Linux 4.1.18
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blob85422985235f2c8fa75e7842d2117d772f6dccf5
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
73 * Ordering of locks:
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm *kvm,
107 struct kvm_memory_slot *memslot, gfn_t gfn);
109 __visible bool kvm_rebooting;
110 EXPORT_SYMBOL_GPL(kvm_rebooting);
112 static bool largepages_enabled = true;
114 bool kvm_is_reserved_pfn(pfn_t pfn)
116 if (pfn_valid(pfn))
117 return PageReserved(pfn_to_page(pfn));
119 return true;
123 * Switches to specified vcpu, until a matching vcpu_put()
125 int vcpu_load(struct kvm_vcpu *vcpu)
127 int cpu;
129 if (mutex_lock_killable(&vcpu->mutex))
130 return -EINTR;
131 cpu = get_cpu();
132 preempt_notifier_register(&vcpu->preempt_notifier);
133 kvm_arch_vcpu_load(vcpu, cpu);
134 put_cpu();
135 return 0;
138 void vcpu_put(struct kvm_vcpu *vcpu)
140 preempt_disable();
141 kvm_arch_vcpu_put(vcpu);
142 preempt_notifier_unregister(&vcpu->preempt_notifier);
143 preempt_enable();
144 mutex_unlock(&vcpu->mutex);
147 static void ack_flush(void *_completed)
151 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
153 int i, cpu, me;
154 cpumask_var_t cpus;
155 bool called = true;
156 struct kvm_vcpu *vcpu;
158 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
160 me = get_cpu();
161 kvm_for_each_vcpu(i, vcpu, kvm) {
162 kvm_make_request(req, vcpu);
163 cpu = vcpu->cpu;
165 /* Set ->requests bit before we read ->mode */
166 smp_mb();
168 if (cpus != NULL && cpu != -1 && cpu != me &&
169 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
170 cpumask_set_cpu(cpu, cpus);
172 if (unlikely(cpus == NULL))
173 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
174 else if (!cpumask_empty(cpus))
175 smp_call_function_many(cpus, ack_flush, NULL, 1);
176 else
177 called = false;
178 put_cpu();
179 free_cpumask_var(cpus);
180 return called;
183 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184 void kvm_flush_remote_tlbs(struct kvm *kvm)
186 long dirty_count = kvm->tlbs_dirty;
188 smp_mb();
189 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 ++kvm->stat.remote_tlb_flush;
191 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194 #endif
196 void kvm_reload_remote_mmus(struct kvm *kvm)
198 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
203 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 void kvm_make_scan_ioapic_request(struct kvm *kvm)
208 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
213 struct page *page;
214 int r;
216 mutex_init(&vcpu->mutex);
217 vcpu->cpu = -1;
218 vcpu->kvm = kvm;
219 vcpu->vcpu_id = id;
220 vcpu->pid = NULL;
221 init_waitqueue_head(&vcpu->wq);
222 kvm_async_pf_vcpu_init(vcpu);
224 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225 if (!page) {
226 r = -ENOMEM;
227 goto fail;
229 vcpu->run = page_address(page);
231 kvm_vcpu_set_in_spin_loop(vcpu, false);
232 kvm_vcpu_set_dy_eligible(vcpu, false);
233 vcpu->preempted = false;
235 r = kvm_arch_vcpu_init(vcpu);
236 if (r < 0)
237 goto fail_free_run;
238 return 0;
240 fail_free_run:
241 free_page((unsigned long)vcpu->run);
242 fail:
243 return r;
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 put_pid(vcpu->pid);
250 kvm_arch_vcpu_uninit(vcpu);
251 free_page((unsigned long)vcpu->run);
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 return container_of(mn, struct kvm, mmu_notifier);
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long address)
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush, idx;
269 * When ->invalidate_page runs, the linux pte has been zapped
270 * already but the page is still allocated until
271 * ->invalidate_page returns. So if we increase the sequence
272 * here the kvm page fault will notice if the spte can't be
273 * established because the page is going to be freed. If
274 * instead the kvm page fault establishes the spte before
275 * ->invalidate_page runs, kvm_unmap_hva will release it
276 * before returning.
278 * The sequence increase only need to be seen at spin_unlock
279 * time, and not at spin_lock time.
281 * Increasing the sequence after the spin_unlock would be
282 * unsafe because the kvm page fault could then establish the
283 * pte after kvm_unmap_hva returned, without noticing the page
284 * is going to be freed.
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
289 kvm->mmu_notifier_seq++;
290 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
295 spin_unlock(&kvm->mmu_lock);
297 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299 srcu_read_unlock(&kvm->srcu, idx);
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 spin_lock(&kvm->mmu_lock);
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
367 BUG_ON(kvm->mmu_notifier_count < 0);
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int young, idx;
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, start, end);
382 if (young)
383 kvm_flush_remote_tlbs(kvm);
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
388 return young;
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
404 return young;
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow_all(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 return 0;
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static void kvm_init_memslots_id(struct kvm *kvm)
445 int i;
446 struct kvm_memslots *slots = kvm->memslots;
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
452 static struct kvm *kvm_create_vm(unsigned long type)
454 int r, i;
455 struct kvm *kvm = kvm_arch_alloc_vm();
457 if (!kvm)
458 return ERR_PTR(-ENOMEM);
460 r = kvm_arch_init_vm(kvm, type);
461 if (r)
462 goto out_err_no_disable;
464 r = hardware_enable_all();
465 if (r)
466 goto out_err_no_disable;
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
472 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
474 r = -ENOMEM;
475 kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
476 if (!kvm->memslots)
477 goto out_err_no_srcu;
480 * Init kvm generation close to the maximum to easily test the
481 * code of handling generation number wrap-around.
483 kvm->memslots->generation = -150;
485 kvm_init_memslots_id(kvm);
486 if (init_srcu_struct(&kvm->srcu))
487 goto out_err_no_srcu;
488 if (init_srcu_struct(&kvm->irq_srcu))
489 goto out_err_no_irq_srcu;
490 for (i = 0; i < KVM_NR_BUSES; i++) {
491 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492 GFP_KERNEL);
493 if (!kvm->buses[i])
494 goto out_err;
497 spin_lock_init(&kvm->mmu_lock);
498 kvm->mm = current->mm;
499 atomic_inc(&kvm->mm->mm_count);
500 kvm_eventfd_init(kvm);
501 mutex_init(&kvm->lock);
502 mutex_init(&kvm->irq_lock);
503 mutex_init(&kvm->slots_lock);
504 atomic_set(&kvm->users_count, 1);
505 INIT_LIST_HEAD(&kvm->devices);
507 r = kvm_init_mmu_notifier(kvm);
508 if (r)
509 goto out_err;
511 spin_lock(&kvm_lock);
512 list_add(&kvm->vm_list, &vm_list);
513 spin_unlock(&kvm_lock);
515 return kvm;
517 out_err:
518 cleanup_srcu_struct(&kvm->irq_srcu);
519 out_err_no_irq_srcu:
520 cleanup_srcu_struct(&kvm->srcu);
521 out_err_no_srcu:
522 hardware_disable_all();
523 out_err_no_disable:
524 for (i = 0; i < KVM_NR_BUSES; i++)
525 kfree(kvm->buses[i]);
526 kvfree(kvm->memslots);
527 kvm_arch_free_vm(kvm);
528 return ERR_PTR(r);
532 * Avoid using vmalloc for a small buffer.
533 * Should not be used when the size is statically known.
535 void *kvm_kvzalloc(unsigned long size)
537 if (size > PAGE_SIZE)
538 return vzalloc(size);
539 else
540 return kzalloc(size, GFP_KERNEL);
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 if (!memslot->dirty_bitmap)
546 return;
548 kvfree(memslot->dirty_bitmap);
549 memslot->dirty_bitmap = NULL;
553 * Free any memory in @free but not in @dont.
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556 struct kvm_memory_slot *dont)
558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 kvm_destroy_dirty_bitmap(free);
561 kvm_arch_free_memslot(kvm, free, dont);
563 free->npages = 0;
566 static void kvm_free_physmem(struct kvm *kvm)
568 struct kvm_memslots *slots = kvm->memslots;
569 struct kvm_memory_slot *memslot;
571 kvm_for_each_memslot(memslot, slots)
572 kvm_free_physmem_slot(kvm, memslot, NULL);
574 kvfree(kvm->memslots);
577 static void kvm_destroy_devices(struct kvm *kvm)
579 struct list_head *node, *tmp;
581 list_for_each_safe(node, tmp, &kvm->devices) {
582 struct kvm_device *dev =
583 list_entry(node, struct kvm_device, vm_node);
585 list_del(node);
586 dev->ops->destroy(dev);
590 static void kvm_destroy_vm(struct kvm *kvm)
592 int i;
593 struct mm_struct *mm = kvm->mm;
595 kvm_arch_sync_events(kvm);
596 spin_lock(&kvm_lock);
597 list_del(&kvm->vm_list);
598 spin_unlock(&kvm_lock);
599 kvm_free_irq_routing(kvm);
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kvm_io_bus_destroy(kvm->buses[i]);
602 kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606 kvm_arch_flush_shadow_all(kvm);
607 #endif
608 kvm_arch_destroy_vm(kvm);
609 kvm_destroy_devices(kvm);
610 kvm_free_physmem(kvm);
611 cleanup_srcu_struct(&kvm->irq_srcu);
612 cleanup_srcu_struct(&kvm->srcu);
613 kvm_arch_free_vm(kvm);
614 hardware_disable_all();
615 mmdrop(mm);
618 void kvm_get_kvm(struct kvm *kvm)
620 atomic_inc(&kvm->users_count);
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
624 void kvm_put_kvm(struct kvm *kvm)
626 if (atomic_dec_and_test(&kvm->users_count))
627 kvm_destroy_vm(kvm);
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
634 struct kvm *kvm = filp->private_data;
636 kvm_irqfd_release(kvm);
638 kvm_put_kvm(kvm);
639 return 0;
643 * Allocation size is twice as large as the actual dirty bitmap size.
