this_cpu
= smp_processor_id();
1240 int best_cpu
, cpu
= task_cpu(task
);
1242 /* Make sure the mask is initialized first */
1243 if (unlikely(!later_mask
))
1246 if (task
->nr_cpus_allowed
== 1)
1250 * We have to consider system topology and task affinity
1251 * first, then we can look for a suitable cpu.
1253 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1259 * If we are here, some target has been found,
1260 * the most suitable of which is cached in best_cpu.
1261 * This is, among the runqueues where the current tasks
1262 * have later deadlines than the task's one, the rq
1263 * with the latest possible one.
1265 * Now we check how well this matches with task's
1266 * affinity and system topology.
1268 * The last cpu where the task run is our first
1269 * guess, since it is most likely cache-hot there.
1271 if (cpumask_test_cpu(cpu
, later_mask
))
1274 * Check if this_cpu is to be skipped (i.e., it is
1275 * not in the mask) or not.
1277 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1281 for_each_domain(cpu
, sd
) {
1282 if (sd
->flags
& SD_WAKE_AFFINE
) {
1285 * If possible, preempting this_cpu is
1286 * cheaper than migrating.
1288 if (this_cpu
!= -1 &&
1289 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1295 * Last chance: if best_cpu is valid and is
1296 * in the mask, that becomes our choice.
1298 if (best_cpu
< nr_cpu_ids
&&
1299 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1308 * At this point, all our guesses failed, we just return
1309 * 'something', and let the caller sort the things out.
1314 cpu
= cpumask_any(later_mask
);
1315 if (cpu
< nr_cpu_ids
)
1321 /* Locks the rq it finds */
1322 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1324 struct rq
*later_rq
= NULL
;
1328 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1329 cpu
= find_later_rq(task
);
1331 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1334 later_rq
= cpu_rq(cpu
);
1336 /* Retry if something changed. */
1337 if (double_lock_balance(rq
, later_rq
)) {
1338 if (unlikely(task_rq(task
) != rq
||
1339 !cpumask_test_cpu(later_rq
->cpu
,
1340 &task
->cpus_allowed
) ||
1341 task_running(rq
, task
) ||
1342 !task_on_rq_queued(task
))) {
1343 double_unlock_balance(rq
, later_rq
);
1350 * If the rq we found has no -deadline task, or
1351 * its earliest one has a later deadline than our
1352 * task, the rq is a good one.
1354 if (!later_rq
->dl
.dl_nr_running
||
1355 dl_time_before(task
->dl
.deadline
,
1356 later_rq
->dl
.earliest_dl
.curr
))
1359 /* Otherwise we try again. */
1360 double_unlock_balance(rq
, later_rq
);
1367 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1369 struct task_struct
*p
;
1371 if (!has_pushable_dl_tasks(rq
))
1374 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1375 struct task_struct
, pushable_dl_tasks
);
1377 BUG_ON(rq
->cpu
!= task_cpu(p
));
1378 BUG_ON(task_current(rq
, p
));
1379 BUG_ON(p
->nr_cpus_allowed
<= 1);
1381 BUG_ON(!task_on_rq_queued(p
));
1382 BUG_ON(!dl_task(p
));
1388 * See if the non running -deadline tasks on this rq
1389 * can be sent to some other CPU where they can preempt
1390 * and start executing.
1392 static int push_dl_task(struct rq
*rq
)
1394 struct task_struct
*next_task
;
1395 struct rq
*later_rq
;
1398 if (!rq
->dl
.overloaded
)
1401 next_task
= pick_next_pushable_dl_task(rq
);
1406 if (unlikely(next_task
== rq
->curr
)) {
1412 * If next_task preempts rq->curr, and rq->curr
1413 * can move away, it makes sense to just reschedule
1414 * without going further in pushing next_task.
1416 if (dl_task(rq
->curr
) &&
1417 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1418 rq
->curr
->nr_cpus_allowed
> 1) {
1423 /* We might release rq lock */
1424 get_task_struct(next_task
);
1426 /* Will lock the rq it'll find */
1427 later_rq
= find_lock_later_rq(next_task
, rq
);
1429 struct task_struct
*task
;
1432 * We must check all this again, since
1433 * find_lock_later_rq releases rq->lock and it is
1434 * then possible that next_task has migrated.
1436 task
= pick_next_pushable_dl_task(rq
);
1437 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1439 * The task is still there. We don't try
1440 * again, some other cpu will pull it when ready.
