Linux 4.1.18
[linux/fpc-iii.git] / tools / perf / bench / numa.c
blobba5efa4710b558239ff79c08b025ddc2da06efc5
1 /*
2 * numa.c
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
12 #include "bench.h"
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
30 #include <numa.h>
31 #include <numaif.h>
34 * Regular printout to the terminal, supressed if -q is specified:
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
39 * Debug printf:
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
43 struct thread_data {
44 int curr_cpu;
45 cpu_set_t bind_cpumask;
46 int bind_node;
47 u8 *process_data;
48 int process_nr;
49 int thread_nr;
50 int task_nr;
51 unsigned int loops_done;
52 u64 val;
53 u64 runtime_ns;
54 pthread_mutex_t *process_lock;
57 /* Parameters set by options: */
59 struct params {
60 /* Startup synchronization: */
61 bool serialize_startup;
63 /* Task hierarchy: */
64 int nr_proc;
65 int nr_threads;
67 /* Working set sizes: */
68 const char *mb_global_str;
69 const char *mb_proc_str;
70 const char *mb_proc_locked_str;
71 const char *mb_thread_str;
73 double mb_global;
74 double mb_proc;
75 double mb_proc_locked;
76 double mb_thread;
78 /* Access patterns to the working set: */
79 bool data_reads;
80 bool data_writes;
81 bool data_backwards;
82 bool data_zero_memset;
83 bool data_rand_walk;
84 u32 nr_loops;
85 u32 nr_secs;
86 u32 sleep_usecs;
88 /* Working set initialization: */
89 bool init_zero;
90 bool init_random;
91 bool init_cpu0;
93 /* Misc options: */
94 int show_details;
95 int run_all;
96 int thp;
98 long bytes_global;
99 long bytes_process;
100 long bytes_process_locked;
101 long bytes_thread;
103 int nr_tasks;
104 bool show_quiet;
106 bool show_convergence;
107 bool measure_convergence;
109 int perturb_secs;
110 int nr_cpus;
111 int nr_nodes;
113 /* Affinity options -C and -N: */
114 char *cpu_list_str;
115 char *node_list_str;
119 /* Global, read-writable area, accessible to all processes and threads: */
121 struct global_info {
122 u8 *data;
124 pthread_mutex_t startup_mutex;
125 int nr_tasks_started;
127 pthread_mutex_t startup_done_mutex;
129 pthread_mutex_t start_work_mutex;
130 int nr_tasks_working;
132 pthread_mutex_t stop_work_mutex;
133 u64 bytes_done;
135 struct thread_data *threads;
137 /* Convergence latency measurement: */
138 bool all_converged;
139 bool stop_work;
141 int print_once;
143 struct params p;
146 static struct global_info *g = NULL;
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
151 struct params p0;
153 static const struct option options[] = {
154 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
155 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
157 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
158 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
159 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
162 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"),
163 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"),
164 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
166 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
167 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
168 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
169 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
173 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
174 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
175 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
176 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
178 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
179 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
180 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
183 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
184 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
186 /* Special option string parsing callbacks: */
187 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188 "bind the first N tasks to these specific cpus (the rest is unbound)",
189 parse_cpus_opt),
190 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
192 parse_nodes_opt),
193 OPT_END()
196 static const char * const bench_numa_usage[] = {
197 "perf bench numa <options>",
198 NULL
201 static const char * const numa_usage[] = {
202 "perf bench numa mem [<options>]",
203 NULL
206 static cpu_set_t bind_to_cpu(int target_cpu)
208 cpu_set_t orig_mask, mask;
209 int ret;
211 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212 BUG_ON(ret);
214 CPU_ZERO(&mask);
216 if (target_cpu == -1) {
217 int cpu;
219 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220 CPU_SET(cpu, &mask);
221 } else {
222 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223 CPU_SET(target_cpu, &mask);
226 ret = sched_setaffinity(0, sizeof(mask), &mask);
227 BUG_ON(ret);
229 return orig_mask;
232 static cpu_set_t bind_to_node(int target_node)
234 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235 cpu_set_t orig_mask, mask;
236 int cpu;
237 int ret;
239 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240 BUG_ON(!cpus_per_node);
