Linux 4.1.18
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob65dbf8aee751d0468ddaf4b0cb7cb7ce1deae74f
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
54 * See @update_fast_timekeeper() below.
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
77 struct timespec64 ts;
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
99 struct timespec64 tmp;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 const char *name = tk->tkr_mono.clock->name;
140 if (offset > max_cycles) {
141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142 offset, name, max_cycles);
143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 } else {
145 if (offset > (max_cycles >> 1)) {
146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 offset, name, max_cycles >> 1);
148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
152 if (timekeeping_underflow_seen) {
153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 timekeeping_last_warning = jiffies;
159 timekeeping_underflow_seen = 0;
162 if (timekeeping_overflow_seen) {
163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 timekeeping_last_warning = jiffies;
169 timekeeping_overflow_seen = 0;
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
175 cycle_t now, last, mask, max, delta;
176 unsigned int seq;
179 * Since we're called holding a seqlock, the data may shift
180 * under us while we're doing the calculation. This can cause
181 * false positives, since we'd note a problem but throw the
182 * results away. So nest another seqlock here to atomically
183 * grab the points we are checking with.
185 do {
186 seq = read_seqcount_begin(&tk_core.seq);
187 now = tkr->read(tkr->clock);
188 last = tkr->cycle_last;
189 mask = tkr->mask;
190 max = tkr->clock->max_cycles;
191 } while (read_seqcount_retry(&tk_core.seq, seq));
193 delta = clocksource_delta(now, last, mask);
196 * Try to catch underflows by checking if we are seeing small
197 * mask-relative negative values.
199 if (unlikely((~delta & mask) < (mask >> 3))) {
200 timekeeping_underflow_seen = 1;
201 delta = 0;
204 /* Cap delta value to the max_cycles values to avoid mult overflows */
205 if (unlikely(delta > max)) {
206 timekeeping_overflow_seen = 1;
207 delta = tkr->clock->max_cycles;
210 return delta;
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
218 cycle_t cycle_now, delta;
220 /* read clocksource */
221 cycle_now = tkr->read(tkr->clock);
223 /* calculate the delta since the last update_wall_time */
224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
226 return delta;
228 #endif
231 * tk_setup_internals - Set up internals to use clocksource clock.
233 * @tk: The target timekeeper to setup.
234 * @clock: Pointer to clocksource.
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
239 * Unless you're the timekeeping code, you should not be using this!
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
243 cycle_t interval;
244 u64 tmp, ntpinterval;
245 struct clocksource *old_clock;
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.read = clock->read;
250 tk->tkr_mono.mask = clock->mask;
251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
253 tk->tkr_raw.clock = clock;
254 tk->tkr_raw.read = clock->read;
255 tk->tkr_raw.mask = clock->mask;
256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
258 /* Do the ns -> cycle conversion first, using original mult */
259 tmp = NTP_INTERVAL_LENGTH;
260 tmp <<= clock->shift;
261 ntpinterval = tmp;
262 tmp += clock->mult/2;
263 do_div(tmp, clock->mult);
264 if (tmp == 0)
265 tmp = 1;
267 interval = (cycle_t) tmp;
268 tk->cycle_interval = interval;
270 /* Go back from cycles -> shifted ns */
271 tk->xtime_interval = (u64) interval * clock->mult;
272 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 tk->raw_interval =
274 ((u64) interval * clock->mult) >> clock->shift;
276 /* if changing clocks, convert xtime_nsec shift units */
277 if (old_clock) {
278 int shift_change = clock->shift - old_clock->shift;
279 if (shift_change < 0)
280 tk->tkr_mono.xtime_nsec >>= -shift_change;
281 else
282 tk->tkr_mono.xtime_nsec <<= shift_change;
284 tk->tkr_raw.xtime_nsec = 0;
286 tk->tkr_mono.shift = clock->shift;
287 tk->tkr_raw.shift = clock->shift;
289 tk->ntp_error = 0;
290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
294 * The timekeeper keeps its own mult values for the currently
295 * active clocksource. These value will be adjusted via NTP
296 * to counteract clock drifting.
298 tk->tkr_mono.mult = clock->mult;
299 tk->tkr_raw.mult = clock->mult;
300 tk->ntp_err_mult = 0;
303 /* Timekeeper helper functions. */
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314 cycle_t delta;
315 s64 nsec;
317 delta = timekeeping_get_delta(tkr);
319 nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
321 /* If arch requires, add in get_arch_timeoffset() */
322 return nsec + arch_gettimeoffset();
326 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
327 * @tkr: Timekeeping readout base from which we take the update
329 * We want to use this from any context including NMI and tracing /
330 * instrumenting the timekeeping code itself.
332 * So we handle this differently than the other timekeeping accessor
333 * functions which retry when the sequence count has changed. The
334 * update side does:
336 * smp_wmb(); <- Ensure that the last base[1] update is visible
337 * tkf->seq++;
338 * smp_wmb(); <- Ensure that the seqcount update is visible
339 * update(tkf->base[0], tkr);
340 * smp_wmb(); <- Ensure that the base[0] update is visible
341 * tkf->seq++;
342 * smp_wmb(); <- Ensure that the seqcount update is visible
343 * update(tkf->base[1], tkr);
345 * The reader side does:
347 * do {
348 * seq = tkf->seq;
349 * smp_rmb();
350 * idx = seq & 0x01;
351 * now = now(tkf->base[idx]);
352 * smp_rmb();
353 * } while (seq != tkf->seq)
355 * As long as we update base[0] readers are forced off to
356 * base[1]. Once base[0] is updated readers are redirected to base[0]
357 * and the base[1] update takes place.
359 * So if a NMI hits the update of base[0] then it will use base[1]
360 * which is still consistent. In the worst case this can result is a
361 * slightly wrong timestamp (a few nanoseconds). See
362 * @ktime_get_mono_fast_ns.
364 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 struct tk_read_base *base = tkf->base;
368 /* Force readers off to base[1] */
369 raw_write_seqcount_latch(&tkf->seq);
371 /* Update base[0] */
372 memcpy(base, tkr, sizeof(*base));
374 /* Force readers back to base[0] */
375 raw_write_seqcount_latch(&tkf->seq);
377 /* Update base[1] */
378 memcpy(base + 1, base, sizeof(*base));
382 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384 * This timestamp is not guaranteed to be monotonic across an update.
385 * The timestamp is calculated by:
387 * now = base_mono + clock_delta * slope
389 * So if the update lowers the slope, readers who are forced to the
390 * not yet updated second array are still using the old steeper slope.
