2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 static unsigned int halt_poll_ns
;
70 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
78 DEFINE_SPINLOCK(kvm_lock
);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
82 static cpumask_var_t cpus_hardware_enabled
;
83 static int kvm_usage_count
;
84 static atomic_t hardware_enable_failed
;
86 struct kmem_cache
*kvm_vcpu_cache
;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
89 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
91 struct dentry
*kvm_debugfs_dir
;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
94 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
103 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
105 static void kvm_release_pfn_dirty(pfn_t pfn
);
106 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
107 struct kvm_memory_slot
*memslot
, gfn_t gfn
);
109 __visible
bool kvm_rebooting
;
110 EXPORT_SYMBOL_GPL(kvm_rebooting
);
112 static bool largepages_enabled
= true;
114 bool kvm_is_reserved_pfn(pfn_t pfn
)
117 return PageReserved(pfn_to_page(pfn
));
123 * Switches to specified vcpu, until a matching vcpu_put()
125 int vcpu_load(struct kvm_vcpu
*vcpu
)
129 if (mutex_lock_killable(&vcpu
->mutex
))
132 preempt_notifier_register(&vcpu
->preempt_notifier
);
133 kvm_arch_vcpu_load(vcpu
, cpu
);
138 void vcpu_put(struct kvm_vcpu
*vcpu
)
141 kvm_arch_vcpu_put(vcpu
);
142 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
144 mutex_unlock(&vcpu
->mutex
);
147 static void ack_flush(void *_completed
)
151 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
156 struct kvm_vcpu
*vcpu
;
158 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
161 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
162 kvm_make_request(req
, vcpu
);
165 /* Set ->requests bit before we read ->mode */
168 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
169 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
170 cpumask_set_cpu(cpu
, cpus
);
172 if (unlikely(cpus
== NULL
))
173 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
174 else if (!cpumask_empty(cpus
))
175 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
179 free_cpumask_var(cpus
);
183 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
186 long dirty_count
= kvm
->tlbs_dirty
;
189 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
190 ++kvm
->stat
.remote_tlb_flush
;
191 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
196 void kvm_reload_remote_mmus(struct kvm
*kvm
)
198 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
201 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
203 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
206 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
208 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
211 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
216 mutex_init(&vcpu
->mutex
);
221 init_waitqueue_head(&vcpu
->wq
);
222 kvm_async_pf_vcpu_init(vcpu
);
224 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
229 vcpu
->run
= page_address(page
);
231 kvm_vcpu_set_in_spin_loop(vcpu
, false);
232 kvm_vcpu_set_dy_eligible(vcpu
, false);
233 vcpu
->preempted
= false;
235 r
= kvm_arch_vcpu_init(vcpu
);
241 free_page((unsigned long)vcpu
->run
);
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
247 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
250 kvm_arch_vcpu_uninit(vcpu
);
251 free_page((unsigned long)vcpu
->run
);
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
258 return container_of(mn
, struct kvm
, mmu_notifier
);
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
262 struct mm_struct
*mm
,
263 unsigned long address
)
265 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
266 int need_tlb_flush
, idx
;
269 * When ->invalidate_page runs, the linux pte has been zapped
270 * already but the page is still allocated until
271 * ->invalidate_page returns. So if we increase the sequence
272 * here the kvm page fault will notice if the spte can't be
273 * established because the page is going to be freed. If
274 * instead the kvm page fault establishes the spte before
275 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * The sequence increase only need to be seen at spin_unlock
279 * time, and not at spin_lock time.
281 * Increasing the sequence after the spin_unlock would be
282 * unsafe because the kvm page fault could then establish the
283 * pte after kvm_unmap_hva returned, without noticing the page
284 * is going to be freed.
286 idx
= srcu_read_lock(&kvm
->srcu
);
287 spin_lock(&kvm
->mmu_lock
);
289 kvm
->mmu_notifier_seq
++;
290 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
291 /* we've to flush the tlb before the pages can be freed */
293 kvm_flush_remote_tlbs(kvm
);
295 spin_unlock(&kvm
->mmu_lock
);
297 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
299 srcu_read_unlock(&kvm
->srcu
, idx
);
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
303 struct mm_struct
*mm
,
304 unsigned long address
,
307 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
310 idx
= srcu_read_lock(&kvm
->srcu
);
311 spin_lock(&kvm
->mmu_lock
);
312 kvm
->mmu_notifier_seq
++;
313 kvm_set_spte_hva(kvm
, address
, pte
);
314 spin_unlock(&kvm
->mmu_lock
);
315 srcu_read_unlock(&kvm
->srcu
, idx
);
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
319 struct mm_struct
*mm
,
323 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
324 int need_tlb_flush
= 0, idx
;
326 idx
= srcu_read_lock(&kvm
->srcu
);
327 spin_lock(&kvm
->mmu_lock
);
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
333 kvm
->mmu_notifier_count
++;
334 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
335 need_tlb_flush
|= kvm
->tlbs_dirty
;
336 /* we've to flush the tlb before the pages can be freed */
338 kvm_flush_remote_tlbs(kvm
);
340 spin_unlock(&kvm
->mmu_lock
);
341 srcu_read_unlock(&kvm
->srcu
, idx
);
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
345 struct mm_struct
*mm
,
349 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
351 spin_lock(&kvm
->mmu_lock
);
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
357 kvm
->mmu_notifier_seq
++;
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 kvm
->mmu_notifier_count
--;
365 spin_unlock(&kvm
->mmu_lock
);
367 BUG_ON(kvm
->mmu_notifier_count
< 0);
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
371 struct mm_struct
*mm
,
375 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
378 idx
= srcu_read_lock(&kvm
->srcu
);
379 spin_lock(&kvm
->mmu_lock
);
381 young
= kvm_age_hva(kvm
, start
, end
);
383 kvm_flush_remote_tlbs(kvm
);
385 spin_unlock(&kvm
->mmu_lock
);
386 srcu_read_unlock(&kvm
->srcu
, idx
);
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
392 struct mm_struct
*mm
,
393 unsigned long address
)
395 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
398 idx
= srcu_read_lock(&kvm
->srcu
);
399 spin_lock(&kvm
->mmu_lock
);
400 young
= kvm_test_age_hva(kvm
, address
);
401 spin_unlock(&kvm
->mmu_lock
);
402 srcu_read_unlock(&kvm
->srcu
, idx
);
407 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
408 struct mm_struct
*mm
)
410 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
413 idx
= srcu_read_lock(&kvm
->srcu
);
414 kvm_arch_flush_shadow_all(kvm
);
415 srcu_read_unlock(&kvm
->srcu
, idx
);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
419 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
420 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
421 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
422 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
423 .test_young
= kvm_mmu_notifier_test_young
,
424 .change_pte
= kvm_mmu_notifier_change_pte
,
425 .release
= kvm_mmu_notifier_release
,
428 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
430 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
431 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static void kvm_init_memslots_id(struct kvm
*kvm
)
446 struct kvm_memslots
*slots
= kvm
->memslots
;
448 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
449 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
452 static struct kvm
*kvm_create_vm(unsigned long type
)
455 struct kvm
*kvm
= kvm_arch_alloc_vm();
458 return ERR_PTR(-ENOMEM
);
460 r
= kvm_arch_init_vm(kvm
, type
);
462 goto out_err_no_disable
;
464 r
= hardware_enable_all();
466 goto out_err_no_disable
;
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
472 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
475 kvm
->memslots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
477 goto out_err_no_srcu
;
480 * Init kvm generation close to the maximum to easily test the
481 * code of handling generation number wrap-around.