242 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243 BUG_ON(ret);
245 CPU_ZERO(&mask);
247 if (target_node == -1) {
248 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249 CPU_SET(cpu, &mask);
250 } else {
251 int cpu_start = (target_node + 0) * cpus_per_node;
252 int cpu_stop = (target_node + 1) * cpus_per_node;
254 BUG_ON(cpu_stop > g->p.nr_cpus);
256 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257 CPU_SET(cpu, &mask);
260 ret = sched_setaffinity(0, sizeof(mask), &mask);
261 BUG_ON(ret);
263 return orig_mask;
266 static void bind_to_cpumask(cpu_set_t mask)
268 int ret;
270 ret = sched_setaffinity(0, sizeof(mask), &mask);
271 BUG_ON(ret);
274 static void mempol_restore(void)
276 int ret;
278 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
280 BUG_ON(ret);
283 static void bind_to_memnode(int node)
285 unsigned long nodemask;
286 int ret;
288 if (node == -1)
289 return;
291 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292 nodemask = 1L << node;
294 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
297 BUG_ON(ret);
300 #define HPSIZE (2*1024*1024)
302 #define set_taskname(fmt...) \
303 do { \
304 char name[20]; \
306 snprintf(name, 20, fmt); \
307 prctl(PR_SET_NAME, name); \
308 } while (0)
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311 int init_zero, int init_cpu0, int thp, int init_random)
313 cpu_set_t orig_mask;
314 ssize_t bytes;
315 u8 *buf;
316 int ret;
318 if (!bytes0)
319 return NULL;
321 /* Allocate and initialize all memory on CPU#0: */
322 if (init_cpu0) {
323 orig_mask = bind_to_node(0);
324 bind_to_memnode(0);
327 bytes = bytes0 + HPSIZE;
329 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330 BUG_ON(buf == (void *)-1);
332 if (map_flags == MAP_PRIVATE) {
333 if (thp > 0) {
334 ret = madvise(buf, bytes, MADV_HUGEPAGE);
335 if (ret && !g->print_once) {
336 g->print_once = 1;
337 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
340 if (thp < 0) {
341 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342 if (ret && !g->print_once) {
343 g->print_once = 1;
344 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
349 if (init_zero) {
350 bzero(buf, bytes);
351 } else {
352 /* Initialize random contents, different in each word: */
353 if (init_random) {
354 u64 *wbuf = (void *)buf;
355 long off = rand();
356 long i;
358 for (i = 0; i < bytes/8; i++)
359 wbuf[i] = i + off;
363 /* Align to 2MB boundary: */
364 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
366 /* Restore affinity: */
367 if (init_cpu0) {
368 bind_to_cpumask(orig_mask);
369 mempol_restore();
372 return buf;
375 static void free_data(void *data, ssize_t bytes)
377 int ret;
379 if (!data)
380 return;
382 ret = munmap(data, bytes);
383 BUG_ON(ret);
387 * Create a shared memory buffer that can be shared between processes, zeroed:
389 static void * zalloc_shared_data(ssize_t bytes)
391 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
395 * Create a shared memory buffer that can be shared between processes:
397 static void * setup_shared_data(ssize_t bytes)
399 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
403 * Allocate process-local memory - this will either be shared between
404 * threads of this process, or only be accessed by this thread:
406 static void * setup_private_data(ssize_t bytes)
408 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
412 * Return a process-shared (global) mutex:
414 static void init_global_mutex(pthread_mutex_t *mutex)
416 pthread_mutexattr_t attr;
418 pthread_mutexattr_init(&attr);
419 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420 pthread_mutex_init(mutex, &attr);
423 static int parse_cpu_list(const char *arg)
425 p0.cpu_list_str = strdup(arg);
427 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
429 return 0;
432 static int parse_setup_cpu_list(void)
434 struct thread_data *td;
435 char *str0, *str;
436 int t;
438 if (!g->p.cpu_list_str)
439 return 0;
441 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
443 str0 = str = strdup(g->p.cpu_list_str);
444 t = 0;
446 BUG_ON(!str);
448 tprintf("# binding tasks to CPUs:\n");
449 tprintf("# ");
451 while (true) {
452 int bind_cpu, bind_cpu_0, bind_cpu_1;
453 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454 int bind_len;
455 int step;
456 int mul;
458 tok = strsep(&str, ",");
459 if (!tok)
460 break;
462 tok_end = strstr(tok, "-");
464 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465 if (!tok_end) {
466 /* Single CPU specified: */
467 bind_cpu_0 = bind_cpu_1 = atol(tok);
468 } else {
469 /* CPU range specified (for example: "5-11"): */
470 bind_cpu_0 = atol(tok);
471 bind_cpu_1 = atol(tok_end + 1);
474 step = 1;
475 tok_step = strstr(tok, "#");
476 if (tok_step) {
477 step = atol(tok_step + 1);
478 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
482 * Mask length.
483 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484 * where the _4 means the next 4 CPUs are allowed.