392 * tmono
394 * | o n
395 * | o n
396 * | u
397 * | o
398 * |o
399 * |12345678---> reader order
401 * o = old slope
402 * u = update
403 * n = new slope
405 * So reader 6 will observe time going backwards versus reader 5.
407 * While other CPUs are likely to be able observe that, the only way
408 * for a CPU local observation is when an NMI hits in the middle of
409 * the update. Timestamps taken from that NMI context might be ahead
410 * of the following timestamps. Callers need to be aware of that and
411 * deal with it.
413 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 struct tk_read_base *tkr;
416 unsigned int seq;
417 u64 now;
419 do {
420 seq = raw_read_seqcount(&tkf->seq);
421 tkr = tkf->base + (seq & 0x01);
422 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
423 } while (read_seqcount_retry(&tkf->seq, seq));
425 return now;
428 u64 ktime_get_mono_fast_ns(void)
430 return __ktime_get_fast_ns(&tk_fast_mono);
432 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434 u64 ktime_get_raw_fast_ns(void)
436 return __ktime_get_fast_ns(&tk_fast_raw);
438 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440 /* Suspend-time cycles value for halted fast timekeeper. */
441 static cycle_t cycles_at_suspend;
443 static cycle_t dummy_clock_read(struct clocksource *cs)
445 return cycles_at_suspend;
449 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
450 * @tk: Timekeeper to snapshot.
452 * It generally is unsafe to access the clocksource after timekeeping has been
453 * suspended, so take a snapshot of the readout base of @tk and use it as the
454 * fast timekeeper's readout base while suspended. It will return the same
455 * number of cycles every time until timekeeping is resumed at which time the
456 * proper readout base for the fast timekeeper will be restored automatically.
458 static void halt_fast_timekeeper(struct timekeeper *tk)
460 static struct tk_read_base tkr_dummy;
461 struct tk_read_base *tkr = &tk->tkr_mono;
463 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
464 cycles_at_suspend = tkr->read(tkr->clock);
465 tkr_dummy.read = dummy_clock_read;
466 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
468 tkr = &tk->tkr_raw;
469 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
470 tkr_dummy.read = dummy_clock_read;
471 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
474 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476 static inline void update_vsyscall(struct timekeeper *tk)
478 struct timespec xt, wm;
480 xt = timespec64_to_timespec(tk_xtime(tk));
481 wm = timespec64_to_timespec(tk->wall_to_monotonic);
482 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
483 tk->tkr_mono.cycle_last);
486 static inline void old_vsyscall_fixup(struct timekeeper *tk)
488 s64 remainder;
491 * Store only full nanoseconds into xtime_nsec after rounding
492 * it up and add the remainder to the error difference.
493 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
494 * by truncating the remainder in vsyscalls. However, it causes
495 * additional work to be done in timekeeping_adjust(). Once
496 * the vsyscall implementations are converted to use xtime_nsec
497 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
498 * users are removed, this can be killed.
500 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
501 tk->tkr_mono.xtime_nsec -= remainder;
502 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
503 tk->ntp_error += remainder << tk->ntp_error_shift;
504 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
506 #else
507 #define old_vsyscall_fixup(tk)
508 #endif
510 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
514 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
518 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
520 int pvclock_gtod_register_notifier(struct notifier_block *nb)
522 struct timekeeper *tk = &tk_core.timekeeper;
523 unsigned long flags;
524 int ret;
526 raw_spin_lock_irqsave(&timekeeper_lock, flags);
527 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
528 update_pvclock_gtod(tk, true);
529 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531 return ret;
533 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
536 * pvclock_gtod_unregister_notifier - unregister a pvclock
537 * timedata update listener
539 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541 unsigned long flags;
542 int ret;
544 raw_spin_lock_irqsave(&timekeeper_lock, flags);
545 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
546 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548 return ret;
550 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
553 * Update the ktime_t based scalar nsec members of the timekeeper
555 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 u64 seconds;
558 u32 nsec;
561 * The xtime based monotonic readout is:
562 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
563 * The ktime based monotonic readout is:
564 * nsec = base_mono + now();
565 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
568 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
569 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 /* Update the monotonic raw base */
572 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
575 * The sum of the nanoseconds portions of xtime and
576 * wall_to_monotonic can be greater/equal one second. Take
577 * this into account before updating tk->ktime_sec.
579 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
580 if (nsec >= NSEC_PER_SEC)
581 seconds++;
582 tk->ktime_sec = seconds;
585 /* must hold timekeeper_lock */
586 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 if (action & TK_CLEAR_NTP) {
589 tk->ntp_error = 0;
590 ntp_clear();
593 tk_update_ktime_data(tk);
595 update_vsyscall(tk);
596 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598 if (action & TK_MIRROR)
599 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
600 sizeof(tk_core.timekeeper));
602 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
603 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
607 * timekeeping_forward_now - update clock to the current time
609 * Forward the current clock to update its state since the last call to
610 * update_wall_time(). This is useful before significant clock changes,
611 * as it avoids having to deal with this time offset explicitly.
613 static void timekeeping_forward_now(struct timekeeper *tk)
615 struct clocksource *clock = tk->tkr_mono.clock;
616 cycle_t cycle_now, delta;
617 s64 nsec;
619 cycle_now = tk->tkr_mono.read(clock);
620 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
621 tk->tkr_mono.cycle_last = cycle_now;
622 tk->tkr_raw.cycle_last = cycle_now;
624 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626 /* If arch requires, add in get_arch_timeoffset() */
627 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629 tk_normalize_xtime(tk);
631 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
632 timespec64_add_ns(&tk->raw_time, nsec);
636 * __getnstimeofday64 - Returns the time of day in a timespec64.
637 * @ts: pointer to the timespec to be set
639 * Updates the time of day in the timespec.
640 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642 int __getnstimeofday64(struct timespec64 *ts)
644 struct timekeeper *tk = &tk_core.timekeeper;
645 unsigned long seq;
646 s64 nsecs = 0;
648 do {
649 seq = read_seqcount_begin(&tk_core.seq);
651 ts->tv_sec = tk->xtime_sec;
652 nsecs = timekeeping_get_ns(&tk->tkr_mono);
654 } while (read_seqcount_retry(&tk_core.seq, seq));
656 ts->tv_nsec = 0;
657 timespec64_add_ns(ts, nsecs);
660 * Do not bail out early, in case there were callers still using
661 * the value, even in the face of the WARN_ON.
663 if (unlikely(timekeeping_suspended))
664 return -EAGAIN;
665 return 0;
667 EXPORT_SYMBOL(__getnstimeofday64);
670 * getnstimeofday64 - Returns the time of day in a timespec64.