1449 put_task_struct(next_task
);
1454 deactivate_task(rq
, next_task
, 0);
1455 set_task_cpu(next_task
, later_rq
->cpu
);
1456 activate_task(later_rq
, next_task
, 0);
1459 resched_curr(later_rq
);
1461 double_unlock_balance(rq
, later_rq
);
1464 put_task_struct(next_task
);
1469 static void push_dl_tasks(struct rq
*rq
)
1471 /* Terminates as it moves a -deadline task */
1472 while (push_dl_task(rq
))
1476 static int pull_dl_task(struct rq
*this_rq
)
1478 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1479 struct task_struct
*p
;
1481 u64 dmin
= LONG_MAX
;
1483 if (likely(!dl_overloaded(this_rq
)))
1487 * Match the barrier from dl_set_overloaded; this guarantees that if we
1488 * see overloaded we must also see the dlo_mask bit.
1492 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1493 if (this_cpu
== cpu
)
1496 src_rq
= cpu_rq(cpu
);
1499 * It looks racy, abd it is! However, as in sched_rt.c,
1500 * we are fine with this.
1502 if (this_rq
->dl
.dl_nr_running
&&
1503 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1504 src_rq
->dl
.earliest_dl
.next
))
1507 /* Might drop this_rq->lock */
1508 double_lock_balance(this_rq
, src_rq
);
1511 * If there are no more pullable tasks on the
1512 * rq, we're done with it.
1514 if (src_rq
->dl
.dl_nr_running
<= 1)
1517 p
= pick_next_earliest_dl_task(src_rq
, this_cpu
);
1520 * We found a task to be pulled if:
1521 * - it preempts our current (if there's one),
1522 * - it will preempt the last one we pulled (if any).
1524 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1525 (!this_rq
->dl
.dl_nr_running
||
1526 dl_time_before(p
->dl
.deadline
,
1527 this_rq
->dl
.earliest_dl
.curr
))) {
1528 WARN_ON(p
== src_rq
->curr
);
1529 WARN_ON(!task_on_rq_queued(p
));
1532 * Then we pull iff p has actually an earlier
1533 * deadline than the current task of its runqueue.
1535 if (dl_time_before(p
->dl
.deadline
,
1536 src_rq
->curr
->dl
.deadline
))
1541 deactivate_task(src_rq
, p
, 0);
1542 set_task_cpu(p
, this_cpu
);
1543 activate_task(this_rq
, p
, 0);
1544 dmin
= p
->dl
.deadline
;
1546 /* Is there any other task even earlier? */
1549 double_unlock_balance(this_rq
, src_rq
);
1555 static void post_schedule_dl(struct rq
*rq
)
1561 * Since the task is not running and a reschedule is not going to happen
1562 * anytime soon on its runqueue, we try pushing it away now.
1564 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1566 if (!task_running(rq
, p
) &&
1567 !test_tsk_need_resched(rq
->curr
) &&
1568 has_pushable_dl_tasks(rq
) &&
1569 p
->nr_cpus_allowed
> 1 &&
1570 dl_task(rq
->curr
) &&
1571 (rq
->curr
->nr_cpus_allowed
< 2 ||
1572 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
1577 static void set_cpus_allowed_dl(struct task_struct
*p
,
1578 const struct cpumask
*new_mask
)
1581 struct root_domain
*src_rd
;
1584 BUG_ON(!dl_task(p
));
1589 * Migrating a SCHED_DEADLINE task between exclusive
1590 * cpusets (different root_domains) entails a bandwidth
1591 * update. We already made space for us in the destination
1592 * domain (see cpuset_can_attach()).
1594 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
1595 struct dl_bw
*src_dl_b
;
1597 src_dl_b
= dl_bw_of(cpu_of(rq
));
1599 * We now free resources of the root_domain we are migrating
1600 * off. In the worst case, sched_setattr() may temporary fail
1601 * until we complete the update.
1603 raw_spin_lock(&src_dl_b
->lock
);
1604 __dl_clear(src_dl_b
, p
->dl
.dl_bw
);
1605 raw_spin_unlock(&src_dl_b
->lock
);
1609 * Update only if the task is actually running (i.e.,
1610 * it is on the rq AND it is not throttled).
1612 if (!on_dl_rq(&p
->dl
))
1615 weight
= cpumask_weight(new_mask
);
1618 * Only update if the process changes its state from whether it
1619 * can migrate or not.