644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
648 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
650 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651 if (!memslot->dirty_bitmap)
652 return -ENOMEM;
654 return 0;
658 * Insert memslot and re-sort memslots based on their GFN,
659 * so binary search could be used to lookup GFN.
660 * Sorting algorithm takes advantage of having initially
661 * sorted array and known changed memslot position.
663 static void update_memslots(struct kvm_memslots *slots,
664 struct kvm_memory_slot *new)
666 int id = new->id;
667 int i = slots->id_to_index[id];
668 struct kvm_memory_slot *mslots = slots->memslots;
670 WARN_ON(mslots[i].id != id);
671 if (!new->npages) {
672 WARN_ON(!mslots[i].npages);
673 new->base_gfn = 0;
674 new->flags = 0;
675 if (mslots[i].npages)
676 slots->used_slots--;
677 } else {
678 if (!mslots[i].npages)
679 slots->used_slots++;
682 while (i < KVM_MEM_SLOTS_NUM - 1 &&
683 new->base_gfn <= mslots[i + 1].base_gfn) {
684 if (!mslots[i + 1].npages)
685 break;
686 mslots[i] = mslots[i + 1];
687 slots->id_to_index[mslots[i].id] = i;
688 i++;
692 * The ">=" is needed when creating a slot with base_gfn == 0,
693 * so that it moves before all those with base_gfn == npages == 0.
695 * On the other hand, if new->npages is zero, the above loop has
696 * already left i pointing to the beginning of the empty part of
697 * mslots, and the ">=" would move the hole backwards in this
698 * case---which is wrong. So skip the loop when deleting a slot.
700 if (new->npages) {
701 while (i > 0 &&
702 new->base_gfn >= mslots[i - 1].base_gfn) {
703 mslots[i] = mslots[i - 1];
704 slots->id_to_index[mslots[i].id] = i;
705 i--;
707 } else
708 WARN_ON_ONCE(i != slots->used_slots);
710 mslots[i] = *new;
711 slots->id_to_index[mslots[i].id] = i;
714 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718 #ifdef __KVM_HAVE_READONLY_MEM
719 valid_flags |= KVM_MEM_READONLY;
720 #endif
722 if (mem->flags & ~valid_flags)
723 return -EINVAL;
725 return 0;
728 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
729 struct kvm_memslots *slots)
731 struct kvm_memslots *old_memslots = kvm->memslots;
734 * Set the low bit in the generation, which disables SPTE caching
735 * until the end of synchronize_srcu_expedited.
737 WARN_ON(old_memslots->generation & 1);
738 slots->generation = old_memslots->generation + 1;
740 rcu_assign_pointer(kvm->memslots, slots);
741 synchronize_srcu_expedited(&kvm->srcu);
744 * Increment the new memslot generation a second time. This prevents
745 * vm exits that race with memslot updates from caching a memslot
746 * generation that will (potentially) be valid forever.
748 slots->generation++;
750 kvm_arch_memslots_updated(kvm);
752 return old_memslots;
756 * Allocate some memory and give it an address in the guest physical address
757 * space.
759 * Discontiguous memory is allowed, mostly for framebuffers.
761 * Must be called holding kvm->slots_lock for write.
763 int __kvm_set_memory_region(struct kvm *kvm,
764 struct kvm_userspace_memory_region *mem)
766 int r;
767 gfn_t base_gfn;
768 unsigned long npages;
769 struct kvm_memory_slot *slot;
770 struct kvm_memory_slot old, new;
771 struct kvm_memslots *slots = NULL, *old_memslots;
772 enum kvm_mr_change change;
774 r = check_memory_region_flags(mem);
775 if (r)
776 goto out;
778 r = -EINVAL;
779 /* General sanity checks */
780 if (mem->memory_size & (PAGE_SIZE - 1))
781 goto out;
782 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
783 goto out;
784 /* We can read the guest memory with __xxx_user() later on. */
785 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
786 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
787 !access_ok(VERIFY_WRITE,
788 (void __user *)(unsigned long)mem->userspace_addr,
789 mem->memory_size)))
790 goto out;
791 if (mem->slot >= KVM_MEM_SLOTS_NUM)
792 goto out;
793 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
794 goto out;
796 slot = id_to_memslot(kvm->memslots, mem->slot);
797 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
798 npages = mem->memory_size >> PAGE_SHIFT;
800 if (npages > KVM_MEM_MAX_NR_PAGES)
801 goto out;
803 if (!npages)
804 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
806 new = old = *slot;
808 new.id = mem->slot;
809 new.base_gfn = base_gfn;
810 new.npages = npages;
811 new.flags = mem->flags;
813 if (npages) {
814 if (!old.npages)
815 change = KVM_MR_CREATE;
816 else { /* Modify an existing slot. */
817 if ((mem->userspace_addr != old.userspace_addr) ||
818 (npages != old.npages) ||
819 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
820 goto out;
822 if (base_gfn != old.base_gfn)
823 change = KVM_MR_MOVE;
824 else if (new.flags != old.flags)
825 change = KVM_MR_FLAGS_ONLY;
826 else { /* Nothing to change. */
827 r = 0;
828 goto out;
831 } else if (old.npages) {
832 change = KVM_MR_DELETE;
833 } else /* Modify a non-existent slot: disallowed. */
834 goto out;
836 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
837 /* Check for overlaps */
838 r = -EEXIST;
839 kvm_for_each_memslot(slot, kvm->memslots) {
840 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
841 (slot->id == mem->slot))
842 continue;
843 if (!((base_gfn + npages <= slot->base_gfn) ||
844 (base_gfn >= slot->base_gfn + slot->npages)))
845 goto out;
849 /* Free page dirty bitmap if unneeded */
850 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
851 new.dirty_bitmap = NULL;
853 r = -ENOMEM;
854 if (change == KVM_MR_CREATE) {
855 new.userspace_addr = mem->userspace_addr;
857 if (kvm_arch_create_memslot(kvm, &new, npages))
858 goto out_free;
861 /* Allocate page dirty bitmap if needed */
862 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
863 if (kvm_create_dirty_bitmap(&new) < 0)
864 goto out_free;
867 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
868 if (!slots)
869 goto out_free;
870 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
872 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
873 slot = id_to_memslot(slots, mem->slot);
874 slot->flags |= KVM_MEMSLOT_INVALID;
876 old_memslots = install_new_memslots(kvm, slots);
878 /* slot was deleted or moved, clear iommu mapping */
879 kvm_iommu_unmap_pages(kvm, &old);
880 /* From this point no new shadow pages pointing to a deleted,
881 * or moved, memslot will be created.
883 * validation of sp->gfn happens in:
884 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
885 * - kvm_is_visible_gfn (mmu_check_roots)
887 kvm_arch_flush_shadow_memslot(kvm, slot);
890 * We can re-use the old_memslots from above, the only difference
891 * from the currently installed memslots is the invalid flag. This
892 * will get overwritten by update_memslots anyway.
894 slots = old_memslots;
897 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
898 if (r)
899 goto out_slots;
901 /* actual memory is freed via old in kvm_free_physmem_slot below */
902 if (change == KVM_MR_DELETE) {
903 new.dirty_bitmap = NULL;
904 memset(&new.arch, 0, sizeof(new.arch));
907 update_memslots(slots, &new);
908 old_memslots = install_new_memslots(kvm, slots);
910 kvm_arch_commit_memory_region(kvm, mem, &old, change);
912 kvm_free_physmem_slot(kvm, &old, &new);
913 kvfree(old_memslots);
916 * IOMMU mapping: New slots need to be mapped. Old slots need to be
917 * un-mapped and re-mapped if their base changes. Since base change
918 * unmapping is handled above with slot deletion, mapping alone is
919 * needed here. Anything else the iommu might care about for existing
920 * slots (size changes, userspace addr changes and read-only flag
921 * changes) is disallowed above, so any other attribute changes getting
922 * here can be skipped.
924 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
925 r = kvm_iommu_map_pages(kvm, &new);
926 return r;
929 return 0;
931 out_slots:
932 kvfree(slots);
933 out_free:
934 kvm_free_physmem_slot(kvm, &new, &old);
935 out:
936 return r;
938 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
940 int kvm_set_memory_region(struct kvm *kvm,
941 struct kvm_userspace_memory_region *mem)
943 int r;
945 mutex_lock(&kvm->slots_lock);
946 r = __kvm_set_memory_region(kvm, mem);
947 mutex_unlock(&kvm->slots_lock);
948 return r;
950 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
952 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
953 struct kvm_userspace_memory_region *mem)
955 if (mem->slot >= KVM_USER_MEM_SLOTS)
956 return -EINVAL;
957 return kvm_set_memory_region(kvm, mem);
960 int kvm_get_dirty_log(struct kvm *kvm,
961 struct kvm_dirty_log *log, int *is_dirty)
963 struct kvm_memory_slot *memslot;
964 int r, i;
965 unsigned long n;
966 unsigned long any = 0;
968 r = -EINVAL;
969 if (log->slot >= KVM_USER_MEM_SLOTS)
970 goto out;
972 memslot = id_to_memslot(kvm->memslots, log->slot);
973 r = -ENOENT;
974 if (!memslot->dirty_bitmap)
975 goto out;
977 n = kvm_dirty_bitmap_bytes(memslot);
979 for (i = 0; !any && i < n/sizeof(long); ++i)
980 any = memslot->dirty_bitmap[i];
982 r = -EFAULT;
983 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
984 goto out;
986 if (any)
987 *is_dirty = 1;
989 r = 0;
990 out:
991 return r;
993 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
995 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
997 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
998 * are dirty write protect them for next write.