671 * @ts: pointer to the timespec64 to be set
673 * Returns the time of day in a timespec64 (WARN if suspended).
675 void getnstimeofday64(struct timespec64 *ts)
677 WARN_ON(__getnstimeofday64(ts));
679 EXPORT_SYMBOL(getnstimeofday64);
681 ktime_t ktime_get(void)
683 struct timekeeper *tk = &tk_core.timekeeper;
684 unsigned int seq;
685 ktime_t base;
686 s64 nsecs;
688 WARN_ON(timekeeping_suspended);
690 do {
691 seq = read_seqcount_begin(&tk_core.seq);
692 base = tk->tkr_mono.base;
693 nsecs = timekeeping_get_ns(&tk->tkr_mono);
695 } while (read_seqcount_retry(&tk_core.seq, seq));
697 return ktime_add_ns(base, nsecs);
699 EXPORT_SYMBOL_GPL(ktime_get);
701 static ktime_t *offsets[TK_OFFS_MAX] = {
702 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
703 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
704 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
707 ktime_t ktime_get_with_offset(enum tk_offsets offs)
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned int seq;
711 ktime_t base, *offset = offsets[offs];
712 s64 nsecs;
714 WARN_ON(timekeeping_suspended);
716 do {
717 seq = read_seqcount_begin(&tk_core.seq);
718 base = ktime_add(tk->tkr_mono.base, *offset);
719 nsecs = timekeeping_get_ns(&tk->tkr_mono);
721 } while (read_seqcount_retry(&tk_core.seq, seq));
723 return ktime_add_ns(base, nsecs);
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
729 * ktime_mono_to_any() - convert mononotic time to any other time
730 * @tmono: time to convert.
731 * @offs: which offset to use
733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735 ktime_t *offset = offsets[offs];
736 unsigned long seq;
737 ktime_t tconv;
739 do {
740 seq = read_seqcount_begin(&tk_core.seq);
741 tconv = ktime_add(tmono, *offset);
742 } while (read_seqcount_retry(&tk_core.seq, seq));
744 return tconv;
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751 ktime_t ktime_get_raw(void)
753 struct timekeeper *tk = &tk_core.timekeeper;
754 unsigned int seq;
755 ktime_t base;
756 s64 nsecs;
758 do {
759 seq = read_seqcount_begin(&tk_core.seq);
760 base = tk->tkr_raw.base;
761 nsecs = timekeeping_get_ns(&tk->tkr_raw);
763 } while (read_seqcount_retry(&tk_core.seq, seq));
765 return ktime_add_ns(base, nsecs);
767 EXPORT_SYMBOL_GPL(ktime_get_raw);
770 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 * @ts: pointer to timespec variable
773 * The function calculates the monotonic clock from the realtime
774 * clock and the wall_to_monotonic offset and stores the result
775 * in normalized timespec64 format in the variable pointed to by @ts.
777 void ktime_get_ts64(struct timespec64 *ts)
779 struct timekeeper *tk = &tk_core.timekeeper;
780 struct timespec64 tomono;
781 s64 nsec;
782 unsigned int seq;
784 WARN_ON(timekeeping_suspended);
786 do {
787 seq = read_seqcount_begin(&tk_core.seq);
788 ts->tv_sec = tk->xtime_sec;
789 nsec = timekeeping_get_ns(&tk->tkr_mono);
790 tomono = tk->wall_to_monotonic;
792 } while (read_seqcount_retry(&tk_core.seq, seq));
794 ts->tv_sec += tomono.tv_sec;
795 ts->tv_nsec = 0;
796 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
798 EXPORT_SYMBOL_GPL(ktime_get_ts64);
801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805 * works on both 32 and 64 bit systems. On 32 bit systems the readout
806 * covers ~136 years of uptime which should be enough to prevent
807 * premature wrap arounds.
809 time64_t ktime_get_seconds(void)
811 struct timekeeper *tk = &tk_core.timekeeper;
813 WARN_ON(timekeeping_suspended);
814 return tk->ktime_sec;
816 EXPORT_SYMBOL_GPL(ktime_get_seconds);
819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821 * Returns the wall clock seconds since 1970. This replaces the
822 * get_seconds() interface which is not y2038 safe on 32bit systems.
824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825 * 32bit systems the access must be protected with the sequence
826 * counter to provide "atomic" access to the 64bit tk->xtime_sec
827 * value.
829 time64_t ktime_get_real_seconds(void)
831 struct timekeeper *tk = &tk_core.timekeeper;
832 time64_t seconds;
833 unsigned int seq;
835 if (IS_ENABLED(CONFIG_64BIT))
836 return tk->xtime_sec;
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 seconds = tk->xtime_sec;
842 } while (read_seqcount_retry(&tk_core.seq, seq));
844 return seconds;
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848 #ifdef CONFIG_NTP_PPS
851 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
852 * @ts_raw: pointer to the timespec to be set to raw monotonic time
853 * @ts_real: pointer to the timespec to be set to the time of day
855 * This function reads both the time of day and raw monotonic time at the
856 * same time atomically and stores the resulting timestamps in timespec
857 * format.
859 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861 struct timekeeper *tk = &tk_core.timekeeper;
862 unsigned long seq;
863 s64 nsecs_raw, nsecs_real;
865 WARN_ON_ONCE(timekeeping_suspended);
867 do {
868 seq = read_seqcount_begin(&tk_core.seq);
870 *ts_raw = timespec64_to_timespec(tk->raw_time);
871 ts_real->tv_sec = tk->xtime_sec;
872 ts_real->tv_nsec = 0;
874 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
875 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
877 } while (read_seqcount_retry(&tk_core.seq, seq));
879 timespec_add_ns(ts_raw, nsecs_raw);
880 timespec_add_ns(ts_real, nsecs_real);
882 EXPORT_SYMBOL(getnstime_raw_and_real);
884 #endif /* CONFIG_NTP_PPS */
887 * do_gettimeofday - Returns the time of day in a timeval
888 * @tv: pointer to the timeval to be set
890 * NOTE: Users should be converted to using getnstimeofday()
892 void do_gettimeofday(struct timeval *tv)
894 struct timespec64 now;
896 getnstimeofday64(&now);
897 tv->tv_sec = now.tv_sec;
898 tv->tv_usec = now.tv_nsec/1000;
900 EXPORT_SYMBOL(do_gettimeofday);
903 * do_settimeofday64 - Sets the time of day.
