Linux 4.1.18
[linux/fpc-iii.git] / kernel / sched / fair.c
blob77690b653ca9e24872688062adc8852380ae52ff
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
36 #include "sched.h"
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
75 static unsigned int sched_nr_latency = 8;
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
103 #ifdef CONFIG_CFS_BANDWIDTH
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
112 * default: 5 msec, units: microseconds
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
119 lw->weight += inc;
120 lw->inv_weight = 0;
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
125 lw->weight -= dec;
126 lw->inv_weight = 0;
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
131 lw->weight = w;
132 lw->inv_weight = 0;
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
142 * This idea comes from the SD scheduler of Con Kolivas:
144 static int get_update_sysctl_factor(void)
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
162 return factor;
165 static void update_sysctl(void)
167 unsigned int factor = get_update_sysctl_factor();
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
177 void sched_init_granularity(void)
179 update_sysctl();
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
185 static void __update_inv_weight(struct load_weight *lw)
187 unsigned long w;
189 if (likely(lw->inv_weight))
190 return;
192 w = scale_load_down(lw->weight);
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
219 __update_inv_weight(lw);
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
236 return mul_u64_u32_shr(delta_exec, fact, shift);
240 const struct sched_class fair_sched_class;
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
246 #ifdef CONFIG_FAIR_GROUP_SCHED
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
251 return cfs_rq->rq;
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
257 static inline struct task_struct *task_of(struct sched_entity *se)
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
271 return p->se.cfs_rq;
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
277 return se->cfs_rq;
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
283 return grp->my_q;
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 if (!cfs_rq->on_list) {
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
332 return NULL;
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
337 return se->parent;
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343 int se_depth, pse_depth;
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
374 static inline struct task_struct *task_of(struct sched_entity *se)
376 return container_of(se, struct task_struct, se);
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381 return container_of(cfs_rq, struct rq, cfs);
384 #define entity_is_task(se) 1
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
391 return &task_rq(p)->cfs;
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
399 return &rq->cfs;
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405 return NULL;
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
421 return NULL;
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
444 return max_vruntime;
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
453 return min_vruntime;
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
459 return (s64)(a->vruntime - b->vruntime) < 0;
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
464 u64 vruntime = cfs_rq->min_vruntime;
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
489 * Enqueue an entity into the rb-tree:
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
499 * Find the right place in the rbtree:
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
541 struct rb_node *left = cfs_rq->rb_leftmost;
543 if (!left)
544 return NULL;
546 return rb_entry(left, struct sched_entity, run_node);
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551 struct rb_node *next = rb_next(&se->run_node);
553 if (!next)
554 return NULL;
556 return rb_entry(next, struct sched_entity, run_node);
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
564 if (!last)
565 return NULL;
567 return rb_entry(last, struct sched_entity, run_node);
570 /**************************************************************
571 * Scheduling class statistics methods:
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
581 if (ret || !write)
582 return ret;
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
594 return 0;
596 #endif
599 * delta /= w
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
606 return delta;
610 * The idea is to set a period in which each task runs once.
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
615 * p = (nr <= nl) ? l : l*nr/nl
617 static u64 __sched_period(unsigned long nr_running)
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
627 return period;
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
634 * s = p*P[w/rw]
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
653 slice = __calc_delta(slice, se->load.weight, load);
655 return slice;
659 * We calculate the vruntime slice of a to-be-inserted task.
661 * vs = s/w
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 static inline void __update_task_entity_utilization(struct sched_entity *se);
675 /* Give new task start runnable values to heavy its load in infant time */
676 void init_task_runnable_average(struct task_struct *p)
678 u32 slice;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684 __update_task_entity_utilization(&p->se);
686 #else
687 void init_task_runnable_average(struct task_struct *p)
690 #endif
693 * Update the current task's runtime statistics.
695 static void update_curr(struct cfs_rq *cfs_rq)
697 struct sched_entity *curr = cfs_rq->curr;
698 u64 now = rq_clock_task(rq_of(cfs_rq));
699 u64 delta_exec;
701 if (unlikely(!curr))
702 return;
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
706 return;
708 curr->exec_start = now;
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723 cpuacct_charge(curtask, delta_exec);
724 account_group_exec_runtime(curtask, delta_exec);
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
730 static void update_curr_fair(struct rq *rq)
732 update_curr(cfs_rq_of(&rq->curr->se));
735 static inline void
736 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
742 * Task is being enqueued - update stats:
744 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
750 if (se != cfs_rq->curr)
751 update_stats_wait_start(cfs_rq, se);
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 #ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
767 #endif
768 schedstat_set(se->statistics.wait_start, 0);
771 static inline void
772 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
778 if (se != cfs_rq->curr)
779 update_stats_wait_end(cfs_rq, se);
783 * We are picking a new current task - update its stats:
785 static inline void
786 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 * We are starting a new run period:
791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
794 /**************************************************
795 * Scheduling class queueing methods:
798 #ifdef CONFIG_NUMA_BALANCING
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
804 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
807 /* Portion of address space to scan in MB */
808 unsigned int sysctl_numa_balancing_scan_size = 256;
810 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811 unsigned int sysctl_numa_balancing_scan_delay = 1000;
813 static unsigned int task_nr_scan_windows(struct task_struct *p)
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
832 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833 #define MAX_SCAN_WINDOW 2560
835 static unsigned int task_scan_min(struct task_struct *p)
837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
838 unsigned int scan, floor;
839 unsigned int windows = 1;
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
843 floor = 1000 / windows;
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
849 static unsigned int task_scan_max(struct task_struct *p)
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
859 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
865 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
871 struct numa_group {
872 atomic_t refcount;
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
876 pid_t gid;
878 struct rcu_head rcu;
879 nodemask_t active_nodes;
880 unsigned long total_faults;
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
886 unsigned long *faults_cpu;
887 unsigned long faults[0];
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
899 pid_t task_numa_group_id(struct task_struct *p)
901 return p->numa_group ? p->numa_group->gid : 0;
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
910 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
915 static inline unsigned long task_faults(struct task_struct *p, int nid)
917 if (!p->numa_faults)
918 return 0;
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
924 static inline unsigned long group_faults(struct task_struct *p, int nid)
926 if (!p->numa_group)
927 return 0;
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
933 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
939 /* Handle placement on systems where not all nodes are directly connected. */
940 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
943 unsigned long score = 0;
944 int node;
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
998 score += faults;
1001 return score;
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1010 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
1013 unsigned long faults, total_faults;
1015 if (!p->numa_faults)
1016 return 0;
1018 total_faults = p->total_numa_faults;
1020 if (!total_faults)
1021 return 0;
1023 faults = task_faults(p, nid);
1024 faults += score_nearby_nodes(p, nid, dist, true);
1026 return 1000 * faults / total_faults;
1029 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
1032 unsigned long faults, total_faults;
1034 if (!p->numa_group)
1035 return 0;
1037 total_faults = p->numa_group->total_faults;
1039 if (!total_faults)
1040 return 0;
1042 faults = group_faults(p, nid);
1043 faults += score_nearby_nodes(p, nid, dist, false);
1045 return 1000 * faults / total_faults;
1048 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1111 static unsigned long weighted_cpuload(const int cpu);
1112 static unsigned long source_load(int cpu, int type);
1113 static unsigned long target_load(int cpu, int type);
1114 static unsigned long capacity_of(int cpu);
1115 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1117 /* Cached statistics for all CPUs within a node */
1118 struct numa_stats {
1119 unsigned long nr_running;
1120 unsigned long load;
1122 /* Total compute capacity of CPUs on a node */
1123 unsigned long compute_capacity;
1125 /* Approximate capacity in terms of runnable tasks on a node */
1126 unsigned long task_capacity;
1127 int has_free_capacity;
1131 * XXX borrowed from update_sg_lb_stats
1133 static void update_numa_stats(struct numa_stats *ns, int nid)
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
1144 ns->compute_capacity += capacity_of(cpu);
1146 cpus++;
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
1157 if (!cpus)
1158 return;
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1169 struct task_numa_env {
1170 struct task_struct *p;
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
1175 struct numa_stats src_stats, dst_stats;
1177 int imbalance_pct;
1178 int dist;
1180 struct task_struct *best_task;
1181 long best_imp;
1182 int best_cpu;
1185 static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1198 static bool load_too_imbalanced(long src_load, long dst_load,
1199 struct task_numa_env *env)
1201 long src_capacity, dst_capacity;
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
1208 * The load is corrected for the CPU capacity available on each node.
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
1217 /* We care about the slope of the imbalance, not the direction. */
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
1223 /* Is the difference below the threshold? */
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
1226 if (imb <= 0)
1227 return false;
1230 * The imbalance is above the allowed threshold.
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
1234 orig_src_load = env->src_stats.load;
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1243 moved_load = orig_src_load - src_load;
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1259 static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
1265 long src_load, dst_load;
1266 long load;
1267 long imp = env->p->numa_group ? groupimp : taskimp;
1268 long moveimp = imp;
1269 int dist = env->dist;
1271 rcu_read_lock();
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1283 cur = NULL;
1284 raw_spin_unlock_irq(&dst_rq->lock);
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1290 if (cur == env->p)
1291 goto unlock;
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1306 * If dst and source tasks are in the same NUMA group, or not
1307 * in any group then look only at task weights.
1309 if (cur->numa_group == env->p->numa_group) {
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1316 if (cur->numa_group)
1317 imp -= imp/16;
1318 } else {
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1324 if (cur->numa_group)
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
1327 else
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
1334 goto unlock;
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1339 !env->dst_stats.has_free_capacity)
1340 goto unlock;
1342 goto balance;
1345 /* Balance doesn't matter much if we're running a task per cpu */
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
1348 goto assign;
1351 * In the overloaded case, try and keep the load balanced.
1353 balance:
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
1358 if (moveimp > imp && moveimp > env->best_imp) {
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1372 if (imp <= env->best_imp)
1373 goto unlock;
1375 if (cur) {
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
1381 if (load_too_imbalanced(src_load, dst_load, env))
1382 goto unlock;
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1391 assign:
1392 task_numa_assign(env, cur, imp);
1393 unlock:
1394 rcu_read_unlock();
1397 static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
1400 int cpu;
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1407 env->dst_cpu = cpu;
1408 task_numa_compare(env, taskimp, groupimp);
1412 static int task_numa_migrate(struct task_struct *p)
1414 struct task_numa_env env = {
1415 .p = p,
1417 .src_cpu = task_cpu(p),
1418 .src_nid = task_node(p),
1420 .imbalance_pct = 112,
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
1426 struct sched_domain *sd;
1427 unsigned long taskweight, groupweight;
1428 int nid, ret, dist;
1429 long taskimp, groupimp;
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
1439 rcu_read_lock();
1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1443 rcu_read_unlock();
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1451 if (unlikely(!sd)) {
1452 p->numa_preferred_nid = task_node(p);
1453 return -EINVAL;
1456 env.dst_nid = p->numa_preferred_nid;
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1463 update_numa_stats(&env.dst_stats, env.dst_nid);
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
1481 dist = node_distance(env.src_nid, env.dst_nid);
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1488 /* Only consider nodes where both task and groups benefit */
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
1491 if (taskimp < 0 && groupimp < 0)
1492 continue;
1494 env.dist = dist;
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
1497 task_numa_find_cpu(&env, taskimp, groupimp);
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1527 p->numa_scan_period = task_scan_min(p);
1529 if (env.best_task == NULL) {
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1533 return ret;
1536 ret = migrate_swap(p, env.best_task);
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1539 put_task_struct(env.best_task);
1540 return ret;
1543 /* Attempt to migrate a task to a CPU on the preferred node. */
1544 static void numa_migrate_preferred(struct task_struct *p)
1546 unsigned long interval = HZ;
1548 /* This task has no NUMA fault statistics yet */
1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1550 return;
1552 /* Periodically retry migrating the task to the preferred node */
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
1556 /* Success if task is already running on preferred CPU */
1557 if (task_node(p) == p->numa_preferred_nid)
1558 return;
1560 /* Otherwise, try migrate to a CPU on the preferred node */
1561 task_numa_migrate(p);
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1575 static void update_numa_active_node_mask(struct numa_group *numa_group)
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
1603 #define NUMA_PERIOD_SLOTS 10
1604 #define NUMA_PERIOD_THRESHOLD 7
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1612 static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
1625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
1629 if (local + shared == 0 || p->numa_faults_locality[2]) {
1630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1636 return;
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1679 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
1691 *period = p->se.avg.avg_period;
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1697 return delta;
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1705 static int preferred_group_nid(struct task_struct *p, int nid)
1707 nodemask_t nodes;
1708 int dist;
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1723 dist = sched_max_numa_distance;
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1732 return max_node;
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
1747 nodemask_t max_group = NODE_MASK_NONE;
1748 int a, b;
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1777 nid = a;
1780 /* Next round, evaluate the nodes within max_group. */
1781 if (!max_faults)
1782 break;
1783 nodes = max_group;
1785 return nid;
1788 static void task_numa_placement(struct task_struct *p)
1790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
1792 unsigned long fault_types[2] = { 0, 0 };
1793 unsigned long total_faults;
1794 u64 runtime, period;
1795 spinlock_t *group_lock = NULL;
1797 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1798 if (p->numa_scan_seq == seq)
1799 return;
1800 p->numa_scan_seq = seq;
1801 p->numa_scan_period_max = task_scan_max(p);
1803 total_faults = p->numa_faults_locality[0] +
1804 p->numa_faults_locality[1];
1805 runtime = numa_get_avg_runtime(p, &period);
1807 /* If the task is part of a group prevent parallel updates to group stats */
1808 if (p->numa_group) {
1809 group_lock = &p->numa_group->lock;
1810 spin_lock_irq(group_lock);
1813 /* Find the node with the highest number of faults */
1814 for_each_online_node(nid) {
1815 /* Keep track of the offsets in numa_faults array */
1816 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1817 unsigned long faults = 0, group_faults = 0;
1818 int priv;
1820 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1821 long diff, f_diff, f_weight;
1823 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1828 /* Decay existing window, copy faults since last scan */
1829 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 fault_types[priv] += p->numa_faults[membuf_idx];
1831 p->numa_faults[membuf_idx] = 0;
1834 * Normalize the faults_from, so all tasks in a group
1835 * count according to CPU use, instead of by the raw
1836 * number of faults. Tasks with little runtime have
1837 * little over-all impact on throughput, and thus their
1838 * faults are less important.
1840 f_weight = div64_u64(runtime << 16, period + 1);
1841 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1842 (total_faults + 1);
1843 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 p->numa_faults[cpubuf_idx] = 0;
1846 p->numa_faults[mem_idx] += diff;
1847 p->numa_faults[cpu_idx] += f_diff;
1848 faults += p->numa_faults[mem_idx];
1849 p->total_numa_faults += diff;
1850 if (p->numa_group) {
1852 * safe because we can only change our own group
1854 * mem_idx represents the offset for a given
1855 * nid and priv in a specific region because it
1856 * is at the beginning of the numa_faults array.
1858 p->numa_group->faults[mem_idx] += diff;
1859 p->numa_group->faults_cpu[mem_idx] += f_diff;
1860 p->numa_group->total_faults += diff;
1861 group_faults += p->numa_group->faults[mem_idx];
1865 if (faults > max_faults) {
1866 max_faults = faults;
1867 max_nid = nid;
1870 if (group_faults > max_group_faults) {
1871 max_group_faults = group_faults;
1872 max_group_nid = nid;
1876 update_task_scan_period(p, fault_types[0], fault_types[1]);
1878 if (p->numa_group) {
1879 update_numa_active_node_mask(p->numa_group);
1880 spin_unlock_irq(group_lock);
1881 max_nid = preferred_group_nid(p, max_group_nid);
1884 if (max_faults) {
1885 /* Set the new preferred node */
1886 if (max_nid != p->numa_preferred_nid)
1887 sched_setnuma(p, max_nid);
1889 if (task_node(p) != p->numa_preferred_nid)
1890 numa_migrate_preferred(p);
1894 static inline int get_numa_group(struct numa_group *grp)
1896 return atomic_inc_not_zero(&grp->refcount);
1899 static inline void put_numa_group(struct numa_group *grp)
1901 if (atomic_dec_and_test(&grp->refcount))
1902 kfree_rcu(grp, rcu);
1905 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 int *priv)
1908 struct numa_group *grp, *my_grp;
1909 struct task_struct *tsk;
1910 bool join = false;
1911 int cpu = cpupid_to_cpu(cpupid);
1912 int i;
1914 if (unlikely(!p->numa_group)) {
1915 unsigned int size = sizeof(struct numa_group) +
1916 4*nr_node_ids*sizeof(unsigned long);
1918 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 if (!grp)
1920 return;
1922 atomic_set(&grp->refcount, 1);
1923 spin_lock_init(&grp->lock);
1924 grp->gid = p->pid;
1925 /* Second half of the array tracks nids where faults happen */
1926 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 nr_node_ids;
1929 node_set(task_node(current), grp->active_nodes);
1931 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1932 grp->faults[i] = p->numa_faults[i];
1934 grp->total_faults = p->total_numa_faults;
1936 grp->nr_tasks++;
1937 rcu_assign_pointer(p->numa_group, grp);
1940 rcu_read_lock();
1941 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1943 if (!cpupid_match_pid(tsk, cpupid))
1944 goto no_join;
1946 grp = rcu_dereference(tsk->numa_group);
1947 if (!grp)
1948 goto no_join;
1950 my_grp = p->numa_group;
1951 if (grp == my_grp)
1952 goto no_join;
1955 * Only join the other group if its bigger; if we're the bigger group,
1956 * the other task will join us.
1958 if (my_grp->nr_tasks > grp->nr_tasks)
1959 goto no_join;
1962 * Tie-break on the grp address.
1964 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1965 goto no_join;
1967 /* Always join threads in the same process. */
1968 if (tsk->mm == current->mm)
1969 join = true;
1971 /* Simple filter to avoid false positives due to PID collisions */
1972 if (flags & TNF_SHARED)
1973 join = true;
1975 /* Update priv based on whether false sharing was detected */
1976 *priv = !join;
1978 if (join && !get_numa_group(grp))
1979 goto no_join;
1981 rcu_read_unlock();
1983 if (!join)
1984 return;
1986 BUG_ON(irqs_disabled());
1987 double_lock_irq(&my_grp->lock, &grp->lock);
1989 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1990 my_grp->faults[i] -= p->numa_faults[i];
1991 grp->faults[i] += p->numa_faults[i];
1993 my_grp->total_faults -= p->total_numa_faults;
1994 grp->total_faults += p->total_numa_faults;
1996 my_grp->nr_tasks--;
1997 grp->nr_tasks++;
1999 spin_unlock(&my_grp->lock);
2000 spin_unlock_irq(&grp->lock);
2002 rcu_assign_pointer(p->numa_group, grp);
2004 put_numa_group(my_grp);
2005 return;
2007 no_join:
2008 rcu_read_unlock();
2009 return;
2012 void task_numa_free(struct task_struct *p)
2014 struct numa_group *grp = p->numa_group;
2015 void *numa_faults = p->numa_faults;
2016 unsigned long flags;
2017 int i;
2019 if (grp) {
2020 spin_lock_irqsave(&grp->lock, flags);
2021 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2022 grp->faults[i] -= p->numa_faults[i];
2023 grp->total_faults -= p->total_numa_faults;
2025 grp->nr_tasks--;
2026 spin_unlock_irqrestore(&grp->lock, flags);
2027 RCU_INIT_POINTER(p->numa_group, NULL);
2028 put_numa_group(grp);
2031 p->numa_faults = NULL;
2032 kfree(numa_faults);
2036 * Got a PROT_NONE fault for a page on @node.
2038 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2040 struct task_struct *p = current;
2041 bool migrated = flags & TNF_MIGRATED;
2042 int cpu_node = task_node(current);
2043 int local = !!(flags & TNF_FAULT_LOCAL);
2044 int priv;
2046 if (!numabalancing_enabled)
2047 return;
2049 /* for example, ksmd faulting in a user's mm */
2050 if (!p->mm)
2051 return;
2053 /* Allocate buffer to track faults on a per-node basis */
2054 if (unlikely(!p->numa_faults)) {
2055 int size = sizeof(*p->numa_faults) *
2056 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2058 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 if (!p->numa_faults)
2060 return;
2062 p->total_numa_faults = 0;
2063 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2067 * First accesses are treated as private, otherwise consider accesses
2068 * to be private if the accessing pid has not changed
2070 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 priv = 1;
2072 } else {
2073 priv = cpupid_match_pid(p, last_cpupid);
2074 if (!priv && !(flags & TNF_NO_GROUP))
2075 task_numa_group(p, last_cpupid, flags, &priv);
2079 * If a workload spans multiple NUMA nodes, a shared fault that
2080 * occurs wholly within the set of nodes that the workload is
2081 * actively using should be counted as local. This allows the
2082 * scan rate to slow down when a workload has settled down.
2084 if (!priv && !local && p->numa_group &&
2085 node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 node_isset(mem_node, p->numa_group->active_nodes))
2087 local = 1;
2089 task_numa_placement(p);
2092 * Retry task to preferred node migration periodically, in case it
2093 * case it previously failed, or the scheduler moved us.
2095 if (time_after(jiffies, p->numa_migrate_retry))
2096 numa_migrate_preferred(p);
2098 if (migrated)
2099 p->numa_pages_migrated += pages;
2100 if (flags & TNF_MIGRATE_FAIL)
2101 p->numa_faults_locality[2] += pages;
2103 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2105 p->numa_faults_locality[local] += pages;
2108 static void reset_ptenuma_scan(struct task_struct *p)
2110 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 p->mm->numa_scan_offset = 0;
2115 * The expensive part of numa migration is done from task_work context.
2116 * Triggered from task_tick_numa().
2118 void task_numa_work(struct callback_head *work)
2120 unsigned long migrate, next_scan, now = jiffies;
2121 struct task_struct *p = current;
2122 struct mm_struct *mm = p->mm;
2123 struct vm_area_struct *vma;
2124 unsigned long start, end;
2125 unsigned long nr_pte_updates = 0;
2126 long pages;
2128 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2130 work->next = work; /* protect against double add */
2132 * Who cares about NUMA placement when they're dying.
2134 * NOTE: make sure not to dereference p->mm before this check,
2135 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 * without p->mm even though we still had it when we enqueued this
2137 * work.
2139 if (p->flags & PF_EXITING)
2140 return;
2142 if (!mm->numa_next_scan) {
2143 mm->numa_next_scan = now +
2144 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2148 * Enforce maximal scan/migration frequency..