1621 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1625 * The process used to be able to migrate OR it can now migrate
1628 if (!task_current(rq
, p
))
1629 dequeue_pushable_dl_task(rq
, p
);
1630 BUG_ON(!rq
->dl
.dl_nr_migratory
);
1631 rq
->dl
.dl_nr_migratory
--;
1633 if (!task_current(rq
, p
))
1634 enqueue_pushable_dl_task(rq
, p
);
1635 rq
->dl
.dl_nr_migratory
++;
1638 update_dl_migration(&rq
->dl
);
1641 /* Assumes rq->lock is held */
1642 static void rq_online_dl(struct rq
*rq
)
1644 if (rq
->dl
.overloaded
)
1645 dl_set_overload(rq
);
1647 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1648 if (rq
->dl
.dl_nr_running
> 0)
1649 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
, 1);
1652 /* Assumes rq->lock is held */
1653 static void rq_offline_dl(struct rq
*rq
)
1655 if (rq
->dl
.overloaded
)
1656 dl_clear_overload(rq
);
1658 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
1659 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1662 void init_sched_dl_class(void)
1666 for_each_possible_cpu(i
)
1667 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1668 GFP_KERNEL
, cpu_to_node(i
));
1671 #endif /* CONFIG_SMP */
1674 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1676 static void cancel_dl_timer(struct rq
*rq
, struct task_struct
*p
)
1678 struct hrtimer
*dl_timer
= &p
->dl
.dl_timer
;
1680 /* Nobody will change task's class if pi_lock is held */
1681 lockdep_assert_held(&p
->pi_lock
);
1683 if (hrtimer_active(dl_timer
)) {
1684 int ret
= hrtimer_try_to_cancel(dl_timer
);
1686 if (unlikely(ret
== -1)) {
1688 * Note, p may migrate OR new deadline tasks
1689 * may appear in rq when we are unlocking it.
1690 * A caller of us must be fine with that.
1692 raw_spin_unlock(&rq
->lock
);
1693 hrtimer_cancel(dl_timer
);
1694 raw_spin_lock(&rq
->lock
);
1699 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1701 /* XXX we should retain the bw until 0-lag */
1702 cancel_dl_timer(rq
, p
);
1703 __dl_clear_params(p
);
1706 * Since this might be the only -deadline task on the rq,
1707 * this is the right place to try to pull some other one
1708 * from an overloaded cpu, if any.
1710 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
1713 if (pull_dl_task(rq
))
1718 * When switching to -deadline, we may overload the rq, then
1719 * we try to push someone off, if possible.
1721 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1723 int check_resched
= 1;
1725 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
1727 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
&&
1728 push_dl_task(rq
) && rq
!= task_rq(p
))
1729 /* Only reschedule if pushing failed */
1731 #endif /* CONFIG_SMP */
1732 if (check_resched
) {
1733 if (dl_task(rq
->curr
))
1734 check_preempt_curr_dl(rq
, p
, 0);
1742 * If the scheduling parameters of a -deadline task changed,
1743 * a push or pull operation might be needed.
1745 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1748 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
1751 * This might be too much, but unfortunately
1752 * we don't have the old deadline value, and
1753 * we can't argue if the task is increasing
1754 * or lowering its prio, so...
1756 if (!rq
->dl
.overloaded
)
1760 * If we now have a earlier deadline task than p,
1761 * then reschedule, provided p is still on this
1764 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
) &&
1769 * Again, we don't know if p has a earlier
1770 * or later deadline, so let's blindly set a
1771 * (maybe not needed) rescheduling point.
1774 #endif /* CONFIG_SMP */
1776 switched_to_dl(rq
, p
);
1779 const struct sched_class dl_sched_class
= {
1780 .next
= &rt_sched_class
,
1781 .enqueue_task
= enqueue_task_dl
,
1782 .dequeue_task
= dequeue_task_dl
,
1783 .yield_task
= yield_task_dl
,
1785 .check_preempt_curr
= check_preempt_curr_dl
,
1787 .pick_next_task
= pick_next_task_dl
,
1788 .put_prev_task
= put_prev_task_dl
,
1791 .select_task_rq
= select_task_rq_dl
,
1792 .set_cpus_allowed
= set_cpus_allowed_dl
,
1793 .rq_online
= rq_online_dl
,
1794 .rq_offline
= rq_offline_dl
,
1795 .post_schedule
= post_schedule_dl
,
1796 .task_woken
= task_woken_dl
,
1799 .set_curr_task
= set_curr_task_dl
,
1800 .task_tick
= task_tick_dl
,
1801 .task_fork
= task_fork_dl
,
1802 .task_dead
= task_dead_dl
,
1804 .prio_changed
= prio_changed_dl
,
1805 .switched_from
= switched_from_dl
,
1806 .switched_to
= switched_to_dl
,
1808 .update_curr
= update_curr_dl
,
1811 #ifdef CONFIG_SCHED_DEBUG
1812 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
1814 void print_dl_stats(struct seq_file
*m
, int cpu
)
1816 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
1818 #endif /* CONFIG_SCHED_DEBUG */