904 * @ts: pointer to the timespec64 variable containing the new time
906 * Sets the time of day to the new time and update NTP and notify hrtimers
908 int do_settimeofday64(const struct timespec64 *ts)
910 struct timekeeper *tk = &tk_core.timekeeper;
911 struct timespec64 ts_delta, xt;
912 unsigned long flags;
914 if (!timespec64_valid_strict(ts))
915 return -EINVAL;
917 raw_spin_lock_irqsave(&timekeeper_lock, flags);
918 write_seqcount_begin(&tk_core.seq);
920 timekeeping_forward_now(tk);
922 xt = tk_xtime(tk);
923 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
924 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
928 tk_set_xtime(tk, ts);
930 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
932 write_seqcount_end(&tk_core.seq);
933 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
935 /* signal hrtimers about time change */
936 clock_was_set();
938 return 0;
940 EXPORT_SYMBOL(do_settimeofday64);
943 * timekeeping_inject_offset - Adds or subtracts from the current time.
944 * @tv: pointer to the timespec variable containing the offset
946 * Adds or subtracts an offset value from the current time.
948 int timekeeping_inject_offset(struct timespec *ts)
950 struct timekeeper *tk = &tk_core.timekeeper;
951 unsigned long flags;
952 struct timespec64 ts64, tmp;
953 int ret = 0;
955 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
956 return -EINVAL;
958 ts64 = timespec_to_timespec64(*ts);
960 raw_spin_lock_irqsave(&timekeeper_lock, flags);
961 write_seqcount_begin(&tk_core.seq);
963 timekeeping_forward_now(tk);
965 /* Make sure the proposed value is valid */
966 tmp = timespec64_add(tk_xtime(tk), ts64);
967 if (!timespec64_valid_strict(&tmp)) {
968 ret = -EINVAL;
969 goto error;
972 tk_xtime_add(tk, &ts64);
973 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
975 error: /* even if we error out, we forwarded the time, so call update */
976 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
978 write_seqcount_end(&tk_core.seq);
979 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
981 /* signal hrtimers about time change */
982 clock_was_set();
984 return ret;
986 EXPORT_SYMBOL(timekeeping_inject_offset);
990 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
993 s32 timekeeping_get_tai_offset(void)
995 struct timekeeper *tk = &tk_core.timekeeper;
996 unsigned int seq;
997 s32 ret;
999 do {
1000 seq = read_seqcount_begin(&tk_core.seq);
1001 ret = tk->tai_offset;
1002 } while (read_seqcount_retry(&tk_core.seq, seq));
1004 return ret;
1008 * __timekeeping_set_tai_offset - Lock free worker function
1011 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013 tk->tai_offset = tai_offset;
1014 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1018 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1021 void timekeeping_set_tai_offset(s32 tai_offset)
1023 struct timekeeper *tk = &tk_core.timekeeper;
1024 unsigned long flags;
1026 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1027 write_seqcount_begin(&tk_core.seq);
1028 __timekeeping_set_tai_offset(tk, tai_offset);
1029 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1030 write_seqcount_end(&tk_core.seq);
1031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1032 clock_was_set();
1036 * change_clocksource - Swaps clocksources if a new one is available
1038 * Accumulates current time interval and initializes new clocksource
1040 static int change_clocksource(void *data)
1042 struct timekeeper *tk = &tk_core.timekeeper;
1043 struct clocksource *new, *old;
1044 unsigned long flags;
1046 new = (struct clocksource *) data;
1048 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1049 write_seqcount_begin(&tk_core.seq);
1051 timekeeping_forward_now(tk);
1053 * If the cs is in module, get a module reference. Succeeds
1054 * for built-in code (owner == NULL) as well.
1056 if (try_module_get(new->owner)) {
1057 if (!new->enable || new->enable(new) == 0) {
1058 old = tk->tkr_mono.clock;
1059 tk_setup_internals(tk, new);
1060 if (old->disable)
1061 old->disable(old);
1062 module_put(old->owner);
1063 } else {
1064 module_put(new->owner);
1067 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069 write_seqcount_end(&tk_core.seq);
1070 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072 return 0;
1076 * timekeeping_notify - Install a new clock source
1077 * @clock: pointer to the clock source
1079 * This function is called from clocksource.c after a new, better clock
1080 * source has been registered. The caller holds the clocksource_mutex.
1082 int timekeeping_notify(struct clocksource *clock)
1084 struct timekeeper *tk = &tk_core.timekeeper;
1086 if (tk->tkr_mono.clock == clock)
1087 return 0;
1088 stop_machine(change_clocksource, clock, NULL);
1089 tick_clock_notify();
1090 return tk->tkr_mono.clock == clock ? 0 : -1;
1094 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1095 * @ts: pointer to the timespec64 to be set
1097 * Returns the raw monotonic time (completely un-modified by ntp)
1099 void getrawmonotonic64(struct timespec64 *ts)
1101 struct timekeeper *tk = &tk_core.timekeeper;
1102 struct timespec64 ts64;
1103 unsigned long seq;
1104 s64 nsecs;
1106 do {
1107 seq = read_seqcount_begin(&tk_core.seq);
1108 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1109 ts64 = tk->raw_time;
1111 } while (read_seqcount_retry(&tk_core.seq, seq));
1113 timespec64_add_ns(&ts64, nsecs);
1114 *ts = ts64;
1116 EXPORT_SYMBOL(getrawmonotonic64);
1120 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122 int timekeeping_valid_for_hres(void)
1124 struct timekeeper *tk = &tk_core.timekeeper;
1125 unsigned long seq;
1126 int ret;
1128 do {
1129 seq = read_seqcount_begin(&tk_core.seq);
1131 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133 } while (read_seqcount_retry(&tk_core.seq, seq));
1135 return ret;
1139 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141 u64 timekeeping_max_deferment(void)
1143 struct timekeeper *tk = &tk_core.timekeeper;
1144 unsigned long seq;
1145 u64 ret;
1147 do {
1148 seq = read_seqcount_begin(&tk_core.seq);
1150 ret = tk->tkr_mono.clock->max_idle_ns;
1152 } while (read_seqcount_retry(&tk_core.seq, seq));
1154 return ret;
1158 * read_persistent_clock - Return time from the persistent clock.
1160 * Weak dummy function for arches that do not yet support it.
1161 * Reads the time from the battery backed persistent clock.
1162 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164 * XXX - Do be sure to remove it once all arches implement it.
1166 void __weak read_persistent_clock(struct timespec *ts)
1168 ts->tv_sec = 0;
1169 ts->tv_nsec = 0;
1172 void __weak read_persistent_clock64(struct timespec64 *ts64)
1174 struct timespec ts;
1176 read_persistent_clock(&ts);
1177 *ts64 = timespec_to_timespec64(ts);
1181 * read_boot_clock - Return time of the system start.