486 bind_len = 1;
487 tok_len = strstr(tok, "_");
488 if (tok_len) {
489 bind_len = atol(tok_len + 1);
490 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
493 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494 mul = 1;
495 tok_mul = strstr(tok, "x");
496 if (tok_mul) {
497 mul = atol(tok_mul + 1);
498 BUG_ON(mul <= 0);
501 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
503 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505 return -1;
508 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509 BUG_ON(bind_cpu_0 > bind_cpu_1);
511 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512 int i;
514 for (i = 0; i < mul; i++) {
515 int cpu;
517 if (t >= g->p.nr_tasks) {
518 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519 goto out;
521 td = g->threads + t;
523 if (t)
524 tprintf(",");
525 if (bind_len > 1) {
526 tprintf("%2d/%d", bind_cpu, bind_len);
527 } else {
528 tprintf("%2d", bind_cpu);
531 CPU_ZERO(&td->bind_cpumask);
532 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534 CPU_SET(cpu, &td->bind_cpumask);
536 t++;
540 out:
542 tprintf("\n");
544 if (t < g->p.nr_tasks)
545 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
547 free(str0);
548 return 0;
551 static int parse_cpus_opt(const struct option *opt __maybe_unused,
552 const char *arg, int unset __maybe_unused)
554 if (!arg)
555 return -1;
557 return parse_cpu_list(arg);
560 static int parse_node_list(const char *arg)
562 p0.node_list_str = strdup(arg);
564 dprintf("got NODE list: {%s}\n", p0.node_list_str);
566 return 0;
569 static int parse_setup_node_list(void)
571 struct thread_data *td;
572 char *str0, *str;
573 int t;
575 if (!g->p.node_list_str)
576 return 0;
578 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
580 str0 = str = strdup(g->p.node_list_str);
581 t = 0;
583 BUG_ON(!str);
585 tprintf("# binding tasks to NODEs:\n");
586 tprintf("# ");
588 while (true) {
589 int bind_node, bind_node_0, bind_node_1;
590 char *tok, *tok_end, *tok_step, *tok_mul;
591 int step;
592 int mul;
594 tok = strsep(&str, ",");
595 if (!tok)
596 break;
598 tok_end = strstr(tok, "-");
600 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601 if (!tok_end) {
602 /* Single NODE specified: */
603 bind_node_0 = bind_node_1 = atol(tok);
604 } else {
605 /* NODE range specified (for example: "5-11"): */
606 bind_node_0 = atol(tok);
607 bind_node_1 = atol(tok_end + 1);
610 step = 1;
611 tok_step = strstr(tok, "#");
612 if (tok_step) {
613 step = atol(tok_step + 1);
614 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
617 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618 mul = 1;
619 tok_mul = strstr(tok, "x");
620 if (tok_mul) {
621 mul = atol(tok_mul + 1);
622 BUG_ON(mul <= 0);
625 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
627 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629 return -1;
632 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633 BUG_ON(bind_node_0 > bind_node_1);
635 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636 int i;
638 for (i = 0; i < mul; i++) {
639 if (t >= g->p.nr_tasks) {
640 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641 goto out;
643 td = g->threads + t;
645 if (!t)
646 tprintf(" %2d", bind_node);
647 else
648 tprintf(",%2d", bind_node);
650 td->bind_node = bind_node;
651 t++;
655 out:
657 tprintf("\n");
659 if (t < g->p.nr_tasks)
660 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
662 free(str0);
663 return 0;
666 static int parse_nodes_opt(const struct option *opt __maybe_unused,
667 const char *arg, int unset __maybe_unused)
669 if (!arg)
670 return -1;
672 return parse_node_list(arg);
674 return 0;
677 #define BIT(x) (1ul << x)
679 static inline uint32_t lfsr_32(uint32_t lfsr)
681 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
686 * Make sure there's real data dependency to RAM (when read
687 * accesses are enabled), so the compiler, the CPU and the
688 * kernel (KSM, zero page, etc.) cannot optimize away RAM
689 * accesses:
691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
693 if (g->p.data_reads)
694 val += *data;
695 if (g->p.data_writes)
696 *data = val + 1;
697 return val;
701 * The worker process does two types of work, a forwards going
702 * loop and a backwards going loop.
704 * We do this so that on multiprocessor systems we do not create
705 * a 'train' of processing, with highly synchronized processes,
706 * skewing the whole benchmark.
708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
710 long words = bytes/sizeof(u64);
711 u64 *data = (void *)__data;
712 long chunk_0, chunk_1;
713 u64 *d0, *d, *d1;
714 long off;
715 long i;
717 BUG_ON(!data && words);
718 BUG_ON(data && !words);
720 if (!data)
721 return val;
723 /* Very simple memset() work variant: */
724 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725 bzero(data, bytes);
726 return val;
729 /* Spread out by PID/TID nr and by loop nr: */
730 chunk_0 = words/nr_max;
731 chunk_1 = words/g->p.nr_loops;
732 off = nr*chunk_0 + loop*chunk_1;
734 while (off >= words)
735 off -= words;
737 if (g->p.data_rand_walk) {
738 u32 lfsr = nr + loop + val;
739 int j;
741 for (i = 0; i < words/1024; i++) {
742 long start, end;
744 lfsr = lfsr_32(lfsr);
746 start = lfsr % words;
747 end = min(start + 1024, words-1);
749 if (g->p.data_zero_memset) {
750 bzero(data + start, (end-start) * sizeof(u64));
751 } else {
752 for (j = start; j < end; j++)
753 val = access_data(data + j, val);
756 } else if (!g->p.data_backwards || (nr + loop) & 1) {
758 d0 = data + off;
759 d = data + off + 1;
760 d1 = data + words;
762 /* Process data forwards: */
763 for (;;) {
764 if (unlikely(d >= d1))
765 d = data;
766 if (unlikely(d == d0))
767 break;
769 val = access_data(d, val);
771 d++;
773 } else {
774 /* Process data backwards: */
776 d0 = data + off;
777 d = data + off - 1;
778 d1 = data + words;
780 /* Process data forwards: */
781 for (;;) {
782 if (unlikely(d < data))
783 d = data + words-1;
784 if (unlikely(d == d0))
785 break;
787 val = access_data(d, val);
789 d--;
793 return val;
796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
798 unsigned int cpu;
800 cpu = sched_getcpu();
802 g->threads[task_nr].curr_cpu = cpu;
803 prctl(0, bytes_worked);
806 #define MAX_NR_NODES 64
809 * Count the number of nodes a process's threads
810 * are spread out on.