2150 migrate = mm->numa_next_scan;
2151 if (time_before(now, migrate))
2152 return;
2154 if (p->numa_scan_period == 0) {
2155 p->numa_scan_period_max = task_scan_max(p);
2156 p->numa_scan_period = task_scan_min(p);
2159 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2160 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 return;
2164 * Delay this task enough that another task of this mm will likely win
2165 * the next time around.
2167 p->node_stamp += 2 * TICK_NSEC;
2169 start = mm->numa_scan_offset;
2170 pages = sysctl_numa_balancing_scan_size;
2171 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 if (!pages)
2173 return;
2175 down_read(&mm->mmap_sem);
2176 vma = find_vma(mm, start);
2177 if (!vma) {
2178 reset_ptenuma_scan(p);
2179 start = 0;
2180 vma = mm->mmap;
2182 for (; vma; vma = vma->vm_next) {
2183 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2185 continue;
2189 * Shared library pages mapped by multiple processes are not
2190 * migrated as it is expected they are cache replicated. Avoid
2191 * hinting faults in read-only file-backed mappings or the vdso
2192 * as migrating the pages will be of marginal benefit.
2194 if (!vma->vm_mm ||
2195 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 continue;
2199 * Skip inaccessible VMAs to avoid any confusion between
2200 * PROT_NONE and NUMA hinting ptes
2202 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 continue;
2205 do {
2206 start = max(start, vma->vm_start);
2207 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 end = min(end, vma->vm_end);
2209 nr_pte_updates += change_prot_numa(vma, start, end);
2212 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 * at least one PTE is updated so that unused virtual
2214 * address space is quickly skipped.
2216 if (nr_pte_updates)
2217 pages -= (end - start) >> PAGE_SHIFT;
2219 start = end;
2220 if (pages <= 0)
2221 goto out;
2223 cond_resched();
2224 } while (end != vma->vm_end);
2227 out:
2229 * It is possible to reach the end of the VMA list but the last few
2230 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 * would find the !migratable VMA on the next scan but not reset the
2232 * scanner to the start so check it now.
2234 if (vma)
2235 mm->numa_scan_offset = start;
2236 else
2237 reset_ptenuma_scan(p);
2238 up_read(&mm->mmap_sem);
2242 * Drive the periodic memory faults..
2244 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2246 struct callback_head *work = &curr->numa_work;
2247 u64 period, now;
2250 * We don't care about NUMA placement if we don't have memory.
2252 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 return;
2256 * Using runtime rather than walltime has the dual advantage that
2257 * we (mostly) drive the selection from busy threads and that the
2258 * task needs to have done some actual work before we bother with
2259 * NUMA placement.
2261 now = curr->se.sum_exec_runtime;
2262 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2264 if (now - curr->node_stamp > period) {
2265 if (!curr->node_stamp)
2266 curr->numa_scan_period = task_scan_min(curr);
2267 curr->node_stamp += period;
2269 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 task_work_add(curr, work, true);
2275 #else
2276 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2280 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2284 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2287 #endif /* CONFIG_NUMA_BALANCING */
2289 static void
2290 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2292 update_load_add(&cfs_rq->load, se->load.weight);
2293 if (!parent_entity(se))
2294 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2295 #ifdef CONFIG_SMP
2296 if (entity_is_task(se)) {
2297 struct rq *rq = rq_of(cfs_rq);
2299 account_numa_enqueue(rq, task_of(se));
2300 list_add(&se->group_node, &rq->cfs_tasks);
2302 #endif
2303 cfs_rq->nr_running++;
2306 static void
2307 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2309 update_load_sub(&cfs_rq->load, se->load.weight);
2310 if (!parent_entity(se))
2311 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2312 if (entity_is_task(se)) {
2313 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2314 list_del_init(&se->group_node);
2316 cfs_rq->nr_running--;
2319 #ifdef CONFIG_FAIR_GROUP_SCHED
2320 # ifdef CONFIG_SMP
2321 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2323 long tg_weight;
2326 * Use this CPU's actual weight instead of the last load_contribution
2327 * to gain a more accurate current total weight. See
2328 * update_cfs_rq_load_contribution().
2330 tg_weight = atomic_long_read(&tg->load_avg);
2331 tg_weight -= cfs_rq->tg_load_contrib;
2332 tg_weight += cfs_rq->load.weight;
2334 return tg_weight;
2337 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2339 long tg_weight, load, shares;
2341 tg_weight = calc_tg_weight(tg, cfs_rq);
2342 load = cfs_rq->load.weight;
2344 shares = (tg->shares * load);
2345 if (tg_weight)
2346 shares /= tg_weight;
2348 if (shares < MIN_SHARES)
2349 shares = MIN_SHARES;
2350 if (shares > tg->shares)
2351 shares = tg->shares;
2353 return shares;
2355 # else /* CONFIG_SMP */
2356 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2358 return tg->shares;
2360 # endif /* CONFIG_SMP */
2361 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 unsigned long weight)
2364 if (se->on_rq) {
2365 /* commit outstanding execution time */
2366 if (cfs_rq->curr == se)
2367 update_curr(cfs_rq);
2368 account_entity_dequeue(cfs_rq, se);
2371 update_load_set(&se->load, weight);
2373 if (se->on_rq)
2374 account_entity_enqueue(cfs_rq, se);
2377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2379 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2381 struct task_group *tg;
2382 struct sched_entity *se;
2383 long shares;
2385 tg = cfs_rq->tg;
2386 se = tg->se[cpu_of(rq_of(cfs_rq))];
2387 if (!se || throttled_hierarchy(cfs_rq))
2388 return;
2389 #ifndef CONFIG_SMP
2390 if (likely(se->load.weight == tg->shares))
2391 return;
2392 #endif
2393 shares = calc_cfs_shares(cfs_rq, tg);
2395 reweight_entity(cfs_rq_of(se), se, shares);
2397 #else /* CONFIG_FAIR_GROUP_SCHED */
2398 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2401 #endif /* CONFIG_FAIR_GROUP_SCHED */
2403 #ifdef CONFIG_SMP
2405 * We choose a half-life close to 1 scheduling period.
2406 * Note: The tables below are dependent on this value.
2408 #define LOAD_AVG_PERIOD 32
2409 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2412 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2413 static const u32 runnable_avg_yN_inv[] = {
2414 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 0x85aac367, 0x82cd8698,
2423 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2424 * over-estimates when re-combining.
2426 static const u32 runnable_avg_yN_sum[] = {
2427 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2433 * Approximate:
2434 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2436 static __always_inline u64 decay_load(u64 val, u64 n)
2438 unsigned int local_n;
2440 if (!n)
2441 return val;
2442 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 return 0;
2445 /* after bounds checking we can collapse to 32-bit */
2446 local_n = n;
2449 * As y^PERIOD = 1/2, we can combine
2450 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 * With a look-up table which covers y^n (n<PERIOD)
2453 * To achieve constant time decay_load.
2455 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 val >>= local_n / LOAD_AVG_PERIOD;
2457 local_n %= LOAD_AVG_PERIOD;
2460 val *= runnable_avg_yN_inv[local_n];
2461 /* We don't use SRR here since we always want to round down. */
2462 return val >> 32;
2466 * For updates fully spanning n periods, the contribution to runnable
2467 * average will be: \Sum 1024*y^n
2469 * We can compute this reasonably efficiently by combining:
2470 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2472 static u32 __compute_runnable_contrib(u64 n)
2474 u32 contrib = 0;
2476 if (likely(n <= LOAD_AVG_PERIOD))
2477 return runnable_avg_yN_sum[n];
2478 else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 return LOAD_AVG_MAX;
2481 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 do {
2483 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2486 n -= LOAD_AVG_PERIOD;
2487 } while (n > LOAD_AVG_PERIOD);
2489 contrib = decay_load(contrib, n);
2490 return contrib + runnable_avg_yN_sum[n];
2494 * We can represent the historical contribution to runnable average as the
2495 * coefficients of a geometric series. To do this we sub-divide our runnable
2496 * history into segments of approximately 1ms (1024us); label the segment that
2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500 * p0 p1 p2
2501 * (now) (~1ms ago) (~2ms ago)
2503 * Let u_i denote the fraction of p_i that the entity was runnable.
2505 * We then designate the fractions u_i as our co-efficients, yielding the
2506 * following representation of historical load:
2507 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2509 * We choose y based on the with of a reasonably scheduling period, fixing:
2510 * y^32 = 0.5
2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513 * approximately half as much as the contribution to load within the last ms
2514 * (u_0).
2516 * When a period "rolls over" and we have new u_0`, multiplying the previous
2517 * sum again by y is sufficient to update:
2518 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2521 static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2522 struct sched_avg *sa,
2523 int runnable,
2524 int running)
2526 u64 delta, periods;
2527 u32 runnable_contrib;
2528 int delta_w, decayed = 0;
2529 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2531 delta = now - sa->last_runnable_update;
2533 * This should only happen when time goes backwards, which it
2534 * unfortunately does during sched clock init when we swap over to TSC.
2536 if ((s64)delta < 0) {
2537 sa->last_runnable_update = now;
2538 return 0;
2542 * Use 1024ns as the unit of measurement since it's a reasonable
2543 * approximation of 1us and fast to compute.
2545 delta >>= 10;
2546 if (!delta)
2547 return 0;
2548 sa->last_runnable_update = now;
2550 /* delta_w is the amount already accumulated against our next period */
2551 delta_w = sa->avg_period % 1024;
2552 if (delta + delta_w >= 1024) {
2553 /* period roll-over */
2554 decayed = 1;
2557 * Now that we know we're crossing a period boundary, figure
2558 * out how much from delta we need to complete the current
2559 * period and accrue it.
2561 delta_w = 1024 - delta_w;
2562 if (runnable)
2563 sa->runnable_avg_sum += delta_w;
2564 if (running)
2565 sa->running_avg_sum += delta_w * scale_freq
2566 >> SCHED_CAPACITY_SHIFT;
2567 sa->avg_period += delta_w;
2569 delta -= delta_w;
2571 /* Figure out how many additional periods this update spans */
2572 periods = delta / 1024;
2573 delta %= 1024;
2575 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 periods + 1);
2577 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 periods + 1);
2579 sa->avg_period = decay_load(sa->avg_period,
2580 periods + 1);
2582 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 runnable_contrib = __compute_runnable_contrib(periods);
2584 if (runnable)
2585 sa->runnable_avg_sum += runnable_contrib;
2586 if (running)
2587 sa->running_avg_sum += runnable_contrib * scale_freq
2588 >> SCHED_CAPACITY_SHIFT;
2589 sa->avg_period += runnable_contrib;
2592 /* Remainder of delta accrued against u_0` */
2593 if (runnable)
2594 sa->runnable_avg_sum += delta;
2595 if (running)
2596 sa->running_avg_sum += delta * scale_freq
2597 >> SCHED_CAPACITY_SHIFT;
2598 sa->avg_period += delta;
2600 return decayed;
2603 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2604 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2609 decays -= se->avg.decay_count;
2610 se->avg.decay_count = 0;
2611 if (!decays)
2612 return 0;
2614 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2615 se->avg.utilization_avg_contrib =
2616 decay_load(se->avg.utilization_avg_contrib, decays);
2618 return decays;
2621 #ifdef CONFIG_FAIR_GROUP_SCHED
2622 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 int force_update)
2625 struct task_group *tg = cfs_rq->tg;
2626 long tg_contrib;
2628 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 tg_contrib -= cfs_rq->tg_load_contrib;
2631 if (!tg_contrib)
2632 return;
2634 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 atomic_long_add(tg_contrib, &tg->load_avg);
2636 cfs_rq->tg_load_contrib += tg_contrib;
2641 * Aggregate cfs_rq runnable averages into an equivalent task_group
2642 * representation for computing load contributions.
2644 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 struct cfs_rq *cfs_rq)
2647 struct task_group *tg = cfs_rq->tg;
2648 long contrib;
2650 /* The fraction of a cpu used by this cfs_rq */
2651 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2652 sa->avg_period + 1);
2653 contrib -= cfs_rq->tg_runnable_contrib;
2655 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 atomic_add(contrib, &tg->runnable_avg);
2657 cfs_rq->tg_runnable_contrib += contrib;
2661 static inline void __update_group_entity_contrib(struct sched_entity *se)
2663 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 struct task_group *tg = cfs_rq->tg;
2665 int runnable_avg;
2667 u64 contrib;
2669 contrib = cfs_rq->tg_load_contrib * tg->shares;
2670 se->avg.load_avg_contrib = div_u64(contrib,
2671 atomic_long_read(&tg->load_avg) + 1);
2674 * For group entities we need to compute a correction term in the case
2675 * that they are consuming <1 cpu so that we would contribute the same
2676 * load as a task of equal weight.
2678 * Explicitly co-ordinating this measurement would be expensive, but
2679 * fortunately the sum of each cpus contribution forms a usable
2680 * lower-bound on the true value.
2682 * Consider the aggregate of 2 contributions. Either they are disjoint
2683 * (and the sum represents true value) or they are disjoint and we are
2684 * understating by the aggregate of their overlap.
2686 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 * cpus that overlap for this interval and w_i is the interval width.
2690 * On a small machine; the first term is well-bounded which bounds the
2691 * total error since w_i is a subset of the period. Whereas on a
2692 * larger machine, while this first term can be larger, if w_i is the
2693 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 * our upper bound of 1-cpu.
2696 runnable_avg = atomic_read(&tg->runnable_avg);
2697 if (runnable_avg < NICE_0_LOAD) {
2698 se->avg.load_avg_contrib *= runnable_avg;
2699 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2703 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2705 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 runnable, runnable);
2707 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2709 #else /* CONFIG_FAIR_GROUP_SCHED */
2710 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 int force_update) {}
2712 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 struct cfs_rq *cfs_rq) {}
2714 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2715 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2716 #endif /* CONFIG_FAIR_GROUP_SCHED */
2718 static inline void __update_task_entity_contrib(struct sched_entity *se)
2720 u32 contrib;
2722 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2724 contrib /= (se->avg.avg_period + 1);
2725 se->avg.load_avg_contrib = scale_load(contrib);
2728 /* Compute the current contribution to load_avg by se, return any delta */
2729 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2731 long old_contrib = se->avg.load_avg_contrib;
2733 if (entity_is_task(se)) {
2734 __update_task_entity_contrib(se);
2735 } else {
2736 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2737 __update_group_entity_contrib(se);
2740 return se->avg.load_avg_contrib - old_contrib;
2744 static inline void __update_task_entity_utilization(struct sched_entity *se)
2746 u32 contrib;
2748 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 contrib /= (se->avg.avg_period + 1);
2751 se->avg.utilization_avg_contrib = scale_load(contrib);
2754 static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2756 long old_contrib = se->avg.utilization_avg_contrib;
2758 if (entity_is_task(se))
2759 __update_task_entity_utilization(se);
2760 else
2761 se->avg.utilization_avg_contrib =
2762 group_cfs_rq(se)->utilization_load_avg;
2764 return se->avg.utilization_avg_contrib - old_contrib;
2767 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 long load_contrib)
2770 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 cfs_rq->blocked_load_avg -= load_contrib;
2772 else
2773 cfs_rq->blocked_load_avg = 0;
2776 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2778 /* Update a sched_entity's runnable average */
2779 static inline void update_entity_load_avg(struct sched_entity *se,
2780 int update_cfs_rq)
2782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2783 long contrib_delta, utilization_delta;
2784 int cpu = cpu_of(rq_of(cfs_rq));
2785 u64 now;
2788 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 * case they are the parent of a throttled hierarchy.
2791 if (entity_is_task(se))
2792 now = cfs_rq_clock_task(cfs_rq);
2793 else
2794 now = cfs_rq_clock_task(group_cfs_rq(se));
2796 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2797 cfs_rq->curr == se))
2798 return;
2800 contrib_delta = __update_entity_load_avg_contrib(se);
2801 utilization_delta = __update_entity_utilization_avg_contrib(se);
2803 if (!update_cfs_rq)
2804 return;
2806 if (se->on_rq) {
2807 cfs_rq->runnable_load_avg += contrib_delta;
2808 cfs_rq->utilization_load_avg += utilization_delta;
2809 } else {
2810 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2815 * Decay the load contributed by all blocked children and account this so that
2816 * their contribution may appropriately discounted when they wake up.
2818 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2820 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2821 u64 decays;
2823 decays = now - cfs_rq->last_decay;
2824 if (!decays && !force_update)
2825 return;
2827 if (atomic_long_read(&cfs_rq->removed_load)) {
2828 unsigned long removed_load;
2829 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2830 subtract_blocked_load_contrib(cfs_rq, removed_load);
2833 if (decays) {
2834 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 decays);
2836 atomic64_add(decays, &cfs_rq->decay_counter);
2837 cfs_rq->last_decay = now;
2840 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2843 /* Add the load generated by se into cfs_rq's child load-average */
2844 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2845 struct sched_entity *se,
2846 int wakeup)
2849 * We track migrations using entity decay_count <= 0, on a wake-up
2850 * migration we use a negative decay count to track the remote decays
2851 * accumulated while sleeping.
2853 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 * constructed load_avg_contrib.
2857 if (unlikely(se->avg.decay_count <= 0)) {
2858 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2859 if (se->avg.decay_count) {
2861 * In a wake-up migration we have to approximate the
2862 * time sleeping. This is because we can't synchronize
2863 * clock_task between the two cpus, and it is not
2864 * guaranteed to be read-safe. Instead, we can
2865 * approximate this using our carried decays, which are
2866 * explicitly atomically readable.
2868 se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 << 20;
2870 update_entity_load_avg(se, 0);
2871 /* Indicate that we're now synchronized and on-rq */
2872 se->avg.decay_count = 0;
2874 wakeup = 0;
2875 } else {
2876 __synchronize_entity_decay(se);
2879 /* migrated tasks did not contribute to our blocked load */
2880 if (wakeup) {
2881 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2882 update_entity_load_avg(se, 0);
2885 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2886 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2887 /* we force update consideration on load-balancer moves */
2888 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2892 * Remove se's load from this cfs_rq child load-average, if the entity is
2893 * transitioning to a blocked state we track its projected decay using
2894 * blocked_load_avg.
2896 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2897 struct sched_entity *se,
2898 int sleep)
2900 update_entity_load_avg(se, 1);
2901 /* we force update consideration on load-balancer moves */
2902 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2904 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2905 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2906 if (sleep) {
2907 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2913 * Update the rq's load with the elapsed running time before entering
2914 * idle. if the last scheduled task is not a CFS task, idle_enter will
2915 * be the only way to update the runnable statistic.
2917 void idle_enter_fair(struct rq *this_rq)
2919 update_rq_runnable_avg(this_rq, 1);
2923 * Update the rq's load with the elapsed idle time before a task is
2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925 * be the only way to update the runnable statistic.
2927 void idle_exit_fair(struct rq *this_rq)
2929 update_rq_runnable_avg(this_rq, 0);
2932 static int idle_balance(struct rq *this_rq);
2934 #else /* CONFIG_SMP */
2936 static inline void update_entity_load_avg(struct sched_entity *se,
2937 int update_cfs_rq) {}
2938 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2939 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2940 struct sched_entity *se,
2941 int wakeup) {}
2942 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2943 struct sched_entity *se,
2944 int sleep) {}
2945 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 int force_update) {}
2948 static inline int idle_balance(struct rq *rq)
2950 return 0;
2953 #endif /* CONFIG_SMP */
2955 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2957 #ifdef CONFIG_SCHEDSTATS
2958 struct task_struct *tsk = NULL;
2960 if (entity_is_task(se))
2961 tsk = task_of(se);
2963 if (se->statistics.sleep_start) {
2964 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2966 if ((s64)delta < 0)
2967 delta = 0;
2969 if (unlikely(delta > se->statistics.sleep_max))
2970 se->statistics.sleep_max = delta;
2972 se->statistics.sleep_start = 0;
2973 se->statistics.sum_sleep_runtime += delta;
2975 if (tsk) {
2976 account_scheduler_latency(tsk, delta >> 10, 1);
2977 trace_sched_stat_sleep(tsk, delta);
2980 if (se->statistics.block_start) {
2981 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2983 if ((s64)delta < 0)
2984 delta = 0;
2986 if (unlikely(delta > se->statistics.block_max))
2987 se->statistics.block_max = delta;
2989 se->statistics.block_start = 0;
2990 se->statistics.sum_sleep_runtime += delta;
2992 if (tsk) {
2993 if (tsk->in_iowait) {
2994 se->statistics.iowait_sum += delta;
2995 se->statistics.iowait_count++;
2996 trace_sched_stat_iowait(tsk, delta);
2999 trace_sched_stat_blocked(tsk, delta);
3002 * Blocking time is in units of nanosecs, so shift by
3003 * 20 to get a milliseconds-range estimation of the
3004 * amount of time that the task spent sleeping:
3006 if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 profile_hits(SLEEP_PROFILING,
3008 (void *)get_wchan(tsk),
3009 delta >> 20);
3011 account_scheduler_latency(tsk, delta >> 10, 0);
3014 #endif
3017 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3019 #ifdef CONFIG_SCHED_DEBUG
3020 s64 d = se->vruntime - cfs_rq->min_vruntime;
3022 if (d < 0)
3023 d = -d;
3025 if (d > 3*sysctl_sched_latency)
3026 schedstat_inc(cfs_rq, nr_spread_over);
3027 #endif
3030 static void
3031 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3033 u64 vruntime = cfs_rq->min_vruntime;
3036 * The 'current' period is already promised to the current tasks,
3037 * however the extra weight of the new task will slow them down a
3038 * little, place the new task so that it fits in the slot that
3039 * stays open at the end.
3041 if (initial && sched_feat(START_DEBIT))
3042 vruntime += sched_vslice(cfs_rq, se);
3044 /* sleeps up to a single latency don't count. */
3045 if (!initial) {
3046 unsigned long thresh = sysctl_sched_latency;
3049 * Halve their sleep time's effect, to allow
3050 * for a gentler effect of sleepers:
3052 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 thresh >>= 1;
3055 vruntime -= thresh;
3058 /* ensure we never gain time by being placed backwards. */
3059 se->vruntime = max_vruntime(se->vruntime, vruntime);
3062 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3064 static void
3065 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3068 * Update the normalized vruntime before updating min_vruntime
3069 * through calling update_curr().
3071 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3072 se->vruntime += cfs_rq->min_vruntime;
3075 * Update run-time statistics of the 'current'.