1183 * Weak dummy function for arches that do not yet support it.
1184 * Function to read the exact time the system has been started.
1185 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1187 * XXX - Do be sure to remove it once all arches implement it.
1189 void __weak read_boot_clock(struct timespec *ts)
1191 ts->tv_sec = 0;
1192 ts->tv_nsec = 0;
1195 void __weak read_boot_clock64(struct timespec64 *ts64)
1197 struct timespec ts;
1199 read_boot_clock(&ts);
1200 *ts64 = timespec_to_timespec64(ts);
1203 /* Flag for if timekeeping_resume() has injected sleeptime */
1204 static bool sleeptime_injected;
1206 /* Flag for if there is a persistent clock on this platform */
1207 static bool persistent_clock_exists;
1210 * timekeeping_init - Initializes the clocksource and common timekeeping values
1212 void __init timekeeping_init(void)
1214 struct timekeeper *tk = &tk_core.timekeeper;
1215 struct clocksource *clock;
1216 unsigned long flags;
1217 struct timespec64 now, boot, tmp;
1219 read_persistent_clock64(&now);
1220 if (!timespec64_valid_strict(&now)) {
1221 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1222 " Check your CMOS/BIOS settings.\n");
1223 now.tv_sec = 0;
1224 now.tv_nsec = 0;
1225 } else if (now.tv_sec || now.tv_nsec)
1226 persistent_clock_exists = true;
1228 read_boot_clock64(&boot);
1229 if (!timespec64_valid_strict(&boot)) {
1230 pr_warn("WARNING: Boot clock returned invalid value!\n"
1231 " Check your CMOS/BIOS settings.\n");
1232 boot.tv_sec = 0;
1233 boot.tv_nsec = 0;
1236 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237 write_seqcount_begin(&tk_core.seq);
1238 ntp_init();
1240 clock = clocksource_default_clock();
1241 if (clock->enable)
1242 clock->enable(clock);
1243 tk_setup_internals(tk, clock);
1245 tk_set_xtime(tk, &now);
1246 tk->raw_time.tv_sec = 0;
1247 tk->raw_time.tv_nsec = 0;
1248 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1249 boot = tk_xtime(tk);
1251 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1252 tk_set_wall_to_mono(tk, tmp);
1254 timekeeping_update(tk, TK_MIRROR);
1256 write_seqcount_end(&tk_core.seq);
1257 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1260 /* time in seconds when suspend began for persistent clock */
1261 static struct timespec64 timekeeping_suspend_time;
1264 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1265 * @delta: pointer to a timespec delta value
1267 * Takes a timespec offset measuring a suspend interval and properly
1268 * adds the sleep offset to the timekeeping variables.
1270 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1271 struct timespec64 *delta)
1273 if (!timespec64_valid_strict(delta)) {
1274 printk_deferred(KERN_WARNING
1275 "__timekeeping_inject_sleeptime: Invalid "
1276 "sleep delta value!\n");
1277 return;
1279 tk_xtime_add(tk, delta);
1280 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1281 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1282 tk_debug_account_sleep_time(delta);
1285 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1287 * We have three kinds of time sources to use for sleep time
1288 * injection, the preference order is:
1289 * 1) non-stop clocksource
1290 * 2) persistent clock (ie: RTC accessible when irqs are off)
1291 * 3) RTC
1293 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1294 * If system has neither 1) nor 2), 3) will be used finally.
1297 * If timekeeping has injected sleeptime via either 1) or 2),
1298 * 3) becomes needless, so in this case we don't need to call
1299 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1300 * means.
1302 bool timekeeping_rtc_skipresume(void)
1304 return sleeptime_injected;
1308 * 1) can be determined whether to use or not only when doing
1309 * timekeeping_resume() which is invoked after rtc_suspend(),
1310 * so we can't skip rtc_suspend() surely if system has 1).
1312 * But if system has 2), 2) will definitely be used, so in this
1313 * case we don't need to call rtc_suspend(), and this is what
1314 * timekeeping_rtc_skipsuspend() means.
1316 bool timekeeping_rtc_skipsuspend(void)
1318 return persistent_clock_exists;
1322 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1323 * @delta: pointer to a timespec64 delta value
1325 * This hook is for architectures that cannot support read_persistent_clock64
1326 * because their RTC/persistent clock is only accessible when irqs are enabled.
1327 * and also don't have an effective nonstop clocksource.
1329 * This function should only be called by rtc_resume(), and allows
1330 * a suspend offset to be injected into the timekeeping values.
1332 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1334 struct timekeeper *tk = &tk_core.timekeeper;
1335 unsigned long flags;
1337 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1338 write_seqcount_begin(&tk_core.seq);
1340 timekeeping_forward_now(tk);
1342 __timekeeping_inject_sleeptime(tk, delta);
1344 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1346 write_seqcount_end(&tk_core.seq);
1347 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1349 /* signal hrtimers about time change */
1350 clock_was_set();
1352 #endif
1355 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1357 void timekeeping_resume(void)
1359 struct timekeeper *tk = &tk_core.timekeeper;
1360 struct clocksource *clock = tk->tkr_mono.clock;
1361 unsigned long flags;
1362 struct timespec64 ts_new, ts_delta;
1363 cycle_t cycle_now, cycle_delta;
1365 sleeptime_injected = false;
1366 read_persistent_clock64(&ts_new);
1368 clockevents_resume();
1369 clocksource_resume();
1371 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1372 write_seqcount_begin(&tk_core.seq);
1375 * After system resumes, we need to calculate the suspended time and
1376 * compensate it for the OS time. There are 3 sources that could be
1377 * used: Nonstop clocksource during suspend, persistent clock and rtc
1378 * device.
1380 * One specific platform may have 1 or 2 or all of them, and the
1381 * preference will be:
1382 * suspend-nonstop clocksource -> persistent clock -> rtc
1383 * The less preferred source will only be tried if there is no better
1384 * usable source. The rtc part is handled separately in rtc core code.