999 * @kvm: pointer to kvm instance
1000 * @log: slot id and address to which we copy the log
1001 * @is_dirty: flag set if any page is dirty
1003 * We need to keep it in mind that VCPU threads can write to the bitmap
1004 * concurrently. So, to avoid losing track of dirty pages we keep the
1005 * following order:
1007 * 1. Take a snapshot of the bit and clear it if needed.
1008 * 2. Write protect the corresponding page.
1009 * 3. Copy the snapshot to the userspace.
1010 * 4. Upon return caller flushes TLB's if needed.
1012 * Between 2 and 4, the guest may write to the page using the remaining TLB
1013 * entry. This is not a problem because the page is reported dirty using
1014 * the snapshot taken before and step 4 ensures that writes done after
1015 * exiting to userspace will be logged for the next call.
1018 int kvm_get_dirty_log_protect(struct kvm *kvm,
1019 struct kvm_dirty_log *log, bool *is_dirty)
1021 struct kvm_memory_slot *memslot;
1022 int r, i;
1023 unsigned long n;
1024 unsigned long *dirty_bitmap;
1025 unsigned long *dirty_bitmap_buffer;
1027 r = -EINVAL;
1028 if (log->slot >= KVM_USER_MEM_SLOTS)
1029 goto out;
1031 memslot = id_to_memslot(kvm->memslots, log->slot);
1033 dirty_bitmap = memslot->dirty_bitmap;
1034 r = -ENOENT;
1035 if (!dirty_bitmap)
1036 goto out;
1038 n = kvm_dirty_bitmap_bytes(memslot);
1040 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1041 memset(dirty_bitmap_buffer, 0, n);
1043 spin_lock(&kvm->mmu_lock);
1044 *is_dirty = false;
1045 for (i = 0; i < n / sizeof(long); i++) {
1046 unsigned long mask;
1047 gfn_t offset;
1049 if (!dirty_bitmap[i])
1050 continue;
1052 *is_dirty = true;
1054 mask = xchg(&dirty_bitmap[i], 0);
1055 dirty_bitmap_buffer[i] = mask;
1057 if (mask) {
1058 offset = i * BITS_PER_LONG;
1059 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1060 offset, mask);
1064 spin_unlock(&kvm->mmu_lock);
1066 r = -EFAULT;
1067 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1068 goto out;
1070 r = 0;
1071 out:
1072 return r;
1074 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1075 #endif
1077 bool kvm_largepages_enabled(void)
1079 return largepages_enabled;
1082 void kvm_disable_largepages(void)
1084 largepages_enabled = false;
1086 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1088 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1090 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1092 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1094 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1096 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1098 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1099 memslot->flags & KVM_MEMSLOT_INVALID)
1100 return 0;
1102 return 1;
1104 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1106 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1108 struct vm_area_struct *vma;
1109 unsigned long addr, size;
1111 size = PAGE_SIZE;
1113 addr = gfn_to_hva(kvm, gfn);
1114 if (kvm_is_error_hva(addr))
1115 return PAGE_SIZE;
1117 down_read(&current->mm->mmap_sem);
1118 vma = find_vma(current->mm, addr);
1119 if (!vma)
1120 goto out;
1122 size = vma_kernel_pagesize(vma);
1124 out:
1125 up_read(&current->mm->mmap_sem);
1127 return size;
1130 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1132 return slot->flags & KVM_MEM_READONLY;
1135 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1136 gfn_t *nr_pages, bool write)
1138 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1139 return KVM_HVA_ERR_BAD;
1141 if (memslot_is_readonly(slot) && write)
1142 return KVM_HVA_ERR_RO_BAD;
1144 if (nr_pages)
1145 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1147 return __gfn_to_hva_memslot(slot, gfn);
1150 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1151 gfn_t *nr_pages)
1153 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1156 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1157 gfn_t gfn)
1159 return gfn_to_hva_many(slot, gfn, NULL);
1161 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1163 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1165 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1167 EXPORT_SYMBOL_GPL(gfn_to_hva);
1170 * If writable is set to false, the hva returned by this function is only
1171 * allowed to be read.
1173 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1174 gfn_t gfn, bool *writable)
1176 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1178 if (!kvm_is_error_hva(hva) && writable)
1179 *writable = !memslot_is_readonly(slot);
1181 return hva;
1184 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1186 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1188 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1191 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1192 unsigned long start, int write, struct page **page)
1194 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1196 if (write)
1197 flags |= FOLL_WRITE;
1199 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1202 static inline int check_user_page_hwpoison(unsigned long addr)
1204 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1206 rc = __get_user_pages(current, current->mm, addr, 1,
1207 flags, NULL, NULL, NULL);
1208 return rc == -EHWPOISON;
1212 * The atomic path to get the writable pfn which will be stored in @pfn,
1213 * true indicates success, otherwise false is returned.
1215 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1216 bool write_fault, bool *writable, pfn_t *pfn)
1218 struct page *page[1];
1219 int npages;
1221 if (!(async || atomic))
1222 return false;
1225 * Fast pin a writable pfn only if it is a write fault request
1226 * or the caller allows to map a writable pfn for a read fault
1227 * request.
1229 if (!(write_fault || writable))
1230 return false;
1232 npages = __get_user_pages_fast(addr, 1, 1, page);
1233 if (npages == 1) {
1234 *pfn = page_to_pfn(page[0]);
1236 if (writable)
1237 *writable = true;
1238 return true;
1241 return false;
1245 * The slow path to get the pfn of the specified host virtual address,
1246 * 1 indicates success, -errno is returned if error is detected.
1248 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1249 bool *writable, pfn_t *pfn)
1251 struct page *page[1];
1252 int npages = 0;
1254 might_sleep();
1256 if (writable)
1257 *writable = write_fault;
1259 if (async) {
1260 down_read(&current->mm->mmap_sem);
1261 npages = get_user_page_nowait(current, current->mm,
1262 addr, write_fault, page);
1263 up_read(&current->mm->mmap_sem);
1264 } else
1265 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1266 write_fault, 0, page,
1267 FOLL_TOUCH|FOLL_HWPOISON);
1268 if (npages != 1)
1269 return npages;
1271 /* map read fault as writable if possible */
1272 if (unlikely(!write_fault) && writable) {
1273 struct page *wpage[1];
1275 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1276 if (npages == 1) {
1277 *writable = true;
1278 put_page(page[0]);
1279 page[0] = wpage[0];
1282 npages = 1;
1284 *pfn = page_to_pfn(page[0]);
1285 return npages;
1288 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1290 if (unlikely(!(vma->vm_flags & VM_READ)))
1291 return false;
1293 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1294 return false;
1296 return true;
1300 * Pin guest page in memory and return its pfn.
1301 * @addr: host virtual address which maps memory to the guest
1302 * @atomic: whether this function can sleep
1303 * @async: whether this function need to wait IO complete if the
1304 * host page is not in the memory
1305 * @write_fault: whether we should get a writable host page
1306 * @writable: whether it allows to map a writable host page for !@write_fault
1308 * The function will map a writable host page for these two cases:
1309 * 1): @write_fault = true
1310 * 2): @write_fault = false && @writable, @writable will tell the caller
1311 * whether the mapping is writable.