483 kvm
->memslots
->generation
= -150;
485 kvm_init_memslots_id(kvm
);
486 if (init_srcu_struct(&kvm
->srcu
))
487 goto out_err_no_srcu
;
488 if (init_srcu_struct(&kvm
->irq_srcu
))
489 goto out_err_no_irq_srcu
;
490 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
491 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
497 spin_lock_init(&kvm
->mmu_lock
);
498 kvm
->mm
= current
->mm
;
499 atomic_inc(&kvm
->mm
->mm_count
);
500 kvm_eventfd_init(kvm
);
501 mutex_init(&kvm
->lock
);
502 mutex_init(&kvm
->irq_lock
);
503 mutex_init(&kvm
->slots_lock
);
504 atomic_set(&kvm
->users_count
, 1);
505 INIT_LIST_HEAD(&kvm
->devices
);
507 r
= kvm_init_mmu_notifier(kvm
);
511 spin_lock(&kvm_lock
);
512 list_add(&kvm
->vm_list
, &vm_list
);
513 spin_unlock(&kvm_lock
);
518 cleanup_srcu_struct(&kvm
->irq_srcu
);
520 cleanup_srcu_struct(&kvm
->srcu
);
522 hardware_disable_all();
524 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
525 kfree(kvm
->buses
[i
]);
526 kvfree(kvm
->memslots
);
527 kvm_arch_free_vm(kvm
);
532 * Avoid using vmalloc for a small buffer.
533 * Should not be used when the size is statically known.
535 void *kvm_kvzalloc(unsigned long size
)
537 if (size
> PAGE_SIZE
)
538 return vzalloc(size
);
540 return kzalloc(size
, GFP_KERNEL
);
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
545 if (!memslot
->dirty_bitmap
)
548 kvfree(memslot
->dirty_bitmap
);
549 memslot
->dirty_bitmap
= NULL
;
553 * Free any memory in @free but not in @dont.
555 static void kvm_free_physmem_slot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
556 struct kvm_memory_slot
*dont
)
558 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
559 kvm_destroy_dirty_bitmap(free
);
561 kvm_arch_free_memslot(kvm
, free
, dont
);
566 static void kvm_free_physmem(struct kvm
*kvm
)
568 struct kvm_memslots
*slots
= kvm
->memslots
;
569 struct kvm_memory_slot
*memslot
;
571 kvm_for_each_memslot(memslot
, slots
)
572 kvm_free_physmem_slot(kvm
, memslot
, NULL
);
574 kvfree(kvm
->memslots
);
577 static void kvm_destroy_devices(struct kvm
*kvm
)
579 struct list_head
*node
, *tmp
;
581 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
582 struct kvm_device
*dev
=
583 list_entry(node
, struct kvm_device
, vm_node
);
586 dev
->ops
->destroy(dev
);
590 static void kvm_destroy_vm(struct kvm
*kvm
)
593 struct mm_struct
*mm
= kvm
->mm
;
595 kvm_arch_sync_events(kvm
);
596 spin_lock(&kvm_lock
);
597 list_del(&kvm
->vm_list
);
598 spin_unlock(&kvm_lock
);
599 kvm_free_irq_routing(kvm
);
600 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
601 kvm_io_bus_destroy(kvm
->buses
[i
]);
602 kvm_coalesced_mmio_free(kvm
);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
606 kvm_arch_flush_shadow_all(kvm
);
608 kvm_arch_destroy_vm(kvm
);
609 kvm_destroy_devices(kvm
);
610 kvm_free_physmem(kvm
);
611 cleanup_srcu_struct(&kvm
->irq_srcu
);
612 cleanup_srcu_struct(&kvm
->srcu
);
613 kvm_arch_free_vm(kvm
);
614 hardware_disable_all();
618 void kvm_get_kvm(struct kvm
*kvm
)
620 atomic_inc(&kvm
->users_count
);
622 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
624 void kvm_put_kvm(struct kvm
*kvm
)
626 if (atomic_dec_and_test(&kvm
->users_count
))
629 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
632 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
634 struct kvm
*kvm
= filp
->private_data
;
636 kvm_irqfd_release(kvm
);
643 * Allocation size is twice as large as the actual dirty bitmap size.
644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
648 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
650 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
651 if (!memslot
->dirty_bitmap
)
658 * Insert memslot and re-sort memslots based on their GFN,
659 * so binary search could be used to lookup GFN.
660 * Sorting algorithm takes advantage of having initially
661 * sorted array and known changed memslot position.
663 static void update_memslots(struct kvm_memslots
*slots
,
664 struct kvm_memory_slot
*new)
667 int i
= slots
->id_to_index
[id
];
668 struct kvm_memory_slot
*mslots
= slots
->memslots
;
670 WARN_ON(mslots
[i
].id
!= id
);
672 WARN_ON(!mslots
[i
].npages
);
675 if (mslots
[i
].npages
)
678 if (!mslots
[i
].npages
)
682 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
683 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
684 if (!mslots
[i
+ 1].npages
)
686 mslots
[i
] = mslots
[i
+ 1];
687 slots
->id_to_index
[mslots
[i
].id
] = i
;
692 * The ">=" is needed when creating a slot with base_gfn == 0,
693 * so that it moves before all those with base_gfn == npages == 0.
695 * On the other hand, if new->npages is zero, the above loop has
696 * already left i pointing to the beginning of the empty part of
697 * mslots, and the ">=" would move the hole backwards in this
698 * case---which is wrong. So skip the loop when deleting a slot.
702 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
703 mslots
[i
] = mslots
[i
- 1];
704 slots
->id_to_index
[mslots
[i
].id
] = i
;
708 WARN_ON_ONCE(i
!= slots
->used_slots
);
711 slots
->id_to_index
[mslots
[i
].id
] = i
;
714 static int check_memory_region_flags(struct kvm_userspace_memory_region
*mem
)
716 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
718 #ifdef __KVM_HAVE_READONLY_MEM
719 valid_flags
|= KVM_MEM_READONLY
;
722 if (mem
->flags
& ~valid_flags
)
728 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
729 struct kvm_memslots
*slots
)
731 struct kvm_memslots
*old_memslots
= kvm
->memslots
;
734 * Set the low bit in the generation, which disables SPTE caching
735 * until the end of synchronize_srcu_expedited.
737 WARN_ON(old_memslots
->generation
& 1);
738 slots
->generation
= old_memslots
->generation
+ 1;
740 rcu_assign_pointer(kvm
->memslots
, slots
);
741 synchronize_srcu_expedited(&kvm
->srcu
);
744 * Increment the new memslot generation a second time. This prevents
745 * vm exits that race with memslot updates from caching a memslot
746 * generation that will (potentially) be valid forever.
750 kvm_arch_memslots_updated(kvm
);
756 * Allocate some memory and give it an address in the guest physical address
759 * Discontiguous memory is allowed, mostly for framebuffers.
761 * Must be called holding kvm->slots_lock for write.