812 * A count of 1 means that the process is compressed
813 * to a single node. A count of g->p.nr_nodes means it's
814 * spread out on the whole system.
816 static int count_process_nodes(int process_nr)
818 char node_present[MAX_NR_NODES] = { 0, };
819 int nodes;
820 int n, t;
822 for (t = 0; t < g->p.nr_threads; t++) {
823 struct thread_data *td;
824 int task_nr;
825 int node;
827 task_nr = process_nr*g->p.nr_threads + t;
828 td = g->threads + task_nr;
830 node = numa_node_of_cpu(td->curr_cpu);
831 if (node < 0) /* curr_cpu was likely still -1 */
832 return 0;
834 node_present[node] = 1;
837 nodes = 0;
839 for (n = 0; n < MAX_NR_NODES; n++)
840 nodes += node_present[n];
842 return nodes;
846 * Count the number of distinct process-threads a node contains.
848 * A count of 1 means that the node contains only a single
849 * process. If all nodes on the system contain at most one
850 * process then we are well-converged.
852 static int count_node_processes(int node)
854 int processes = 0;
855 int t, p;
857 for (p = 0; p < g->p.nr_proc; p++) {
858 for (t = 0; t < g->p.nr_threads; t++) {
859 struct thread_data *td;
860 int task_nr;
861 int n;
863 task_nr = p*g->p.nr_threads + t;
864 td = g->threads + task_nr;
866 n = numa_node_of_cpu(td->curr_cpu);
867 if (n == node) {
868 processes++;
869 break;
874 return processes;
877 static void calc_convergence_compression(int *strong)
879 unsigned int nodes_min, nodes_max;
880 int p;
882 nodes_min = -1;
883 nodes_max = 0;
885 for (p = 0; p < g->p.nr_proc; p++) {
886 unsigned int nodes = count_process_nodes(p);
888 if (!nodes) {
889 *strong = 0;
890 return;
893 nodes_min = min(nodes, nodes_min);
894 nodes_max = max(nodes, nodes_max);
897 /* Strong convergence: all threads compress on a single node: */
898 if (nodes_min == 1 && nodes_max == 1) {
899 *strong = 1;
900 } else {
901 *strong = 0;
902 tprintf(" {%d-%d}", nodes_min, nodes_max);
906 static void calc_convergence(double runtime_ns_max, double *convergence)
908 unsigned int loops_done_min, loops_done_max;
909 int process_groups;
910 int nodes[MAX_NR_NODES];
911 int distance;
912 int nr_min;
913 int nr_max;
914 int strong;
915 int sum;
916 int nr;
917 int node;
918 int cpu;
919 int t;
921 if (!g->p.show_convergence && !g->p.measure_convergence)
922 return;
924 for (node = 0; node < g->p.nr_nodes; node++)
925 nodes[node] = 0;
927 loops_done_min = -1;
928 loops_done_max = 0;
930 for (t = 0; t < g->p.nr_tasks; t++) {
931 struct thread_data *td = g->threads + t;
932 unsigned int loops_done;
934 cpu = td->curr_cpu;
936 /* Not all threads have written it yet: */
937 if (cpu < 0)
938 continue;
940 node = numa_node_of_cpu(cpu);
942 nodes[node]++;
944 loops_done = td->loops_done;
945 loops_done_min = min(loops_done, loops_done_min);
946 loops_done_max = max(loops_done, loops_done_max);
949 nr_max = 0;
950 nr_min = g->p.nr_tasks;
951 sum = 0;
953 for (node = 0; node < g->p.nr_nodes; node++) {
954 nr = nodes[node];
955 nr_min = min(nr, nr_min);
956 nr_max = max(nr, nr_max);
957 sum += nr;
959 BUG_ON(nr_min > nr_max);
961 BUG_ON(sum > g->p.nr_tasks);
963 if (0 && (sum < g->p.nr_tasks))
964 return;
967 * Count the number of distinct process groups present
968 * on nodes - when we are converged this will decrease
969 * to g->p.nr_proc:
971 process_groups = 0;
973 for (node = 0; node < g->p.nr_nodes; node++) {
974 int processes = count_node_processes(node);
976 nr = nodes[node];
977 tprintf(" %2d/%-2d", nr, processes);
979 process_groups += processes;
982 distance = nr_max - nr_min;
984 tprintf(" [%2d/%-2d]", distance, process_groups);
986 tprintf(" l:%3d-%-3d (%3d)",
987 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
989 if (loops_done_min && loops_done_max) {
990 double skew = 1.0 - (double)loops_done_min/loops_done_max;
992 tprintf(" [%4.1f%%]", skew * 100.0);
995 calc_convergence_compression(&strong);
997 if (strong && process_groups == g->p.nr_proc) {
998 if (!*convergence) {
999 *convergence = runtime_ns_max;
1000 tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1001 if (g->p.measure_convergence) {
1002 g->all_converged = true;
1003 g->stop_work = true;
1006 } else {
1007 if (*convergence) {
1008 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1009 *convergence = 0;
1011 tprintf("\n");
1015 static void show_summary(double runtime_ns_max, int l, double *convergence)
1017 tprintf("\r # %5.1f%% [%.1f mins]",
1018 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1020 calc_convergence(runtime_ns_max, convergence);
1022 if (g->p.show_details >= 0)
1023 fflush(stdout);
1026 static void *worker_thread(void *__tdata)
1028 struct thread_data *td = __tdata;
1029 struct timeval start0, start, stop, diff;
1030 int process_nr = td->process_nr;
1031 int thread_nr = td->thread_nr;
1032 unsigned long last_perturbance;