1313 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1314 bool write_fault, bool *writable)
1316 struct vm_area_struct *vma;
1317 pfn_t pfn = 0;
1318 int npages;
1320 /* we can do it either atomically or asynchronously, not both */
1321 BUG_ON(atomic && async);
1323 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1324 return pfn;
1326 if (atomic)
1327 return KVM_PFN_ERR_FAULT;
1329 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1330 if (npages == 1)
1331 return pfn;
1333 down_read(&current->mm->mmap_sem);
1334 if (npages == -EHWPOISON ||
1335 (!async && check_user_page_hwpoison(addr))) {
1336 pfn = KVM_PFN_ERR_HWPOISON;
1337 goto exit;
1340 vma = find_vma_intersection(current->mm, addr, addr + 1);
1342 if (vma == NULL)
1343 pfn = KVM_PFN_ERR_FAULT;
1344 else if ((vma->vm_flags & VM_PFNMAP)) {
1345 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1346 vma->vm_pgoff;
1347 BUG_ON(!kvm_is_reserved_pfn(pfn));
1348 } else {
1349 if (async && vma_is_valid(vma, write_fault))
1350 *async = true;
1351 pfn = KVM_PFN_ERR_FAULT;
1353 exit:
1354 up_read(&current->mm->mmap_sem);
1355 return pfn;
1358 static pfn_t
1359 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1360 bool *async, bool write_fault, bool *writable)
1362 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1364 if (addr == KVM_HVA_ERR_RO_BAD)
1365 return KVM_PFN_ERR_RO_FAULT;
1367 if (kvm_is_error_hva(addr))
1368 return KVM_PFN_NOSLOT;
1370 /* Do not map writable pfn in the readonly memslot. */
1371 if (writable && memslot_is_readonly(slot)) {
1372 *writable = false;
1373 writable = NULL;
1376 return hva_to_pfn(addr, atomic, async, write_fault,
1377 writable);
1380 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1381 bool write_fault, bool *writable)
1383 struct kvm_memory_slot *slot;
1385 if (async)
1386 *async = false;
1388 slot = gfn_to_memslot(kvm, gfn);
1390 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1391 writable);
1394 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1396 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1398 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1400 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1401 bool write_fault, bool *writable)
1403 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1405 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1407 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1409 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1413 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1414 bool *writable)
1416 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1420 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1422 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1425 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1427 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1431 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1432 int nr_pages)
1434 unsigned long addr;
1435 gfn_t entry;
1437 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1438 if (kvm_is_error_hva(addr))
1439 return -1;
1441 if (entry < nr_pages)
1442 return 0;
1444 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1446 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1448 static struct page *kvm_pfn_to_page(pfn_t pfn)
1450 if (is_error_noslot_pfn(pfn))
1451 return KVM_ERR_PTR_BAD_PAGE;
1453 if (kvm_is_reserved_pfn(pfn)) {
1454 WARN_ON(1);
1455 return KVM_ERR_PTR_BAD_PAGE;
1458 return pfn_to_page(pfn);
1461 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1463 pfn_t pfn;
1465 pfn = gfn_to_pfn(kvm, gfn);
1467 return kvm_pfn_to_page(pfn);
1469 EXPORT_SYMBOL_GPL(gfn_to_page);
1471 void kvm_release_page_clean(struct page *page)
1473 WARN_ON(is_error_page(page));
1475 kvm_release_pfn_clean(page_to_pfn(page));
1477 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1479 void kvm_release_pfn_clean(pfn_t pfn)
1481 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1482 put_page(pfn_to_page(pfn));
1484 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1486 void kvm_release_page_dirty(struct page *page)
1488 WARN_ON(is_error_page(page));
1490 kvm_release_pfn_dirty(page_to_pfn(page));
1492 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1494 static void kvm_release_pfn_dirty(pfn_t pfn)
1496 kvm_set_pfn_dirty(pfn);
1497 kvm_release_pfn_clean(pfn);
1500 void kvm_set_pfn_dirty(pfn_t pfn)
1502 if (!kvm_is_reserved_pfn(pfn)) {
1503 struct page *page = pfn_to_page(pfn);
1505 if (!PageReserved(page))
1506 SetPageDirty(page);
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1511 void kvm_set_pfn_accessed(pfn_t pfn)
1513 if (!kvm_is_reserved_pfn(pfn))
1514 mark_page_accessed(pfn_to_page(pfn));
1516 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1518 void kvm_get_pfn(pfn_t pfn)
1520 if (!kvm_is_reserved_pfn(pfn))
1521 get_page(pfn_to_page(pfn));
1523 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1525 static int next_segment(unsigned long len, int offset)
1527 if (len > PAGE_SIZE - offset)
1528 return PAGE_SIZE - offset;
1529 else
1530 return len;
1533 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1534 int len)
1536 int r;
1537 unsigned long addr;
1539 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1540 if (kvm_is_error_hva(addr))
1541 return -EFAULT;
1542 r = __copy_from_user(data, (void __user *)addr + offset, len);
1543 if (r)
1544 return -EFAULT;
1545 return 0;
1547 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1549 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int seg;
1553 int offset = offset_in_page(gpa);
1554 int ret;
1556 while ((seg = next_segment(len, offset)) != 0) {
1557 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1558 if (ret < 0)
1559 return ret;
1560 offset = 0;
1561 len -= seg;
1562 data += seg;
1563 ++gfn;
1565 return 0;
1567 EXPORT_SYMBOL_GPL(kvm_read_guest);
1569 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1570 unsigned long len)
1572 int r;
1573 unsigned long addr;
1574 gfn_t gfn = gpa >> PAGE_SHIFT;
1575 int offset = offset_in_page(gpa);
1577 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1578 if (kvm_is_error_hva(addr))
1579 return -EFAULT;
1580 pagefault_disable();
1581 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1582 pagefault_enable();
1583 if (r)
1584 return -EFAULT;
1585 return 0;
1587 EXPORT_SYMBOL(kvm_read_guest_atomic);
1589 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1590 int offset, int len)
1592 int r;
1593 unsigned long addr;
1595 addr = gfn_to_hva(kvm, gfn);
1596 if (kvm_is_error_hva(addr))
1597 return -EFAULT;
1598 r = __copy_to_user((void __user *)addr + offset, data, len);
1599 if (r)
1600 return -EFAULT;
1601 mark_page_dirty(kvm, gfn);
1602 return 0;
1604 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1606 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1607 unsigned long len)
1609 gfn_t gfn = gpa >> PAGE_SHIFT;
1610 int seg;
1611 int offset = offset_in_page(gpa);
1612 int ret;
1614 while ((seg = next_segment(len, offset)) != 0) {
1615 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1616 if (ret < 0)
1617 return ret;
1618 offset = 0;
1619 len -= seg;
1620 data += seg;
1621 ++gfn;
1623 return 0;
1625 EXPORT_SYMBOL_GPL(kvm_write_guest);
1627 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1628 gpa_t gpa, unsigned long len)
1630 struct kvm_memslots *slots = kvm_memslots(kvm);
1631 int offset = offset_in_page(gpa);
1632 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1633 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1634 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1635 gfn_t nr_pages_avail;
1637 ghc->gpa = gpa;
1638 ghc->generation = slots->generation;
1639 ghc->len = len;
1640 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1641 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1642 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1643 ghc->hva += offset;
1644 } else {
1646 * If the requested region crosses two memslots, we still
1647 * verify that the entire region is valid here.
1649 while (start_gfn <= end_gfn) {
1650 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1651 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1652 &nr_pages_avail);
1653 if (kvm_is_error_hva(ghc->hva))
1654 return -EFAULT;
1655 start_gfn += nr_pages_avail;
1657 /* Use the slow path for cross page reads and writes. */
1658 ghc->memslot = NULL;
1660 return 0;
1662 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1664 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1665 void *data, unsigned long len)
1667 struct kvm_memslots *slots = kvm_memslots(kvm);
1668 int r;
1670 BUG_ON(len > ghc->len);
1672 if (slots->generation != ghc->generation)
1673 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1675 if (unlikely(!ghc->memslot))
1676 return kvm_write_guest(kvm, ghc->gpa, data, len);
1678 if (kvm_is_error_hva(ghc->hva))
1679 return -EFAULT;
1681 r = __copy_to_user((void __user *)ghc->hva, data, len);
1682 if (r)
1683 return -EFAULT;
1684 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1686 return 0;
1688 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1690 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1691 void *data, unsigned long len)
1693 struct kvm_memslots *slots = kvm_memslots(kvm);
1694 int r;
1696 BUG_ON(len > ghc->len);
1698 if (slots->generation != ghc->generation)
1699 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1701 if (unlikely(!ghc->memslot))
1702 return kvm_read_guest(kvm, ghc->gpa, data, len);
1704 if (kvm_is_error_hva(ghc->hva))
1705 return -EFAULT;
1707 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1708 if (r)
1709 return -EFAULT;
1711 return 0;
1713 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1715 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1717 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1719 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1721 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1723 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1725 gfn_t gfn = gpa >> PAGE_SHIFT;
1726 int seg;
1727 int offset = offset_in_page(gpa);
1728 int ret;
1730 while ((seg = next_segment(len, offset)) != 0) {
1731 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1732 if (ret < 0)
1733 return ret;
1734 offset = 0;
1735 len -= seg;
1736 ++gfn;
1738 return 0;
1740 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1742 static void mark_page_dirty_in_slot(struct kvm *kvm,
1743 struct kvm_memory_slot *memslot,
1744 gfn_t gfn)
1746 if (memslot && memslot->dirty_bitmap) {
1747 unsigned long rel_gfn = gfn - memslot->base_gfn;
1749 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1753 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1755 struct kvm_memory_slot *memslot;
1757 memslot = gfn_to_memslot(kvm, gfn);
1758 mark_page_dirty_in_slot(kvm, memslot, gfn);
1760 EXPORT_SYMBOL_GPL(mark_page_dirty);
1762 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1764 if (kvm_arch_vcpu_runnable(vcpu)) {
1765 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1766 return -EINTR;
1768 if (kvm_cpu_has_pending_timer(vcpu))
1769 return -EINTR;
1770 if (signal_pending(current))
1771 return -EINTR;
1773 return 0;
1777 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1779 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1781 ktime_t start, cur;
1782 DEFINE_WAIT(wait);
1783 bool waited = false;
1785 start = cur = ktime_get();
1786 if (halt_poll_ns) {
1787 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1789 do {
1791 * This sets KVM_REQ_UNHALT if an interrupt
1792 * arrives.
1794 if (kvm_vcpu_check_block(vcpu) < 0) {
1795 ++vcpu->stat.halt_successful_poll;
1796 goto out;
1798 cur = ktime_get();
1799 } while (single_task_running() && ktime_before(cur, stop));
1802 for (;;) {
1803 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1805 if (kvm_vcpu_check_block(vcpu) < 0)
1806 break;
1808 waited = true;
1809 schedule();
1812 finish_wait(&vcpu->wq, &wait);
1813 cur = ktime_get();
1815 out:
1816 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1820 #ifndef CONFIG_S390
1822 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1824 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1826 int me;
1827 int cpu = vcpu->cpu;
1828 wait_queue_head_t *wqp;
1830 wqp = kvm_arch_vcpu_wq(vcpu);
1831 if (waitqueue_active(wqp)) {
1832 wake_up_interruptible(wqp);
1833 ++vcpu->stat.halt_wakeup;
1836 me = get_cpu();
1837 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1838 if (kvm_arch_vcpu_should_kick(vcpu))
1839 smp_send_reschedule(cpu);
1840 put_cpu();
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1843 #endif /* !CONFIG_S390 */
1845 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1847 struct pid *pid;
1848 struct task_struct *task = NULL;
1849 int ret = 0;
1851 rcu_read_lock();
1852 pid = rcu_dereference(target->pid);
1853 if (pid)
1854 task = get_pid_task(pid, PIDTYPE_PID);
1855 rcu_read_unlock();
1856 if (!task)
1857 return ret;
1858 ret = yield_to(task, 1);
1859 put_task_struct(task);
1861 return ret;
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1866 * Helper that checks whether a VCPU is eligible for directed yield.