3077 update_curr(cfs_rq);
3078 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3079 account_entity_enqueue(cfs_rq, se);
3080 update_cfs_shares(cfs_rq);
3082 if (flags & ENQUEUE_WAKEUP) {
3083 place_entity(cfs_rq, se, 0);
3084 enqueue_sleeper(cfs_rq, se);
3087 update_stats_enqueue(cfs_rq, se);
3088 check_spread(cfs_rq, se);
3089 if (se != cfs_rq->curr)
3090 __enqueue_entity(cfs_rq, se);
3091 se->on_rq = 1;
3093 if (cfs_rq->nr_running == 1) {
3094 list_add_leaf_cfs_rq(cfs_rq);
3095 check_enqueue_throttle(cfs_rq);
3099 static void __clear_buddies_last(struct sched_entity *se)
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3103 if (cfs_rq->last != se)
3104 break;
3106 cfs_rq->last = NULL;
3110 static void __clear_buddies_next(struct sched_entity *se)
3112 for_each_sched_entity(se) {
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 if (cfs_rq->next != se)
3115 break;
3117 cfs_rq->next = NULL;
3121 static void __clear_buddies_skip(struct sched_entity *se)
3123 for_each_sched_entity(se) {
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125 if (cfs_rq->skip != se)
3126 break;
3128 cfs_rq->skip = NULL;
3132 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3134 if (cfs_rq->last == se)
3135 __clear_buddies_last(se);
3137 if (cfs_rq->next == se)
3138 __clear_buddies_next(se);
3140 if (cfs_rq->skip == se)
3141 __clear_buddies_skip(se);
3144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3146 static void
3147 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3150 * Update run-time statistics of the 'current'.
3152 update_curr(cfs_rq);
3153 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3155 update_stats_dequeue(cfs_rq, se);
3156 if (flags & DEQUEUE_SLEEP) {
3157 #ifdef CONFIG_SCHEDSTATS
3158 if (entity_is_task(se)) {
3159 struct task_struct *tsk = task_of(se);
3161 if (tsk->state & TASK_INTERRUPTIBLE)
3162 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3163 if (tsk->state & TASK_UNINTERRUPTIBLE)
3164 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3166 #endif
3169 clear_buddies(cfs_rq, se);
3171 if (se != cfs_rq->curr)
3172 __dequeue_entity(cfs_rq, se);
3173 se->on_rq = 0;
3174 account_entity_dequeue(cfs_rq, se);
3177 * Normalize the entity after updating the min_vruntime because the
3178 * update can refer to the ->curr item and we need to reflect this
3179 * movement in our normalized position.
3181 if (!(flags & DEQUEUE_SLEEP))
3182 se->vruntime -= cfs_rq->min_vruntime;
3184 /* return excess runtime on last dequeue */
3185 return_cfs_rq_runtime(cfs_rq);
3187 update_min_vruntime(cfs_rq);
3188 update_cfs_shares(cfs_rq);
3192 * Preempt the current task with a newly woken task if needed:
3194 static void
3195 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3197 unsigned long ideal_runtime, delta_exec;
3198 struct sched_entity *se;
3199 s64 delta;
3201 ideal_runtime = sched_slice(cfs_rq, curr);
3202 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3203 if (delta_exec > ideal_runtime) {
3204 resched_curr(rq_of(cfs_rq));
3206 * The current task ran long enough, ensure it doesn't get
3207 * re-elected due to buddy favours.
3209 clear_buddies(cfs_rq, curr);
3210 return;
3214 * Ensure that a task that missed wakeup preemption by a
3215 * narrow margin doesn't have to wait for a full slice.
3216 * This also mitigates buddy induced latencies under load.
3218 if (delta_exec < sysctl_sched_min_granularity)
3219 return;
3221 se = __pick_first_entity(cfs_rq);
3222 delta = curr->vruntime - se->vruntime;
3224 if (delta < 0)
3225 return;
3227 if (delta > ideal_runtime)
3228 resched_curr(rq_of(cfs_rq));
3231 static void
3232 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3234 /* 'current' is not kept within the tree. */
3235 if (se->on_rq) {
3237 * Any task has to be enqueued before it get to execute on
3238 * a CPU. So account for the time it spent waiting on the
3239 * runqueue.
3241 update_stats_wait_end(cfs_rq, se);
3242 __dequeue_entity(cfs_rq, se);
3243 update_entity_load_avg(se, 1);
3246 update_stats_curr_start(cfs_rq, se);
3247 cfs_rq->curr = se;
3248 #ifdef CONFIG_SCHEDSTATS
3250 * Track our maximum slice length, if the CPU's load is at
3251 * least twice that of our own weight (i.e. dont track it
3252 * when there are only lesser-weight tasks around):
3254 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3255 se->statistics.slice_max = max(se->statistics.slice_max,
3256 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3258 #endif
3259 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3262 static int
3263 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3266 * Pick the next process, keeping these things in mind, in this order:
3267 * 1) keep things fair between processes/task groups
3268 * 2) pick the "next" process, since someone really wants that to run
3269 * 3) pick the "last" process, for cache locality
3270 * 4) do not run the "skip" process, if something else is available
3272 static struct sched_entity *
3273 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3275 struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 struct sched_entity *se;
3279 * If curr is set we have to see if its left of the leftmost entity
3280 * still in the tree, provided there was anything in the tree at all.
3282 if (!left || (curr && entity_before(curr, left)))
3283 left = curr;
3285 se = left; /* ideally we run the leftmost entity */
3288 * Avoid running the skip buddy, if running something else can
3289 * be done without getting too unfair.
3291 if (cfs_rq->skip == se) {
3292 struct sched_entity *second;
3294 if (se == curr) {
3295 second = __pick_first_entity(cfs_rq);
3296 } else {
3297 second = __pick_next_entity(se);
3298 if (!second || (curr && entity_before(curr, second)))
3299 second = curr;
3302 if (second && wakeup_preempt_entity(second, left) < 1)
3303 se = second;
3307 * Prefer last buddy, try to return the CPU to a preempted task.
3309 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 se = cfs_rq->last;
3313 * Someone really wants this to run. If it's not unfair, run it.
3315 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 se = cfs_rq->next;
3318 clear_buddies(cfs_rq, se);
3320 return se;
3323 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3325 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3328 * If still on the runqueue then deactivate_task()
3329 * was not called and update_curr() has to be done:
3331 if (prev->on_rq)
3332 update_curr(cfs_rq);
3334 /* throttle cfs_rqs exceeding runtime */
3335 check_cfs_rq_runtime(cfs_rq);
3337 check_spread(cfs_rq, prev);
3338 if (prev->on_rq) {
3339 update_stats_wait_start(cfs_rq, prev);
3340 /* Put 'current' back into the tree. */
3341 __enqueue_entity(cfs_rq, prev);
3342 /* in !on_rq case, update occurred at dequeue */
3343 update_entity_load_avg(prev, 1);
3345 cfs_rq->curr = NULL;
3348 static void
3349 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3352 * Update run-time statistics of the 'current'.
3354 update_curr(cfs_rq);
3357 * Ensure that runnable average is periodically updated.
3359 update_entity_load_avg(curr, 1);
3360 update_cfs_rq_blocked_load(cfs_rq, 1);
3361 update_cfs_shares(cfs_rq);
3363 #ifdef CONFIG_SCHED_HRTICK
3365 * queued ticks are scheduled to match the slice, so don't bother
3366 * validating it and just reschedule.
3368 if (queued) {
3369 resched_curr(rq_of(cfs_rq));
3370 return;
3373 * don't let the period tick interfere with the hrtick preemption
3375 if (!sched_feat(DOUBLE_TICK) &&
3376 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 return;
3378 #endif
3380 if (cfs_rq->nr_running > 1)
3381 check_preempt_tick(cfs_rq, curr);
3385 /**************************************************
3386 * CFS bandwidth control machinery
3389 #ifdef CONFIG_CFS_BANDWIDTH
3391 #ifdef HAVE_JUMP_LABEL
3392 static struct static_key __cfs_bandwidth_used;
3394 static inline bool cfs_bandwidth_used(void)
3396 return static_key_false(&__cfs_bandwidth_used);
3399 void cfs_bandwidth_usage_inc(void)
3401 static_key_slow_inc(&__cfs_bandwidth_used);
3404 void cfs_bandwidth_usage_dec(void)
3406 static_key_slow_dec(&__cfs_bandwidth_used);
3408 #else /* HAVE_JUMP_LABEL */
3409 static bool cfs_bandwidth_used(void)
3411 return true;
3414 void cfs_bandwidth_usage_inc(void) {}
3415 void cfs_bandwidth_usage_dec(void) {}
3416 #endif /* HAVE_JUMP_LABEL */
3419 * default period for cfs group bandwidth.
3420 * default: 0.1s, units: nanoseconds
3422 static inline u64 default_cfs_period(void)
3424 return 100000000ULL;
3427 static inline u64 sched_cfs_bandwidth_slice(void)
3429 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3433 * Replenish runtime according to assigned quota and update expiration time.
3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435 * additional synchronization around rq->lock.
3437 * requires cfs_b->lock
3439 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3441 u64 now;
3443 if (cfs_b->quota == RUNTIME_INF)
3444 return;
3446 now = sched_clock_cpu(smp_processor_id());
3447 cfs_b->runtime = cfs_b->quota;
3448 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3451 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3453 return &tg->cfs_bandwidth;
3456 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3459 if (unlikely(cfs_rq->throttle_count))
3460 return cfs_rq->throttled_clock_task;
3462 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3465 /* returns 0 on failure to allocate runtime */
3466 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3468 struct task_group *tg = cfs_rq->tg;
3469 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3470 u64 amount = 0, min_amount, expires;
3472 /* note: this is a positive sum as runtime_remaining <= 0 */
3473 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3475 raw_spin_lock(&cfs_b->lock);
3476 if (cfs_b->quota == RUNTIME_INF)
3477 amount = min_amount;
3478 else {
3480 * If the bandwidth pool has become inactive, then at least one
3481 * period must have elapsed since the last consumption.
3482 * Refresh the global state and ensure bandwidth timer becomes
3483 * active.
3485 if (!cfs_b->timer_active) {
3486 __refill_cfs_bandwidth_runtime(cfs_b);
3487 __start_cfs_bandwidth(cfs_b, false);
3490 if (cfs_b->runtime > 0) {
3491 amount = min(cfs_b->runtime, min_amount);
3492 cfs_b->runtime -= amount;
3493 cfs_b->idle = 0;
3496 expires = cfs_b->runtime_expires;
3497 raw_spin_unlock(&cfs_b->lock);
3499 cfs_rq->runtime_remaining += amount;
3501 * we may have advanced our local expiration to account for allowed
3502 * spread between our sched_clock and the one on which runtime was
3503 * issued.
3505 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506 cfs_rq->runtime_expires = expires;
3508 return cfs_rq->runtime_remaining > 0;
3512 * Note: This depends on the synchronization provided by sched_clock and the
3513 * fact that rq->clock snapshots this value.
3515 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3519 /* if the deadline is ahead of our clock, nothing to do */
3520 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3521 return;
3523 if (cfs_rq->runtime_remaining < 0)
3524 return;
3527 * If the local deadline has passed we have to consider the
3528 * possibility that our sched_clock is 'fast' and the global deadline
3529 * has not truly expired.
3531 * Fortunately we can check determine whether this the case by checking
3532 * whether the global deadline has advanced. It is valid to compare
3533 * cfs_b->runtime_expires without any locks since we only care about
3534 * exact equality, so a partial write will still work.
3537 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3538 /* extend local deadline, drift is bounded above by 2 ticks */
3539 cfs_rq->runtime_expires += TICK_NSEC;
3540 } else {
3541 /* global deadline is ahead, expiration has passed */
3542 cfs_rq->runtime_remaining = 0;
3546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3548 /* dock delta_exec before expiring quota (as it could span periods) */
3549 cfs_rq->runtime_remaining -= delta_exec;
3550 expire_cfs_rq_runtime(cfs_rq);
3552 if (likely(cfs_rq->runtime_remaining > 0))
3553 return;
3556 * if we're unable to extend our runtime we resched so that the active
3557 * hierarchy can be throttled
3559 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3560 resched_curr(rq_of(cfs_rq));
3563 static __always_inline
3564 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3566 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3567 return;
3569 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3572 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3574 return cfs_bandwidth_used() && cfs_rq->throttled;
3577 /* check whether cfs_rq, or any parent, is throttled */
3578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3580 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3584 * Ensure that neither of the group entities corresponding to src_cpu or
3585 * dest_cpu are members of a throttled hierarchy when performing group
3586 * load-balance operations.
3588 static inline int throttled_lb_pair(struct task_group *tg,
3589 int src_cpu, int dest_cpu)
3591 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3593 src_cfs_rq = tg->cfs_rq[src_cpu];
3594 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3596 return throttled_hierarchy(src_cfs_rq) ||
3597 throttled_hierarchy(dest_cfs_rq);
3600 /* updated child weight may affect parent so we have to do this bottom up */
3601 static int tg_unthrottle_up(struct task_group *tg, void *data)
3603 struct rq *rq = data;
3604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3606 cfs_rq->throttle_count--;
3607 #ifdef CONFIG_SMP
3608 if (!cfs_rq->throttle_count) {
3609 /* adjust cfs_rq_clock_task() */
3610 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3611 cfs_rq->throttled_clock_task;
3613 #endif
3615 return 0;
3618 static int tg_throttle_down(struct task_group *tg, void *data)
3620 struct rq *rq = data;
3621 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3623 /* group is entering throttled state, stop time */
3624 if (!cfs_rq->throttle_count)
3625 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3626 cfs_rq->throttle_count++;
3628 return 0;
3631 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3633 struct rq *rq = rq_of(cfs_rq);
3634 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635 struct sched_entity *se;
3636 long task_delta, dequeue = 1;
3638 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3640 /* freeze hierarchy runnable averages while throttled */
3641 rcu_read_lock();
3642 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643 rcu_read_unlock();
3645 task_delta = cfs_rq->h_nr_running;
3646 for_each_sched_entity(se) {
3647 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648 /* throttled entity or throttle-on-deactivate */
3649 if (!se->on_rq)
3650 break;
3652 if (dequeue)
3653 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654 qcfs_rq->h_nr_running -= task_delta;
3656 if (qcfs_rq->load.weight)
3657 dequeue = 0;
3660 if (!se)
3661 sub_nr_running(rq, task_delta);
3663 cfs_rq->throttled = 1;
3664 cfs_rq->throttled_clock = rq_clock(rq);
3665 raw_spin_lock(&cfs_b->lock);
3667 * Add to the _head_ of the list, so that an already-started
3668 * distribute_cfs_runtime will not see us
3670 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3671 if (!cfs_b->timer_active)
3672 __start_cfs_bandwidth(cfs_b, false);
3673 raw_spin_unlock(&cfs_b->lock);
3676 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3678 struct rq *rq = rq_of(cfs_rq);
3679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 struct sched_entity *se;
3681 int enqueue = 1;
3682 long task_delta;
3684 se = cfs_rq->tg->se[cpu_of(rq)];
3686 cfs_rq->throttled = 0;
3688 update_rq_clock(rq);
3690 raw_spin_lock(&cfs_b->lock);
3691 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3692 list_del_rcu(&cfs_rq->throttled_list);
3693 raw_spin_unlock(&cfs_b->lock);
3695 /* update hierarchical throttle state */
3696 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3698 if (!cfs_rq->load.weight)
3699 return;
3701 task_delta = cfs_rq->h_nr_running;
3702 for_each_sched_entity(se) {
3703 if (se->on_rq)
3704 enqueue = 0;
3706 cfs_rq = cfs_rq_of(se);
3707 if (enqueue)
3708 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 cfs_rq->h_nr_running += task_delta;
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
3715 if (!se)
3716 add_nr_running(rq, task_delta);
3718 /* determine whether we need to wake up potentially idle cpu */
3719 if (rq->curr == rq->idle && rq->cfs.nr_running)
3720 resched_curr(rq);
3723 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 u64 remaining, u64 expires)
3726 struct cfs_rq *cfs_rq;
3727 u64 runtime;
3728 u64 starting_runtime = remaining;
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 throttled_list) {
3733 struct rq *rq = rq_of(cfs_rq);
3735 raw_spin_lock(&rq->lock);
3736 if (!cfs_rq_throttled(cfs_rq))
3737 goto next;
3739 runtime = -cfs_rq->runtime_remaining + 1;
3740 if (runtime > remaining)
3741 runtime = remaining;
3742 remaining -= runtime;
3744 cfs_rq->runtime_remaining += runtime;
3745 cfs_rq->runtime_expires = expires;
3747 /* we check whether we're throttled above */
3748 if (cfs_rq->runtime_remaining > 0)
3749 unthrottle_cfs_rq(cfs_rq);
3751 next:
3752 raw_spin_unlock(&rq->lock);
3754 if (!remaining)
3755 break;
3757 rcu_read_unlock();
3759 return starting_runtime - remaining;
3763 * Responsible for refilling a task_group's bandwidth and unthrottling its
3764 * cfs_rqs as appropriate. If there has been no activity within the last
3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766 * used to track this state.
3768 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3770 u64 runtime, runtime_expires;
3771 int throttled;
3773 /* no need to continue the timer with no bandwidth constraint */
3774 if (cfs_b->quota == RUNTIME_INF)
3775 goto out_deactivate;
3777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3778 cfs_b->nr_periods += overrun;
3781 * idle depends on !throttled (for the case of a large deficit), and if
3782 * we're going inactive then everything else can be deferred
3784 if (cfs_b->idle && !throttled)
3785 goto out_deactivate;
3788 * if we have relooped after returning idle once, we need to update our
3789 * status as actually running, so that other cpus doing
3790 * __start_cfs_bandwidth will stop trying to cancel us.
3792 cfs_b->timer_active = 1;
3794 __refill_cfs_bandwidth_runtime(cfs_b);
3796 if (!throttled) {
3797 /* mark as potentially idle for the upcoming period */
3798 cfs_b->idle = 1;
3799 return 0;
3802 /* account preceding periods in which throttling occurred */
3803 cfs_b->nr_throttled += overrun;
3805 runtime_expires = cfs_b->runtime_expires;
3808 * This check is repeated as we are holding onto the new bandwidth while
3809 * we unthrottle. This can potentially race with an unthrottled group
3810 * trying to acquire new bandwidth from the global pool. This can result
3811 * in us over-using our runtime if it is all used during this loop, but
3812 * only by limited amounts in that extreme case.
3814 while (throttled && cfs_b->runtime > 0) {
3815 runtime = cfs_b->runtime;
3816 raw_spin_unlock(&cfs_b->lock);
3817 /* we can't nest cfs_b->lock while distributing bandwidth */
3818 runtime = distribute_cfs_runtime(cfs_b, runtime,
3819 runtime_expires);
3820 raw_spin_lock(&cfs_b->lock);
3822 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3824 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3828 * While we are ensured activity in the period following an
3829 * unthrottle, this also covers the case in which the new bandwidth is
3830 * insufficient to cover the existing bandwidth deficit. (Forcing the
3831 * timer to remain active while there are any throttled entities.)
3833 cfs_b->idle = 0;
3835 return 0;
3837 out_deactivate:
3838 cfs_b->timer_active = 0;
3839 return 1;
3842 /* a cfs_rq won't donate quota below this amount */
3843 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844 /* minimum remaining period time to redistribute slack quota */
3845 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846 /* how long we wait to gather additional slack before distributing */
3847 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3850 * Are we near the end of the current quota period?
3852 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854 * migrate_hrtimers, base is never cleared, so we are fine.
3856 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3858 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859 u64 remaining;
3861 /* if the call-back is running a quota refresh is already occurring */
3862 if (hrtimer_callback_running(refresh_timer))
3863 return 1;
3865 /* is a quota refresh about to occur? */
3866 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867 if (remaining < min_expire)
3868 return 1;
3870 return 0;
3873 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3875 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3877 /* if there's a quota refresh soon don't bother with slack */
3878 if (runtime_refresh_within(cfs_b, min_left))
3879 return;
3881 start_bandwidth_timer(&cfs_b->slack_timer,
3882 ns_to_ktime(cfs_bandwidth_slack_period));
3885 /* we know any runtime found here is valid as update_curr() precedes return */
3886 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3891 if (slack_runtime <= 0)
3892 return;
3894 raw_spin_lock(&cfs_b->lock);
3895 if (cfs_b->quota != RUNTIME_INF &&
3896 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897 cfs_b->runtime += slack_runtime;
3899 /* we are under rq->lock, defer unthrottling using a timer */
3900 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901 !list_empty(&cfs_b->throttled_cfs_rq))
3902 start_cfs_slack_bandwidth(cfs_b);
3904 raw_spin_unlock(&cfs_b->lock);
3906 /* even if it's not valid for return we don't want to try again */
3907 cfs_rq->runtime_remaining -= slack_runtime;
3910 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3912 if (!cfs_bandwidth_used())
3913 return;
3915 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3916 return;
3918 __return_cfs_rq_runtime(cfs_rq);
3922 * This is done with a timer (instead of inline with bandwidth return) since
3923 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3925 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3927 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928 u64 expires;
3930 /* confirm we're still not at a refresh boundary */
3931 raw_spin_lock(&cfs_b->lock);
3932 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933 raw_spin_unlock(&cfs_b->lock);
3934 return;
3937 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3938 runtime = cfs_b->runtime;
3940 expires = cfs_b->runtime_expires;
3941 raw_spin_unlock(&cfs_b->lock);
3943 if (!runtime)
3944 return;
3946 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3948 raw_spin_lock(&cfs_b->lock);
3949 if (expires == cfs_b->runtime_expires)
3950 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3951 raw_spin_unlock(&cfs_b->lock);
3955 * When a group wakes up we want to make sure that its quota is not already
3956 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3959 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3961 if (!cfs_bandwidth_used())
3962 return;
3964 /* an active group must be handled by the update_curr()->put() path */
3965 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966 return;
3968 /* ensure the group is not already throttled */
3969 if (cfs_rq_throttled(cfs_rq))
3970 return;
3972 /* update runtime allocation */
3973 account_cfs_rq_runtime(cfs_rq, 0);
3974 if (cfs_rq->runtime_remaining <= 0)
3975 throttle_cfs_rq(cfs_rq);
3978 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3979 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3981 if (!cfs_bandwidth_used())
3982 return false;
3984 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3985 return false;
3988 * it's possible for a throttled entity to be forced into a running
3989 * state (e.g. set_curr_task), in this case we're finished.