763 int __kvm_set_memory_region(struct kvm
*kvm
,
764 struct kvm_userspace_memory_region
*mem
)
768 unsigned long npages
;
769 struct kvm_memory_slot
*slot
;
770 struct kvm_memory_slot old
, new;
771 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
772 enum kvm_mr_change change
;
774 r
= check_memory_region_flags(mem
);
779 /* General sanity checks */
780 if (mem
->memory_size
& (PAGE_SIZE
- 1))
782 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
784 /* We can read the guest memory with __xxx_user() later on. */
785 if ((mem
->slot
< KVM_USER_MEM_SLOTS
) &&
786 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
787 !access_ok(VERIFY_WRITE
,
788 (void __user
*)(unsigned long)mem
->userspace_addr
,
791 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
793 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
796 slot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
797 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
798 npages
= mem
->memory_size
>> PAGE_SHIFT
;
800 if (npages
> KVM_MEM_MAX_NR_PAGES
)
804 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
809 new.base_gfn
= base_gfn
;
811 new.flags
= mem
->flags
;
815 change
= KVM_MR_CREATE
;
816 else { /* Modify an existing slot. */
817 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
818 (npages
!= old
.npages
) ||
819 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
822 if (base_gfn
!= old
.base_gfn
)
823 change
= KVM_MR_MOVE
;
824 else if (new.flags
!= old
.flags
)
825 change
= KVM_MR_FLAGS_ONLY
;
826 else { /* Nothing to change. */
831 } else if (old
.npages
) {
832 change
= KVM_MR_DELETE
;
833 } else /* Modify a non-existent slot: disallowed. */
836 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
837 /* Check for overlaps */
839 kvm_for_each_memslot(slot
, kvm
->memslots
) {
840 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
841 (slot
->id
== mem
->slot
))
843 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
844 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
849 /* Free page dirty bitmap if unneeded */
850 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
851 new.dirty_bitmap
= NULL
;
854 if (change
== KVM_MR_CREATE
) {
855 new.userspace_addr
= mem
->userspace_addr
;
857 if (kvm_arch_create_memslot(kvm
, &new, npages
))
861 /* Allocate page dirty bitmap if needed */
862 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
863 if (kvm_create_dirty_bitmap(&new) < 0)
867 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
870 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
872 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
873 slot
= id_to_memslot(slots
, mem
->slot
);
874 slot
->flags
|= KVM_MEMSLOT_INVALID
;
876 old_memslots
= install_new_memslots(kvm
, slots
);
878 /* slot was deleted or moved, clear iommu mapping */
879 kvm_iommu_unmap_pages(kvm
, &old
);
880 /* From this point no new shadow pages pointing to a deleted,
881 * or moved, memslot will be created.
883 * validation of sp->gfn happens in:
884 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
885 * - kvm_is_visible_gfn (mmu_check_roots)
887 kvm_arch_flush_shadow_memslot(kvm
, slot
);
890 * We can re-use the old_memslots from above, the only difference
891 * from the currently installed memslots is the invalid flag. This
892 * will get overwritten by update_memslots anyway.
894 slots
= old_memslots
;
897 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
901 /* actual memory is freed via old in kvm_free_physmem_slot below */
902 if (change
== KVM_MR_DELETE
) {
903 new.dirty_bitmap
= NULL
;
904 memset(&new.arch
, 0, sizeof(new.arch
));
907 update_memslots(slots
, &new);
908 old_memslots
= install_new_memslots(kvm
, slots
);
910 kvm_arch_commit_memory_region(kvm
, mem
, &old
, change
);
912 kvm_free_physmem_slot(kvm
, &old
, &new);
913 kvfree(old_memslots
);
916 * IOMMU mapping: New slots need to be mapped. Old slots need to be
917 * un-mapped and re-mapped if their base changes. Since base change
918 * unmapping is handled above with slot deletion, mapping alone is
919 * needed here. Anything else the iommu might care about for existing
920 * slots (size changes, userspace addr changes and read-only flag
921 * changes) is disallowed above, so any other attribute changes getting
922 * here can be skipped.
924 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
925 r
= kvm_iommu_map_pages(kvm
, &new);
934 kvm_free_physmem_slot(kvm
, &new, &old
);
938 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
940 int kvm_set_memory_region(struct kvm
*kvm
,
941 struct kvm_userspace_memory_region
*mem
)
945 mutex_lock(&kvm
->slots_lock
);
946 r
= __kvm_set_memory_region(kvm
, mem
);
947 mutex_unlock(&kvm
->slots_lock
);
950 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
952 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
953 struct kvm_userspace_memory_region
*mem
)
955 if (mem
->slot
>= KVM_USER_MEM_SLOTS
)
957 return kvm_set_memory_region(kvm
, mem
);
960 int kvm_get_dirty_log(struct kvm
*kvm
,
961 struct kvm_dirty_log
*log
, int *is_dirty
)
963 struct kvm_memory_slot
*memslot
;
966 unsigned long any
= 0;
969 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
972 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
974 if (!memslot
->dirty_bitmap
)
977 n
= kvm_dirty_bitmap_bytes(memslot
);
979 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
980 any
= memslot
->dirty_bitmap
[i
];
983 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
993 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
995 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
997 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
998 * are dirty write protect them for next write.
999 * @kvm: pointer to kvm instance
1000 * @log: slot id and address to which we copy the log
1001 * @is_dirty: flag set if any page is dirty
1003 * We need to keep it in mind that VCPU threads can write to the bitmap
1004 * concurrently. So, to avoid losing track of dirty pages we keep the
1007 * 1. Take a snapshot of the bit and clear it if needed.
1008 * 2. Write protect the corresponding page.
1009 * 3. Copy the snapshot to the userspace.
1010 * 4. Upon return caller flushes TLB's if needed.
1012 * Between 2 and 4, the guest may write to the page using the remaining TLB
1013 * entry. This is not a problem because the page is reported dirty using
1014 * the snapshot taken before and step 4 ensures that writes done after
1015 * exiting to userspace will be logged for the next call.
1018 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1019 struct kvm_dirty_log
*log
, bool *is_dirty
)
1021 struct kvm_memory_slot
*memslot
;
1024 unsigned long *dirty_bitmap
;
1025 unsigned long *dirty_bitmap_buffer
;
1028 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
1031 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
1033 dirty_bitmap
= memslot
->dirty_bitmap
;
1038 n
= kvm_dirty_bitmap_bytes(memslot
);
1040 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1041 memset(dirty_bitmap_buffer
, 0, n
);
1043 spin_lock(&kvm
->mmu_lock
);
1045 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1049 if (!dirty_bitmap
[i
])
1054 mask
= xchg(&dirty_bitmap
[i
], 0);
1055 dirty_bitmap_buffer
[i
] = mask
;
1058 offset
= i
* BITS_PER_LONG
;
1059 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1064 spin_unlock(&kvm
->mmu_lock
);
1067 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1074 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1077 bool kvm_largepages_enabled(void)
1079 return largepages_enabled
;
1082 void kvm_disable_largepages(void)
1084 largepages_enabled
= false;
1086 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1088 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1090 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1092 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1094 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1096 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1098 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1099 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1104 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1106 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1108 struct vm_area_struct
*vma
;
1109 unsigned long addr
, size
;
1113 addr
= gfn_to_hva(kvm
, gfn
);
1114 if (kvm_is_error_hva(addr
))
1117 down_read(¤t
->mm
->mmap_sem
);
1118 vma
= find_vma(current
->mm
, addr
);
1122 size
= vma_kernel_pagesize(vma
);
1125 up_read(¤t
->mm
->mmap_sem
);
1130 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1132 return slot
->flags
& KVM_MEM_READONLY
;
1135 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1136 gfn_t
*nr_pages
, bool write
)
1138 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1139 return KVM_HVA_ERR_BAD
;
1141 if (memslot_is_readonly(slot
) && write
)
1142 return KVM_HVA_ERR_RO_BAD
;
1145 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1147 return __gfn_to_hva_memslot(slot
, gfn
);
1150 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1153 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1156 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1159 return gfn_to_hva_many(slot
, gfn
, NULL
);
1161 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1163 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1165 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1167 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1170 * If writable is set to false, the hva returned by this function is only
1171 * allowed to be read.