1386 cycle_now = tk->tkr_mono.read(clock);
1387 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1388 cycle_now > tk->tkr_mono.cycle_last) {
1389 u64 num, max = ULLONG_MAX;
1390 u32 mult = clock->mult;
1391 u32 shift = clock->shift;
1392 s64 nsec = 0;
1394 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1395 tk->tkr_mono.mask);
1398 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1399 * suspended time is too long. In that case we need do the
1400 * 64 bits math carefully
1402 do_div(max, mult);
1403 if (cycle_delta > max) {
1404 num = div64_u64(cycle_delta, max);
1405 nsec = (((u64) max * mult) >> shift) * num;
1406 cycle_delta -= num * max;
1408 nsec += ((u64) cycle_delta * mult) >> shift;
1410 ts_delta = ns_to_timespec64(nsec);
1411 sleeptime_injected = true;
1412 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1413 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1414 sleeptime_injected = true;
1417 if (sleeptime_injected)
1418 __timekeeping_inject_sleeptime(tk, &ts_delta);
1420 /* Re-base the last cycle value */
1421 tk->tkr_mono.cycle_last = cycle_now;
1422 tk->tkr_raw.cycle_last = cycle_now;
1424 tk->ntp_error = 0;
1425 timekeeping_suspended = 0;
1426 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1427 write_seqcount_end(&tk_core.seq);
1428 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1430 touch_softlockup_watchdog();
1432 tick_resume();
1433 hrtimers_resume();
1436 int timekeeping_suspend(void)
1438 struct timekeeper *tk = &tk_core.timekeeper;
1439 unsigned long flags;
1440 struct timespec64 delta, delta_delta;
1441 static struct timespec64 old_delta;
1443 read_persistent_clock64(&timekeeping_suspend_time);
1446 * On some systems the persistent_clock can not be detected at
1447 * timekeeping_init by its return value, so if we see a valid
1448 * value returned, update the persistent_clock_exists flag.
1450 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1451 persistent_clock_exists = true;
1453 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1454 write_seqcount_begin(&tk_core.seq);
1455 timekeeping_forward_now(tk);
1456 timekeeping_suspended = 1;
1458 if (persistent_clock_exists) {
1460 * To avoid drift caused by repeated suspend/resumes,
1461 * which each can add ~1 second drift error,
1462 * try to compensate so the difference in system time
1463 * and persistent_clock time stays close to constant.
1465 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1466 delta_delta = timespec64_sub(delta, old_delta);
1467 if (abs(delta_delta.tv_sec) >= 2) {
1469 * if delta_delta is too large, assume time correction
1470 * has occurred and set old_delta to the current delta.
1472 old_delta = delta;
1473 } else {
1474 /* Otherwise try to adjust old_system to compensate */
1475 timekeeping_suspend_time =
1476 timespec64_add(timekeeping_suspend_time, delta_delta);
1480 timekeeping_update(tk, TK_MIRROR);
1481 halt_fast_timekeeper(tk);
1482 write_seqcount_end(&tk_core.seq);
1483 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1485 tick_suspend();
1486 clocksource_suspend();
1487 clockevents_suspend();
1489 return 0;
1492 /* sysfs resume/suspend bits for timekeeping */
1493 static struct syscore_ops timekeeping_syscore_ops = {
1494 .resume = timekeeping_resume,
1495 .suspend = timekeeping_suspend,
1498 static int __init timekeeping_init_ops(void)
1500 register_syscore_ops(&timekeeping_syscore_ops);
1501 return 0;
1503 device_initcall(timekeeping_init_ops);
1506 * Apply a multiplier adjustment to the timekeeper
1508 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1509 s64 offset,
1510 bool negative,
1511 int adj_scale)
1513 s64 interval = tk->cycle_interval;
1514 s32 mult_adj = 1;
1516 if (negative) {
1517 mult_adj = -mult_adj;
1518 interval = -interval;
1519 offset = -offset;
1521 mult_adj <<= adj_scale;
1522 interval <<= adj_scale;
1523 offset <<= adj_scale;
1526 * So the following can be confusing.
1528 * To keep things simple, lets assume mult_adj == 1 for now.
1530 * When mult_adj != 1, remember that the interval and offset values
1531 * have been appropriately scaled so the math is the same.
1533 * The basic idea here is that we're increasing the multiplier
1534 * by one, this causes the xtime_interval to be incremented by
1535 * one cycle_interval. This is because:
1536 * xtime_interval = cycle_interval * mult
1537 * So if mult is being incremented by one:
1538 * xtime_interval = cycle_interval * (mult + 1)
1539 * Its the same as:
1540 * xtime_interval = (cycle_interval * mult) + cycle_interval
1541 * Which can be shortened to:
1542 * xtime_interval += cycle_interval
1544 * So offset stores the non-accumulated cycles. Thus the current
1545 * time (in shifted nanoseconds) is:
1546 * now = (offset * adj) + xtime_nsec
1547 * Now, even though we're adjusting the clock frequency, we have
1548 * to keep time consistent. In other words, we can't jump back
1549 * in time, and we also want to avoid jumping forward in time.
1551 * So given the same offset value, we need the time to be the same
1552 * both before and after the freq adjustment.
1553 * now = (offset * adj_1) + xtime_nsec_1
1554 * now = (offset * adj_2) + xtime_nsec_2
1555 * So:
1556 * (offset * adj_1) + xtime_nsec_1 =
1557 * (offset * adj_2) + xtime_nsec_2
1558 * And we know:
1559 * adj_2 = adj_1 + 1
1560 * So:
1561 * (offset * adj_1) + xtime_nsec_1 =
1562 * (offset * (adj_1+1)) + xtime_nsec_2
1563 * (offset * adj_1) + xtime_nsec_1 =
1564 * (offset * adj_1) + offset + xtime_nsec_2
1565 * Canceling the sides:
1566 * xtime_nsec_1 = offset + xtime_nsec_2
1567 * Which gives us:
1568 * xtime_nsec_2 = xtime_nsec_1 - offset
1569 * Which simplfies to:
1570 * xtime_nsec -= offset
1572 * XXX - TODO: Doc ntp_error calculation.
1574 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1575 /* NTP adjustment caused clocksource mult overflow */
1576 WARN_ON_ONCE(1);
1577 return;
1580 tk->tkr_mono.mult += mult_adj;
1581 tk->xtime_interval += interval;
1582 tk->tkr_mono.xtime_nsec -= offset;
1583 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1587 * Calculate the multiplier adjustment needed to match the frequency
1588 * specified by NTP
1590 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1591 s64 offset)
1593 s64 interval = tk->cycle_interval;
1594 s64 xinterval = tk->xtime_interval;
1595 s64 tick_error;
1596 bool negative;
1597 u32 adj;
1599 /* Remove any current error adj from freq calculation */
1600 if (tk->ntp_err_mult)
1601 xinterval -= tk->cycle_interval;
1603 tk->ntp_tick = ntp_tick_length();
1605 /* Calculate current error per tick */
1606 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1607 tick_error -= (xinterval + tk->xtime_remainder);
1609 /* Don't worry about correcting it if its small */
1610 if (likely((tick_error >= 0) && (tick_error <= interval)))
1611 return;
1613 /* preserve the direction of correction */
1614 negative = (tick_error < 0);
1616 /* Sort out the magnitude of the correction */
1617 tick_error = abs64(tick_error);
1618 for (adj = 0; tick_error > interval; adj++)
1619 tick_error >>= 1;
1621 /* scale the corrections */
1622 timekeeping_apply_adjustment(tk, offset, negative, adj);
1626 * Adjust the timekeeper's multiplier to the correct frequency
1627 * and also to reduce the accumulated error value.