1867 * Most eligible candidate to yield is decided by following heuristics:
1869 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1870 * (preempted lock holder), indicated by @in_spin_loop.
1871 * Set at the beiginning and cleared at the end of interception/PLE handler.
1873 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1874 * chance last time (mostly it has become eligible now since we have probably
1875 * yielded to lockholder in last iteration. This is done by toggling
1876 * @dy_eligible each time a VCPU checked for eligibility.)
1878 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1879 * to preempted lock-holder could result in wrong VCPU selection and CPU
1880 * burning. Giving priority for a potential lock-holder increases lock
1881 * progress.
1883 * Since algorithm is based on heuristics, accessing another VCPU data without
1884 * locking does not harm. It may result in trying to yield to same VCPU, fail
1885 * and continue with next VCPU and so on.
1887 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1889 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1890 bool eligible;
1892 eligible = !vcpu->spin_loop.in_spin_loop ||
1893 vcpu->spin_loop.dy_eligible;
1895 if (vcpu->spin_loop.in_spin_loop)
1896 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1898 return eligible;
1899 #else
1900 return true;
1901 #endif
1904 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1906 struct kvm *kvm = me->kvm;
1907 struct kvm_vcpu *vcpu;
1908 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1909 int yielded = 0;
1910 int try = 3;
1911 int pass;
1912 int i;
1914 kvm_vcpu_set_in_spin_loop(me, true);
1916 * We boost the priority of a VCPU that is runnable but not
1917 * currently running, because it got preempted by something
1918 * else and called schedule in __vcpu_run. Hopefully that
1919 * VCPU is holding the lock that we need and will release it.
1920 * We approximate round-robin by starting at the last boosted VCPU.
1922 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1923 kvm_for_each_vcpu(i, vcpu, kvm) {
1924 if (!pass && i <= last_boosted_vcpu) {
1925 i = last_boosted_vcpu;
1926 continue;
1927 } else if (pass && i > last_boosted_vcpu)
1928 break;
1929 if (!ACCESS_ONCE(vcpu->preempted))
1930 continue;
1931 if (vcpu == me)
1932 continue;
1933 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1934 continue;
1935 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1936 continue;
1938 yielded = kvm_vcpu_yield_to(vcpu);
1939 if (yielded > 0) {
1940 kvm->last_boosted_vcpu = i;
1941 break;
1942 } else if (yielded < 0) {
1943 try--;
1944 if (!try)
1945 break;
1949 kvm_vcpu_set_in_spin_loop(me, false);
1951 /* Ensure vcpu is not eligible during next spinloop */
1952 kvm_vcpu_set_dy_eligible(me, false);
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1956 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1958 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1959 struct page *page;
1961 if (vmf->pgoff == 0)
1962 page = virt_to_page(vcpu->run);
1963 #ifdef CONFIG_X86
1964 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1965 page = virt_to_page(vcpu->arch.pio_data);
1966 #endif
1967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1968 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1969 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1970 #endif
1971 else
1972 return kvm_arch_vcpu_fault(vcpu, vmf);
1973 get_page(page);
1974 vmf->page = page;
1975 return 0;
1978 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1979 .fault = kvm_vcpu_fault,
1982 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1984 vma->vm_ops = &kvm_vcpu_vm_ops;
1985 return 0;
1988 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1990 struct kvm_vcpu *vcpu = filp->private_data;
1992 kvm_put_kvm(vcpu->kvm);
1993 return 0;
1996 static struct file_operations kvm_vcpu_fops = {
1997 .release = kvm_vcpu_release,
1998 .unlocked_ioctl = kvm_vcpu_ioctl,
1999 #ifdef CONFIG_KVM_COMPAT
2000 .compat_ioctl = kvm_vcpu_compat_ioctl,
2001 #endif
2002 .mmap = kvm_vcpu_mmap,
2003 .llseek = noop_llseek,
2007 * Allocates an inode for the vcpu.
2009 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2011 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2015 * Creates some virtual cpus. Good luck creating more than one.
2017 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2019 int r;
2020 struct kvm_vcpu *vcpu, *v;
2022 if (id >= KVM_MAX_VCPUS)
2023 return -EINVAL;
2025 vcpu = kvm_arch_vcpu_create(kvm, id);
2026 if (IS_ERR(vcpu))
2027 return PTR_ERR(vcpu);
2029 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2031 r = kvm_arch_vcpu_setup(vcpu);
2032 if (r)
2033 goto vcpu_destroy;
2035 mutex_lock(&kvm->lock);
2036 if (!kvm_vcpu_compatible(vcpu)) {
2037 r = -EINVAL;
2038 goto unlock_vcpu_destroy;
2040 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2041 r = -EINVAL;
2042 goto unlock_vcpu_destroy;
2045 kvm_for_each_vcpu(r, v, kvm)
2046 if (v->vcpu_id == id) {
2047 r = -EEXIST;
2048 goto unlock_vcpu_destroy;
2051 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2053 /* Now it's all set up, let userspace reach it */
2054 kvm_get_kvm(kvm);
2055 r = create_vcpu_fd(vcpu);
2056 if (r < 0) {
2057 kvm_put_kvm(kvm);
2058 goto unlock_vcpu_destroy;
2061 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2062 smp_wmb();
2063 atomic_inc(&kvm->online_vcpus);
2065 mutex_unlock(&kvm->lock);
2066 kvm_arch_vcpu_postcreate(vcpu);
2067 return r;
2069 unlock_vcpu_destroy:
2070 mutex_unlock(&kvm->lock);
2071 vcpu_destroy:
2072 kvm_arch_vcpu_destroy(vcpu);
2073 return r;
2076 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2078 if (sigset) {
2079 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2080 vcpu->sigset_active = 1;
2081 vcpu->sigset = *sigset;
2082 } else
2083 vcpu->sigset_active = 0;
2084 return 0;
2087 static long kvm_vcpu_ioctl(struct file *filp,
2088 unsigned int ioctl, unsigned long arg)
2090 struct kvm_vcpu *vcpu = filp->private_data;
2091 void __user *argp = (void __user *)arg;
2092 int r;
2093 struct kvm_fpu *fpu = NULL;
2094 struct kvm_sregs *kvm_sregs = NULL;
2096 if (vcpu->kvm->mm != current->mm)
2097 return -EIO;
2099 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2100 return -EINVAL;
2102 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2104 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2105 * so vcpu_load() would break it.