1173 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1174 gfn_t gfn
, bool *writable
)
1176 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1178 if (!kvm_is_error_hva(hva
) && writable
)
1179 *writable
= !memslot_is_readonly(slot
);
1184 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1186 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1188 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1191 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1192 unsigned long start
, int write
, struct page
**page
)
1194 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1197 flags
|= FOLL_WRITE
;
1199 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1202 static inline int check_user_page_hwpoison(unsigned long addr
)
1204 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1206 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1207 flags
, NULL
, NULL
, NULL
);
1208 return rc
== -EHWPOISON
;
1212 * The atomic path to get the writable pfn which will be stored in @pfn,
1213 * true indicates success, otherwise false is returned.
1215 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1216 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1218 struct page
*page
[1];
1221 if (!(async
|| atomic
))
1225 * Fast pin a writable pfn only if it is a write fault request
1226 * or the caller allows to map a writable pfn for a read fault
1229 if (!(write_fault
|| writable
))
1232 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1234 *pfn
= page_to_pfn(page
[0]);
1245 * The slow path to get the pfn of the specified host virtual address,
1246 * 1 indicates success, -errno is returned if error is detected.
1248 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1249 bool *writable
, pfn_t
*pfn
)
1251 struct page
*page
[1];
1257 *writable
= write_fault
;
1260 down_read(¤t
->mm
->mmap_sem
);
1261 npages
= get_user_page_nowait(current
, current
->mm
,
1262 addr
, write_fault
, page
);
1263 up_read(¤t
->mm
->mmap_sem
);
1265 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1266 write_fault
, 0, page
,
1267 FOLL_TOUCH
|FOLL_HWPOISON
);
1271 /* map read fault as writable if possible */
1272 if (unlikely(!write_fault
) && writable
) {
1273 struct page
*wpage
[1];
1275 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1284 *pfn
= page_to_pfn(page
[0]);
1288 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1290 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1293 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1300 * Pin guest page in memory and return its pfn.
1301 * @addr: host virtual address which maps memory to the guest
1302 * @atomic: whether this function can sleep
1303 * @async: whether this function need to wait IO complete if the
1304 * host page is not in the memory
1305 * @write_fault: whether we should get a writable host page
1306 * @writable: whether it allows to map a writable host page for !@write_fault
1308 * The function will map a writable host page for these two cases:
1309 * 1): @write_fault = true
1310 * 2): @write_fault = false && @writable, @writable will tell the caller
1311 * whether the mapping is writable.
1313 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1314 bool write_fault
, bool *writable
)
1316 struct vm_area_struct
*vma
;
1320 /* we can do it either atomically or asynchronously, not both */
1321 BUG_ON(atomic
&& async
);
1323 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1327 return KVM_PFN_ERR_FAULT
;
1329 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1333 down_read(¤t
->mm
->mmap_sem
);
1334 if (npages
== -EHWPOISON
||
1335 (!async
&& check_user_page_hwpoison(addr
))) {
1336 pfn
= KVM_PFN_ERR_HWPOISON
;
1340 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1343 pfn
= KVM_PFN_ERR_FAULT
;
1344 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1345 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1347 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1349 if (async
&& vma_is_valid(vma
, write_fault
))
1351 pfn
= KVM_PFN_ERR_FAULT
;
1354 up_read(¤t
->mm
->mmap_sem
);
1359 __gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1360 bool *async
, bool write_fault
, bool *writable
)
1362 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1364 if (addr
== KVM_HVA_ERR_RO_BAD
)
1365 return KVM_PFN_ERR_RO_FAULT
;
1367 if (kvm_is_error_hva(addr
))
1368 return KVM_PFN_NOSLOT
;
1370 /* Do not map writable pfn in the readonly memslot. */
1371 if (writable
&& memslot_is_readonly(slot
)) {
1376 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1380 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1381 bool write_fault
, bool *writable
)
1383 struct kvm_memory_slot
*slot
;
1388 slot
= gfn_to_memslot(kvm
, gfn
);
1390 return __gfn_to_pfn_memslot(slot
, gfn
, atomic
, async
, write_fault
,
1394 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1396 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1398 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1400 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1401 bool write_fault
, bool *writable
)
1403 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1405 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1407 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1409 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1413 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1416 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1420 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1422 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1425 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1427 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1431 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1437 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1438 if (kvm_is_error_hva(addr
))
1441 if (entry
< nr_pages
)
1444 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1446 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1448 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1450 if (is_error_noslot_pfn(pfn
))
1451 return KVM_ERR_PTR_BAD_PAGE
;
1453 if (kvm_is_reserved_pfn(pfn
)) {
1455 return KVM_ERR_PTR_BAD_PAGE
;
1458 return pfn_to_page(pfn
);
1461 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1465 pfn
= gfn_to_pfn(kvm
, gfn
);
1467 return kvm_pfn_to_page(pfn
);
1469 EXPORT_SYMBOL_GPL(gfn_to_page
);
1471 void kvm_release_page_clean(struct page
*page
)
1473 WARN_ON(is_error_page(page
));
1475 kvm_release_pfn_clean(page_to_pfn(page
));
1477 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1479 void kvm_release_pfn_clean(pfn_t pfn
)
1481 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1482 put_page(pfn_to_page(pfn
));
1484 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1486 void kvm_release_page_dirty(struct page
*page
)
1488 WARN_ON(is_error_page(page
));
1490 kvm_release_pfn_dirty(page_to_pfn(page
));
1492 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1494 static void kvm_release_pfn_dirty(pfn_t pfn
)
1496 kvm_set_pfn_dirty(pfn
);
1497 kvm_release_pfn_clean(pfn
);
1500 void kvm_set_pfn_dirty(pfn_t pfn
)
1502 if (!kvm_is_reserved_pfn(pfn
)) {
1503 struct page
*page
= pfn_to_page(pfn
);
1505 if (!PageReserved(page
))
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1511 void kvm_set_pfn_accessed(pfn_t pfn
)
1513 if (!kvm_is_reserved_pfn(pfn
))
1514 mark_page_accessed(pfn_to_page(pfn
));
1516 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1518 void kvm_get_pfn(pfn_t pfn
)
1520 if (!kvm_is_reserved_pfn(pfn
))
1521 get_page(pfn_to_page(pfn
));
1523 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1525 static int next_segment(unsigned long len
, int offset
)
1527 if (len
> PAGE_SIZE
- offset
)
1528 return PAGE_SIZE
- offset
;
1533 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1539 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1540 if (kvm_is_error_hva(addr
))
1542 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1547 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1549 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1551 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1553 int offset
= offset_in_page(gpa
);
1556 while ((seg
= next_segment(len
, offset
)) != 0) {
1557 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1567 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1569 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1574 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1575 int offset
= offset_in_page(gpa
);
1577 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1578 if (kvm_is_error_hva(addr
))
1580 pagefault_disable();
1581 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1587 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1589 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1590 int offset
, int len
)
1595 addr
= gfn_to_hva(kvm
, gfn
);
1596 if (kvm_is_error_hva(addr
))
1598 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1601 mark_page_dirty(kvm
, gfn
);
1604 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1606 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1609 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1611 int offset
= offset_in_page(gpa
);
1614 while ((seg
= next_segment(len
, offset
)) != 0) {
1615 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1625 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1627 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1628 gpa_t gpa
, unsigned long len
)
1630 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1631 int offset
= offset_in_page(gpa
);
1632 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1633 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1634 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1635 gfn_t nr_pages_avail
;
1638 ghc
->generation
= slots
->generation
;
1640 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1641 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1642 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1646 * If the requested region crosses two memslots, we still
1647 * verify that the entire region is valid here.