1033 int task_nr = td->task_nr;
1034 int details = g->p.show_details;
1035 int first_task, last_task;
1036 double convergence = 0;
1037 u64 val = td->val;
1038 double runtime_ns_max;
1039 u8 *global_data;
1040 u8 *process_data;
1041 u8 *thread_data;
1042 u64 bytes_done;
1043 long work_done;
1044 u32 l;
1046 bind_to_cpumask(td->bind_cpumask);
1047 bind_to_memnode(td->bind_node);
1049 set_taskname("thread %d/%d", process_nr, thread_nr);
1051 global_data = g->data;
1052 process_data = td->process_data;
1053 thread_data = setup_private_data(g->p.bytes_thread);
1055 bytes_done = 0;
1057 last_task = 0;
1058 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1059 last_task = 1;
1061 first_task = 0;
1062 if (process_nr == 0 && thread_nr == 0)
1063 first_task = 1;
1065 if (details >= 2) {
1066 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1067 process_nr, thread_nr, global_data, process_data, thread_data);
1070 if (g->p.serialize_startup) {
1071 pthread_mutex_lock(&g->startup_mutex);
1072 g->nr_tasks_started++;
1073 pthread_mutex_unlock(&g->startup_mutex);
1075 /* Here we will wait for the main process to start us all at once: */
1076 pthread_mutex_lock(&g->start_work_mutex);
1077 g->nr_tasks_working++;
1079 /* Last one wake the main process: */
1080 if (g->nr_tasks_working == g->p.nr_tasks)
1081 pthread_mutex_unlock(&g->startup_done_mutex);
1083 pthread_mutex_unlock(&g->start_work_mutex);
1086 gettimeofday(&start0, NULL);
1088 start = stop = start0;
1089 last_perturbance = start.tv_sec;
1091 for (l = 0; l < g->p.nr_loops; l++) {
1092 start = stop;
1094 if (g->stop_work)
1095 break;
1097 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1098 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1099 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1101 if (g->p.sleep_usecs) {
1102 pthread_mutex_lock(td->process_lock);
1103 usleep(g->p.sleep_usecs);
1104 pthread_mutex_unlock(td->process_lock);
1107 * Amount of work to be done under a process-global lock:
1109 if (g->p.bytes_process_locked) {
1110 pthread_mutex_lock(td->process_lock);
1111 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1112 pthread_mutex_unlock(td->process_lock);
1115 work_done = g->p.bytes_global + g->p.bytes_process +
1116 g->p.bytes_process_locked + g->p.bytes_thread;
1118 update_curr_cpu(task_nr, work_done);
1119 bytes_done += work_done;
1121 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1122 continue;
1124 td->loops_done = l;
1126 gettimeofday(&stop, NULL);
1128 /* Check whether our max runtime timed out: */
1129 if (g->p.nr_secs) {
1130 timersub(&stop, &start0, &diff);
1131 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1132 g->stop_work = true;
1133 break;
1137 /* Update the summary at most once per second: */
1138 if (start.tv_sec == stop.tv_sec)
1139 continue;
1142 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1143 * by migrating to CPU#0:
1145 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1146 cpu_set_t orig_mask;
1147 int target_cpu;
1148 int this_cpu;
1150 last_perturbance = stop.tv_sec;
1153 * Depending on where we are running, move into
1154 * the other half of the system, to create some
1155 * real disturbance:
1157 this_cpu = g->threads[task_nr].curr_cpu;
1158 if (this_cpu < g->p.nr_cpus/2)
1159 target_cpu = g->p.nr_cpus-1;
1160 else
1161 target_cpu = 0;
1163 orig_mask = bind_to_cpu(target_cpu);
1165 /* Here we are running on the target CPU already */
1166 if (details >= 1)
1167 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1169 bind_to_cpumask(orig_mask);
1172 if (details >= 3) {
1173 timersub(&stop, &start, &diff);
1174 runtime_ns_max = diff.tv_sec * 1000000000;
1175 runtime_ns_max += diff.tv_usec * 1000;
1177 if (details >= 0) {
1178 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1179 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1181 fflush(stdout);
1183 if (!last_task)
1184 continue;
1186 timersub(&stop, &start0, &diff);
1187 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1188 runtime_ns_max += diff.tv_usec * 1000ULL;
1190 show_summary(runtime_ns_max, l, &convergence);
1193 gettimeofday(&stop, NULL);
1194 timersub(&stop, &start0, &diff);
1195 td->runtime_ns = diff.tv_sec * 1000000000ULL;
1196 td->runtime_ns += diff.tv_usec * 1000ULL;
1198 free_data(thread_data, g->p.bytes_thread);
1200 pthread_mutex_lock(&g->stop_work_mutex);
1201 g->bytes_done += bytes_done;
1202 pthread_mutex_unlock(&g->stop_work_mutex);
1204 return NULL;
1208 * A worker process starts a couple of threads:
1210 static void worker_process(int process_nr)
1212 pthread_mutex_t process_lock;
1213 struct thread_data *td;
1214 pthread_t *pthreads;
1215 u8 *process_data;
1216 int task_nr;
1217 int ret;
1218 int t;
1220 pthread_mutex_init(&process_lock, NULL);