2107 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2108 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2109 #endif
2112 r = vcpu_load(vcpu);
2113 if (r)
2114 return r;
2115 switch (ioctl) {
2116 case KVM_RUN:
2117 r = -EINVAL;
2118 if (arg)
2119 goto out;
2120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2121 /* The thread running this VCPU changed. */
2122 struct pid *oldpid = vcpu->pid;
2123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2125 rcu_assign_pointer(vcpu->pid, newpid);
2126 if (oldpid)
2127 synchronize_rcu();
2128 put_pid(oldpid);
2130 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2131 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2132 break;
2133 case KVM_GET_REGS: {
2134 struct kvm_regs *kvm_regs;
2136 r = -ENOMEM;
2137 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2138 if (!kvm_regs)
2139 goto out;
2140 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2141 if (r)
2142 goto out_free1;
2143 r = -EFAULT;
2144 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2145 goto out_free1;
2146 r = 0;
2147 out_free1:
2148 kfree(kvm_regs);
2149 break;
2151 case KVM_SET_REGS: {
2152 struct kvm_regs *kvm_regs;
2154 r = -ENOMEM;
2155 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2156 if (IS_ERR(kvm_regs)) {
2157 r = PTR_ERR(kvm_regs);
2158 goto out;
2160 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2161 kfree(kvm_regs);
2162 break;
2164 case KVM_GET_SREGS: {
2165 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2166 r = -ENOMEM;
2167 if (!kvm_sregs)
2168 goto out;
2169 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2170 if (r)
2171 goto out;
2172 r = -EFAULT;
2173 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2174 goto out;
2175 r = 0;
2176 break;
2178 case KVM_SET_SREGS: {
2179 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2180 if (IS_ERR(kvm_sregs)) {
2181 r = PTR_ERR(kvm_sregs);
2182 kvm_sregs = NULL;
2183 goto out;
2185 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2186 break;
2188 case KVM_GET_MP_STATE: {
2189 struct kvm_mp_state mp_state;
2191 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2192 if (r)
2193 goto out;
2194 r = -EFAULT;
2195 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2196 goto out;
2197 r = 0;
2198 break;
2200 case KVM_SET_MP_STATE: {
2201 struct kvm_mp_state mp_state;
2203 r = -EFAULT;
2204 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2205 goto out;
2206 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2207 break;
2209 case KVM_TRANSLATE: {
2210 struct kvm_translation tr;
2212 r = -EFAULT;
2213 if (copy_from_user(&tr, argp, sizeof(tr)))
2214 goto out;
2215 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2216 if (r)
2217 goto out;
2218 r = -EFAULT;
2219 if (copy_to_user(argp, &tr, sizeof(tr)))
2220 goto out;
2221 r = 0;
2222 break;
2224 case KVM_SET_GUEST_DEBUG: {
2225 struct kvm_guest_debug dbg;
2227 r = -EFAULT;
2228 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2229 goto out;
2230 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2231 break;
2233 case KVM_SET_SIGNAL_MASK: {
2234 struct kvm_signal_mask __user *sigmask_arg = argp;
2235 struct kvm_signal_mask kvm_sigmask;
2236 sigset_t sigset, *p;
2238 p = NULL;
2239 if (argp) {
2240 r = -EFAULT;
2241 if (copy_from_user(&kvm_sigmask, argp,
2242 sizeof(kvm_sigmask)))
2243 goto out;
2244 r = -EINVAL;
2245 if (kvm_sigmask.len != sizeof(sigset))
2246 goto out;
2247 r = -EFAULT;
2248 if (copy_from_user(&sigset, sigmask_arg->sigset,
2249 sizeof(sigset)))
2250 goto out;
2251 p = &sigset;
2253 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2254 break;
2256 case KVM_GET_FPU: {
2257 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2258 r = -ENOMEM;
2259 if (!fpu)
2260 goto out;
2261 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2262 if (r)
2263 goto out;
2264 r = -EFAULT;
2265 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2266 goto out;
2267 r = 0;
2268 break;
2270 case KVM_SET_FPU: {
2271 fpu = memdup_user(argp, sizeof(*fpu));
2272 if (IS_ERR(fpu)) {
2273 r = PTR_ERR(fpu);
2274 fpu = NULL;
2275 goto out;
2277 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2278 break;
2280 default:
2281 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2283 out:
2284 vcpu_put(vcpu);
2285 kfree(fpu);
2286 kfree(kvm_sregs);
2287 return r;
2290 #ifdef CONFIG_KVM_COMPAT
2291 static long kvm_vcpu_compat_ioctl(struct file *filp,
2292 unsigned int ioctl, unsigned long arg)
2294 struct kvm_vcpu *vcpu = filp->private_data;
2295 void __user *argp = compat_ptr(arg);
2296 int r;
2298 if (vcpu->kvm->mm != current->mm)
2299 return -EIO;
2301 switch (ioctl) {
2302 case KVM_SET_SIGNAL_MASK: {
2303 struct kvm_signal_mask __user *sigmask_arg = argp;
2304 struct kvm_signal_mask kvm_sigmask;
2305 compat_sigset_t csigset;
2306 sigset_t sigset;
2308 if (argp) {
2309 r = -EFAULT;
2310 if (copy_from_user(&kvm_sigmask, argp,
2311 sizeof(kvm_sigmask)))
2312 goto out;
2313 r = -EINVAL;
2314 if (kvm_sigmask.len != sizeof(csigset))
2315 goto out;
2316 r = -EFAULT;
2317 if (copy_from_user(&csigset, sigmask_arg->sigset,
2318 sizeof(csigset)))
2319 goto out;
2320 sigset_from_compat(&sigset, &csigset);
2321 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2322 } else
2323 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2324 break;
2326 default:
2327 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2330 out:
2331 return r;
2333 #endif
2335 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2336 int (*accessor)(struct kvm_device *dev,
2337 struct kvm_device_attr *attr),
2338 unsigned long arg)
2340 struct kvm_device_attr attr;
2342 if (!accessor)
2343 return -EPERM;
2345 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2346 return -EFAULT;
2348 return accessor(dev, &attr);
2351 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2352 unsigned long arg)
2354 struct kvm_device *dev = filp->private_data;
2356 switch (ioctl) {
2357 case KVM_SET_DEVICE_ATTR:
2358 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2359 case KVM_GET_DEVICE_ATTR:
2360 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2361 case KVM_HAS_DEVICE_ATTR:
2362 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2363 default:
2364 if (dev->ops->ioctl)
2365 return dev->ops->ioctl(dev, ioctl, arg);
2367 return -ENOTTY;
2371 static int kvm_device_release(struct inode *inode, struct file *filp)
2373 struct kvm_device *dev = filp->private_data;
2374 struct kvm *kvm = dev->kvm;
2376 kvm_put_kvm(kvm);
2377 return 0;
2380 static const struct file_operations kvm_device_fops = {
2381 .unlocked_ioctl = kvm_device_ioctl,
2382 #ifdef CONFIG_KVM_COMPAT
2383 .compat_ioctl = kvm_device_ioctl,
2384 #endif
2385 .release = kvm_device_release,
2388 struct kvm_device *kvm_device_from_filp(struct file *filp)
2390 if (filp->f_op != &kvm_device_fops)
2391 return NULL;
2393 return filp->private_data;
2396 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2397 #ifdef CONFIG_KVM_MPIC
2398 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2399 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2400 #endif
2402 #ifdef CONFIG_KVM_XICS
2403 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2404 #endif
2407 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2409 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2410 return -ENOSPC;
2412 if (kvm_device_ops_table[type] != NULL)
2413 return -EEXIST;
2415 kvm_device_ops_table[type] = ops;
2416 return 0;
2419 void kvm_unregister_device_ops(u32 type)
2421 if (kvm_device_ops_table[type] != NULL)
2422 kvm_device_ops_table[type] = NULL;
2425 static int kvm_ioctl_create_device(struct kvm *kvm,
2426 struct kvm_create_device *cd)
2428 struct kvm_device_ops *ops = NULL;
2429 struct kvm_device *dev;
2430 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2431 int ret;
2433 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2434 return -ENODEV;
2436 ops = kvm_device_ops_table[cd->type];
2437 if (ops == NULL)
2438 return -ENODEV;
2440 if (test)
2441 return 0;
2443 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2444 if (!dev)
2445 return -ENOMEM;
2447 dev->ops = ops;
2448 dev->kvm = kvm;
2450 ret = ops->create(dev, cd->type);
2451 if (ret < 0) {
2452 kfree(dev);
2453 return ret;
2456 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2457 if (ret < 0) {
2458 ops->destroy(dev);
2459 return ret;
2462 list_add(&dev->vm_node, &kvm->devices);
2463 kvm_get_kvm(kvm);
2464 cd->fd = ret;
2465 return 0;
2468 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2470 switch (arg) {
2471 case KVM_CAP_USER_MEMORY:
2472 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2473 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2474 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2475 case KVM_CAP_SET_BOOT_CPU_ID:
2476 #endif
2477 case KVM_CAP_INTERNAL_ERROR_DATA:
2478 #ifdef CONFIG_HAVE_KVM_MSI
2479 case KVM_CAP_SIGNAL_MSI:
2480 #endif
2481 #ifdef CONFIG_HAVE_KVM_IRQFD
2482 case KVM_CAP_IRQFD:
2483 case KVM_CAP_IRQFD_RESAMPLE:
2484 #endif
2485 case KVM_CAP_CHECK_EXTENSION_VM:
2486 return 1;
2487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2488 case KVM_CAP_IRQ_ROUTING:
2489 return KVM_MAX_IRQ_ROUTES;
2490 #endif
2491 default:
2492 break;
2494 return kvm_vm_ioctl_check_extension(kvm, arg);
2497 static long kvm_vm_ioctl(struct file *filp,
2498 unsigned int ioctl, unsigned long arg)
2500 struct kvm *kvm = filp->private_data;
2501 void __user *argp = (void __user *)arg;
2502 int r;
2504 if (kvm->mm != current->mm)
2505 return -EIO;
2506 switch (ioctl) {
2507 case KVM_CREATE_VCPU:
2508 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2509 break;
2510 case KVM_SET_USER_MEMORY_REGION: {
2511 struct kvm_userspace_memory_region kvm_userspace_mem;
2513 r = -EFAULT;
2514 if (copy_from_user(&kvm_userspace_mem, argp,
2515 sizeof(kvm_userspace_mem)))
2516 goto out;