1629 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1631 /* Correct for the current frequency error */
1632 timekeeping_freqadjust(tk, offset);
1634 /* Next make a small adjustment to fix any cumulative error */
1635 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1636 tk->ntp_err_mult = 1;
1637 timekeeping_apply_adjustment(tk, offset, 0, 0);
1638 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1639 /* Undo any existing error adjustment */
1640 timekeeping_apply_adjustment(tk, offset, 1, 0);
1641 tk->ntp_err_mult = 0;
1644 if (unlikely(tk->tkr_mono.clock->maxadj &&
1645 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1646 > tk->tkr_mono.clock->maxadj))) {
1647 printk_once(KERN_WARNING
1648 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1649 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1650 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1654 * It may be possible that when we entered this function, xtime_nsec
1655 * was very small. Further, if we're slightly speeding the clocksource
1656 * in the code above, its possible the required corrective factor to
1657 * xtime_nsec could cause it to underflow.
1659 * Now, since we already accumulated the second, cannot simply roll
1660 * the accumulated second back, since the NTP subsystem has been
1661 * notified via second_overflow. So instead we push xtime_nsec forward
1662 * by the amount we underflowed, and add that amount into the error.
1664 * We'll correct this error next time through this function, when
1665 * xtime_nsec is not as small.
1667 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1668 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1669 tk->tkr_mono.xtime_nsec = 0;
1670 tk->ntp_error += neg << tk->ntp_error_shift;
1675 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1677 * Helper function that accumulates a the nsecs greater then a second
1678 * from the xtime_nsec field to the xtime_secs field.
1679 * It also calls into the NTP code to handle leapsecond processing.
1682 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1684 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1685 unsigned int clock_set = 0;
1687 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1688 int leap;
1690 tk->tkr_mono.xtime_nsec -= nsecps;
1691 tk->xtime_sec++;
1693 /* Figure out if its a leap sec and apply if needed */
1694 leap = second_overflow(tk->xtime_sec);
1695 if (unlikely(leap)) {
1696 struct timespec64 ts;
1698 tk->xtime_sec += leap;
1700 ts.tv_sec = leap;
1701 ts.tv_nsec = 0;
1702 tk_set_wall_to_mono(tk,
1703 timespec64_sub(tk->wall_to_monotonic, ts));
1705 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1707 clock_set = TK_CLOCK_WAS_SET;
1710 return clock_set;
1714 * logarithmic_accumulation - shifted accumulation of cycles
1716 * This functions accumulates a shifted interval of cycles into
1717 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1718 * loop.
1720 * Returns the unconsumed cycles.
1722 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1723 u32 shift,
1724 unsigned int *clock_set)
1726 cycle_t interval = tk->cycle_interval << shift;
1727 u64 raw_nsecs;
1729 /* If the offset is smaller then a shifted interval, do nothing */
1730 if (offset < interval)
1731 return offset;
1733 /* Accumulate one shifted interval */
1734 offset -= interval;
1735 tk->tkr_mono.cycle_last += interval;
1736 tk->tkr_raw.cycle_last += interval;
1738 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1739 *clock_set |= accumulate_nsecs_to_secs(tk);
1741 /* Accumulate raw time */
1742 raw_nsecs = (u64)tk->raw_interval << shift;
1743 raw_nsecs += tk->raw_time.tv_nsec;
1744 if (raw_nsecs >= NSEC_PER_SEC) {
1745 u64 raw_secs = raw_nsecs;
1746 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1747 tk->raw_time.tv_sec += raw_secs;
1749 tk->raw_time.tv_nsec = raw_nsecs;
1751 /* Accumulate error between NTP and clock interval */
1752 tk->ntp_error += tk->ntp_tick << shift;
1753 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1754 (tk->ntp_error_shift + shift);
1756 return offset;
1760 * update_wall_time - Uses the current clocksource to increment the wall time
1763 void update_wall_time(void)
1765 struct timekeeper *real_tk = &tk_core.timekeeper;
1766 struct timekeeper *tk = &shadow_timekeeper;
1767 cycle_t offset;
1768 int shift = 0, maxshift;
1769 unsigned int clock_set = 0;
1770 unsigned long flags;
1772 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1774 /* Make sure we're fully resumed: */
1775 if (unlikely(timekeeping_suspended))
1776 goto out;
1778 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1779 offset = real_tk->cycle_interval;
1780 #else
1781 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1782 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1783 #endif
1785 /* Check if there's really nothing to do */
1786 if (offset < real_tk->cycle_interval)
1787 goto out;
1789 /* Do some additional sanity checking */
1790 timekeeping_check_update(real_tk, offset);
1793 * With NO_HZ we may have to accumulate many cycle_intervals
1794 * (think "ticks") worth of time at once. To do this efficiently,
1795 * we calculate the largest doubling multiple of cycle_intervals
1796 * that is smaller than the offset. We then accumulate that
1797 * chunk in one go, and then try to consume the next smaller
1798 * doubled multiple.
1800 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1801 shift = max(0, shift);
1802 /* Bound shift to one less than what overflows tick_length */
1803 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1804 shift = min(shift, maxshift);
1805 while (offset >= tk->cycle_interval) {
1806 offset = logarithmic_accumulation(tk, offset, shift,
1807 &clock_set);
1808 if (offset < tk->cycle_interval<<shift)
1809 shift--;
1812 /* correct the clock when NTP error is too big */
1813 timekeeping_adjust(tk, offset);
1816 * XXX This can be killed once everyone converts
1817 * to the new update_vsyscall.
1819 old_vsyscall_fixup(tk);
1822 * Finally, make sure that after the rounding
1823 * xtime_nsec isn't larger than NSEC_PER_SEC
1825 clock_set |= accumulate_nsecs_to_secs(tk);
1827 write_seqcount_begin(&tk_core.seq);
1829 * Update the real timekeeper.
1831 * We could avoid this memcpy by switching pointers, but that
1832 * requires changes to all other timekeeper usage sites as
1833 * well, i.e. move the timekeeper pointer getter into the
1834 * spinlocked/seqcount protected sections. And we trade this
1835 * memcpy under the tk_core.seq against one before we start
1836 * updating.