1221 set_taskname("process %d", process_nr);
1224 * Pick up the memory policy and the CPU binding of our first thread,
1225 * so that we initialize memory accordingly:
1227 task_nr = process_nr*g->p.nr_threads;
1228 td = g->threads + task_nr;
1230 bind_to_memnode(td->bind_node);
1231 bind_to_cpumask(td->bind_cpumask);
1233 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1234 process_data = setup_private_data(g->p.bytes_process);
1236 if (g->p.show_details >= 3) {
1237 printf(" # process %2d global mem: %p, process mem: %p\n",
1238 process_nr, g->data, process_data);
1241 for (t = 0; t < g->p.nr_threads; t++) {
1242 task_nr = process_nr*g->p.nr_threads + t;
1243 td = g->threads + task_nr;
1245 td->process_data = process_data;
1246 td->process_nr = process_nr;
1247 td->thread_nr = t;
1248 td->task_nr = task_nr;
1249 td->val = rand();
1250 td->curr_cpu = -1;
1251 td->process_lock = &process_lock;
1253 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1254 BUG_ON(ret);
1257 for (t = 0; t < g->p.nr_threads; t++) {
1258 ret = pthread_join(pthreads[t], NULL);
1259 BUG_ON(ret);
1262 free_data(process_data, g->p.bytes_process);
1263 free(pthreads);
1266 static void print_summary(void)
1268 if (g->p.show_details < 0)
1269 return;
1271 printf("\n ###\n");
1272 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1273 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1274 printf(" # %5dx %5ldMB global shared mem operations\n",
1275 g->p.nr_loops, g->p.bytes_global/1024/1024);
1276 printf(" # %5dx %5ldMB process shared mem operations\n",
1277 g->p.nr_loops, g->p.bytes_process/1024/1024);
1278 printf(" # %5dx %5ldMB thread local mem operations\n",
1279 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1281 printf(" ###\n");
1283 printf("\n ###\n"); fflush(stdout);
1286 static void init_thread_data(void)
1288 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1289 int t;
1291 g->threads = zalloc_shared_data(size);
1293 for (t = 0; t < g->p.nr_tasks; t++) {
1294 struct thread_data *td = g->threads + t;
1295 int cpu;
1297 /* Allow all nodes by default: */
1298 td->bind_node = -1;
1300 /* Allow all CPUs by default: */
1301 CPU_ZERO(&td->bind_cpumask);
1302 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1303 CPU_SET(cpu, &td->bind_cpumask);
1307 static void deinit_thread_data(void)
1309 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1311 free_data(g->threads, size);
1314 static int init(void)
1316 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1318 /* Copy over options: */
1319 g->p = p0;
1321 g->p.nr_cpus = numa_num_configured_cpus();
1323 g->p.nr_nodes = numa_max_node() + 1;
1325 /* char array in count_process_nodes(): */
1326 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1328 if (g->p.show_quiet && !g->p.show_details)
1329 g->p.show_details = -1;
1331 /* Some memory should be specified: */
1332 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1333 return -1;
1335 if (g->p.mb_global_str) {
1336 g->p.mb_global = atof(g->p.mb_global_str);
1337 BUG_ON(g->p.mb_global < 0);
1340 if (g->p.mb_proc_str) {
1341 g->p.mb_proc = atof(g->p.mb_proc_str);
1342 BUG_ON(g->p.mb_proc < 0);
1345 if (g->p.mb_proc_locked_str) {
1346 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1347 BUG_ON(g->p.mb_proc_locked < 0);
1348 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1351 if (g->p.mb_thread_str) {
1352 g->p.mb_thread = atof(g->p.mb_thread_str);
1353 BUG_ON(g->p.mb_thread < 0);
1356 BUG_ON(g->p.nr_threads <= 0);
1357 BUG_ON(g->p.nr_proc <= 0);
1359 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1361 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1362 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1363 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1364 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1366 g->data = setup_shared_data(g->p.bytes_global);
1368 /* Startup serialization: */
1369 init_global_mutex(&g->start_work_mutex);
1370 init_global_mutex(&g->startup_mutex);
1371 init_global_mutex(&g->startup_done_mutex);
1372 init_global_mutex(&g->stop_work_mutex);
1374 init_thread_data();
1376 tprintf("#\n");
1377 if (parse_setup_cpu_list() || parse_setup_node_list())
1378 return -1;
1379 tprintf("#\n");
1381 print_summary();
1383 return 0;
1386 static void deinit(void)
1388 free_data(g->data, g->p.bytes_global);
1389 g->data = NULL;
1391 deinit_thread_data();
1393 free_data(g, sizeof(*g));
1394 g = NULL;
1398 * Print a short or long result, depending on the verbosity setting:
1400 static void print_res(const char *name, double val,
1401 const char *txt_unit, const char *txt_short, const char *txt_long)
1403 if (!name)
1404 name = "main,";
1406 if (!g->p.show_quiet)
1407 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1408 else