3991 if (cfs_rq_throttled(cfs_rq))
3992 return true;
3994 throttle_cfs_rq(cfs_rq);
3995 return true;
3998 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4000 struct cfs_bandwidth *cfs_b =
4001 container_of(timer, struct cfs_bandwidth, slack_timer);
4002 do_sched_cfs_slack_timer(cfs_b);
4004 return HRTIMER_NORESTART;
4007 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4009 struct cfs_bandwidth *cfs_b =
4010 container_of(timer, struct cfs_bandwidth, period_timer);
4011 ktime_t now;
4012 int overrun;
4013 int idle = 0;
4015 raw_spin_lock(&cfs_b->lock);
4016 for (;;) {
4017 now = hrtimer_cb_get_time(timer);
4018 overrun = hrtimer_forward(timer, now, cfs_b->period);
4020 if (!overrun)
4021 break;
4023 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4025 raw_spin_unlock(&cfs_b->lock);
4027 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4030 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4032 raw_spin_lock_init(&cfs_b->lock);
4033 cfs_b->runtime = 0;
4034 cfs_b->quota = RUNTIME_INF;
4035 cfs_b->period = ns_to_ktime(default_cfs_period());
4037 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039 cfs_b->period_timer.function = sched_cfs_period_timer;
4040 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4044 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4046 cfs_rq->runtime_enabled = 0;
4047 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4050 /* requires cfs_b->lock, may release to reprogram timer */
4051 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
4054 * The timer may be active because we're trying to set a new bandwidth
4055 * period or because we're racing with the tear-down path
4056 * (timer_active==0 becomes visible before the hrtimer call-back
4057 * terminates). In either case we ensure that it's re-programmed
4059 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061 /* bounce the lock to allow do_sched_cfs_period_timer to run */
4062 raw_spin_unlock(&cfs_b->lock);
4063 cpu_relax();
4064 raw_spin_lock(&cfs_b->lock);
4065 /* if someone else restarted the timer then we're done */
4066 if (!force && cfs_b->timer_active)
4067 return;
4070 cfs_b->timer_active = 1;
4071 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4074 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4076 /* init_cfs_bandwidth() was not called */
4077 if (!cfs_b->throttled_cfs_rq.next)
4078 return;
4080 hrtimer_cancel(&cfs_b->period_timer);
4081 hrtimer_cancel(&cfs_b->slack_timer);
4084 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4086 struct cfs_rq *cfs_rq;
4088 for_each_leaf_cfs_rq(rq, cfs_rq) {
4089 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4091 raw_spin_lock(&cfs_b->lock);
4092 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093 raw_spin_unlock(&cfs_b->lock);
4097 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4099 struct cfs_rq *cfs_rq;
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 if (!cfs_rq->runtime_enabled)
4103 continue;
4106 * clock_task is not advancing so we just need to make sure
4107 * there's some valid quota amount
4109 cfs_rq->runtime_remaining = 1;
4111 * Offline rq is schedulable till cpu is completely disabled
4112 * in take_cpu_down(), so we prevent new cfs throttling here.
4114 cfs_rq->runtime_enabled = 0;
4116 if (cfs_rq_throttled(cfs_rq))
4117 unthrottle_cfs_rq(cfs_rq);
4121 #else /* CONFIG_CFS_BANDWIDTH */
4122 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4124 return rq_clock_task(rq_of(cfs_rq));
4127 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4128 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4129 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4130 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4132 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4134 return 0;
4137 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4139 return 0;
4142 static inline int throttled_lb_pair(struct task_group *tg,
4143 int src_cpu, int dest_cpu)
4145 return 0;
4148 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4150 #ifdef CONFIG_FAIR_GROUP_SCHED
4151 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4152 #endif
4154 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4156 return NULL;
4158 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4159 static inline void update_runtime_enabled(struct rq *rq) {}
4160 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4162 #endif /* CONFIG_CFS_BANDWIDTH */
4164 /**************************************************
4165 * CFS operations on tasks:
4168 #ifdef CONFIG_SCHED_HRTICK
4169 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4171 struct sched_entity *se = &p->se;
4172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4174 WARN_ON(task_rq(p) != rq);
4176 if (cfs_rq->nr_running > 1) {
4177 u64 slice = sched_slice(cfs_rq, se);
4178 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179 s64 delta = slice - ran;
4181 if (delta < 0) {
4182 if (rq->curr == p)
4183 resched_curr(rq);
4184 return;
4186 hrtick_start(rq, delta);
4191 * called from enqueue/dequeue and updates the hrtick when the
4192 * current task is from our class and nr_running is low enough
4193 * to matter.
4195 static void hrtick_update(struct rq *rq)
4197 struct task_struct *curr = rq->curr;
4199 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4200 return;
4202 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203 hrtick_start_fair(rq, curr);
4205 #else /* !CONFIG_SCHED_HRTICK */
4206 static inline void
4207 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4211 static inline void hrtick_update(struct rq *rq)
4214 #endif
4217 * The enqueue_task method is called before nr_running is
4218 * increased. Here we update the fair scheduling stats and
4219 * then put the task into the rbtree:
4221 static void
4222 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4224 struct cfs_rq *cfs_rq;
4225 struct sched_entity *se = &p->se;
4227 for_each_sched_entity(se) {
4228 if (se->on_rq)
4229 break;
4230 cfs_rq = cfs_rq_of(se);
4231 enqueue_entity(cfs_rq, se, flags);
4234 * end evaluation on encountering a throttled cfs_rq
4236 * note: in the case of encountering a throttled cfs_rq we will
4237 * post the final h_nr_running increment below.
4239 if (cfs_rq_throttled(cfs_rq))
4240 break;
4241 cfs_rq->h_nr_running++;
4243 flags = ENQUEUE_WAKEUP;
4246 for_each_sched_entity(se) {
4247 cfs_rq = cfs_rq_of(se);
4248 cfs_rq->h_nr_running++;
4250 if (cfs_rq_throttled(cfs_rq))
4251 break;
4253 update_cfs_shares(cfs_rq);
4254 update_entity_load_avg(se, 1);
4257 if (!se) {
4258 update_rq_runnable_avg(rq, rq->nr_running);
4259 add_nr_running(rq, 1);
4261 hrtick_update(rq);
4264 static void set_next_buddy(struct sched_entity *se);
4267 * The dequeue_task method is called before nr_running is
4268 * decreased. We remove the task from the rbtree and
4269 * update the fair scheduling stats:
4271 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4273 struct cfs_rq *cfs_rq;
4274 struct sched_entity *se = &p->se;
4275 int task_sleep = flags & DEQUEUE_SLEEP;
4277 for_each_sched_entity(se) {
4278 cfs_rq = cfs_rq_of(se);
4279 dequeue_entity(cfs_rq, se, flags);
4282 * end evaluation on encountering a throttled cfs_rq
4284 * note: in the case of encountering a throttled cfs_rq we will
4285 * post the final h_nr_running decrement below.
4287 if (cfs_rq_throttled(cfs_rq))
4288 break;
4289 cfs_rq->h_nr_running--;
4291 /* Don't dequeue parent if it has other entities besides us */
4292 if (cfs_rq->load.weight) {
4294 * Bias pick_next to pick a task from this cfs_rq, as
4295 * p is sleeping when it is within its sched_slice.
4297 if (task_sleep && parent_entity(se))
4298 set_next_buddy(parent_entity(se));
4300 /* avoid re-evaluating load for this entity */
4301 se = parent_entity(se);
4302 break;
4304 flags |= DEQUEUE_SLEEP;
4307 for_each_sched_entity(se) {
4308 cfs_rq = cfs_rq_of(se);
4309 cfs_rq->h_nr_running--;
4311 if (cfs_rq_throttled(cfs_rq))
4312 break;
4314 update_cfs_shares(cfs_rq);
4315 update_entity_load_avg(se, 1);
4318 if (!se) {
4319 sub_nr_running(rq, 1);
4320 update_rq_runnable_avg(rq, 1);
4322 hrtick_update(rq);
4325 #ifdef CONFIG_SMP
4326 /* Used instead of source_load when we know the type == 0 */
4327 static unsigned long weighted_cpuload(const int cpu)
4329 return cpu_rq(cpu)->cfs.runnable_load_avg;
4333 * Return a low guess at the load of a migration-source cpu weighted
4334 * according to the scheduling class and "nice" value.
4336 * We want to under-estimate the load of migration sources, to
4337 * balance conservatively.
4339 static unsigned long source_load(int cpu, int type)
4341 struct rq *rq = cpu_rq(cpu);
4342 unsigned long total = weighted_cpuload(cpu);
4344 if (type == 0 || !sched_feat(LB_BIAS))
4345 return total;
4347 return min(rq->cpu_load[type-1], total);
4351 * Return a high guess at the load of a migration-target cpu weighted
4352 * according to the scheduling class and "nice" value.
4354 static unsigned long target_load(int cpu, int type)
4356 struct rq *rq = cpu_rq(cpu);
4357 unsigned long total = weighted_cpuload(cpu);
4359 if (type == 0 || !sched_feat(LB_BIAS))
4360 return total;
4362 return max(rq->cpu_load[type-1], total);
4365 static unsigned long capacity_of(int cpu)
4367 return cpu_rq(cpu)->cpu_capacity;
4370 static unsigned long capacity_orig_of(int cpu)
4372 return cpu_rq(cpu)->cpu_capacity_orig;
4375 static unsigned long cpu_avg_load_per_task(int cpu)
4377 struct rq *rq = cpu_rq(cpu);
4378 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4379 unsigned long load_avg = rq->cfs.runnable_load_avg;
4381 if (nr_running)
4382 return load_avg / nr_running;
4384 return 0;
4387 static void record_wakee(struct task_struct *p)
4390 * Rough decay (wiping) for cost saving, don't worry
4391 * about the boundary, really active task won't care
4392 * about the loss.
4394 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4395 current->wakee_flips >>= 1;
4396 current->wakee_flip_decay_ts = jiffies;
4399 if (current->last_wakee != p) {
4400 current->last_wakee = p;
4401 current->wakee_flips++;
4405 static void task_waking_fair(struct task_struct *p)
4407 struct sched_entity *se = &p->se;
4408 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4409 u64 min_vruntime;
4411 #ifndef CONFIG_64BIT
4412 u64 min_vruntime_copy;
4414 do {
4415 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4416 smp_rmb();
4417 min_vruntime = cfs_rq->min_vruntime;
4418 } while (min_vruntime != min_vruntime_copy);
4419 #else
4420 min_vruntime = cfs_rq->min_vruntime;
4421 #endif
4423 se->vruntime -= min_vruntime;
4424 record_wakee(p);
4427 #ifdef CONFIG_FAIR_GROUP_SCHED
4429 * effective_load() calculates the load change as seen from the root_task_group
4431 * Adding load to a group doesn't make a group heavier, but can cause movement
4432 * of group shares between cpus. Assuming the shares were perfectly aligned one
4433 * can calculate the shift in shares.
4435 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4436 * on this @cpu and results in a total addition (subtraction) of @wg to the
4437 * total group weight.
4439 * Given a runqueue weight distribution (rw_i) we can compute a shares
4440 * distribution (s_i) using:
4442 * s_i = rw_i / \Sum rw_j (1)
4444 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4445 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4446 * shares distribution (s_i):
4448 * rw_i = { 2, 4, 1, 0 }
4449 * s_i = { 2/7, 4/7, 1/7, 0 }
4451 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4452 * task used to run on and the CPU the waker is running on), we need to
4453 * compute the effect of waking a task on either CPU and, in case of a sync
4454 * wakeup, compute the effect of the current task going to sleep.
4456 * So for a change of @wl to the local @cpu with an overall group weight change
4457 * of @wl we can compute the new shares distribution (s'_i) using:
4459 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4461 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4462 * differences in waking a task to CPU 0. The additional task changes the
4463 * weight and shares distributions like:
4465 * rw'_i = { 3, 4, 1, 0 }
4466 * s'_i = { 3/8, 4/8, 1/8, 0 }
4468 * We can then compute the difference in effective weight by using:
4470 * dw_i = S * (s'_i - s_i) (3)
4472 * Where 'S' is the group weight as seen by its parent.
4474 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4475 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4476 * 4/7) times the weight of the group.
4478 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4480 struct sched_entity *se = tg->se[cpu];
4482 if (!tg->parent) /* the trivial, non-cgroup case */
4483 return wl;
4485 for_each_sched_entity(se) {
4486 long w, W;
4488 tg = se->my_q->tg;
4491 * W = @wg + \Sum rw_j
4493 W = wg + calc_tg_weight(tg, se->my_q);
4496 * w = rw_i + @wl
4498 w = se->my_q->load.weight + wl;
4501 * wl = S * s'_i; see (2)
4503 if (W > 0 && w < W)
4504 wl = (w * (long)tg->shares) / W;
4505 else
4506 wl = tg->shares;
4509 * Per the above, wl is the new se->load.weight value; since
4510 * those are clipped to [MIN_SHARES, ...) do so now. See
4511 * calc_cfs_shares().
4513 if (wl < MIN_SHARES)
4514 wl = MIN_SHARES;
4517 * wl = dw_i = S * (s'_i - s_i); see (3)
4519 wl -= se->load.weight;
4522 * Recursively apply this logic to all parent groups to compute
4523 * the final effective load change on the root group. Since
4524 * only the @tg group gets extra weight, all parent groups can
4525 * only redistribute existing shares. @wl is the shift in shares
4526 * resulting from this level per the above.
4528 wg = 0;
4531 return wl;
4533 #else
4535 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4537 return wl;
4540 #endif
4542 static int wake_wide(struct task_struct *p)
4544 int factor = this_cpu_read(sd_llc_size);
4547 * Yeah, it's the switching-frequency, could means many wakee or
4548 * rapidly switch, use factor here will just help to automatically
4549 * adjust the loose-degree, so bigger node will lead to more pull.
4551 if (p->wakee_flips > factor) {
4553 * wakee is somewhat hot, it needs certain amount of cpu
4554 * resource, so if waker is far more hot, prefer to leave
4555 * it alone.
4557 if (current->wakee_flips > (factor * p->wakee_flips))
4558 return 1;
4561 return 0;
4564 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4566 s64 this_load, load;
4567 s64 this_eff_load, prev_eff_load;
4568 int idx, this_cpu, prev_cpu;
4569 struct task_group *tg;
4570 unsigned long weight;
4571 int balanced;
4574 * If we wake multiple tasks be careful to not bounce
4575 * ourselves around too much.
4577 if (wake_wide(p))
4578 return 0;
4580 idx = sd->wake_idx;
4581 this_cpu = smp_processor_id();
4582 prev_cpu = task_cpu(p);
4583 load = source_load(prev_cpu, idx);
4584 this_load = target_load(this_cpu, idx);
4587 * If sync wakeup then subtract the (maximum possible)
4588 * effect of the currently running task from the load
4589 * of the current CPU:
4591 if (sync) {
4592 tg = task_group(current);
4593 weight = current->se.load.weight;
4595 this_load += effective_load(tg, this_cpu, -weight, -weight);
4596 load += effective_load(tg, prev_cpu, 0, -weight);
4599 tg = task_group(p);
4600 weight = p->se.load.weight;
4603 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4604 * due to the sync cause above having dropped this_load to 0, we'll
4605 * always have an imbalance, but there's really nothing you can do
4606 * about that, so that's good too.
4608 * Otherwise check if either cpus are near enough in load to allow this
4609 * task to be woken on this_cpu.
4611 this_eff_load = 100;
4612 this_eff_load *= capacity_of(prev_cpu);
4614 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4615 prev_eff_load *= capacity_of(this_cpu);
4617 if (this_load > 0) {
4618 this_eff_load *= this_load +
4619 effective_load(tg, this_cpu, weight, weight);
4621 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4624 balanced = this_eff_load <= prev_eff_load;
4626 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4628 if (!balanced)
4629 return 0;
4631 schedstat_inc(sd, ttwu_move_affine);
4632 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4634 return 1;
4638 * find_idlest_group finds and returns the least busy CPU group within the
4639 * domain.
4641 static struct sched_group *
4642 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4643 int this_cpu, int sd_flag)
4645 struct sched_group *idlest = NULL, *group = sd->groups;
4646 unsigned long min_load = ULONG_MAX, this_load = 0;
4647 int load_idx = sd->forkexec_idx;
4648 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4650 if (sd_flag & SD_BALANCE_WAKE)
4651 load_idx = sd->wake_idx;
4653 do {
4654 unsigned long load, avg_load;
4655 int local_group;
4656 int i;
4658 /* Skip over this group if it has no CPUs allowed */
4659 if (!cpumask_intersects(sched_group_cpus(group),
4660 tsk_cpus_allowed(p)))
4661 continue;
4663 local_group = cpumask_test_cpu(this_cpu,
4664 sched_group_cpus(group));
4666 /* Tally up the load of all CPUs in the group */
4667 avg_load = 0;
4669 for_each_cpu(i, sched_group_cpus(group)) {
4670 /* Bias balancing toward cpus of our domain */
4671 if (local_group)
4672 load = source_load(i, load_idx);
4673 else
4674 load = target_load(i, load_idx);
4676 avg_load += load;
4679 /* Adjust by relative CPU capacity of the group */
4680 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4682 if (local_group) {
4683 this_load = avg_load;
4684 } else if (avg_load < min_load) {
4685 min_load = avg_load;
4686 idlest = group;
4688 } while (group = group->next, group != sd->groups);
4690 if (!idlest || 100*this_load < imbalance*min_load)
4691 return NULL;
4692 return idlest;
4696 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4698 static int
4699 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4701 unsigned long load, min_load = ULONG_MAX;
4702 unsigned int min_exit_latency = UINT_MAX;
4703 u64 latest_idle_timestamp = 0;
4704 int least_loaded_cpu = this_cpu;
4705 int shallowest_idle_cpu = -1;
4706 int i;
4708 /* Traverse only the allowed CPUs */
4709 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4710 if (idle_cpu(i)) {
4711 struct rq *rq = cpu_rq(i);
4712 struct cpuidle_state *idle = idle_get_state(rq);
4713 if (idle && idle->exit_latency < min_exit_latency) {
4715 * We give priority to a CPU whose idle state
4716 * has the smallest exit latency irrespective
4717 * of any idle timestamp.
4719 min_exit_latency = idle->exit_latency;
4720 latest_idle_timestamp = rq->idle_stamp;
4721 shallowest_idle_cpu = i;
4722 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4723 rq->idle_stamp > latest_idle_timestamp) {
4725 * If equal or no active idle state, then
4726 * the most recently idled CPU might have
4727 * a warmer cache.
4729 latest_idle_timestamp = rq->idle_stamp;
4730 shallowest_idle_cpu = i;
4732 } else if (shallowest_idle_cpu == -1) {
4733 load = weighted_cpuload(i);
4734 if (load < min_load || (load == min_load && i == this_cpu)) {
4735 min_load = load;
4736 least_loaded_cpu = i;
4741 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4745 * Try and locate an idle CPU in the sched_domain.
4747 static int select_idle_sibling(struct task_struct *p, int target)
4749 struct sched_domain *sd;
4750 struct sched_group *sg;
4751 int i = task_cpu(p);
4753 if (idle_cpu(target))
4754 return target;
4757 * If the prevous cpu is cache affine and idle, don't be stupid.
4759 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4760 return i;
4763 * Otherwise, iterate the domains and find an elegible idle cpu.
4765 sd = rcu_dereference(per_cpu(sd_llc, target));
4766 for_each_lower_domain(sd) {
4767 sg = sd->groups;
4768 do {
4769 if (!cpumask_intersects(sched_group_cpus(sg),
4770 tsk_cpus_allowed(p)))
4771 goto next;
4773 for_each_cpu(i, sched_group_cpus(sg)) {
4774 if (i == target || !idle_cpu(i))
4775 goto next;
4778 target = cpumask_first_and(sched_group_cpus(sg),
4779 tsk_cpus_allowed(p));
4780 goto done;
4781 next:
4782 sg = sg->next;
4783 } while (sg != sd->groups);
4785 done:
4786 return target;
4789 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4790 * tasks. The unit of the return value must be the one of capacity so we can
4791 * compare the usage with the capacity of the CPU that is available for CFS
4792 * task (ie cpu_capacity).
4793 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4794 * CPU. It represents the amount of utilization of a CPU in the range
4795 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4796 * capacity of the CPU because it's about the running time on this CPU.
4797 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4798 * because of unfortunate rounding in avg_period and running_load_avg or just
4799 * after migrating tasks until the average stabilizes with the new running
4800 * time. So we need to check that the usage stays into the range
4801 * [0..cpu_capacity_orig] and cap if necessary.
4802 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4803 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4805 static int get_cpu_usage(int cpu)
4807 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4808 unsigned long capacity = capacity_orig_of(cpu);
4810 if (usage >= SCHED_LOAD_SCALE)
4811 return capacity;
4813 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4817 * select_task_rq_fair: Select target runqueue for the waking task in domains
4818 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4819 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4821 * Balances load by selecting the idlest cpu in the idlest group, or under
4822 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4824 * Returns the target cpu number.
4826 * preempt must be disabled.
4828 static int
4829 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4831 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4832 int cpu = smp_processor_id();
4833 int new_cpu = cpu;
4834 int want_affine = 0;
4835 int sync = wake_flags & WF_SYNC;
4837 if (sd_flag & SD_BALANCE_WAKE)
4838 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4840 rcu_read_lock();
4841 for_each_domain(cpu, tmp) {
4842 if (!(tmp->flags & SD_LOAD_BALANCE))
4843 continue;
4846 * If both cpu and prev_cpu are part of this domain,
4847 * cpu is a valid SD_WAKE_AFFINE target.
4849 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4850 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4851 affine_sd = tmp;
4852 break;
4855 if (tmp->flags & sd_flag)
4856 sd = tmp;
4859 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4860 prev_cpu = cpu;
4862 if (sd_flag & SD_BALANCE_WAKE) {
4863 new_cpu = select_idle_sibling(p, prev_cpu);
4864 goto unlock;
4867 while (sd) {
4868 struct sched_group *group;
4869 int weight;
4871 if (!(sd->flags & sd_flag)) {
4872 sd = sd->child;
4873 continue;
4876 group = find_idlest_group(sd, p, cpu, sd_flag);
4877 if (!group) {
4878 sd = sd->child;
4879 continue;
4882 new_cpu = find_idlest_cpu(group, p, cpu);
4883 if (new_cpu == -1 || new_cpu == cpu) {
4884 /* Now try balancing at a lower domain level of cpu */
4885 sd = sd->child;
4886 continue;
4889 /* Now try balancing at a lower domain level of new_cpu */
4890 cpu = new_cpu;
4891 weight = sd->span_weight;
4892 sd = NULL;
4893 for_each_domain(cpu, tmp) {
4894 if (weight <= tmp->span_weight)
4895 break;
4896 if (tmp->flags & sd_flag)
4897 sd = tmp;
4899 /* while loop will break here if sd == NULL */
4901 unlock:
4902 rcu_read_unlock();
4904 return new_cpu;
4908 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4909 * cfs_rq_of(p) references at time of call are still valid and identify the
4910 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4911 * other assumptions, including the state of rq->lock, should be made.