2518 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2519 break;
2521 case KVM_GET_DIRTY_LOG: {
2522 struct kvm_dirty_log log;
2524 r = -EFAULT;
2525 if (copy_from_user(&log, argp, sizeof(log)))
2526 goto out;
2527 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2528 break;
2530 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2531 case KVM_REGISTER_COALESCED_MMIO: {
2532 struct kvm_coalesced_mmio_zone zone;
2534 r = -EFAULT;
2535 if (copy_from_user(&zone, argp, sizeof(zone)))
2536 goto out;
2537 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2538 break;
2540 case KVM_UNREGISTER_COALESCED_MMIO: {
2541 struct kvm_coalesced_mmio_zone zone;
2543 r = -EFAULT;
2544 if (copy_from_user(&zone, argp, sizeof(zone)))
2545 goto out;
2546 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2547 break;
2549 #endif
2550 case KVM_IRQFD: {
2551 struct kvm_irqfd data;
2553 r = -EFAULT;
2554 if (copy_from_user(&data, argp, sizeof(data)))
2555 goto out;
2556 r = kvm_irqfd(kvm, &data);
2557 break;
2559 case KVM_IOEVENTFD: {
2560 struct kvm_ioeventfd data;
2562 r = -EFAULT;
2563 if (copy_from_user(&data, argp, sizeof(data)))
2564 goto out;
2565 r = kvm_ioeventfd(kvm, &data);
2566 break;
2568 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2569 case KVM_SET_BOOT_CPU_ID:
2570 r = 0;
2571 mutex_lock(&kvm->lock);
2572 if (atomic_read(&kvm->online_vcpus) != 0)
2573 r = -EBUSY;
2574 else
2575 kvm->bsp_vcpu_id = arg;
2576 mutex_unlock(&kvm->lock);
2577 break;
2578 #endif
2579 #ifdef CONFIG_HAVE_KVM_MSI
2580 case KVM_SIGNAL_MSI: {
2581 struct kvm_msi msi;
2583 r = -EFAULT;
2584 if (copy_from_user(&msi, argp, sizeof(msi)))
2585 goto out;
2586 r = kvm_send_userspace_msi(kvm, &msi);
2587 break;
2589 #endif
2590 #ifdef __KVM_HAVE_IRQ_LINE
2591 case KVM_IRQ_LINE_STATUS:
2592 case KVM_IRQ_LINE: {
2593 struct kvm_irq_level irq_event;
2595 r = -EFAULT;
2596 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2597 goto out;
2599 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2600 ioctl == KVM_IRQ_LINE_STATUS);
2601 if (r)
2602 goto out;
2604 r = -EFAULT;
2605 if (ioctl == KVM_IRQ_LINE_STATUS) {
2606 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2607 goto out;
2610 r = 0;
2611 break;
2613 #endif
2614 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2615 case KVM_SET_GSI_ROUTING: {
2616 struct kvm_irq_routing routing;
2617 struct kvm_irq_routing __user *urouting;
2618 struct kvm_irq_routing_entry *entries;
2620 r = -EFAULT;
2621 if (copy_from_user(&routing, argp, sizeof(routing)))
2622 goto out;
2623 r = -EINVAL;
2624 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2625 goto out;
2626 if (routing.flags)
2627 goto out;
2628 r = -ENOMEM;
2629 entries = vmalloc(routing.nr * sizeof(*entries));
2630 if (!entries)
2631 goto out;
2632 r = -EFAULT;
2633 urouting = argp;
2634 if (copy_from_user(entries, urouting->entries,
2635 routing.nr * sizeof(*entries)))
2636 goto out_free_irq_routing;
2637 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2638 routing.flags);
2639 out_free_irq_routing:
2640 vfree(entries);
2641 break;
2643 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2644 case KVM_CREATE_DEVICE: {
2645 struct kvm_create_device cd;
2647 r = -EFAULT;
2648 if (copy_from_user(&cd, argp, sizeof(cd)))
2649 goto out;
2651 r = kvm_ioctl_create_device(kvm, &cd);
2652 if (r)
2653 goto out;
2655 r = -EFAULT;
2656 if (copy_to_user(argp, &cd, sizeof(cd)))
2657 goto out;
2659 r = 0;
2660 break;
2662 case KVM_CHECK_EXTENSION:
2663 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2664 break;
2665 default:
2666 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2668 out:
2669 return r;
2672 #ifdef CONFIG_KVM_COMPAT
2673 struct compat_kvm_dirty_log {
2674 __u32 slot;
2675 __u32 padding1;
2676 union {
2677 compat_uptr_t dirty_bitmap; /* one bit per page */
2678 __u64 padding2;
2682 static long kvm_vm_compat_ioctl(struct file *filp,
2683 unsigned int ioctl, unsigned long arg)
2685 struct kvm *kvm = filp->private_data;
2686 int r;
2688 if (kvm->mm != current->mm)
2689 return -EIO;
2690 switch (ioctl) {
2691 case KVM_GET_DIRTY_LOG: {
2692 struct compat_kvm_dirty_log compat_log;
2693 struct kvm_dirty_log log;
2695 r = -EFAULT;
2696 if (copy_from_user(&compat_log, (void __user *)arg,
2697 sizeof(compat_log)))
2698 goto out;
2699 log.slot = compat_log.slot;
2700 log.padding1 = compat_log.padding1;
2701 log.padding2 = compat_log.padding2;
2702 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2704 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2705 break;
2707 default:
2708 r = kvm_vm_ioctl(filp, ioctl, arg);
2711 out:
2712 return r;
2714 #endif
2716 static struct file_operations kvm_vm_fops = {
2717 .release = kvm_vm_release,
2718 .unlocked_ioctl = kvm_vm_ioctl,
2719 #ifdef CONFIG_KVM_COMPAT
2720 .compat_ioctl = kvm_vm_compat_ioctl,
2721 #endif
2722 .llseek = noop_llseek,
2725 static int kvm_dev_ioctl_create_vm(unsigned long type)
2727 int r;
2728 struct kvm *kvm;
2730 kvm = kvm_create_vm(type);
2731 if (IS_ERR(kvm))
2732 return PTR_ERR(kvm);
2733 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2734 r = kvm_coalesced_mmio_init(kvm);
2735 if (r < 0) {
2736 kvm_put_kvm(kvm);
2737 return r;
2739 #endif
2740 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2741 if (r < 0)
2742 kvm_put_kvm(kvm);
2744 return r;
2747 static long kvm_dev_ioctl(struct file *filp,
2748 unsigned int ioctl, unsigned long arg)
2750 long r = -EINVAL;
2752 switch (ioctl) {
2753 case KVM_GET_API_VERSION:
2754 if (arg)
2755 goto out;
2756 r = KVM_API_VERSION;
2757 break;
2758 case KVM_CREATE_VM:
2759 r = kvm_dev_ioctl_create_vm(arg);
2760 break;
2761 case KVM_CHECK_EXTENSION:
2762 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2763 break;
2764 case KVM_GET_VCPU_MMAP_SIZE:
2765 if (arg)
2766 goto out;
2767 r = PAGE_SIZE; /* struct kvm_run */
2768 #ifdef CONFIG_X86
2769 r += PAGE_SIZE; /* pio data page */
2770 #endif
2771 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2772 r += PAGE_SIZE; /* coalesced mmio ring page */
2773 #endif
2774 break;
2775 case KVM_TRACE_ENABLE:
2776 case KVM_TRACE_PAUSE:
2777 case KVM_TRACE_DISABLE:
2778 r = -EOPNOTSUPP;
2779 break;
2780 default:
2781 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2783 out:
2784 return r;
2787 static struct file_operations kvm_chardev_ops = {
2788 .unlocked_ioctl = kvm_dev_ioctl,
2789 .compat_ioctl = kvm_dev_ioctl,
2790 .llseek = noop_llseek,
2793 static struct miscdevice kvm_dev = {
2794 KVM_MINOR,
2795 "kvm",
2796 &kvm_chardev_ops,
2799 static void hardware_enable_nolock(void *junk)
2801 int cpu = raw_smp_processor_id();
2802 int r;
2804 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2805 return;
2807 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2809 r = kvm_arch_hardware_enable();
2811 if (r) {
2812 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2813 atomic_inc(&hardware_enable_failed);
2814 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2818 static void hardware_enable(void)
2820 raw_spin_lock(&kvm_count_lock);
2821 if (kvm_usage_count)
2822 hardware_enable_nolock(NULL);
2823 raw_spin_unlock(&kvm_count_lock);
2826 static void hardware_disable_nolock(void *junk)
2828 int cpu = raw_smp_processor_id();
2830 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2831 return;
2832 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2833 kvm_arch_hardware_disable();
2836 static void hardware_disable(void)
2838 raw_spin_lock(&kvm_count_lock);
2839 if (kvm_usage_count)
2840 hardware_disable_nolock(NULL);
2841 raw_spin_unlock(&kvm_count_lock);
2844 static void hardware_disable_all_nolock(void)
2846 BUG_ON(!kvm_usage_count);
2848 kvm_usage_count--;
2849 if (!kvm_usage_count)
2850 on_each_cpu(hardware_disable_nolock, NULL, 1);
2853 static void hardware_disable_all(void)
2855 raw_spin_lock(&kvm_count_lock);
2856 hardware_disable_all_nolock();
2857 raw_spin_unlock(&kvm_count_lock);
2860 static int hardware_enable_all(void)
2862 int r = 0;
2864 raw_spin_lock(&kvm_count_lock);
2866 kvm_usage_count++;
2867 if (kvm_usage_count == 1) {
2868 atomic_set(&hardware_enable_failed, 0);
2869 on_each_cpu(hardware_enable_nolock, NULL, 1);
2871 if (atomic_read(&hardware_enable_failed)) {
2872 hardware_disable_all_nolock();
2873 r = -EBUSY;
2877 raw_spin_unlock(&kvm_count_lock);
2879 return r;
2882 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2883 void *v)
2885 int cpu = (long)v;
2887 val &= ~CPU_TASKS_FROZEN;
2888 switch (val) {
2889 case CPU_DYING:
2890 pr_info("kvm: disabling virtualization on CPU%d\n",
2891 cpu);
2892 hardware_disable();
2893 break;
2894 case CPU_STARTING:
2895 pr_info("kvm: enabling virtualization on CPU%d\n",
2896 cpu);
2897 hardware_enable();
2898 break;
2900 return NOTIFY_OK;
2903 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2904 void *v)
2907 * Some (well, at least mine) BIOSes hang on reboot if
2908 * in vmx root mode.
2910 * And Intel TXT required VMX off for all cpu when system shutdown.
2912 pr_info("kvm: exiting hardware virtualization\n");
2913 kvm_rebooting = true;
2914 on_each_cpu(hardware_disable_nolock, NULL, 1);
2915 return NOTIFY_OK;
2918 static struct notifier_block kvm_reboot_notifier = {
2919 .notifier_call = kvm_reboot,
2920 .priority = 0,
2923 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2925 int i;
2927 for (i = 0; i < bus->dev_count; i++) {
2928 struct kvm_io_device *pos = bus->range[i].dev;
2930 kvm_iodevice_destructor(pos);
2932 kfree(bus);
2935 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2936 const struct kvm_io_range *r2)
2938 gpa_t addr1 = r1->addr;
2939 gpa_t addr2 = r2->addr;
2941 if (addr1 < addr2)
2942 return -1;
2944 /* If r2->len == 0, match the exact address. If r2->len != 0,
2945 * accept any overlapping write. Any order is acceptable for
2946 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
2947 * we process all of them.