1409 printf(" %14.3f %s\n", val, txt_long);
1412 static int __bench_numa(const char *name)
1414 struct timeval start, stop, diff;
1415 u64 runtime_ns_min, runtime_ns_sum;
1416 pid_t *pids, pid, wpid;
1417 double delta_runtime;
1418 double runtime_avg;
1419 double runtime_sec_max;
1420 double runtime_sec_min;
1421 int wait_stat;
1422 double bytes;
1423 int i, t;
1425 if (init())
1426 return -1;
1428 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1429 pid = -1;
1431 /* All threads try to acquire it, this way we can wait for them to start up: */
1432 pthread_mutex_lock(&g->start_work_mutex);
1434 if (g->p.serialize_startup) {
1435 tprintf(" #\n");
1436 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1439 gettimeofday(&start, NULL);
1441 for (i = 0; i < g->p.nr_proc; i++) {
1442 pid = fork();
1443 dprintf(" # process %2d: PID %d\n", i, pid);
1445 BUG_ON(pid < 0);
1446 if (!pid) {
1447 /* Child process: */
1448 worker_process(i);
1450 exit(0);
1452 pids[i] = pid;
1455 /* Wait for all the threads to start up: */
1456 while (g->nr_tasks_started != g->p.nr_tasks)
1457 usleep(1000);
1459 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1461 if (g->p.serialize_startup) {
1462 double startup_sec;
1464 pthread_mutex_lock(&g->startup_done_mutex);
1466 /* This will start all threads: */
1467 pthread_mutex_unlock(&g->start_work_mutex);
1469 /* This mutex is locked - the last started thread will wake us: */
1470 pthread_mutex_lock(&g->startup_done_mutex);
1472 gettimeofday(&stop, NULL);
1474 timersub(&stop, &start, &diff);
1476 startup_sec = diff.tv_sec * 1000000000.0;
1477 startup_sec += diff.tv_usec * 1000.0;
1478 startup_sec /= 1e9;
1480 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1481 tprintf(" #\n");
1483 start = stop;
1484 pthread_mutex_unlock(&g->startup_done_mutex);
1485 } else {
1486 gettimeofday(&start, NULL);
1489 /* Parent process: */
1492 for (i = 0; i < g->p.nr_proc; i++) {
1493 wpid = waitpid(pids[i], &wait_stat, 0);
1494 BUG_ON(wpid < 0);
1495 BUG_ON(!WIFEXITED(wait_stat));
1499 runtime_ns_sum = 0;
1500 runtime_ns_min = -1LL;
1502 for (t = 0; t < g->p.nr_tasks; t++) {
1503 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1505 runtime_ns_sum += thread_runtime_ns;
1506 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1509 gettimeofday(&stop, NULL);
1510 timersub(&stop, &start, &diff);
1512 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1514 tprintf("\n ###\n");
1515 tprintf("\n");
1517 runtime_sec_max = diff.tv_sec * 1000000000.0;
1518 runtime_sec_max += diff.tv_usec * 1000.0;
1519 runtime_sec_max /= 1e9;
1521 runtime_sec_min = runtime_ns_min/1e9;
1523 bytes = g->bytes_done;
1524 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1526 if (g->p.measure_convergence) {
1527 print_res(name, runtime_sec_max,
1528 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1531 print_res(name, runtime_sec_max,
1532 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1534 print_res(name, runtime_sec_min,
1535 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1537 print_res(name, runtime_avg,
1538 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1540 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1541 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1542 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1544 print_res(name, bytes / g->p.nr_tasks / 1e9,
1545 "GB,", "data/thread", "GB data processed, per thread");
1547 print_res(name, bytes / 1e9,
1548 "GB,", "data-total", "GB data processed, total");
1550 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1551 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1553 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1554 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1556 print_res(name, bytes / runtime_sec_max / 1e9,
1557 "GB/sec,", "total-speed", "GB/sec total speed");
1559 free(pids);
1561 deinit();
1563 return 0;
1566 #define MAX_ARGS 50
1568 static int command_size(const char **argv)
1570 int size = 0;
1572 while (*argv) {
1573 size++;
1574 argv++;
1577 BUG_ON(size >= MAX_ARGS);
1579 return size;
1582 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1584 int i;
1586 printf("\n # Running %s \"perf bench numa", name);
1588 for (i = 0; i < argc; i++)
1589 printf(" %s", argv[i]);
1591 printf("\"\n");
1593 memset(p, 0, sizeof(*p));
1595 /* Initialize nonzero defaults: */
1597 p->serialize_startup = 1;
1598 p->data_reads = true;
1599 p->data_writes = true;
1600 p->data_backwards = true;
1601 p->data_rand_walk = true;
1602 p->nr_loops = -1;
1603 p->init_random = true;
1604 p->mb_global_str = "1";
1605 p->nr_proc = 1;
1606 p->nr_threads = 1;
1607 p->nr_secs = 5;
1608 p->run_all = argc == 1;
1611 static int run_bench_numa(const char *name, const char **argv)
1613 int argc = command_size(argv);