4913 static void
4914 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4916 struct sched_entity *se = &p->se;
4917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4920 * Load tracking: accumulate removed load so that it can be processed
4921 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4922 * to blocked load iff they have a positive decay-count. It can never
4923 * be negative here since on-rq tasks have decay-count == 0.
4925 if (se->avg.decay_count) {
4926 se->avg.decay_count = -__synchronize_entity_decay(se);
4927 atomic_long_add(se->avg.load_avg_contrib,
4928 &cfs_rq->removed_load);
4931 /* We have migrated, no longer consider this task hot */
4932 se->exec_start = 0;
4934 #endif /* CONFIG_SMP */
4936 static unsigned long
4937 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4939 unsigned long gran = sysctl_sched_wakeup_granularity;
4942 * Since its curr running now, convert the gran from real-time
4943 * to virtual-time in his units.
4945 * By using 'se' instead of 'curr' we penalize light tasks, so
4946 * they get preempted easier. That is, if 'se' < 'curr' then
4947 * the resulting gran will be larger, therefore penalizing the
4948 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4949 * be smaller, again penalizing the lighter task.
4951 * This is especially important for buddies when the leftmost
4952 * task is higher priority than the buddy.
4954 return calc_delta_fair(gran, se);
4958 * Should 'se' preempt 'curr'.
4960 * |s1
4961 * |s2
4962 * |s3
4964 * |<--->|c
4966 * w(c, s1) = -1
4967 * w(c, s2) = 0
4968 * w(c, s3) = 1
4971 static int
4972 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4974 s64 gran, vdiff = curr->vruntime - se->vruntime;
4976 if (vdiff <= 0)
4977 return -1;
4979 gran = wakeup_gran(curr, se);
4980 if (vdiff > gran)
4981 return 1;
4983 return 0;
4986 static void set_last_buddy(struct sched_entity *se)
4988 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4989 return;
4991 for_each_sched_entity(se)
4992 cfs_rq_of(se)->last = se;
4995 static void set_next_buddy(struct sched_entity *se)
4997 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4998 return;
5000 for_each_sched_entity(se)
5001 cfs_rq_of(se)->next = se;
5004 static void set_skip_buddy(struct sched_entity *se)
5006 for_each_sched_entity(se)
5007 cfs_rq_of(se)->skip = se;
5011 * Preempt the current task with a newly woken task if needed:
5013 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5015 struct task_struct *curr = rq->curr;
5016 struct sched_entity *se = &curr->se, *pse = &p->se;
5017 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5018 int scale = cfs_rq->nr_running >= sched_nr_latency;
5019 int next_buddy_marked = 0;
5021 if (unlikely(se == pse))
5022 return;
5025 * This is possible from callers such as attach_tasks(), in which we
5026 * unconditionally check_prempt_curr() after an enqueue (which may have
5027 * lead to a throttle). This both saves work and prevents false
5028 * next-buddy nomination below.
5030 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5031 return;
5033 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5034 set_next_buddy(pse);
5035 next_buddy_marked = 1;
5039 * We can come here with TIF_NEED_RESCHED already set from new task
5040 * wake up path.
5042 * Note: this also catches the edge-case of curr being in a throttled
5043 * group (e.g. via set_curr_task), since update_curr() (in the
5044 * enqueue of curr) will have resulted in resched being set. This
5045 * prevents us from potentially nominating it as a false LAST_BUDDY
5046 * below.
5048 if (test_tsk_need_resched(curr))
5049 return;
5051 /* Idle tasks are by definition preempted by non-idle tasks. */
5052 if (unlikely(curr->policy == SCHED_IDLE) &&
5053 likely(p->policy != SCHED_IDLE))
5054 goto preempt;
5057 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5058 * is driven by the tick):
5060 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5061 return;
5063 find_matching_se(&se, &pse);
5064 update_curr(cfs_rq_of(se));
5065 BUG_ON(!pse);
5066 if (wakeup_preempt_entity(se, pse) == 1) {
5068 * Bias pick_next to pick the sched entity that is
5069 * triggering this preemption.
5071 if (!next_buddy_marked)
5072 set_next_buddy(pse);
5073 goto preempt;
5076 return;
5078 preempt:
5079 resched_curr(rq);
5081 * Only set the backward buddy when the current task is still
5082 * on the rq. This can happen when a wakeup gets interleaved
5083 * with schedule on the ->pre_schedule() or idle_balance()
5084 * point, either of which can * drop the rq lock.
5086 * Also, during early boot the idle thread is in the fair class,
5087 * for obvious reasons its a bad idea to schedule back to it.
5089 if (unlikely(!se->on_rq || curr == rq->idle))
5090 return;
5092 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5093 set_last_buddy(se);
5096 static struct task_struct *
5097 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5099 struct cfs_rq *cfs_rq = &rq->cfs;
5100 struct sched_entity *se;
5101 struct task_struct *p;
5102 int new_tasks;
5104 again:
5105 #ifdef CONFIG_FAIR_GROUP_SCHED
5106 if (!cfs_rq->nr_running)
5107 goto idle;
5109 if (prev->sched_class != &fair_sched_class)
5110 goto simple;
5113 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5114 * likely that a next task is from the same cgroup as the current.
5116 * Therefore attempt to avoid putting and setting the entire cgroup
5117 * hierarchy, only change the part that actually changes.
5120 do {
5121 struct sched_entity *curr = cfs_rq->curr;
5124 * Since we got here without doing put_prev_entity() we also
5125 * have to consider cfs_rq->curr. If it is still a runnable
5126 * entity, update_curr() will update its vruntime, otherwise
5127 * forget we've ever seen it.
5129 if (curr) {
5130 if (curr->on_rq)
5131 update_curr(cfs_rq);
5132 else
5133 curr = NULL;
5136 * This call to check_cfs_rq_runtime() will do the
5137 * throttle and dequeue its entity in the parent(s).
5138 * Therefore the 'simple' nr_running test will indeed
5139 * be correct.
5141 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5142 goto simple;
5145 se = pick_next_entity(cfs_rq, curr);
5146 cfs_rq = group_cfs_rq(se);
5147 } while (cfs_rq);
5149 p = task_of(se);
5152 * Since we haven't yet done put_prev_entity and if the selected task
5153 * is a different task than we started out with, try and touch the
5154 * least amount of cfs_rqs.
5156 if (prev != p) {
5157 struct sched_entity *pse = &prev->se;
5159 while (!(cfs_rq = is_same_group(se, pse))) {
5160 int se_depth = se->depth;
5161 int pse_depth = pse->depth;
5163 if (se_depth <= pse_depth) {
5164 put_prev_entity(cfs_rq_of(pse), pse);
5165 pse = parent_entity(pse);
5167 if (se_depth >= pse_depth) {
5168 set_next_entity(cfs_rq_of(se), se);
5169 se = parent_entity(se);
5173 put_prev_entity(cfs_rq, pse);
5174 set_next_entity(cfs_rq, se);
5177 if (hrtick_enabled(rq))
5178 hrtick_start_fair(rq, p);
5180 return p;
5181 simple:
5182 cfs_rq = &rq->cfs;
5183 #endif
5185 if (!cfs_rq->nr_running)
5186 goto idle;
5188 put_prev_task(rq, prev);
5190 do {
5191 se = pick_next_entity(cfs_rq, NULL);
5192 set_next_entity(cfs_rq, se);
5193 cfs_rq = group_cfs_rq(se);
5194 } while (cfs_rq);
5196 p = task_of(se);
5198 if (hrtick_enabled(rq))
5199 hrtick_start_fair(rq, p);
5201 return p;
5203 idle:
5204 new_tasks = idle_balance(rq);
5206 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5207 * possible for any higher priority task to appear. In that case we
5208 * must re-start the pick_next_entity() loop.
5210 if (new_tasks < 0)
5211 return RETRY_TASK;
5213 if (new_tasks > 0)
5214 goto again;
5216 return NULL;
5220 * Account for a descheduled task:
5222 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5224 struct sched_entity *se = &prev->se;
5225 struct cfs_rq *cfs_rq;
5227 for_each_sched_entity(se) {
5228 cfs_rq = cfs_rq_of(se);
5229 put_prev_entity(cfs_rq, se);
5234 * sched_yield() is very simple
5236 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5238 static void yield_task_fair(struct rq *rq)
5240 struct task_struct *curr = rq->curr;
5241 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5242 struct sched_entity *se = &curr->se;
5245 * Are we the only task in the tree?
5247 if (unlikely(rq->nr_running == 1))
5248 return;
5250 clear_buddies(cfs_rq, se);
5252 if (curr->policy != SCHED_BATCH) {
5253 update_rq_clock(rq);
5255 * Update run-time statistics of the 'current'.
5257 update_curr(cfs_rq);
5259 * Tell update_rq_clock() that we've just updated,
5260 * so we don't do microscopic update in schedule()
5261 * and double the fastpath cost.
5263 rq_clock_skip_update(rq, true);
5266 set_skip_buddy(se);
5269 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5271 struct sched_entity *se = &p->se;
5273 /* throttled hierarchies are not runnable */
5274 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5275 return false;
5277 /* Tell the scheduler that we'd really like pse to run next. */
5278 set_next_buddy(se);
5280 yield_task_fair(rq);
5282 return true;
5285 #ifdef CONFIG_SMP
5286 /**************************************************
5287 * Fair scheduling class load-balancing methods.
5289 * BASICS
5291 * The purpose of load-balancing is to achieve the same basic fairness the
5292 * per-cpu scheduler provides, namely provide a proportional amount of compute
5293 * time to each task. This is expressed in the following equation:
5295 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5297 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5298 * W_i,0 is defined as:
5300 * W_i,0 = \Sum_j w_i,j (2)
5302 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5303 * is derived from the nice value as per prio_to_weight[].
5305 * The weight average is an exponential decay average of the instantaneous
5306 * weight:
5308 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5310 * C_i is the compute capacity of cpu i, typically it is the
5311 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5312 * can also include other factors [XXX].
5314 * To achieve this balance we define a measure of imbalance which follows
5315 * directly from (1):
5317 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5319 * We them move tasks around to minimize the imbalance. In the continuous
5320 * function space it is obvious this converges, in the discrete case we get
5321 * a few fun cases generally called infeasible weight scenarios.
5323 * [XXX expand on:
5324 * - infeasible weights;
5325 * - local vs global optima in the discrete case. ]
5328 * SCHED DOMAINS
5330 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5331 * for all i,j solution, we create a tree of cpus that follows the hardware
5332 * topology where each level pairs two lower groups (or better). This results
5333 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5334 * tree to only the first of the previous level and we decrease the frequency
5335 * of load-balance at each level inv. proportional to the number of cpus in
5336 * the groups.
5338 * This yields:
5340 * log_2 n 1 n
5341 * \Sum { --- * --- * 2^i } = O(n) (5)
5342 * i = 0 2^i 2^i
5343 * `- size of each group
5344 * | | `- number of cpus doing load-balance
5345 * | `- freq
5346 * `- sum over all levels
5348 * Coupled with a limit on how many tasks we can migrate every balance pass,
5349 * this makes (5) the runtime complexity of the balancer.
5351 * An important property here is that each CPU is still (indirectly) connected
5352 * to every other cpu in at most O(log n) steps:
5354 * The adjacency matrix of the resulting graph is given by:
5356 * log_2 n
5357 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5358 * k = 0
5360 * And you'll find that:
5362 * A^(log_2 n)_i,j != 0 for all i,j (7)
5364 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5365 * The task movement gives a factor of O(m), giving a convergence complexity
5366 * of:
5368 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5371 * WORK CONSERVING
5373 * In order to avoid CPUs going idle while there's still work to do, new idle
5374 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5375 * tree itself instead of relying on other CPUs to bring it work.
5377 * This adds some complexity to both (5) and (8) but it reduces the total idle
5378 * time.
5380 * [XXX more?]
5383 * CGROUPS
5385 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5387 * s_k,i
5388 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5389 * S_k
5391 * Where
5393 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5395 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5397 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5398 * property.
5400 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5401 * rewrite all of this once again.]
5404 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5406 enum fbq_type { regular, remote, all };
5408 #define LBF_ALL_PINNED 0x01
5409 #define LBF_NEED_BREAK 0x02
5410 #define LBF_DST_PINNED 0x04
5411 #define LBF_SOME_PINNED 0x08
5413 struct lb_env {
5414 struct sched_domain *sd;
5416 struct rq *src_rq;
5417 int src_cpu;
5419 int dst_cpu;
5420 struct rq *dst_rq;
5422 struct cpumask *dst_grpmask;
5423 int new_dst_cpu;
5424 enum cpu_idle_type idle;
5425 long imbalance;
5426 /* The set of CPUs under consideration for load-balancing */
5427 struct cpumask *cpus;
5429 unsigned int flags;
5431 unsigned int loop;
5432 unsigned int loop_break;
5433 unsigned int loop_max;
5435 enum fbq_type fbq_type;
5436 struct list_head tasks;
5440 * Is this task likely cache-hot:
5442 static int task_hot(struct task_struct *p, struct lb_env *env)
5444 s64 delta;
5446 lockdep_assert_held(&env->src_rq->lock);
5448 if (p->sched_class != &fair_sched_class)
5449 return 0;
5451 if (unlikely(p->policy == SCHED_IDLE))
5452 return 0;
5455 * Buddy candidates are cache hot:
5457 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5458 (&p->se == cfs_rq_of(&p->se)->next ||
5459 &p->se == cfs_rq_of(&p->se)->last))
5460 return 1;
5462 if (sysctl_sched_migration_cost == -1)
5463 return 1;
5464 if (sysctl_sched_migration_cost == 0)
5465 return 0;
5467 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5469 return delta < (s64)sysctl_sched_migration_cost;
5472 #ifdef CONFIG_NUMA_BALANCING
5473 /* Returns true if the destination node has incurred more faults */
5474 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5476 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5477 int src_nid, dst_nid;
5479 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5480 !(env->sd->flags & SD_NUMA)) {
5481 return false;
5484 src_nid = cpu_to_node(env->src_cpu);
5485 dst_nid = cpu_to_node(env->dst_cpu);
5487 if (src_nid == dst_nid)
5488 return false;
5490 if (numa_group) {
5491 /* Task is already in the group's interleave set. */
5492 if (node_isset(src_nid, numa_group->active_nodes))
5493 return false;
5495 /* Task is moving into the group's interleave set. */
5496 if (node_isset(dst_nid, numa_group->active_nodes))
5497 return true;
5499 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5502 /* Encourage migration to the preferred node. */
5503 if (dst_nid == p->numa_preferred_nid)
5504 return true;
5506 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5510 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5512 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5513 int src_nid, dst_nid;
5515 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5516 return false;
5518 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5519 return false;
5521 src_nid = cpu_to_node(env->src_cpu);
5522 dst_nid = cpu_to_node(env->dst_cpu);
5524 if (src_nid == dst_nid)
5525 return false;
5527 if (numa_group) {
5528 /* Task is moving within/into the group's interleave set. */
5529 if (node_isset(dst_nid, numa_group->active_nodes))
5530 return false;
5532 /* Task is moving out of the group's interleave set. */
5533 if (node_isset(src_nid, numa_group->active_nodes))
5534 return true;
5536 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5539 /* Migrating away from the preferred node is always bad. */
5540 if (src_nid == p->numa_preferred_nid)
5541 return true;
5543 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5546 #else
5547 static inline bool migrate_improves_locality(struct task_struct *p,
5548 struct lb_env *env)
5550 return false;
5553 static inline bool migrate_degrades_locality(struct task_struct *p,
5554 struct lb_env *env)
5556 return false;
5558 #endif
5561 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5563 static
5564 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5566 int tsk_cache_hot = 0;
5568 lockdep_assert_held(&env->src_rq->lock);
5571 * We do not migrate tasks that are:
5572 * 1) throttled_lb_pair, or
5573 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5574 * 3) running (obviously), or
5575 * 4) are cache-hot on their current CPU.
5577 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5578 return 0;
5580 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5581 int cpu;
5583 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5585 env->flags |= LBF_SOME_PINNED;
5588 * Remember if this task can be migrated to any other cpu in
5589 * our sched_group. We may want to revisit it if we couldn't
5590 * meet load balance goals by pulling other tasks on src_cpu.
5592 * Also avoid computing new_dst_cpu if we have already computed
5593 * one in current iteration.
5595 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5596 return 0;
5598 /* Prevent to re-select dst_cpu via env's cpus */
5599 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5600 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5601 env->flags |= LBF_DST_PINNED;
5602 env->new_dst_cpu = cpu;
5603 break;
5607 return 0;
5610 /* Record that we found atleast one task that could run on dst_cpu */
5611 env->flags &= ~LBF_ALL_PINNED;
5613 if (task_running(env->src_rq, p)) {
5614 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5615 return 0;
5619 * Aggressive migration if:
5620 * 1) destination numa is preferred
5621 * 2) task is cache cold, or
5622 * 3) too many balance attempts have failed.
5624 tsk_cache_hot = task_hot(p, env);
5625 if (!tsk_cache_hot)
5626 tsk_cache_hot = migrate_degrades_locality(p, env);
5628 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5629 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5630 if (tsk_cache_hot) {
5631 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5632 schedstat_inc(p, se.statistics.nr_forced_migrations);
5634 return 1;
5637 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5638 return 0;
5642 * detach_task() -- detach the task for the migration specified in env
5644 static void detach_task(struct task_struct *p, struct lb_env *env)
5646 lockdep_assert_held(&env->src_rq->lock);
5648 deactivate_task(env->src_rq, p, 0);
5649 p->on_rq = TASK_ON_RQ_MIGRATING;
5650 set_task_cpu(p, env->dst_cpu);
5654 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5655 * part of active balancing operations within "domain".
5657 * Returns a task if successful and NULL otherwise.
5659 static struct task_struct *detach_one_task(struct lb_env *env)
5661 struct task_struct *p, *n;
5663 lockdep_assert_held(&env->src_rq->lock);
5665 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5666 if (!can_migrate_task(p, env))
5667 continue;
5669 detach_task(p, env);
5672 * Right now, this is only the second place where
5673 * lb_gained[env->idle] is updated (other is detach_tasks)
5674 * so we can safely collect stats here rather than
5675 * inside detach_tasks().
5677 schedstat_inc(env->sd, lb_gained[env->idle]);
5678 return p;
5680 return NULL;
5683 static const unsigned int sched_nr_migrate_break = 32;
5686 * detach_tasks() -- tries to detach up to imbalance weighted load from
5687 * busiest_rq, as part of a balancing operation within domain "sd".
5689 * Returns number of detached tasks if successful and 0 otherwise.
5691 static int detach_tasks(struct lb_env *env)
5693 struct list_head *tasks = &env->src_rq->cfs_tasks;
5694 struct task_struct *p;
5695 unsigned long load;
5696 int detached = 0;
5698 lockdep_assert_held(&env->src_rq->lock);
5700 if (env->imbalance <= 0)
5701 return 0;
5703 while (!list_empty(tasks)) {
5704 p = list_first_entry(tasks, struct task_struct, se.group_node);
5706 env->loop++;
5707 /* We've more or less seen every task there is, call it quits */
5708 if (env->loop > env->loop_max)
5709 break;
5711 /* take a breather every nr_migrate tasks */
5712 if (env->loop > env->loop_break) {
5713 env->loop_break += sched_nr_migrate_break;
5714 env->flags |= LBF_NEED_BREAK;
5715 break;
5718 if (!can_migrate_task(p, env))
5719 goto next;
5721 load = task_h_load(p);
5723 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5724 goto next;
5726 if ((load / 2) > env->imbalance)
5727 goto next;
5729 detach_task(p, env);
5730 list_add(&p->se.group_node, &env->tasks);
5732 detached++;
5733 env->imbalance -= load;
5735 #ifdef CONFIG_PREEMPT
5737 * NEWIDLE balancing is a source of latency, so preemptible
5738 * kernels will stop after the first task is detached to minimize
5739 * the critical section.
5741 if (env->idle == CPU_NEWLY_IDLE)
5742 break;
5743 #endif
5746 * We only want to steal up to the prescribed amount of
5747 * weighted load.
5749 if (env->imbalance <= 0)
5750 break;
5752 continue;
5753 next:
5754 list_move_tail(&p->se.group_node, tasks);
5758 * Right now, this is one of only two places we collect this stat
5759 * so we can safely collect detach_one_task() stats here rather
5760 * than inside detach_one_task().
5762 schedstat_add(env->sd, lb_gained[env->idle], detached);
5764 return detached;
5768 * attach_task() -- attach the task detached by detach_task() to its new rq.
5770 static void attach_task(struct rq *rq, struct task_struct *p)
5772 lockdep_assert_held(&rq->lock);
5774 BUG_ON(task_rq(p) != rq);
5775 p->on_rq = TASK_ON_RQ_QUEUED;
5776 activate_task(rq, p, 0);
5777 check_preempt_curr(rq, p, 0);
5781 * attach_one_task() -- attaches the task returned from detach_one_task() to
5782 * its new rq.
5784 static void attach_one_task(struct rq *rq, struct task_struct *p)
5786 raw_spin_lock(&rq->lock);
5787 attach_task(rq, p);
5788 raw_spin_unlock(&rq->lock);
5792 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5793 * new rq.