1649 while (start_gfn
<= end_gfn
) {
1650 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1651 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1653 if (kvm_is_error_hva(ghc
->hva
))
1655 start_gfn
+= nr_pages_avail
;
1657 /* Use the slow path for cross page reads and writes. */
1658 ghc
->memslot
= NULL
;
1662 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1664 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1665 void *data
, unsigned long len
)
1667 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1670 BUG_ON(len
> ghc
->len
);
1672 if (slots
->generation
!= ghc
->generation
)
1673 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1675 if (unlikely(!ghc
->memslot
))
1676 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1678 if (kvm_is_error_hva(ghc
->hva
))
1681 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1684 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1688 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1690 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1691 void *data
, unsigned long len
)
1693 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1696 BUG_ON(len
> ghc
->len
);
1698 if (slots
->generation
!= ghc
->generation
)
1699 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1701 if (unlikely(!ghc
->memslot
))
1702 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1704 if (kvm_is_error_hva(ghc
->hva
))
1707 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1713 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1715 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1717 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1719 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1721 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1723 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1725 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1727 int offset
= offset_in_page(gpa
);
1730 while ((seg
= next_segment(len
, offset
)) != 0) {
1731 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1740 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1742 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
1743 struct kvm_memory_slot
*memslot
,
1746 if (memslot
&& memslot
->dirty_bitmap
) {
1747 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1749 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1753 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1755 struct kvm_memory_slot
*memslot
;
1757 memslot
= gfn_to_memslot(kvm
, gfn
);
1758 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1760 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1762 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
1764 if (kvm_arch_vcpu_runnable(vcpu
)) {
1765 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1768 if (kvm_cpu_has_pending_timer(vcpu
))
1770 if (signal_pending(current
))
1777 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1779 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1783 bool waited
= false;
1785 start
= cur
= ktime_get();
1787 ktime_t stop
= ktime_add_ns(ktime_get(), halt_poll_ns
);
1791 * This sets KVM_REQ_UNHALT if an interrupt
1794 if (kvm_vcpu_check_block(vcpu
) < 0) {
1795 ++vcpu
->stat
.halt_successful_poll
;
1799 } while (single_task_running() && ktime_before(cur
, stop
));
1803 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1805 if (kvm_vcpu_check_block(vcpu
) < 0)
1812 finish_wait(&vcpu
->wq
, &wait
);
1816 trace_kvm_vcpu_wakeup(ktime_to_ns(cur
) - ktime_to_ns(start
), waited
);
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
1822 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1824 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1827 int cpu
= vcpu
->cpu
;
1828 wait_queue_head_t
*wqp
;
1830 wqp
= kvm_arch_vcpu_wq(vcpu
);
1831 if (waitqueue_active(wqp
)) {
1832 wake_up_interruptible(wqp
);
1833 ++vcpu
->stat
.halt_wakeup
;
1837 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1838 if (kvm_arch_vcpu_should_kick(vcpu
))
1839 smp_send_reschedule(cpu
);
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
1843 #endif /* !CONFIG_S390 */
1845 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1848 struct task_struct
*task
= NULL
;
1852 pid
= rcu_dereference(target
->pid
);
1854 task
= get_pid_task(pid
, PIDTYPE_PID
);
1858 ret
= yield_to(task
, 1);
1859 put_task_struct(task
);
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1866 * Helper that checks whether a VCPU is eligible for directed yield.
1867 * Most eligible candidate to yield is decided by following heuristics:
1869 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1870 * (preempted lock holder), indicated by @in_spin_loop.
1871 * Set at the beiginning and cleared at the end of interception/PLE handler.
1873 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1874 * chance last time (mostly it has become eligible now since we have probably
1875 * yielded to lockholder in last iteration. This is done by toggling
1876 * @dy_eligible each time a VCPU checked for eligibility.)
1878 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1879 * to preempted lock-holder could result in wrong VCPU selection and CPU
1880 * burning. Giving priority for a potential lock-holder increases lock
1883 * Since algorithm is based on heuristics, accessing another VCPU data without
1884 * locking does not harm. It may result in trying to yield to same VCPU, fail
1885 * and continue with next VCPU and so on.
1887 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
1889 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1892 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
1893 vcpu
->spin_loop
.dy_eligible
;
1895 if (vcpu
->spin_loop
.in_spin_loop
)
1896 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
1904 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1906 struct kvm
*kvm
= me
->kvm
;
1907 struct kvm_vcpu
*vcpu
;
1908 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1914 kvm_vcpu_set_in_spin_loop(me
, true);
1916 * We boost the priority of a VCPU that is runnable but not
1917 * currently running, because it got preempted by something
1918 * else and called schedule in __vcpu_run. Hopefully that
1919 * VCPU is holding the lock that we need and will release it.
1920 * We approximate round-robin by starting at the last boosted VCPU.
1922 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
1923 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1924 if (!pass
&& i
<= last_boosted_vcpu
) {
1925 i
= last_boosted_vcpu
;
1927 } else if (pass
&& i
> last_boosted_vcpu
)
1929 if (!ACCESS_ONCE(vcpu
->preempted
))
1933 if (waitqueue_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
1935 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
1938 yielded
= kvm_vcpu_yield_to(vcpu
);
1940 kvm
->last_boosted_vcpu
= i
;
1942 } else if (yielded
< 0) {
1949 kvm_vcpu_set_in_spin_loop(me
, false);
1951 /* Ensure vcpu is not eligible during next spinloop */
1952 kvm_vcpu_set_dy_eligible(me
, false);
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1956 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1958 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1961 if (vmf
->pgoff
== 0)
1962 page
= virt_to_page(vcpu
->run
);
1964 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1965 page
= virt_to_page(vcpu
->arch
.pio_data
);
1967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1968 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1969 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1972 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1978 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1979 .fault
= kvm_vcpu_fault
,
1982 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1984 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1988 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1990 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1992 kvm_put_kvm(vcpu
->kvm
);
1996 static struct file_operations kvm_vcpu_fops
= {
1997 .release
= kvm_vcpu_release
,
1998 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1999 #ifdef CONFIG_KVM_COMPAT
2000 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2002 .mmap
= kvm_vcpu_mmap
,
2003 .llseek
= noop_llseek
,
2007 * Allocates an inode for the vcpu.
2009 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2011 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2015 * Creates some virtual cpus. Good luck creating more than one.
2017 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2020 struct kvm_vcpu
*vcpu
, *v
;
2022 if (id
>= KVM_MAX_VCPUS
)
2025 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2027 return PTR_ERR(vcpu
);
2029 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2031 r
= kvm_arch_vcpu_setup(vcpu
);
2035 mutex_lock(&kvm
->lock
);
2036 if (!kvm_vcpu_compatible(vcpu
)) {
2038 goto unlock_vcpu_destroy
;
2040 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2042 goto unlock_vcpu_destroy
;
2045 kvm_for_each_vcpu(r
, v
, kvm
)
2046 if (v
->vcpu_id
== id
) {
2048 goto unlock_vcpu_destroy
;
2051 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2053 /* Now it's all set up, let userspace reach it */
2055 r
= create_vcpu_fd(vcpu
);
2058 goto unlock_vcpu_destroy
;
2061 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2063 atomic_inc(&kvm
->online_vcpus
);
2065 mutex_unlock(&kvm
->lock
);
2066 kvm_arch_vcpu_postcreate(vcpu
);
2069 unlock_vcpu_destroy
:
2070 mutex_unlock(&kvm
->lock
);
2072 kvm_arch_vcpu_destroy(vcpu
);
2076 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2079 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2080 vcpu
->sigset_active
= 1;
2081 vcpu
->sigset
= *sigset
;
2083 vcpu
->sigset_active
= 0;
2087 static long kvm_vcpu_ioctl(struct file
*filp
,
2088 unsigned int ioctl
, unsigned long arg
)
2090 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2091 void __user
*argp
= (void __user
*)arg
;
2093 struct kvm_fpu
*fpu
= NULL
;
2094 struct kvm_sregs
*kvm_sregs
= NULL
;
2096 if (vcpu
->kvm
->mm
!= current
->mm
)
2099 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2102 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2104 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2105 * so vcpu_load() would break it.