1838 memcpy(real_tk, tk, sizeof(*tk));
1839 timekeeping_update(real_tk, clock_set);
1840 write_seqcount_end(&tk_core.seq);
1841 out:
1842 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1843 if (clock_set)
1844 /* Have to call _delayed version, since in irq context*/
1845 clock_was_set_delayed();
1849 * getboottime64 - Return the real time of system boot.
1850 * @ts: pointer to the timespec64 to be set
1852 * Returns the wall-time of boot in a timespec64.
1854 * This is based on the wall_to_monotonic offset and the total suspend
1855 * time. Calls to settimeofday will affect the value returned (which
1856 * basically means that however wrong your real time clock is at boot time,
1857 * you get the right time here).
1859 void getboottime64(struct timespec64 *ts)
1861 struct timekeeper *tk = &tk_core.timekeeper;
1862 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1864 *ts = ktime_to_timespec64(t);
1866 EXPORT_SYMBOL_GPL(getboottime64);
1868 unsigned long get_seconds(void)
1870 struct timekeeper *tk = &tk_core.timekeeper;
1872 return tk->xtime_sec;
1874 EXPORT_SYMBOL(get_seconds);
1876 struct timespec __current_kernel_time(void)
1878 struct timekeeper *tk = &tk_core.timekeeper;
1880 return timespec64_to_timespec(tk_xtime(tk));
1883 struct timespec current_kernel_time(void)
1885 struct timekeeper *tk = &tk_core.timekeeper;
1886 struct timespec64 now;
1887 unsigned long seq;
1889 do {
1890 seq = read_seqcount_begin(&tk_core.seq);
1892 now = tk_xtime(tk);
1893 } while (read_seqcount_retry(&tk_core.seq, seq));
1895 return timespec64_to_timespec(now);
1897 EXPORT_SYMBOL(current_kernel_time);
1899 struct timespec64 get_monotonic_coarse64(void)
1901 struct timekeeper *tk = &tk_core.timekeeper;
1902 struct timespec64 now, mono;
1903 unsigned long seq;
1905 do {
1906 seq = read_seqcount_begin(&tk_core.seq);
1908 now = tk_xtime(tk);
1909 mono = tk->wall_to_monotonic;
1910 } while (read_seqcount_retry(&tk_core.seq, seq));
1912 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1913 now.tv_nsec + mono.tv_nsec);
1915 return now;
1919 * Must hold jiffies_lock
1921 void do_timer(unsigned long ticks)
1923 jiffies_64 += ticks;
1924 calc_global_load(ticks);
1928 * ktime_get_update_offsets_tick - hrtimer helper
1929 * @offs_real: pointer to storage for monotonic -> realtime offset
1930 * @offs_boot: pointer to storage for monotonic -> boottime offset
1931 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1933 * Returns monotonic time at last tick and various offsets
1935 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1936 ktime_t *offs_tai)
1938 struct timekeeper *tk = &tk_core.timekeeper;
1939 unsigned int seq;
1940 ktime_t base;
1941 u64 nsecs;
1943 do {
1944 seq = read_seqcount_begin(&tk_core.seq);
1946 base = tk->tkr_mono.base;
1947 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1949 *offs_real = tk->offs_real;
1950 *offs_boot = tk->offs_boot;
1951 *offs_tai = tk->offs_tai;
1952 } while (read_seqcount_retry(&tk_core.seq, seq));
1954 return ktime_add_ns(base, nsecs);
1957 #ifdef CONFIG_HIGH_RES_TIMERS
1959 * ktime_get_update_offsets_now - hrtimer helper
1960 * @offs_real: pointer to storage for monotonic -> realtime offset
1961 * @offs_boot: pointer to storage for monotonic -> boottime offset
1962 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1964 * Returns current monotonic time and updates the offsets
1965 * Called from hrtimer_interrupt() or retrigger_next_event()
1967 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1968 ktime_t *offs_tai)
1970 struct timekeeper *tk = &tk_core.timekeeper;
1971 unsigned int seq;
1972 ktime_t base;
1973 u64 nsecs;
1975 do {
1976 seq = read_seqcount_begin(&tk_core.seq);
1978 base = tk->tkr_mono.base;
1979 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1981 *offs_real = tk->offs_real;
1982 *offs_boot = tk->offs_boot;
1983 *offs_tai = tk->offs_tai;
1984 } while (read_seqcount_retry(&tk_core.seq, seq));
1986 return ktime_add_ns(base, nsecs);
1988 #endif
1991 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1993 int do_adjtimex(struct timex *txc)
1995 struct timekeeper *tk = &tk_core.timekeeper;
1996 unsigned long flags;
1997 struct timespec64 ts;
1998 s32 orig_tai, tai;
1999 int ret;
2001 /* Validate the data before disabling interrupts */
2002 ret = ntp_validate_timex(txc);
2003 if (ret)
2004 return ret;
2006 if (txc->modes & ADJ_SETOFFSET) {
2007 struct timespec delta;
2008 delta.tv_sec = txc->time.tv_sec;
2009 delta.tv_nsec = txc->time.tv_usec;
2010 if (!(txc->modes & ADJ_NANO))
2011 delta.tv_nsec *= 1000;
2012 ret = timekeeping_inject_offset(&delta);
2013 if (ret)
2014 return ret;
2017 getnstimeofday64(&ts);
2019 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2020 write_seqcount_begin(&tk_core.seq);
2022 orig_tai = tai = tk->tai_offset;
2023 ret = __do_adjtimex(txc, &ts, &tai);
2025 if (tai != orig_tai) {
2026 __timekeeping_set_tai_offset(tk, tai);
2027 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2029 write_seqcount_end(&tk_core.seq);
2030 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032 if (tai != orig_tai)
2033 clock_was_set();
2035 ntp_notify_cmos_timer();
2037 return ret;
2040 #ifdef CONFIG_NTP_PPS
2042 * hardpps() - Accessor function to NTP __hardpps function
2044 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2046 unsigned long flags;
2048 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049 write_seqcount_begin(&tk_core.seq);
2051 __hardpps(phase_ts, raw_ts);
2053 write_seqcount_end(&tk_core.seq);
2054 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2056 EXPORT_SYMBOL(hardpps);
2057 #endif
2060 * xtime_update() - advances the timekeeping infrastructure
2061 * @ticks: number of ticks, that have elapsed since the last call.
2063 * Must be called with interrupts disabled.
2065 void xtime_update(unsigned long ticks)
2067 write_seqlock(&jiffies_lock);
2068 do_timer(ticks);
2069 write_sequnlock(&jiffies_lock);
2070 update_wall_time();