5795 static void attach_tasks(struct lb_env *env)
5797 struct list_head *tasks = &env->tasks;
5798 struct task_struct *p;
5800 raw_spin_lock(&env->dst_rq->lock);
5802 while (!list_empty(tasks)) {
5803 p = list_first_entry(tasks, struct task_struct, se.group_node);
5804 list_del_init(&p->se.group_node);
5806 attach_task(env->dst_rq, p);
5809 raw_spin_unlock(&env->dst_rq->lock);
5812 #ifdef CONFIG_FAIR_GROUP_SCHED
5814 * update tg->load_weight by folding this cpu's load_avg
5816 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5818 struct sched_entity *se = tg->se[cpu];
5819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5821 /* throttled entities do not contribute to load */
5822 if (throttled_hierarchy(cfs_rq))
5823 return;
5825 update_cfs_rq_blocked_load(cfs_rq, 1);
5827 if (se) {
5828 update_entity_load_avg(se, 1);
5830 * We pivot on our runnable average having decayed to zero for
5831 * list removal. This generally implies that all our children
5832 * have also been removed (modulo rounding error or bandwidth
5833 * control); however, such cases are rare and we can fix these
5834 * at enqueue.
5836 * TODO: fix up out-of-order children on enqueue.
5838 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5839 list_del_leaf_cfs_rq(cfs_rq);
5840 } else {
5841 struct rq *rq = rq_of(cfs_rq);
5842 update_rq_runnable_avg(rq, rq->nr_running);
5846 static void update_blocked_averages(int cpu)
5848 struct rq *rq = cpu_rq(cpu);
5849 struct cfs_rq *cfs_rq;
5850 unsigned long flags;
5852 raw_spin_lock_irqsave(&rq->lock, flags);
5853 update_rq_clock(rq);
5855 * Iterates the task_group tree in a bottom up fashion, see
5856 * list_add_leaf_cfs_rq() for details.
5858 for_each_leaf_cfs_rq(rq, cfs_rq) {
5860 * Note: We may want to consider periodically releasing
5861 * rq->lock about these updates so that creating many task
5862 * groups does not result in continually extending hold time.
5864 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5867 raw_spin_unlock_irqrestore(&rq->lock, flags);
5871 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5872 * This needs to be done in a top-down fashion because the load of a child
5873 * group is a fraction of its parents load.
5875 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5877 struct rq *rq = rq_of(cfs_rq);
5878 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5879 unsigned long now = jiffies;
5880 unsigned long load;
5882 if (cfs_rq->last_h_load_update == now)
5883 return;
5885 cfs_rq->h_load_next = NULL;
5886 for_each_sched_entity(se) {
5887 cfs_rq = cfs_rq_of(se);
5888 cfs_rq->h_load_next = se;
5889 if (cfs_rq->last_h_load_update == now)
5890 break;
5893 if (!se) {
5894 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5895 cfs_rq->last_h_load_update = now;
5898 while ((se = cfs_rq->h_load_next) != NULL) {
5899 load = cfs_rq->h_load;
5900 load = div64_ul(load * se->avg.load_avg_contrib,
5901 cfs_rq->runnable_load_avg + 1);
5902 cfs_rq = group_cfs_rq(se);
5903 cfs_rq->h_load = load;
5904 cfs_rq->last_h_load_update = now;
5908 static unsigned long task_h_load(struct task_struct *p)
5910 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5912 update_cfs_rq_h_load(cfs_rq);
5913 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5914 cfs_rq->runnable_load_avg + 1);
5916 #else
5917 static inline void update_blocked_averages(int cpu)
5921 static unsigned long task_h_load(struct task_struct *p)
5923 return p->se.avg.load_avg_contrib;
5925 #endif
5927 /********** Helpers for find_busiest_group ************************/
5929 enum group_type {
5930 group_other = 0,
5931 group_imbalanced,
5932 group_overloaded,
5936 * sg_lb_stats - stats of a sched_group required for load_balancing
5938 struct sg_lb_stats {
5939 unsigned long avg_load; /*Avg load across the CPUs of the group */
5940 unsigned long group_load; /* Total load over the CPUs of the group */
5941 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5942 unsigned long load_per_task;
5943 unsigned long group_capacity;
5944 unsigned long group_usage; /* Total usage of the group */
5945 unsigned int sum_nr_running; /* Nr tasks running in the group */
5946 unsigned int idle_cpus;
5947 unsigned int group_weight;
5948 enum group_type group_type;
5949 int group_no_capacity;
5950 #ifdef CONFIG_NUMA_BALANCING
5951 unsigned int nr_numa_running;
5952 unsigned int nr_preferred_running;
5953 #endif
5957 * sd_lb_stats - Structure to store the statistics of a sched_domain
5958 * during load balancing.
5960 struct sd_lb_stats {
5961 struct sched_group *busiest; /* Busiest group in this sd */
5962 struct sched_group *local; /* Local group in this sd */
5963 unsigned long total_load; /* Total load of all groups in sd */
5964 unsigned long total_capacity; /* Total capacity of all groups in sd */
5965 unsigned long avg_load; /* Average load across all groups in sd */
5967 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5968 struct sg_lb_stats local_stat; /* Statistics of the local group */
5971 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5974 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5975 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5976 * We must however clear busiest_stat::avg_load because
5977 * update_sd_pick_busiest() reads this before assignment.
5979 *sds = (struct sd_lb_stats){
5980 .busiest = NULL,
5981 .local = NULL,
5982 .total_load = 0UL,
5983 .total_capacity = 0UL,
5984 .busiest_stat = {
5985 .avg_load = 0UL,
5986 .sum_nr_running = 0,
5987 .group_type = group_other,
5993 * get_sd_load_idx - Obtain the load index for a given sched domain.
5994 * @sd: The sched_domain whose load_idx is to be obtained.
5995 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5997 * Return: The load index.
5999 static inline int get_sd_load_idx(struct sched_domain *sd,
6000 enum cpu_idle_type idle)
6002 int load_idx;
6004 switch (idle) {
6005 case CPU_NOT_IDLE:
6006 load_idx = sd->busy_idx;
6007 break;
6009 case CPU_NEWLY_IDLE:
6010 load_idx = sd->newidle_idx;
6011 break;
6012 default:
6013 load_idx = sd->idle_idx;
6014 break;
6017 return load_idx;
6020 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6022 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6023 return sd->smt_gain / sd->span_weight;
6025 return SCHED_CAPACITY_SCALE;
6028 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6030 return default_scale_cpu_capacity(sd, cpu);
6033 static unsigned long scale_rt_capacity(int cpu)
6035 struct rq *rq = cpu_rq(cpu);
6036 u64 total, used, age_stamp, avg;
6037 s64 delta;
6040 * Since we're reading these variables without serialization make sure
6041 * we read them once before doing sanity checks on them.
6043 age_stamp = ACCESS_ONCE(rq->age_stamp);
6044 avg = ACCESS_ONCE(rq->rt_avg);
6045 delta = __rq_clock_broken(rq) - age_stamp;
6047 if (unlikely(delta < 0))
6048 delta = 0;
6050 total = sched_avg_period() + delta;
6052 used = div_u64(avg, total);
6054 if (likely(used < SCHED_CAPACITY_SCALE))
6055 return SCHED_CAPACITY_SCALE - used;
6057 return 1;
6060 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6062 unsigned long capacity = SCHED_CAPACITY_SCALE;
6063 struct sched_group *sdg = sd->groups;
6065 if (sched_feat(ARCH_CAPACITY))
6066 capacity *= arch_scale_cpu_capacity(sd, cpu);
6067 else
6068 capacity *= default_scale_cpu_capacity(sd, cpu);
6070 capacity >>= SCHED_CAPACITY_SHIFT;
6072 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6074 capacity *= scale_rt_capacity(cpu);
6075 capacity >>= SCHED_CAPACITY_SHIFT;
6077 if (!capacity)
6078 capacity = 1;
6080 cpu_rq(cpu)->cpu_capacity = capacity;
6081 sdg->sgc->capacity = capacity;
6084 void update_group_capacity(struct sched_domain *sd, int cpu)
6086 struct sched_domain *child = sd->child;
6087 struct sched_group *group, *sdg = sd->groups;
6088 unsigned long capacity;
6089 unsigned long interval;
6091 interval = msecs_to_jiffies(sd->balance_interval);
6092 interval = clamp(interval, 1UL, max_load_balance_interval);
6093 sdg->sgc->next_update = jiffies + interval;
6095 if (!child) {
6096 update_cpu_capacity(sd, cpu);
6097 return;
6100 capacity = 0;
6102 if (child->flags & SD_OVERLAP) {
6104 * SD_OVERLAP domains cannot assume that child groups
6105 * span the current group.
6108 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6109 struct sched_group_capacity *sgc;
6110 struct rq *rq = cpu_rq(cpu);
6113 * build_sched_domains() -> init_sched_groups_capacity()
6114 * gets here before we've attached the domains to the
6115 * runqueues.
6117 * Use capacity_of(), which is set irrespective of domains
6118 * in update_cpu_capacity().
6120 * This avoids capacity from being 0 and
6121 * causing divide-by-zero issues on boot.
6123 if (unlikely(!rq->sd)) {
6124 capacity += capacity_of(cpu);
6125 continue;
6128 sgc = rq->sd->groups->sgc;
6129 capacity += sgc->capacity;
6131 } else {
6133 * !SD_OVERLAP domains can assume that child groups
6134 * span the current group.
6137 group = child->groups;
6138 do {
6139 capacity += group->sgc->capacity;
6140 group = group->next;
6141 } while (group != child->groups);
6144 sdg->sgc->capacity = capacity;
6148 * Check whether the capacity of the rq has been noticeably reduced by side
6149 * activity. The imbalance_pct is used for the threshold.
6150 * Return true is the capacity is reduced
6152 static inline int
6153 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6155 return ((rq->cpu_capacity * sd->imbalance_pct) <
6156 (rq->cpu_capacity_orig * 100));
6160 * Group imbalance indicates (and tries to solve) the problem where balancing
6161 * groups is inadequate due to tsk_cpus_allowed() constraints.
6163 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6164 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6165 * Something like:
6167 * { 0 1 2 3 } { 4 5 6 7 }
6168 * * * * *
6170 * If we were to balance group-wise we'd place two tasks in the first group and
6171 * two tasks in the second group. Clearly this is undesired as it will overload
6172 * cpu 3 and leave one of the cpus in the second group unused.
6174 * The current solution to this issue is detecting the skew in the first group
6175 * by noticing the lower domain failed to reach balance and had difficulty
6176 * moving tasks due to affinity constraints.
6178 * When this is so detected; this group becomes a candidate for busiest; see
6179 * update_sd_pick_busiest(). And calculate_imbalance() and
6180 * find_busiest_group() avoid some of the usual balance conditions to allow it
6181 * to create an effective group imbalance.
6183 * This is a somewhat tricky proposition since the next run might not find the
6184 * group imbalance and decide the groups need to be balanced again. A most
6185 * subtle and fragile situation.
6188 static inline int sg_imbalanced(struct sched_group *group)
6190 return group->sgc->imbalance;
6194 * group_has_capacity returns true if the group has spare capacity that could
6195 * be used by some tasks.
6196 * We consider that a group has spare capacity if the * number of task is
6197 * smaller than the number of CPUs or if the usage is lower than the available
6198 * capacity for CFS tasks.
6199 * For the latter, we use a threshold to stabilize the state, to take into
6200 * account the variance of the tasks' load and to return true if the available
6201 * capacity in meaningful for the load balancer.
6202 * As an example, an available capacity of 1% can appear but it doesn't make
6203 * any benefit for the load balance.
6205 static inline bool
6206 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6208 if (sgs->sum_nr_running < sgs->group_weight)
6209 return true;
6211 if ((sgs->group_capacity * 100) >
6212 (sgs->group_usage * env->sd->imbalance_pct))
6213 return true;
6215 return false;
6219 * group_is_overloaded returns true if the group has more tasks than it can
6220 * handle.
6221 * group_is_overloaded is not equals to !group_has_capacity because a group
6222 * with the exact right number of tasks, has no more spare capacity but is not
6223 * overloaded so both group_has_capacity and group_is_overloaded return
6224 * false.
6226 static inline bool
6227 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6229 if (sgs->sum_nr_running <= sgs->group_weight)
6230 return false;
6232 if ((sgs->group_capacity * 100) <
6233 (sgs->group_usage * env->sd->imbalance_pct))
6234 return true;
6236 return false;
6239 static enum group_type group_classify(struct lb_env *env,
6240 struct sched_group *group,
6241 struct sg_lb_stats *sgs)
6243 if (sgs->group_no_capacity)
6244 return group_overloaded;
6246 if (sg_imbalanced(group))
6247 return group_imbalanced;
6249 return group_other;
6253 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6254 * @env: The load balancing environment.
6255 * @group: sched_group whose statistics are to be updated.
6256 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6257 * @local_group: Does group contain this_cpu.
6258 * @sgs: variable to hold the statistics for this group.
6259 * @overload: Indicate more than one runnable task for any CPU.
6261 static inline void update_sg_lb_stats(struct lb_env *env,
6262 struct sched_group *group, int load_idx,
6263 int local_group, struct sg_lb_stats *sgs,
6264 bool *overload)
6266 unsigned long load;
6267 int i;
6269 memset(sgs, 0, sizeof(*sgs));
6271 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6272 struct rq *rq = cpu_rq(i);
6274 /* Bias balancing toward cpus of our domain */
6275 if (local_group)
6276 load = target_load(i, load_idx);
6277 else
6278 load = source_load(i, load_idx);
6280 sgs->group_load += load;
6281 sgs->group_usage += get_cpu_usage(i);
6282 sgs->sum_nr_running += rq->cfs.h_nr_running;
6284 if (rq->nr_running > 1)
6285 *overload = true;
6287 #ifdef CONFIG_NUMA_BALANCING
6288 sgs->nr_numa_running += rq->nr_numa_running;
6289 sgs->nr_preferred_running += rq->nr_preferred_running;
6290 #endif
6291 sgs->sum_weighted_load += weighted_cpuload(i);
6292 if (idle_cpu(i))
6293 sgs->idle_cpus++;
6296 /* Adjust by relative CPU capacity of the group */
6297 sgs->group_capacity = group->sgc->capacity;
6298 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6300 if (sgs->sum_nr_running)
6301 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6303 sgs->group_weight = group->group_weight;
6305 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6306 sgs->group_type = group_classify(env, group, sgs);
6310 * update_sd_pick_busiest - return 1 on busiest group
6311 * @env: The load balancing environment.
6312 * @sds: sched_domain statistics
6313 * @sg: sched_group candidate to be checked for being the busiest
6314 * @sgs: sched_group statistics
6316 * Determine if @sg is a busier group than the previously selected
6317 * busiest group.
6319 * Return: %true if @sg is a busier group than the previously selected
6320 * busiest group. %false otherwise.
6322 static bool update_sd_pick_busiest(struct lb_env *env,
6323 struct sd_lb_stats *sds,
6324 struct sched_group *sg,
6325 struct sg_lb_stats *sgs)
6327 struct sg_lb_stats *busiest = &sds->busiest_stat;
6329 if (sgs->group_type > busiest->group_type)
6330 return true;
6332 if (sgs->group_type < busiest->group_type)
6333 return false;
6335 if (sgs->avg_load <= busiest->avg_load)
6336 return false;
6338 /* This is the busiest node in its class. */
6339 if (!(env->sd->flags & SD_ASYM_PACKING))
6340 return true;
6343 * ASYM_PACKING needs to move all the work to the lowest
6344 * numbered CPUs in the group, therefore mark all groups
6345 * higher than ourself as busy.
6347 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6348 if (!sds->busiest)
6349 return true;
6351 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6352 return true;
6355 return false;
6358 #ifdef CONFIG_NUMA_BALANCING
6359 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6361 if (sgs->sum_nr_running > sgs->nr_numa_running)
6362 return regular;
6363 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6364 return remote;
6365 return all;
6368 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6370 if (rq->nr_running > rq->nr_numa_running)
6371 return regular;
6372 if (rq->nr_running > rq->nr_preferred_running)
6373 return remote;
6374 return all;
6376 #else
6377 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6379 return all;
6382 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6384 return regular;
6386 #endif /* CONFIG_NUMA_BALANCING */
6389 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6390 * @env: The load balancing environment.
6391 * @sds: variable to hold the statistics for this sched_domain.
6393 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6395 struct sched_domain *child = env->sd->child;
6396 struct sched_group *sg = env->sd->groups;
6397 struct sg_lb_stats tmp_sgs;
6398 int load_idx, prefer_sibling = 0;
6399 bool overload = false;
6401 if (child && child->flags & SD_PREFER_SIBLING)
6402 prefer_sibling = 1;
6404 load_idx = get_sd_load_idx(env->sd, env->idle);
6406 do {
6407 struct sg_lb_stats *sgs = &tmp_sgs;
6408 int local_group;
6410 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6411 if (local_group) {
6412 sds->local = sg;
6413 sgs = &sds->local_stat;
6415 if (env->idle != CPU_NEWLY_IDLE ||
6416 time_after_eq(jiffies, sg->sgc->next_update))
6417 update_group_capacity(env->sd, env->dst_cpu);
6420 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6421 &overload);
6423 if (local_group)
6424 goto next_group;
6427 * In case the child domain prefers tasks go to siblings
6428 * first, lower the sg capacity so that we'll try
6429 * and move all the excess tasks away. We lower the capacity
6430 * of a group only if the local group has the capacity to fit
6431 * these excess tasks. The extra check prevents the case where
6432 * you always pull from the heaviest group when it is already
6433 * under-utilized (possible with a large weight task outweighs
6434 * the tasks on the system).
6436 if (prefer_sibling && sds->local &&
6437 group_has_capacity(env, &sds->local_stat) &&
6438 (sgs->sum_nr_running > 1)) {
6439 sgs->group_no_capacity = 1;
6440 sgs->group_type = group_overloaded;
6443 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6444 sds->busiest = sg;
6445 sds->busiest_stat = *sgs;
6448 next_group:
6449 /* Now, start updating sd_lb_stats */
6450 sds->total_load += sgs->group_load;
6451 sds->total_capacity += sgs->group_capacity;
6453 sg = sg->next;
6454 } while (sg != env->sd->groups);
6456 if (env->sd->flags & SD_NUMA)
6457 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6459 if (!env->sd->parent) {
6460 /* update overload indicator if we are at root domain */
6461 if (env->dst_rq->rd->overload != overload)
6462 env->dst_rq->rd->overload = overload;
6468 * check_asym_packing - Check to see if the group is packed into the
6469 * sched doman.
6471 * This is primarily intended to used at the sibling level. Some
6472 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6473 * case of POWER7, it can move to lower SMT modes only when higher
6474 * threads are idle. When in lower SMT modes, the threads will
6475 * perform better since they share less core resources. Hence when we
6476 * have idle threads, we want them to be the higher ones.
6478 * This packing function is run on idle threads. It checks to see if
6479 * the busiest CPU in this domain (core in the P7 case) has a higher
6480 * CPU number than the packing function is being run on. Here we are
6481 * assuming lower CPU number will be equivalent to lower a SMT thread
6482 * number.
6484 * Return: 1 when packing is required and a task should be moved to
6485 * this CPU. The amount of the imbalance is returned in *imbalance.
6487 * @env: The load balancing environment.
6488 * @sds: Statistics of the sched_domain which is to be packed
6490 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6492 int busiest_cpu;
6494 if (!(env->sd->flags & SD_ASYM_PACKING))
6495 return 0;
6497 if (!sds->busiest)
6498 return 0;
6500 busiest_cpu = group_first_cpu(sds->busiest);
6501 if (env->dst_cpu > busiest_cpu)
6502 return 0;
6504 env->imbalance = DIV_ROUND_CLOSEST(
6505 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6506 SCHED_CAPACITY_SCALE);
6508 return 1;
6512 * fix_small_imbalance - Calculate the minor imbalance that exists
6513 * amongst the groups of a sched_domain, during
6514 * load balancing.
6515 * @env: The load balancing environment.
6516 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6518 static inline
6519 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6521 unsigned long tmp, capa_now = 0, capa_move = 0;
6522 unsigned int imbn = 2;
6523 unsigned long scaled_busy_load_per_task;
6524 struct sg_lb_stats *local, *busiest;
6526 local = &sds->local_stat;
6527 busiest = &sds->busiest_stat;
6529 if (!local->sum_nr_running)
6530 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6531 else if (busiest->load_per_task > local->load_per_task)
6532 imbn = 1;
6534 scaled_busy_load_per_task =
6535 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6536 busiest->group_capacity;
6538 if (busiest->avg_load + scaled_busy_load_per_task >=
6539 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6540 env->imbalance = busiest->load_per_task;
6541 return;
6545 * OK, we don't have enough imbalance to justify moving tasks,
6546 * however we may be able to increase total CPU capacity used by
6547 * moving them.
6550 capa_now += busiest->group_capacity *
6551 min(busiest->load_per_task, busiest->avg_load);
6552 capa_now += local->group_capacity *
6553 min(local->load_per_task, local->avg_load);
6554 capa_now /= SCHED_CAPACITY_SCALE;
6556 /* Amount of load we'd subtract */
6557 if (busiest->avg_load > scaled_busy_load_per_task) {
6558 capa_move += busiest->group_capacity *
6559 min(busiest->load_per_task,
6560 busiest->avg_load - scaled_busy_load_per_task);
6563 /* Amount of load we'd add */
6564 if (busiest->avg_load * busiest->group_capacity <
6565 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6566 tmp = (busiest->avg_load * busiest->group_capacity) /
6567 local->group_capacity;
6568 } else {
6569 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6570 local->group_capacity;
6572 capa_move += local->group_capacity *
6573 min(local->load_per_task, local->avg_load + tmp);
6574 capa_move /= SCHED_CAPACITY_SCALE;
6576 /* Move if we gain throughput */
6577 if (capa_move > capa_now)
6578 env->imbalance = busiest->load_per_task;
6582 * calculate_imbalance - Calculate the amount of imbalance present within the
6583 * groups of a given sched_domain during load balance.
6584 * @env: load balance environment
6585 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6587 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6589 unsigned long max_pull, load_above_capacity = ~0UL;
6590 struct sg_lb_stats *local, *busiest;
6592 local = &sds->local_stat;
6593 busiest = &sds->busiest_stat;
6595 if (busiest->group_type == group_imbalanced) {
6597 * In the group_imb case we cannot rely on group-wide averages
6598 * to ensure cpu-load equilibrium, look at wider averages. XXX
6600 busiest->load_per_task =
6601 min(busiest->load_per_task, sds->avg_load);
6605 * In the presence of smp nice balancing, certain scenarios can have
6606 * max load less than avg load(as we skip the groups at or below
6607 * its cpu_capacity, while calculating max_load..)
6609 if (busiest->avg_load <= sds->avg_load ||
6610 local->avg_load >= sds->avg_load) {
6611 env->imbalance = 0;
6612 return fix_small_imbalance(env, sds);
6616 * If there aren't any idle cpus, avoid creating some.