2107 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2108 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2112 r
= vcpu_load(vcpu
);
2120 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2121 /* The thread running this VCPU changed. */
2122 struct pid
*oldpid
= vcpu
->pid
;
2123 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2125 rcu_assign_pointer(vcpu
->pid
, newpid
);
2130 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2131 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2133 case KVM_GET_REGS
: {
2134 struct kvm_regs
*kvm_regs
;
2137 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2140 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2144 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2151 case KVM_SET_REGS
: {
2152 struct kvm_regs
*kvm_regs
;
2155 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2156 if (IS_ERR(kvm_regs
)) {
2157 r
= PTR_ERR(kvm_regs
);
2160 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2164 case KVM_GET_SREGS
: {
2165 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2169 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2173 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2178 case KVM_SET_SREGS
: {
2179 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2180 if (IS_ERR(kvm_sregs
)) {
2181 r
= PTR_ERR(kvm_sregs
);
2185 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2188 case KVM_GET_MP_STATE
: {
2189 struct kvm_mp_state mp_state
;
2191 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2195 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2200 case KVM_SET_MP_STATE
: {
2201 struct kvm_mp_state mp_state
;
2204 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2206 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2209 case KVM_TRANSLATE
: {
2210 struct kvm_translation tr
;
2213 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2215 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2219 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2224 case KVM_SET_GUEST_DEBUG
: {
2225 struct kvm_guest_debug dbg
;
2228 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2230 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2233 case KVM_SET_SIGNAL_MASK
: {
2234 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2235 struct kvm_signal_mask kvm_sigmask
;
2236 sigset_t sigset
, *p
;
2241 if (copy_from_user(&kvm_sigmask
, argp
,
2242 sizeof(kvm_sigmask
)))
2245 if (kvm_sigmask
.len
!= sizeof(sigset
))
2248 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2253 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2257 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2261 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2265 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2271 fpu
= memdup_user(argp
, sizeof(*fpu
));
2277 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2281 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2290 #ifdef CONFIG_KVM_COMPAT
2291 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2292 unsigned int ioctl
, unsigned long arg
)
2294 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2295 void __user
*argp
= compat_ptr(arg
);
2298 if (vcpu
->kvm
->mm
!= current
->mm
)
2302 case KVM_SET_SIGNAL_MASK
: {
2303 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2304 struct kvm_signal_mask kvm_sigmask
;
2305 compat_sigset_t csigset
;
2310 if (copy_from_user(&kvm_sigmask
, argp
,
2311 sizeof(kvm_sigmask
)))
2314 if (kvm_sigmask
.len
!= sizeof(csigset
))
2317 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2320 sigset_from_compat(&sigset
, &csigset
);
2321 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2323 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2327 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2335 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2336 int (*accessor
)(struct kvm_device
*dev
,
2337 struct kvm_device_attr
*attr
),
2340 struct kvm_device_attr attr
;
2345 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2348 return accessor(dev
, &attr
);
2351 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2354 struct kvm_device
*dev
= filp
->private_data
;
2357 case KVM_SET_DEVICE_ATTR
:
2358 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2359 case KVM_GET_DEVICE_ATTR
:
2360 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2361 case KVM_HAS_DEVICE_ATTR
:
2362 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2364 if (dev
->ops
->ioctl
)
2365 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2371 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2373 struct kvm_device
*dev
= filp
->private_data
;
2374 struct kvm
*kvm
= dev
->kvm
;
2380 static const struct file_operations kvm_device_fops
= {
2381 .unlocked_ioctl
= kvm_device_ioctl
,
2382 #ifdef CONFIG_KVM_COMPAT
2383 .compat_ioctl
= kvm_device_ioctl
,
2385 .release
= kvm_device_release
,
2388 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2390 if (filp
->f_op
!= &kvm_device_fops
)
2393 return filp
->private_data
;
2396 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2397 #ifdef CONFIG_KVM_MPIC
2398 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2399 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2402 #ifdef CONFIG_KVM_XICS
2403 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2407 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2409 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2412 if (kvm_device_ops_table
[type
] != NULL
)
2415 kvm_device_ops_table
[type
] = ops
;
2419 void kvm_unregister_device_ops(u32 type
)
2421 if (kvm_device_ops_table
[type
] != NULL
)
2422 kvm_device_ops_table
[type
] = NULL
;
2425 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2426 struct kvm_create_device
*cd
)
2428 struct kvm_device_ops
*ops
= NULL
;
2429 struct kvm_device
*dev
;
2430 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2433 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2436 ops
= kvm_device_ops_table
[cd
->type
];
2443 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2450 ret
= ops
->create(dev
, cd
->type
);
2456 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2462 list_add(&dev
->vm_node
, &kvm
->devices
);
2468 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2471 case KVM_CAP_USER_MEMORY
:
2472 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2473 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2474 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2475 case KVM_CAP_SET_BOOT_CPU_ID
:
2477 case KVM_CAP_INTERNAL_ERROR_DATA
:
2478 #ifdef CONFIG_HAVE_KVM_MSI
2479 case KVM_CAP_SIGNAL_MSI
:
2481 #ifdef CONFIG_HAVE_KVM_IRQFD
2483 case KVM_CAP_IRQFD_RESAMPLE
:
2485 case KVM_CAP_CHECK_EXTENSION_VM
:
2487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2488 case KVM_CAP_IRQ_ROUTING
:
2489 return KVM_MAX_IRQ_ROUTES
;
2494 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2497 static long kvm_vm_ioctl(struct file
*filp
,
2498 unsigned int ioctl
, unsigned long arg
)
2500 struct kvm
*kvm
= filp
->private_data
;
2501 void __user
*argp
= (void __user
*)arg
;
2504 if (kvm
->mm
!= current
->mm
)
2507 case KVM_CREATE_VCPU
:
2508 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2510 case KVM_SET_USER_MEMORY_REGION
: {
2511 struct kvm_userspace_memory_region kvm_userspace_mem
;
2514 if (copy_from_user(&kvm_userspace_mem
, argp
,
2515 sizeof(kvm_userspace_mem
)))
2518 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2521 case KVM_GET_DIRTY_LOG
: {
2522 struct kvm_dirty_log log
;
2525 if (copy_from_user(&log
, argp
, sizeof(log
)))
2527 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2530 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2531 case KVM_REGISTER_COALESCED_MMIO