1615 init_params(&p0, name, argc, argv);
1616 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1617 if (argc)
1618 goto err;
1620 if (__bench_numa(name))
1621 goto err;
1623 return 0;
1625 err:
1626 return -1;
1629 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1630 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1632 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1633 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1635 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1636 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1639 * The built-in test-suite executed by "perf bench numa -a".
1641 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1643 static const char *tests[][MAX_ARGS] = {
1644 /* Basic single-stream NUMA bandwidth measurements: */
1645 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1646 "-C" , "0", "-M", "0", OPT_BW_RAM },
1647 { "RAM-bw-local-NOTHP,",
1648 "mem", "-p", "1", "-t", "1", "-P", "1024",
1649 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1650 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1651 "-C" , "0", "-M", "1", OPT_BW_RAM },
1653 /* 2-stream NUMA bandwidth measurements: */
1654 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1655 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1656 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1657 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1659 /* Cross-stream NUMA bandwidth measurement: */
1660 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1661 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1663 /* Convergence latency measurements: */
1664 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1665 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1666 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1667 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1668 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1669 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1670 { " 4x4-convergence-NOTHP,",
1671 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1672 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1673 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1674 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1675 { " 8x4-convergence-NOTHP,",
1676 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1677 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1678 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1679 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1680 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1681 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1683 /* Various NUMA process/thread layout bandwidth measurements: */
1684 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1685 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1686 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1687 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1688 { " 8x1-bw-process-NOTHP,",
1689 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1690 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1692 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1693 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1694 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1695 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1697 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1698 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1699 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1700 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1701 { " 4x8-bw-thread-NOTHP,",
1702 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1703 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1704 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1706 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1707 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1709 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1710 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1711 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1712 { "numa01-bw-thread-NOTHP,",
1713 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1716 static int bench_all(void)
1718 int nr = ARRAY_SIZE(tests);
1719 int ret;
1720 int i;
1722 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1723 BUG_ON(ret < 0);
1725 for (i = 0; i < nr; i++) {
1726 run_bench_numa(tests[i][0], tests[i] + 1);
1729 printf("\n");
1731 return 0;
1734 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1736 init_params(&p0, "main,", argc, argv);
1737 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1738 if (argc)
1739 goto err;
1741 if (p0.run_all)
1742 return bench_all();
1744 if (__bench_numa(NULL))
1745 goto err;
1747 return 0;
1749 err:
1750 usage_with_options(numa_usage, options);
1751 return -1;