6618 if (busiest->group_type == group_overloaded &&
6619 local->group_type == group_overloaded) {
6620 load_above_capacity = busiest->sum_nr_running *
6621 SCHED_LOAD_SCALE;
6622 if (load_above_capacity > busiest->group_capacity)
6623 load_above_capacity -= busiest->group_capacity;
6624 else
6625 load_above_capacity = ~0UL;
6629 * We're trying to get all the cpus to the average_load, so we don't
6630 * want to push ourselves above the average load, nor do we wish to
6631 * reduce the max loaded cpu below the average load. At the same time,
6632 * we also don't want to reduce the group load below the group capacity
6633 * (so that we can implement power-savings policies etc). Thus we look
6634 * for the minimum possible imbalance.
6636 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6638 /* How much load to actually move to equalise the imbalance */
6639 env->imbalance = min(
6640 max_pull * busiest->group_capacity,
6641 (sds->avg_load - local->avg_load) * local->group_capacity
6642 ) / SCHED_CAPACITY_SCALE;
6645 * if *imbalance is less than the average load per runnable task
6646 * there is no guarantee that any tasks will be moved so we'll have
6647 * a think about bumping its value to force at least one task to be
6648 * moved
6650 if (env->imbalance < busiest->load_per_task)
6651 return fix_small_imbalance(env, sds);
6654 /******* find_busiest_group() helpers end here *********************/
6657 * find_busiest_group - Returns the busiest group within the sched_domain
6658 * if there is an imbalance. If there isn't an imbalance, and
6659 * the user has opted for power-savings, it returns a group whose
6660 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6661 * such a group exists.
6663 * Also calculates the amount of weighted load which should be moved
6664 * to restore balance.
6666 * @env: The load balancing environment.
6668 * Return: - The busiest group if imbalance exists.
6669 * - If no imbalance and user has opted for power-savings balance,
6670 * return the least loaded group whose CPUs can be
6671 * put to idle by rebalancing its tasks onto our group.
6673 static struct sched_group *find_busiest_group(struct lb_env *env)
6675 struct sg_lb_stats *local, *busiest;
6676 struct sd_lb_stats sds;
6678 init_sd_lb_stats(&sds);
6681 * Compute the various statistics relavent for load balancing at
6682 * this level.
6684 update_sd_lb_stats(env, &sds);
6685 local = &sds.local_stat;
6686 busiest = &sds.busiest_stat;
6688 /* ASYM feature bypasses nice load balance check */
6689 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6690 check_asym_packing(env, &sds))
6691 return sds.busiest;
6693 /* There is no busy sibling group to pull tasks from */
6694 if (!sds.busiest || busiest->sum_nr_running == 0)
6695 goto out_balanced;
6697 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6698 / sds.total_capacity;
6701 * If the busiest group is imbalanced the below checks don't
6702 * work because they assume all things are equal, which typically
6703 * isn't true due to cpus_allowed constraints and the like.
6705 if (busiest->group_type == group_imbalanced)
6706 goto force_balance;
6708 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6709 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6710 busiest->group_no_capacity)
6711 goto force_balance;
6714 * If the local group is busier than the selected busiest group
6715 * don't try and pull any tasks.
6717 if (local->avg_load >= busiest->avg_load)
6718 goto out_balanced;
6721 * Don't pull any tasks if this group is already above the domain
6722 * average load.
6724 if (local->avg_load >= sds.avg_load)
6725 goto out_balanced;
6727 if (env->idle == CPU_IDLE) {
6729 * This cpu is idle. If the busiest group is not overloaded
6730 * and there is no imbalance between this and busiest group
6731 * wrt idle cpus, it is balanced. The imbalance becomes
6732 * significant if the diff is greater than 1 otherwise we
6733 * might end up to just move the imbalance on another group
6735 if ((busiest->group_type != group_overloaded) &&
6736 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6737 goto out_balanced;
6738 } else {
6740 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6741 * imbalance_pct to be conservative.
6743 if (100 * busiest->avg_load <=
6744 env->sd->imbalance_pct * local->avg_load)
6745 goto out_balanced;
6748 force_balance:
6749 /* Looks like there is an imbalance. Compute it */
6750 calculate_imbalance(env, &sds);
6751 return sds.busiest;
6753 out_balanced:
6754 env->imbalance = 0;
6755 return NULL;
6759 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6761 static struct rq *find_busiest_queue(struct lb_env *env,
6762 struct sched_group *group)
6764 struct rq *busiest = NULL, *rq;
6765 unsigned long busiest_load = 0, busiest_capacity = 1;
6766 int i;
6768 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6769 unsigned long capacity, wl;
6770 enum fbq_type rt;
6772 rq = cpu_rq(i);
6773 rt = fbq_classify_rq(rq);
6776 * We classify groups/runqueues into three groups:
6777 * - regular: there are !numa tasks
6778 * - remote: there are numa tasks that run on the 'wrong' node
6779 * - all: there is no distinction
6781 * In order to avoid migrating ideally placed numa tasks,
6782 * ignore those when there's better options.
6784 * If we ignore the actual busiest queue to migrate another
6785 * task, the next balance pass can still reduce the busiest
6786 * queue by moving tasks around inside the node.
6788 * If we cannot move enough load due to this classification
6789 * the next pass will adjust the group classification and
6790 * allow migration of more tasks.
6792 * Both cases only affect the total convergence complexity.
6794 if (rt > env->fbq_type)
6795 continue;
6797 capacity = capacity_of(i);
6799 wl = weighted_cpuload(i);
6802 * When comparing with imbalance, use weighted_cpuload()
6803 * which is not scaled with the cpu capacity.
6806 if (rq->nr_running == 1 && wl > env->imbalance &&
6807 !check_cpu_capacity(rq, env->sd))
6808 continue;
6811 * For the load comparisons with the other cpu's, consider
6812 * the weighted_cpuload() scaled with the cpu capacity, so
6813 * that the load can be moved away from the cpu that is
6814 * potentially running at a lower capacity.
6816 * Thus we're looking for max(wl_i / capacity_i), crosswise
6817 * multiplication to rid ourselves of the division works out
6818 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6819 * our previous maximum.
6821 if (wl * busiest_capacity > busiest_load * capacity) {
6822 busiest_load = wl;
6823 busiest_capacity = capacity;
6824 busiest = rq;
6828 return busiest;
6832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6833 * so long as it is large enough.
6835 #define MAX_PINNED_INTERVAL 512
6837 /* Working cpumask for load_balance and load_balance_newidle. */
6838 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6840 static int need_active_balance(struct lb_env *env)
6842 struct sched_domain *sd = env->sd;
6844 if (env->idle == CPU_NEWLY_IDLE) {
6847 * ASYM_PACKING needs to force migrate tasks from busy but
6848 * higher numbered CPUs in order to pack all tasks in the
6849 * lowest numbered CPUs.
6851 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6852 return 1;
6856 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6857 * It's worth migrating the task if the src_cpu's capacity is reduced
6858 * because of other sched_class or IRQs if more capacity stays
6859 * available on dst_cpu.
6861 if ((env->idle != CPU_NOT_IDLE) &&
6862 (env->src_rq->cfs.h_nr_running == 1)) {
6863 if ((check_cpu_capacity(env->src_rq, sd)) &&
6864 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6865 return 1;
6868 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6871 static int active_load_balance_cpu_stop(void *data);
6873 static int should_we_balance(struct lb_env *env)
6875 struct sched_group *sg = env->sd->groups;
6876 struct cpumask *sg_cpus, *sg_mask;
6877 int cpu, balance_cpu = -1;
6880 * In the newly idle case, we will allow all the cpu's
6881 * to do the newly idle load balance.
6883 if (env->idle == CPU_NEWLY_IDLE)
6884 return 1;
6886 sg_cpus = sched_group_cpus(sg);
6887 sg_mask = sched_group_mask(sg);
6888 /* Try to find first idle cpu */
6889 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6890 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6891 continue;
6893 balance_cpu = cpu;
6894 break;
6897 if (balance_cpu == -1)
6898 balance_cpu = group_balance_cpu(sg);
6901 * First idle cpu or the first cpu(busiest) in this sched group
6902 * is eligible for doing load balancing at this and above domains.
6904 return balance_cpu == env->dst_cpu;
6908 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6909 * tasks if there is an imbalance.
6911 static int load_balance(int this_cpu, struct rq *this_rq,
6912 struct sched_domain *sd, enum cpu_idle_type idle,
6913 int *continue_balancing)
6915 int ld_moved, cur_ld_moved, active_balance = 0;
6916 struct sched_domain *sd_parent = sd->parent;
6917 struct sched_group *group;
6918 struct rq *busiest;
6919 unsigned long flags;
6920 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6922 struct lb_env env = {
6923 .sd = sd,
6924 .dst_cpu = this_cpu,
6925 .dst_rq = this_rq,
6926 .dst_grpmask = sched_group_cpus(sd->groups),
6927 .idle = idle,
6928 .loop_break = sched_nr_migrate_break,
6929 .cpus = cpus,
6930 .fbq_type = all,
6931 .tasks = LIST_HEAD_INIT(env.tasks),
6935 * For NEWLY_IDLE load_balancing, we don't need to consider
6936 * other cpus in our group
6938 if (idle == CPU_NEWLY_IDLE)
6939 env.dst_grpmask = NULL;
6941 cpumask_copy(cpus, cpu_active_mask);
6943 schedstat_inc(sd, lb_count[idle]);
6945 redo:
6946 if (!should_we_balance(&env)) {
6947 *continue_balancing = 0;
6948 goto out_balanced;
6951 group = find_busiest_group(&env);
6952 if (!group) {
6953 schedstat_inc(sd, lb_nobusyg[idle]);
6954 goto out_balanced;
6957 busiest = find_busiest_queue(&env, group);
6958 if (!busiest) {
6959 schedstat_inc(sd, lb_nobusyq[idle]);
6960 goto out_balanced;
6963 BUG_ON(busiest == env.dst_rq);
6965 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6967 env.src_cpu = busiest->cpu;
6968 env.src_rq = busiest;
6970 ld_moved = 0;
6971 if (busiest->nr_running > 1) {
6973 * Attempt to move tasks. If find_busiest_group has found
6974 * an imbalance but busiest->nr_running <= 1, the group is
6975 * still unbalanced. ld_moved simply stays zero, so it is
6976 * correctly treated as an imbalance.
6978 env.flags |= LBF_ALL_PINNED;
6979 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6981 more_balance:
6982 raw_spin_lock_irqsave(&busiest->lock, flags);
6985 * cur_ld_moved - load moved in current iteration
6986 * ld_moved - cumulative load moved across iterations
6988 cur_ld_moved = detach_tasks(&env);
6991 * We've detached some tasks from busiest_rq. Every
6992 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6993 * unlock busiest->lock, and we are able to be sure
6994 * that nobody can manipulate the tasks in parallel.
6995 * See task_rq_lock() family for the details.
6998 raw_spin_unlock(&busiest->lock);
7000 if (cur_ld_moved) {
7001 attach_tasks(&env);
7002 ld_moved += cur_ld_moved;
7005 local_irq_restore(flags);
7007 if (env.flags & LBF_NEED_BREAK) {
7008 env.flags &= ~LBF_NEED_BREAK;
7009 goto more_balance;
7013 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7014 * us and move them to an alternate dst_cpu in our sched_group
7015 * where they can run. The upper limit on how many times we
7016 * iterate on same src_cpu is dependent on number of cpus in our
7017 * sched_group.
7019 * This changes load balance semantics a bit on who can move
7020 * load to a given_cpu. In addition to the given_cpu itself
7021 * (or a ilb_cpu acting on its behalf where given_cpu is
7022 * nohz-idle), we now have balance_cpu in a position to move
7023 * load to given_cpu. In rare situations, this may cause
7024 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7025 * _independently_ and at _same_ time to move some load to
7026 * given_cpu) causing exceess load to be moved to given_cpu.
7027 * This however should not happen so much in practice and
7028 * moreover subsequent load balance cycles should correct the
7029 * excess load moved.
7031 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7033 /* Prevent to re-select dst_cpu via env's cpus */
7034 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7036 env.dst_rq = cpu_rq(env.new_dst_cpu);
7037 env.dst_cpu = env.new_dst_cpu;
7038 env.flags &= ~LBF_DST_PINNED;
7039 env.loop = 0;
7040 env.loop_break = sched_nr_migrate_break;
7043 * Go back to "more_balance" rather than "redo" since we
7044 * need to continue with same src_cpu.
7046 goto more_balance;
7050 * We failed to reach balance because of affinity.
7052 if (sd_parent) {
7053 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7055 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7056 *group_imbalance = 1;
7059 /* All tasks on this runqueue were pinned by CPU affinity */
7060 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7061 cpumask_clear_cpu(cpu_of(busiest), cpus);
7062 if (!cpumask_empty(cpus)) {
7063 env.loop = 0;
7064 env.loop_break = sched_nr_migrate_break;
7065 goto redo;
7067 goto out_all_pinned;
7071 if (!ld_moved) {
7072 schedstat_inc(sd, lb_failed[idle]);
7074 * Increment the failure counter only on periodic balance.
7075 * We do not want newidle balance, which can be very
7076 * frequent, pollute the failure counter causing
7077 * excessive cache_hot migrations and active balances.
7079 if (idle != CPU_NEWLY_IDLE)
7080 sd->nr_balance_failed++;
7082 if (need_active_balance(&env)) {
7083 raw_spin_lock_irqsave(&busiest->lock, flags);
7085 /* don't kick the active_load_balance_cpu_stop,
7086 * if the curr task on busiest cpu can't be
7087 * moved to this_cpu
7089 if (!cpumask_test_cpu(this_cpu,
7090 tsk_cpus_allowed(busiest->curr))) {
7091 raw_spin_unlock_irqrestore(&busiest->lock,
7092 flags);
7093 env.flags |= LBF_ALL_PINNED;
7094 goto out_one_pinned;
7098 * ->active_balance synchronizes accesses to
7099 * ->active_balance_work. Once set, it's cleared
7100 * only after active load balance is finished.
7102 if (!busiest->active_balance) {
7103 busiest->active_balance = 1;
7104 busiest->push_cpu = this_cpu;
7105 active_balance = 1;
7107 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7109 if (active_balance) {
7110 stop_one_cpu_nowait(cpu_of(busiest),
7111 active_load_balance_cpu_stop, busiest,
7112 &busiest->active_balance_work);
7116 * We've kicked active balancing, reset the failure
7117 * counter.
7119 sd->nr_balance_failed = sd->cache_nice_tries+1;
7121 } else
7122 sd->nr_balance_failed = 0;
7124 if (likely(!active_balance)) {
7125 /* We were unbalanced, so reset the balancing interval */
7126 sd->balance_interval = sd->min_interval;
7127 } else {
7129 * If we've begun active balancing, start to back off. This
7130 * case may not be covered by the all_pinned logic if there
7131 * is only 1 task on the busy runqueue (because we don't call
7132 * detach_tasks).
7134 if (sd->balance_interval < sd->max_interval)
7135 sd->balance_interval *= 2;
7138 goto out;
7140 out_balanced:
7142 * We reach balance although we may have faced some affinity
7143 * constraints. Clear the imbalance flag if it was set.
7145 if (sd_parent) {
7146 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7148 if (*group_imbalance)
7149 *group_imbalance = 0;
7152 out_all_pinned:
7154 * We reach balance because all tasks are pinned at this level so
7155 * we can't migrate them. Let the imbalance flag set so parent level
7156 * can try to migrate them.
7158 schedstat_inc(sd, lb_balanced[idle]);
7160 sd->nr_balance_failed = 0;
7162 out_one_pinned:
7163 /* tune up the balancing interval */
7164 if (((env.flags & LBF_ALL_PINNED) &&
7165 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7166 (sd->balance_interval < sd->max_interval))
7167 sd->balance_interval *= 2;
7169 ld_moved = 0;
7170 out:
7171 return ld_moved;
7174 static inline unsigned long
7175 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7177 unsigned long interval = sd->balance_interval;
7179 if (cpu_busy)
7180 interval *= sd->busy_factor;
7182 /* scale ms to jiffies */
7183 interval = msecs_to_jiffies(interval);
7184 interval = clamp(interval, 1UL, max_load_balance_interval);
7186 return interval;
7189 static inline void
7190 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7192 unsigned long interval, next;
7194 interval = get_sd_balance_interval(sd, cpu_busy);
7195 next = sd->last_balance + interval;
7197 if (time_after(*next_balance, next))
7198 *next_balance = next;
7202 * idle_balance is called by schedule() if this_cpu is about to become
7203 * idle. Attempts to pull tasks from other CPUs.
7205 static int idle_balance(struct rq *this_rq)
7207 unsigned long next_balance = jiffies + HZ;
7208 int this_cpu = this_rq->cpu;
7209 struct sched_domain *sd;
7210 int pulled_task = 0;
7211 u64 curr_cost = 0;
7213 idle_enter_fair(this_rq);
7216 * We must set idle_stamp _before_ calling idle_balance(), such that we
7217 * measure the duration of idle_balance() as idle time.
7219 this_rq->idle_stamp = rq_clock(this_rq);
7221 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7222 !this_rq->rd->overload) {
7223 rcu_read_lock();
7224 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7225 if (sd)
7226 update_next_balance(sd, 0, &next_balance);
7227 rcu_read_unlock();
7229 goto out;
7233 * Drop the rq->lock, but keep IRQ/preempt disabled.
7235 raw_spin_unlock(&this_rq->lock);
7237 update_blocked_averages(this_cpu);
7238 rcu_read_lock();
7239 for_each_domain(this_cpu, sd) {
7240 int continue_balancing = 1;
7241 u64 t0, domain_cost;
7243 if (!(sd->flags & SD_LOAD_BALANCE))
7244 continue;
7246 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7247 update_next_balance(sd, 0, &next_balance);
7248 break;
7251 if (sd->flags & SD_BALANCE_NEWIDLE) {
7252 t0 = sched_clock_cpu(this_cpu);
7254 pulled_task = load_balance(this_cpu, this_rq,
7255 sd, CPU_NEWLY_IDLE,
7256 &continue_balancing);
7258 domain_cost = sched_clock_cpu(this_cpu) - t0;
7259 if (domain_cost > sd->max_newidle_lb_cost)
7260 sd->max_newidle_lb_cost = domain_cost;
7262 curr_cost += domain_cost;
7265 update_next_balance(sd, 0, &next_balance);
7268 * Stop searching for tasks to pull if there are
7269 * now runnable tasks on this rq.
7271 if (pulled_task || this_rq->nr_running > 0)
7272 break;
7274 rcu_read_unlock();
7276 raw_spin_lock(&this_rq->lock);
7278 if (curr_cost > this_rq->max_idle_balance_cost)
7279 this_rq->max_idle_balance_cost = curr_cost;
7282 * While browsing the domains, we released the rq lock, a task could
7283 * have been enqueued in the meantime. Since we're not going idle,
7284 * pretend we pulled a task.
7286 if (this_rq->cfs.h_nr_running && !pulled_task)
7287 pulled_task = 1;
7289 out:
7290 /* Move the next balance forward */
7291 if (time_after(this_rq->next_balance, next_balance))
7292 this_rq->next_balance = next_balance;
7294 /* Is there a task of a high priority class? */
7295 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7296 pulled_task = -1;
7298 if (pulled_task) {
7299 idle_exit_fair(this_rq);
7300 this_rq->idle_stamp = 0;
7303 return pulled_task;
7307 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7308 * running tasks off the busiest CPU onto idle CPUs. It requires at
7309 * least 1 task to be running on each physical CPU where possible, and
7310 * avoids physical / logical imbalances.
7312 static int active_load_balance_cpu_stop(void *data)
7314 struct rq *busiest_rq = data;
7315 int busiest_cpu = cpu_of(busiest_rq);
7316 int target_cpu = busiest_rq->push_cpu;
7317 struct rq *target_rq = cpu_rq(target_cpu);
7318 struct sched_domain *sd;
7319 struct task_struct *p = NULL;
7321 raw_spin_lock_irq(&busiest_rq->lock);
7323 /* make sure the requested cpu hasn't gone down in the meantime */
7324 if (unlikely(busiest_cpu != smp_processor_id() ||
7325 !busiest_rq->active_balance))
7326 goto out_unlock;
7328 /* Is there any task to move? */
7329 if (busiest_rq->nr_running <= 1)
7330 goto out_unlock;
7333 * This condition is "impossible", if it occurs
7334 * we need to fix it. Originally reported by
7335 * Bjorn Helgaas on a 128-cpu setup.
7337 BUG_ON(busiest_rq == target_rq);
7339 /* Search for an sd spanning us and the target CPU. */
7340 rcu_read_lock();
7341 for_each_domain(target_cpu, sd) {
7342 if ((sd->flags & SD_LOAD_BALANCE) &&
7343 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7344 break;
7347 if (likely(sd)) {
7348 struct lb_env env = {
7349 .sd = sd,
7350 .dst_cpu = target_cpu,
7351 .dst_rq = target_rq,
7352 .src_cpu = busiest_rq->cpu,
7353 .src_rq = busiest_rq,
7354 .idle = CPU_IDLE,
7357 schedstat_inc(sd, alb_count);
7359 p = detach_one_task(&env);
7360 if (p)
7361 schedstat_inc(sd, alb_pushed);
7362 else
7363 schedstat_inc(sd, alb_failed);
7365 rcu_read_unlock();
7366 out_unlock:
7367 busiest_rq->active_balance = 0;
7368 raw_spin_unlock(&busiest_rq->lock);
7370 if (p)
7371 attach_one_task(target_rq, p);
7373 local_irq_enable();
7375 return 0;
7378 static inline int on_null_domain(struct rq *rq)
7380 return unlikely(!rcu_dereference_sched(rq->sd));
7383 #ifdef CONFIG_NO_HZ_COMMON
7385 * idle load balancing details
7386 * - When one of the busy CPUs notice that there may be an idle rebalancing
7387 * needed, they will kick the idle load balancer, which then does idle
7388 * load balancing for all the idle CPUs.
7390 static struct {
7391 cpumask_var_t idle_cpus_mask;
7392 atomic_t nr_cpus;
7393 unsigned long next_balance; /* in jiffy units */
7394 } nohz ____cacheline_aligned;
7396 static inline int find_new_ilb(void)
7398 int ilb = cpumask_first(nohz.idle_cpus_mask);
7400 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7401 return ilb;
7403 return nr_cpu_ids;
7407 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7408 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7409 * CPU (if there is one).