: {
2532 struct kvm_coalesced_mmio_zone zone
;
2535 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2537 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2540 case KVM_UNREGISTER_COALESCED_MMIO
: {
2541 struct kvm_coalesced_mmio_zone zone
;
2544 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2546 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2551 struct kvm_irqfd data
;
2554 if (copy_from_user(&data
, argp
, sizeof(data
)))
2556 r
= kvm_irqfd(kvm
, &data
);
2559 case KVM_IOEVENTFD
: {
2560 struct kvm_ioeventfd data
;
2563 if (copy_from_user(&data
, argp
, sizeof(data
)))
2565 r
= kvm_ioeventfd(kvm
, &data
);
2568 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2569 case KVM_SET_BOOT_CPU_ID
:
2571 mutex_lock(&kvm
->lock
);
2572 if (atomic_read(&kvm
->online_vcpus
) != 0)
2575 kvm
->bsp_vcpu_id
= arg
;
2576 mutex_unlock(&kvm
->lock
);
2579 #ifdef CONFIG_HAVE_KVM_MSI
2580 case KVM_SIGNAL_MSI
: {
2584 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2586 r
= kvm_send_userspace_msi(kvm
, &msi
);
2590 #ifdef __KVM_HAVE_IRQ_LINE
2591 case KVM_IRQ_LINE_STATUS
:
2592 case KVM_IRQ_LINE
: {
2593 struct kvm_irq_level irq_event
;
2596 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2599 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2600 ioctl
== KVM_IRQ_LINE_STATUS
);
2605 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2606 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2614 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2615 case KVM_SET_GSI_ROUTING
: {
2616 struct kvm_irq_routing routing
;
2617 struct kvm_irq_routing __user
*urouting
;
2618 struct kvm_irq_routing_entry
*entries
;
2621 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2624 if (routing
.nr
>= KVM_MAX_IRQ_ROUTES
)
2629 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2634 if (copy_from_user(entries
, urouting
->entries
,
2635 routing
.nr
* sizeof(*entries
)))
2636 goto out_free_irq_routing
;
2637 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2639 out_free_irq_routing
:
2643 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2644 case KVM_CREATE_DEVICE
: {
2645 struct kvm_create_device cd
;
2648 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2651 r
= kvm_ioctl_create_device(kvm
, &cd
);
2656 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2662 case KVM_CHECK_EXTENSION
:
2663 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2666 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2672 #ifdef CONFIG_KVM_COMPAT
2673 struct compat_kvm_dirty_log
{
2677 compat_uptr_t dirty_bitmap
; /* one bit per page */
2682 static long kvm_vm_compat_ioctl(struct file
*filp
,
2683 unsigned int ioctl
, unsigned long arg
)
2685 struct kvm
*kvm
= filp
->private_data
;
2688 if (kvm
->mm
!= current
->mm
)
2691 case KVM_GET_DIRTY_LOG
: {
2692 struct compat_kvm_dirty_log compat_log
;
2693 struct kvm_dirty_log log
;
2696 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2697 sizeof(compat_log
)))
2699 log
.slot
= compat_log
.slot
;
2700 log
.padding1
= compat_log
.padding1
;
2701 log
.padding2
= compat_log
.padding2
;
2702 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2704 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2708 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2716 static struct file_operations kvm_vm_fops
= {
2717 .release
= kvm_vm_release
,
2718 .unlocked_ioctl
= kvm_vm_ioctl
,
2719 #ifdef CONFIG_KVM_COMPAT
2720 .compat_ioctl
= kvm_vm_compat_ioctl
,
2722 .llseek
= noop_llseek
,
2725 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2730 kvm
= kvm_create_vm(type
);
2732 return PTR_ERR(kvm
);
2733 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2734 r
= kvm_coalesced_mmio_init(kvm
);
2740 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2747 static long kvm_dev_ioctl(struct file
*filp
,
2748 unsigned int ioctl
, unsigned long arg
)
2753 case KVM_GET_API_VERSION
:
2756 r
= KVM_API_VERSION
;
2759 r
= kvm_dev_ioctl_create_vm(arg
);
2761 case KVM_CHECK_EXTENSION
:
2762 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
2764 case KVM_GET_VCPU_MMAP_SIZE
:
2767 r
= PAGE_SIZE
; /* struct kvm_run */
2769 r
+= PAGE_SIZE
; /* pio data page */
2771 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2772 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2775 case KVM_TRACE_ENABLE
:
2776 case KVM_TRACE_PAUSE
:
2777 case KVM_TRACE_DISABLE
:
2781 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2787 static struct file_operations kvm_chardev_ops
= {
2788 .unlocked_ioctl
= kvm_dev_ioctl
,
2789 .compat_ioctl
= kvm_dev_ioctl
,
2790 .llseek
= noop_llseek
,
2793 static struct miscdevice kvm_dev
= {
2799 static void hardware_enable_nolock(void *junk
)
2801 int cpu
= raw_smp_processor_id();
2804 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2807 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2809 r
= kvm_arch_hardware_enable();
2812 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2813 atomic_inc(&hardware_enable_failed
);
2814 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
2818 static void hardware_enable(void)
2820 raw_spin_lock(&kvm_count_lock
);
2821 if (kvm_usage_count
)
2822 hardware_enable_nolock(NULL
);
2823 raw_spin_unlock(&kvm_count_lock
);
2826 static void hardware_disable_nolock(void *junk
)
2828 int cpu
= raw_smp_processor_id();
2830 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2832 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2833 kvm_arch_hardware_disable();
2836 static void hardware_disable(void)
2838 raw_spin_lock(&kvm_count_lock
);
2839 if (kvm_usage_count
)
2840 hardware_disable_nolock(NULL
);
2841 raw_spin_unlock(&kvm_count_lock
);
2844 static void hardware_disable_all_nolock(void)
2846 BUG_ON(!kvm_usage_count
);
2849 if (!kvm_usage_count
)
2850 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2853 static void hardware_disable_all(void)
2855 raw_spin_lock(&kvm_count_lock
);
2856 hardware_disable_all_nolock();
2857 raw_spin_unlock(&kvm_count_lock
);
2860 static int hardware_enable_all(void)
2864 raw_spin_lock(&kvm_count_lock
);
2867 if (kvm_usage_count
== 1) {
2868 atomic_set(&hardware_enable_failed
, 0);
2869 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2871 if (atomic_read(&hardware_enable_failed
)) {
2872 hardware_disable_all_nolock();
2877 raw_spin_unlock(&kvm_count_lock
);
2882 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2887 val
&= ~CPU_TASKS_FROZEN
;
2890 pr_info("kvm: disabling virtualization on CPU%d\n",
2895 pr_info("kvm: enabling virtualization on CPU%d\n",
2903 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2907 * Some (well, at least mine) BIOSes hang on reboot if
2910 * And Intel TXT required VMX off for all cpu when system shutdown.
2912 pr_info("kvm: exiting hardware virtualization\n");
2913 kvm_rebooting
= true;
2914 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2918 static struct notifier_block kvm_reboot_notifier
= {
2919 .notifier_call
= kvm_reboot
,
2923 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2927 for (i
= 0; i
< bus
->dev_count
; i
++) {
2928 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2930 kvm_iodevice_destructor(pos
);
2935 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
2936 const struct kvm_io_range
*r2
)
2938 gpa_t addr1
= r1
->addr
;
2939 gpa_t addr2
= r2
->addr
;
2944 /* If r2->len == 0, match the exact address. If r2->len != 0,
2945 * accept any overlapping write. Any order is acceptable for
2946 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
2947 * we process all of them.