7411 static void nohz_balancer_kick(void)
7413 int ilb_cpu;
7415 nohz.next_balance++;
7417 ilb_cpu = find_new_ilb();
7419 if (ilb_cpu >= nr_cpu_ids)
7420 return;
7422 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7423 return;
7425 * Use smp_send_reschedule() instead of resched_cpu().
7426 * This way we generate a sched IPI on the target cpu which
7427 * is idle. And the softirq performing nohz idle load balance
7428 * will be run before returning from the IPI.
7430 smp_send_reschedule(ilb_cpu);
7431 return;
7434 static inline void nohz_balance_exit_idle(int cpu)
7436 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7438 * Completely isolated CPUs don't ever set, so we must test.
7440 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7441 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7442 atomic_dec(&nohz.nr_cpus);
7444 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7448 static inline void set_cpu_sd_state_busy(void)
7450 struct sched_domain *sd;
7451 int cpu = smp_processor_id();
7453 rcu_read_lock();
7454 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7456 if (!sd || !sd->nohz_idle)
7457 goto unlock;
7458 sd->nohz_idle = 0;
7460 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7461 unlock:
7462 rcu_read_unlock();
7465 void set_cpu_sd_state_idle(void)
7467 struct sched_domain *sd;
7468 int cpu = smp_processor_id();
7470 rcu_read_lock();
7471 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7473 if (!sd || sd->nohz_idle)
7474 goto unlock;
7475 sd->nohz_idle = 1;
7477 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7478 unlock:
7479 rcu_read_unlock();
7483 * This routine will record that the cpu is going idle with tick stopped.
7484 * This info will be used in performing idle load balancing in the future.
7486 void nohz_balance_enter_idle(int cpu)
7489 * If this cpu is going down, then nothing needs to be done.
7491 if (!cpu_active(cpu))
7492 return;
7494 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7495 return;
7498 * If we're a completely isolated CPU, we don't play.
7500 if (on_null_domain(cpu_rq(cpu)))
7501 return;
7503 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7504 atomic_inc(&nohz.nr_cpus);
7505 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7508 static int sched_ilb_notifier(struct notifier_block *nfb,
7509 unsigned long action, void *hcpu)
7511 switch (action & ~CPU_TASKS_FROZEN) {
7512 case CPU_DYING:
7513 nohz_balance_exit_idle(smp_processor_id());
7514 return NOTIFY_OK;
7515 default:
7516 return NOTIFY_DONE;
7519 #endif
7521 static DEFINE_SPINLOCK(balancing);
7524 * Scale the max load_balance interval with the number of CPUs in the system.
7525 * This trades load-balance latency on larger machines for less cross talk.
7527 void update_max_interval(void)
7529 max_load_balance_interval = HZ*num_online_cpus()/10;
7533 * It checks each scheduling domain to see if it is due to be balanced,
7534 * and initiates a balancing operation if so.
7536 * Balancing parameters are set up in init_sched_domains.
7538 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7540 int continue_balancing = 1;
7541 int cpu = rq->cpu;
7542 unsigned long interval;
7543 struct sched_domain *sd;
7544 /* Earliest time when we have to do rebalance again */
7545 unsigned long next_balance = jiffies + 60*HZ;
7546 int update_next_balance = 0;
7547 int need_serialize, need_decay = 0;
7548 u64 max_cost = 0;
7550 update_blocked_averages(cpu);
7552 rcu_read_lock();
7553 for_each_domain(cpu, sd) {
7555 * Decay the newidle max times here because this is a regular
7556 * visit to all the domains. Decay ~1% per second.
7558 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7559 sd->max_newidle_lb_cost =
7560 (sd->max_newidle_lb_cost * 253) / 256;
7561 sd->next_decay_max_lb_cost = jiffies + HZ;
7562 need_decay = 1;
7564 max_cost += sd->max_newidle_lb_cost;
7566 if (!(sd->flags & SD_LOAD_BALANCE))
7567 continue;
7570 * Stop the load balance at this level. There is another
7571 * CPU in our sched group which is doing load balancing more
7572 * actively.
7574 if (!continue_balancing) {
7575 if (need_decay)
7576 continue;
7577 break;
7580 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7582 need_serialize = sd->flags & SD_SERIALIZE;
7583 if (need_serialize) {
7584 if (!spin_trylock(&balancing))
7585 goto out;
7588 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7589 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7591 * The LBF_DST_PINNED logic could have changed
7592 * env->dst_cpu, so we can't know our idle
7593 * state even if we migrated tasks. Update it.
7595 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7597 sd->last_balance = jiffies;
7598 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7600 if (need_serialize)
7601 spin_unlock(&balancing);
7602 out:
7603 if (time_after(next_balance, sd->last_balance + interval)) {
7604 next_balance = sd->last_balance + interval;
7605 update_next_balance = 1;
7608 if (need_decay) {
7610 * Ensure the rq-wide value also decays but keep it at a
7611 * reasonable floor to avoid funnies with rq->avg_idle.
7613 rq->max_idle_balance_cost =
7614 max((u64)sysctl_sched_migration_cost, max_cost);
7616 rcu_read_unlock();
7619 * next_balance will be updated only when there is a need.
7620 * When the cpu is attached to null domain for ex, it will not be
7621 * updated.
7623 if (likely(update_next_balance))
7624 rq->next_balance = next_balance;
7627 #ifdef CONFIG_NO_HZ_COMMON
7629 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7630 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7632 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7634 int this_cpu = this_rq->cpu;
7635 struct rq *rq;
7636 int balance_cpu;
7638 if (idle != CPU_IDLE ||
7639 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7640 goto end;
7642 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7643 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7644 continue;
7647 * If this cpu gets work to do, stop the load balancing
7648 * work being done for other cpus. Next load
7649 * balancing owner will pick it up.
7651 if (need_resched())
7652 break;
7654 rq = cpu_rq(balance_cpu);
7657 * If time for next balance is due,
7658 * do the balance.
7660 if (time_after_eq(jiffies, rq->next_balance)) {
7661 raw_spin_lock_irq(&rq->lock);
7662 update_rq_clock(rq);
7663 update_idle_cpu_load(rq);
7664 raw_spin_unlock_irq(&rq->lock);
7665 rebalance_domains(rq, CPU_IDLE);
7668 if (time_after(this_rq->next_balance, rq->next_balance))
7669 this_rq->next_balance = rq->next_balance;
7671 nohz.next_balance = this_rq->next_balance;
7672 end:
7673 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7677 * Current heuristic for kicking the idle load balancer in the presence
7678 * of an idle cpu in the system.
7679 * - This rq has more than one task.
7680 * - This rq has at least one CFS task and the capacity of the CPU is
7681 * significantly reduced because of RT tasks or IRQs.
7682 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7683 * multiple busy cpu.
7684 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7685 * domain span are idle.
7687 static inline bool nohz_kick_needed(struct rq *rq)
7689 unsigned long now = jiffies;
7690 struct sched_domain *sd;
7691 struct sched_group_capacity *sgc;
7692 int nr_busy, cpu = rq->cpu;
7693 bool kick = false;
7695 if (unlikely(rq->idle_balance))
7696 return false;
7699 * We may be recently in ticked or tickless idle mode. At the first
7700 * busy tick after returning from idle, we will update the busy stats.
7702 set_cpu_sd_state_busy();
7703 nohz_balance_exit_idle(cpu);
7706 * None are in tickless mode and hence no need for NOHZ idle load
7707 * balancing.
7709 if (likely(!atomic_read(&nohz.nr_cpus)))
7710 return false;
7712 if (time_before(now, nohz.next_balance))
7713 return false;
7715 if (rq->nr_running >= 2)
7716 return true;
7718 rcu_read_lock();
7719 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7720 if (sd) {
7721 sgc = sd->groups->sgc;
7722 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7724 if (nr_busy > 1) {
7725 kick = true;
7726 goto unlock;
7731 sd = rcu_dereference(rq->sd);
7732 if (sd) {
7733 if ((rq->cfs.h_nr_running >= 1) &&
7734 check_cpu_capacity(rq, sd)) {
7735 kick = true;
7736 goto unlock;
7740 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7741 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7742 sched_domain_span(sd)) < cpu)) {
7743 kick = true;
7744 goto unlock;
7747 unlock:
7748 rcu_read_unlock();
7749 return kick;
7751 #else
7752 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7753 #endif
7756 * run_rebalance_domains is triggered when needed from the scheduler tick.
7757 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7759 static void run_rebalance_domains(struct softirq_action *h)
7761 struct rq *this_rq = this_rq();
7762 enum cpu_idle_type idle = this_rq->idle_balance ?
7763 CPU_IDLE : CPU_NOT_IDLE;
7766 * If this cpu has a pending nohz_balance_kick, then do the
7767 * balancing on behalf of the other idle cpus whose ticks are
7768 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7769 * give the idle cpus a chance to load balance. Else we may
7770 * load balance only within the local sched_domain hierarchy
7771 * and abort nohz_idle_balance altogether if we pull some load.
7773 nohz_idle_balance(this_rq, idle);
7774 rebalance_domains(this_rq, idle);
7778 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7780 void trigger_load_balance(struct rq *rq)
7782 /* Don't need to rebalance while attached to NULL domain */
7783 if (unlikely(on_null_domain(rq)))
7784 return;
7786 if (time_after_eq(jiffies, rq->next_balance))
7787 raise_softirq(SCHED_SOFTIRQ);
7788 #ifdef CONFIG_NO_HZ_COMMON
7789 if (nohz_kick_needed(rq))
7790 nohz_balancer_kick();
7791 #endif
7794 static void rq_online_fair(struct rq *rq)
7796 update_sysctl();
7798 update_runtime_enabled(rq);
7801 static void rq_offline_fair(struct rq *rq)
7803 update_sysctl();
7805 /* Ensure any throttled groups are reachable by pick_next_task */
7806 unthrottle_offline_cfs_rqs(rq);
7809 #endif /* CONFIG_SMP */
7812 * scheduler tick hitting a task of our scheduling class:
7814 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7816 struct cfs_rq *cfs_rq;
7817 struct sched_entity *se = &curr->se;
7819 for_each_sched_entity(se) {
7820 cfs_rq = cfs_rq_of(se);
7821 entity_tick(cfs_rq, se, queued);
7824 if (numabalancing_enabled)
7825 task_tick_numa(rq, curr);
7827 update_rq_runnable_avg(rq, 1);
7831 * called on fork with the child task as argument from the parent's context
7832 * - child not yet on the tasklist
7833 * - preemption disabled
7835 static void task_fork_fair(struct task_struct *p)
7837 struct cfs_rq *cfs_rq;
7838 struct sched_entity *se = &p->se, *curr;
7839 int this_cpu = smp_processor_id();
7840 struct rq *rq = this_rq();
7841 unsigned long flags;
7843 raw_spin_lock_irqsave(&rq->lock, flags);
7845 update_rq_clock(rq);
7847 cfs_rq = task_cfs_rq(current);
7848 curr = cfs_rq->curr;
7851 * Not only the cpu but also the task_group of the parent might have
7852 * been changed after parent->se.parent,cfs_rq were copied to
7853 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7854 * of child point to valid ones.
7856 rcu_read_lock();
7857 __set_task_cpu(p, this_cpu);
7858 rcu_read_unlock();
7860 update_curr(cfs_rq);
7862 if (curr)
7863 se->vruntime = curr->vruntime;
7864 place_entity(cfs_rq, se, 1);
7866 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7868 * Upon rescheduling, sched_class::put_prev_task() will place
7869 * 'current' within the tree based on its new key value.
7871 swap(curr->vruntime, se->vruntime);
7872 resched_curr(rq);
7875 se->vruntime -= cfs_rq->min_vruntime;
7877 raw_spin_unlock_irqrestore(&rq->lock, flags);
7881 * Priority of the task has changed. Check to see if we preempt
7882 * the current task.
7884 static void
7885 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7887 if (!task_on_rq_queued(p))
7888 return;
7891 * Reschedule if we are currently running on this runqueue and
7892 * our priority decreased, or if we are not currently running on
7893 * this runqueue and our priority is higher than the current's
7895 if (rq->curr == p) {
7896 if (p->prio > oldprio)
7897 resched_curr(rq);
7898 } else
7899 check_preempt_curr(rq, p, 0);
7902 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7904 struct sched_entity *se = &p->se;
7905 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7908 * Ensure the task's vruntime is normalized, so that when it's
7909 * switched back to the fair class the enqueue_entity(.flags=0) will
7910 * do the right thing.
7912 * If it's queued, then the dequeue_entity(.flags=0) will already
7913 * have normalized the vruntime, if it's !queued, then only when
7914 * the task is sleeping will it still have non-normalized vruntime.
7916 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7918 * Fix up our vruntime so that the current sleep doesn't
7919 * cause 'unlimited' sleep bonus.
7921 place_entity(cfs_rq, se, 0);
7922 se->vruntime -= cfs_rq->min_vruntime;
7925 #ifdef CONFIG_SMP
7927 * Remove our load from contribution when we leave sched_fair
7928 * and ensure we don't carry in an old decay_count if we
7929 * switch back.
7931 if (se->avg.decay_count) {
7932 __synchronize_entity_decay(se);
7933 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7935 #endif
7939 * We switched to the sched_fair class.
7941 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 struct sched_entity *se = &p->se;
7946 * Since the real-depth could have been changed (only FAIR
7947 * class maintain depth value), reset depth properly.
7949 se->depth = se->parent ? se->parent->depth + 1 : 0;
7950 #endif
7951 if (!task_on_rq_queued(p))
7952 return;
7955 * We were most likely switched from sched_rt, so
7956 * kick off the schedule if running, otherwise just see
7957 * if we can still preempt the current task.
7959 if (rq->curr == p)
7960 resched_curr(rq);
7961 else
7962 check_preempt_curr(rq, p, 0);
7965 /* Account for a task changing its policy or group.
7967 * This routine is mostly called to set cfs_rq->curr field when a task
7968 * migrates between groups/classes.
7970 static void set_curr_task_fair(struct rq *rq)
7972 struct sched_entity *se = &rq->curr->se;
7974 for_each_sched_entity(se) {
7975 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7977 set_next_entity(cfs_rq, se);
7978 /* ensure bandwidth has been allocated on our new cfs_rq */
7979 account_cfs_rq_runtime(cfs_rq, 0);
7983 void init_cfs_rq(struct cfs_rq *cfs_rq)
7985 cfs_rq->tasks_timeline = RB_ROOT;
7986 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7987 #ifndef CONFIG_64BIT
7988 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7989 #endif
7990 #ifdef CONFIG_SMP
7991 atomic64_set(&cfs_rq->decay_counter, 1);
7992 atomic_long_set(&cfs_rq->removed_load, 0);
7993 #endif
7996 #ifdef CONFIG_FAIR_GROUP_SCHED
7997 static void task_move_group_fair(struct task_struct *p, int queued)
7999 struct sched_entity *se = &p->se;
8000 struct cfs_rq *cfs_rq;
8003 * If the task was not on the rq at the time of this cgroup movement
8004 * it must have been asleep, sleeping tasks keep their ->vruntime
8005 * absolute on their old rq until wakeup (needed for the fair sleeper
8006 * bonus in place_entity()).
8008 * If it was on the rq, we've just 'preempted' it, which does convert
8009 * ->vruntime to a relative base.
8011 * Make sure both cases convert their relative position when migrating
8012 * to another cgroup's rq. This does somewhat interfere with the
8013 * fair sleeper stuff for the first placement, but who cares.
8016 * When !queued, vruntime of the task has usually NOT been normalized.
8017 * But there are some cases where it has already been normalized:
8019 * - Moving a forked child which is waiting for being woken up by
8020 * wake_up_new_task().
8021 * - Moving a task which has been woken up by try_to_wake_up() and
8022 * waiting for actually being woken up by sched_ttwu_pending().
8024 * To prevent boost or penalty in the new cfs_rq caused by delta
8025 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8027 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8028 queued = 1;
8030 if (!queued)
8031 se->vruntime -= cfs_rq_of(se)->min_vruntime;
8032 set_task_rq(p, task_cpu(p));
8033 se->depth = se->parent ? se->parent->depth + 1 : 0;
8034 if (!queued) {
8035 cfs_rq = cfs_rq_of(se);
8036 se->vruntime += cfs_rq->min_vruntime;
8037 #ifdef CONFIG_SMP
8039 * migrate_task_rq_fair() will have removed our previous
8040 * contribution, but we must synchronize for ongoing future
8041 * decay.
8043 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8044 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8045 #endif
8049 void free_fair_sched_group(struct task_group *tg)
8051 int i;
8053 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8055 for_each_possible_cpu(i) {
8056 if (tg->cfs_rq)
8057 kfree(tg->cfs_rq[i]);
8058 if (tg->se)
8059 kfree(tg->se[i]);
8062 kfree(tg->cfs_rq);
8063 kfree(tg->se);
8066 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8068 struct cfs_rq *cfs_rq;
8069 struct sched_entity *se;
8070 int i;
8072 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8073 if (!tg->cfs_rq)
8074 goto err;
8075 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8076 if (!tg->se)
8077 goto err;
8079 tg->shares = NICE_0_LOAD;
8081 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8083 for_each_possible_cpu(i) {
8084 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8085 GFP_KERNEL, cpu_to_node(i));
8086 if (!cfs_rq)
8087 goto err;
8089 se = kzalloc_node(sizeof(struct sched_entity),
8090 GFP_KERNEL, cpu_to_node(i));
8091 if (!se)
8092 goto err_free_rq;
8094 init_cfs_rq(cfs_rq);
8095 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8098 return 1;
8100 err_free_rq:
8101 kfree(cfs_rq);
8102 err:
8103 return 0;
8106 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8108 struct rq *rq = cpu_rq(cpu);
8109 unsigned long flags;
8112 * Only empty task groups can be destroyed; so we can speculatively
8113 * check on_list without danger of it being re-added.
8115 if (!tg->cfs_rq[cpu]->on_list)
8116 return;
8118 raw_spin_lock_irqsave(&rq->lock, flags);
8119 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8120 raw_spin_unlock_irqrestore(&rq->lock, flags);
8123 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8124 struct sched_entity *se, int cpu,
8125 struct sched_entity *parent)
8127 struct rq *rq = cpu_rq(cpu);
8129 cfs_rq->tg = tg;
8130 cfs_rq->rq = rq;
8131 init_cfs_rq_runtime(cfs_rq);
8133 tg->cfs_rq[cpu] = cfs_rq;
8134 tg->se[cpu] = se;
8136 /* se could be NULL for root_task_group */
8137 if (!se)
8138 return;
8140 if (!parent) {
8141 se->cfs_rq = &rq->cfs;
8142 se->depth = 0;
8143 } else {
8144 se->cfs_rq = parent->my_q;
8145 se->depth = parent->depth + 1;
8148 se->my_q = cfs_rq;
8149 /* guarantee group entities always have weight */
8150 update_load_set(&se->load, NICE_0_LOAD);
8151 se->parent = parent;
8154 static DEFINE_MUTEX(shares_mutex);
8156 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8158 int i;
8159 unsigned long flags;
8162 * We can't change the weight of the root cgroup.
8164 if (!tg->se[0])
8165 return -EINVAL;
8167 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8169 mutex_lock(&shares_mutex);
8170 if (tg->shares == shares)
8171 goto done;
8173 tg->shares = shares;
8174 for_each_possible_cpu(i) {
8175 struct rq *rq = cpu_rq(i);
8176 struct sched_entity *se;
8178 se = tg->se[i];
8179 /* Propagate contribution to hierarchy */
8180 raw_spin_lock_irqsave(&rq->lock, flags);
8182 /* Possible calls to update_curr() need rq clock */
8183 update_rq_clock(rq);
8184 for_each_sched_entity(se)
8185 update_cfs_shares(group_cfs_rq(se));
8186 raw_spin_unlock_irqrestore(&rq->lock, flags);
8189 done:
8190 mutex_unlock(&shares_mutex);
8191 return 0;
8193 #else /* CONFIG_FAIR_GROUP_SCHED */
8195 void free_fair_sched_group(struct task_group *tg) { }
8197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8199 return 1;
8202 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8204 #endif /* CONFIG_FAIR_GROUP_SCHED */
8207 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8209 struct sched_entity *se = &task->se;
8210 unsigned int rr_interval = 0;
8213 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8214 * idle runqueue:
8216 if (rq->cfs.load.weight)
8217 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8219 return rr_interval;
8223 * All the scheduling class methods:
8225 const struct sched_class fair_sched_class = {
8226 .next = &idle_sched_class,
8227 .enqueue_task = enqueue_task_fair,
8228 .dequeue_task = dequeue_task_fair,
8229 .yield_task = yield_task_fair,
8230 .yield_to_task = yield_to_task_fair,
8232 .check_preempt_curr = check_preempt_wakeup,
8234 .pick_next_task = pick_next_task_fair,
8235 .put_prev_task = put_prev_task_fair,
8237 #ifdef CONFIG_SMP
8238 .select_task_rq = select_task_rq_fair,
8239 .migrate_task_rq = migrate_task_rq_fair,
8241 .rq_online = rq_online_fair,
8242 .rq_offline = rq_offline_fair,
8244 .task_waking = task_waking_fair,
8245 #endif
8247 .set_curr_task = set_curr_task_fair,
8248 .task_tick = task_tick_fair,
8249 .task_fork = task_fork_fair,
8251 .prio_changed = prio_changed_fair,
8252 .switched_from = switched_from_fair,
8253 .switched_to = switched_to_fair,
8255 .get_rr_interval = get_rr_interval_fair,
8257 .update_curr = update_curr_fair,
8259 #ifdef CONFIG_FAIR_GROUP_SCHED
8260 .task_move_group = task_move_group_fair,
8261 #endif
8264 #ifdef CONFIG_SCHED_DEBUG
8265 void print_cfs_stats(struct seq_file *m, int cpu)
8267 struct cfs_rq *cfs_rq;
8269 rcu_read_lock();
8270 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8271 print_cfs_rq(m, cpu, cfs_rq);
8272 rcu_read_unlock();
8274 #endif
8276 __init void init_sched_fair_class(void)
8278 #ifdef CONFIG_SMP
8279 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8281 #ifdef CONFIG_NO_HZ_COMMON
8282 nohz.next_balance = jiffies;
8283 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8284 cpu_notifier(sched_ilb_notifier, 0);
8285 #endif
8286 #endif /* SMP */