2960 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2962 return kvm_io_bus_cmp(p1
, p2
);
2965 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2966 gpa_t addr
, int len
)
2968 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2974 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2975 kvm_io_bus_sort_cmp
, NULL
);
2980 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2981 gpa_t addr
, int len
)
2983 struct kvm_io_range
*range
, key
;
2986 key
= (struct kvm_io_range
) {
2991 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2992 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2996 off
= range
- bus
->range
;
2998 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3004 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3005 struct kvm_io_range
*range
, const void *val
)
3009 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3013 while (idx
< bus
->dev_count
&&
3014 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3015 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3024 /* kvm_io_bus_write - called under kvm->slots_lock */
3025 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3026 int len
, const void *val
)
3028 struct kvm_io_bus
*bus
;
3029 struct kvm_io_range range
;
3032 range
= (struct kvm_io_range
) {
3037 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3038 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3039 return r
< 0 ? r
: 0;
3042 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3043 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3044 gpa_t addr
, int len
, const void *val
, long cookie
)
3046 struct kvm_io_bus
*bus
;
3047 struct kvm_io_range range
;
3049 range
= (struct kvm_io_range
) {
3054 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3056 /* First try the device referenced by cookie. */
3057 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3058 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3059 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3064 * cookie contained garbage; fall back to search and return the
3065 * correct cookie value.
3067 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3070 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3071 struct kvm_io_range
*range
, void *val
)
3075 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3079 while (idx
< bus
->dev_count
&&
3080 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3081 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3089 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3091 /* kvm_io_bus_read - called under kvm->slots_lock */
3092 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3095 struct kvm_io_bus
*bus
;
3096 struct kvm_io_range range
;
3099 range
= (struct kvm_io_range
) {
3104 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3105 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3106 return r
< 0 ? r
: 0;
3110 /* Caller must hold slots_lock. */
3111 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3112 int len
, struct kvm_io_device
*dev
)
3114 struct kvm_io_bus
*new_bus
, *bus
;
3116 bus
= kvm
->buses
[bus_idx
];
3117 /* exclude ioeventfd which is limited by maximum fd */
3118 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3121 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3122 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3125 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3126 sizeof(struct kvm_io_range
)));
3127 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3128 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3129 synchronize_srcu_expedited(&kvm
->srcu
);
3135 /* Caller must hold slots_lock. */
3136 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3137 struct kvm_io_device
*dev
)
3140 struct kvm_io_bus
*new_bus
, *bus
;
3142 bus
= kvm
->buses
[bus_idx
];
3144 for (i
= 0; i
< bus
->dev_count
; i
++)
3145 if (bus
->range
[i
].dev
== dev
) {
3153 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3154 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3158 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3159 new_bus
->dev_count
--;
3160 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3161 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3163 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3164 synchronize_srcu_expedited(&kvm
->srcu
);
3169 static struct notifier_block kvm_cpu_notifier
= {
3170 .notifier_call
= kvm_cpu_hotplug
,
3173 static int vm_stat_get(void *_offset
, u64
*val
)
3175 unsigned offset
= (long)_offset
;
3179 spin_lock(&kvm_lock
);
3180 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3181 *val
+= *(u32
*)((void *)kvm
+ offset
);
3182 spin_unlock(&kvm_lock
);
3186 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3188 static int vcpu_stat_get(void *_offset
, u64
*val
)
3190 unsigned offset
= (long)_offset
;
3192 struct kvm_vcpu
*vcpu
;
3196 spin_lock(&kvm_lock
);
3197 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3198 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3199 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3201 spin_unlock(&kvm_lock
);
3205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3207 static const struct file_operations
*stat_fops
[] = {
3208 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3209 [KVM_STAT_VM
] = &vm_stat_fops
,
3212 static int kvm_init_debug(void)
3215 struct kvm_stats_debugfs_item
*p
;
3217 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3218 if (kvm_debugfs_dir
== NULL
)
3221 for (p
= debugfs_entries
; p
->name
; ++p
) {
3222 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3223 (void *)(long)p
->offset
,
3224 stat_fops
[p
->kind
]);
3225 if (p
->dentry
== NULL
)
3232 debugfs_remove_recursive(kvm_debugfs_dir
);
3237 static void kvm_exit_debug(void)
3239 struct kvm_stats_debugfs_item
*p
;
3241 for (p
= debugfs_entries
; p
->name
; ++p
)
3242 debugfs_remove(p
->dentry
);
3243 debugfs_remove(kvm_debugfs_dir
);
3246 static int kvm_suspend(void)
3248 if (kvm_usage_count
)
3249 hardware_disable_nolock(NULL
);
3253 static void kvm_resume(void)
3255 if (kvm_usage_count
) {
3256 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3257 hardware_enable_nolock(NULL
);
3261 static struct syscore_ops kvm_syscore_ops
= {
3262 .suspend
= kvm_suspend
,
3263 .resume
= kvm_resume
,
3267 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3269 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3272 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3274 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3276 if (vcpu
->preempted
)
3277 vcpu
->preempted
= false;
3279 kvm_arch_sched_in(vcpu
, cpu
);
3281 kvm_arch_vcpu_load(vcpu
, cpu
);
3284 static void kvm_sched_out(struct preempt_notifier
*pn
,
3285 struct task_struct
*next
)
3287 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3289 if (current
->state
== TASK_RUNNING
)
3290 vcpu
->preempted
= true;
3291 kvm_arch_vcpu_put(vcpu
);
3294 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3295 struct module
*module
)
3300 r
= kvm_arch_init(opaque
);
3305 * kvm_arch_init makes sure there's at most one caller
3306 * for architectures that support multiple implementations,
3307 * like intel and amd on x86.
3308 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3309 * conflicts in case kvm is already setup for another implementation.
3311 r
= kvm_irqfd_init();
3315 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3320 r
= kvm_arch_hardware_setup();
3324 for_each_online_cpu(cpu
) {
3325 smp_call_function_single(cpu
,
3326 kvm_arch_check_processor_compat
,
3332 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3335 register_reboot_notifier(&kvm_reboot_notifier
);
3337 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3339 vcpu_align
= __alignof__(struct kvm_vcpu
);
3340 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3342 if (!kvm_vcpu_cache
) {
3347 r
= kvm_async_pf_init();
3351 kvm_chardev_ops
.owner
= module
;
3352 kvm_vm_fops
.owner
= module
;
3353 kvm_vcpu_fops
.owner
= module
;
3355 r
= misc_register(&kvm_dev
);
3357 pr_err("kvm: misc device register failed\n");
3361 register_syscore_ops(&kvm_syscore_ops
);
3363 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3364 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3366 r
= kvm_init_debug();
3368 pr_err("kvm: create debugfs files failed\n");
3372 r
= kvm_vfio_ops_init();
3378 unregister_syscore_ops(&kvm_syscore_ops
);
3379 misc_deregister(&kvm_dev
);
3381 kvm_async_pf_deinit();
3383 kmem_cache_destroy(kvm_vcpu_cache
);
3385 unregister_reboot_notifier(&kvm_reboot_notifier
);
3386 unregister_cpu_notifier(&kvm_cpu_notifier
);
3389 kvm_arch_hardware_unsetup();
3391 free_cpumask_var(cpus_hardware_enabled
);
3399 EXPORT_SYMBOL_GPL(kvm_init
);
3404 misc_deregister(&kvm_dev
);
3405 kmem_cache_destroy(kvm_vcpu_cache
);
3406 kvm_async_pf_deinit();
3407 unregister_syscore_ops(&kvm_syscore_ops
);
3408 unregister_reboot_notifier(&kvm_reboot_notifier
);
3409 unregister_cpu_notifier(&kvm_cpu_notifier
);
3410 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3411 kvm_arch_hardware_unsetup();
3414 free_cpumask_var(cpus_hardware_enabled
);
3415 kvm_vfio_ops_exit();
3417 EXPORT_SYMBOL_GPL(kvm_exit
);