2949 if (r2->len) {
2950 addr1 += r1->len;
2951 addr2 += r2->len;
2954 if (addr1 > addr2)
2955 return 1;
2957 return 0;
2960 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2962 return kvm_io_bus_cmp(p1, p2);
2965 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2966 gpa_t addr, int len)
2968 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2969 .addr = addr,
2970 .len = len,
2971 .dev = dev,
2974 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2975 kvm_io_bus_sort_cmp, NULL);
2977 return 0;
2980 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2981 gpa_t addr, int len)
2983 struct kvm_io_range *range, key;
2984 int off;
2986 key = (struct kvm_io_range) {
2987 .addr = addr,
2988 .len = len,
2991 range = bsearch(&key, bus->range, bus->dev_count,
2992 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2993 if (range == NULL)
2994 return -ENOENT;
2996 off = range - bus->range;
2998 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2999 off--;
3001 return off;
3004 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3005 struct kvm_io_range *range, const void *val)
3007 int idx;
3009 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3010 if (idx < 0)
3011 return -EOPNOTSUPP;
3013 while (idx < bus->dev_count &&
3014 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3015 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3016 range->len, val))
3017 return idx;
3018 idx++;
3021 return -EOPNOTSUPP;
3024 /* kvm_io_bus_write - called under kvm->slots_lock */
3025 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3026 int len, const void *val)
3028 struct kvm_io_bus *bus;
3029 struct kvm_io_range range;
3030 int r;
3032 range = (struct kvm_io_range) {
3033 .addr = addr,
3034 .len = len,
3037 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3038 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3039 return r < 0 ? r : 0;
3042 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3043 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3044 gpa_t addr, int len, const void *val, long cookie)
3046 struct kvm_io_bus *bus;
3047 struct kvm_io_range range;
3049 range = (struct kvm_io_range) {
3050 .addr = addr,
3051 .len = len,
3054 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3056 /* First try the device referenced by cookie. */
3057 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3058 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3059 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3060 val))
3061 return cookie;
3064 * cookie contained garbage; fall back to search and return the
3065 * correct cookie value.
3067 return __kvm_io_bus_write(vcpu, bus, &range, val);
3070 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3071 struct kvm_io_range *range, void *val)
3073 int idx;
3075 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3076 if (idx < 0)
3077 return -EOPNOTSUPP;
3079 while (idx < bus->dev_count &&
3080 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3081 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3082 range->len, val))
3083 return idx;
3084 idx++;
3087 return -EOPNOTSUPP;
3089 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3091 /* kvm_io_bus_read - called under kvm->slots_lock */
3092 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3093 int len, void *val)
3095 struct kvm_io_bus *bus;
3096 struct kvm_io_range range;
3097 int r;
3099 range = (struct kvm_io_range) {
3100 .addr = addr,
3101 .len = len,
3104 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3105 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3106 return r < 0 ? r : 0;
3110 /* Caller must hold slots_lock. */
3111 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3112 int len, struct kvm_io_device *dev)
3114 struct kvm_io_bus *new_bus, *bus;
3116 bus = kvm->buses[bus_idx];
3117 /* exclude ioeventfd which is limited by maximum fd */
3118 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3119 return -ENOSPC;
3121 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3122 sizeof(struct kvm_io_range)), GFP_KERNEL);
3123 if (!new_bus)
3124 return -ENOMEM;
3125 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3126 sizeof(struct kvm_io_range)));
3127 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3128 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3129 synchronize_srcu_expedited(&kvm->srcu);
3130 kfree(bus);
3132 return 0;
3135 /* Caller must hold slots_lock. */
3136 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3137 struct kvm_io_device *dev)
3139 int i, r;
3140 struct kvm_io_bus *new_bus, *bus;
3142 bus = kvm->buses[bus_idx];
3143 r = -ENOENT;
3144 for (i = 0; i < bus->dev_count; i++)
3145 if (bus->range[i].dev == dev) {
3146 r = 0;
3147 break;
3150 if (r)
3151 return r;
3153 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3154 sizeof(struct kvm_io_range)), GFP_KERNEL);
3155 if (!new_bus)
3156 return -ENOMEM;
3158 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3159 new_bus->dev_count--;
3160 memcpy(new_bus->range + i, bus->range + i + 1,
3161 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3163 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3164 synchronize_srcu_expedited(&kvm->srcu);
3165 kfree(bus);
3166 return r;
3169 static struct notifier_block kvm_cpu_notifier = {
3170 .notifier_call = kvm_cpu_hotplug,
3173 static int vm_stat_get(void *_offset, u64 *val)
3175 unsigned offset = (long)_offset;
3176 struct kvm *kvm;
3178 *val = 0;
3179 spin_lock(&kvm_lock);
3180 list_for_each_entry(kvm, &vm_list, vm_list)
3181 *val += *(u32 *)((void *)kvm + offset);
3182 spin_unlock(&kvm_lock);
3183 return 0;
3186 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3188 static int vcpu_stat_get(void *_offset, u64 *val)
3190 unsigned offset = (long)_offset;
3191 struct kvm *kvm;
3192 struct kvm_vcpu *vcpu;
3193 int i;
3195 *val = 0;
3196 spin_lock(&kvm_lock);
3197 list_for_each_entry(kvm, &vm_list, vm_list)
3198 kvm_for_each_vcpu(i, vcpu, kvm)
3199 *val += *(u32 *)((void *)vcpu + offset);
3201 spin_unlock(&kvm_lock);
3202 return 0;
3205 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3207 static const struct file_operations *stat_fops[] = {
3208 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3209 [KVM_STAT_VM] = &vm_stat_fops,
3212 static int kvm_init_debug(void)
3214 int r = -EEXIST;
3215 struct kvm_stats_debugfs_item *p;
3217 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3218 if (kvm_debugfs_dir == NULL)
3219 goto out;
3221 for (p = debugfs_entries; p->name; ++p) {
3222 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3223 (void *)(long)p->offset,
3224 stat_fops[p->kind]);
3225 if (p->dentry == NULL)
3226 goto out_dir;
3229 return 0;
3231 out_dir:
3232 debugfs_remove_recursive(kvm_debugfs_dir);
3233 out:
3234 return r;
3237 static void kvm_exit_debug(void)
3239 struct kvm_stats_debugfs_item *p;
3241 for (p = debugfs_entries; p->name; ++p)
3242 debugfs_remove(p->dentry);
3243 debugfs_remove(kvm_debugfs_dir);
3246 static int kvm_suspend(void)
3248 if (kvm_usage_count)
3249 hardware_disable_nolock(NULL);
3250 return 0;
3253 static void kvm_resume(void)
3255 if (kvm_usage_count) {
3256 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3257 hardware_enable_nolock(NULL);
3261 static struct syscore_ops kvm_syscore_ops = {
3262 .suspend = kvm_suspend,
3263 .resume = kvm_resume,
3266 static inline
3267 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3269 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3272 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3274 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3276 if (vcpu->preempted)
3277 vcpu->preempted = false;
3279 kvm_arch_sched_in(vcpu, cpu);
3281 kvm_arch_vcpu_load(vcpu, cpu);
3284 static void kvm_sched_out(struct preempt_notifier *pn,
3285 struct task_struct *next)
3287 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3289 if (current->state == TASK_RUNNING)
3290 vcpu->preempted = true;
3291 kvm_arch_vcpu_put(vcpu);
3294 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3295 struct module *module)
3297 int r;
3298 int cpu;
3300 r = kvm_arch_init(opaque);
3301 if (r)
3302 goto out_fail;
3305 * kvm_arch_init makes sure there's at most one caller
3306 * for architectures that support multiple implementations,
3307 * like intel and amd on x86.
3308 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3309 * conflicts in case kvm is already setup for another implementation.
3311 r = kvm_irqfd_init();
3312 if (r)
3313 goto out_irqfd;
3315 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3316 r = -ENOMEM;
3317 goto out_free_0;
3320 r = kvm_arch_hardware_setup();
3321 if (r < 0)
3322 goto out_free_0a;
3324 for_each_online_cpu(cpu) {
3325 smp_call_function_single(cpu,
3326 kvm_arch_check_processor_compat,
3327 &r, 1);
3328 if (r < 0)
3329 goto out_free_1;
3332 r = register_cpu_notifier(&kvm_cpu_notifier);
3333 if (r)
3334 goto out_free_2;
3335 register_reboot_notifier(&kvm_reboot_notifier);
3337 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3338 if (!vcpu_align)
3339 vcpu_align = __alignof__(struct kvm_vcpu);
3340 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3341 0, NULL);
3342 if (!kvm_vcpu_cache) {
3343 r = -ENOMEM;
3344 goto out_free_3;
3347 r = kvm_async_pf_init();
3348 if (r)
3349 goto out_free;
3351 kvm_chardev_ops.owner = module;
3352 kvm_vm_fops.owner = module;
3353 kvm_vcpu_fops.owner = module;
3355 r = misc_register(&kvm_dev);
3356 if (r) {
3357 pr_err("kvm: misc device register failed\n");
3358 goto out_unreg;
3361 register_syscore_ops(&kvm_syscore_ops);
3363 kvm_preempt_ops.sched_in = kvm_sched_in;
3364 kvm_preempt_ops.sched_out = kvm_sched_out;
3366 r = kvm_init_debug();
3367 if (r) {
3368 pr_err("kvm: create debugfs files failed\n");
3369 goto out_undebugfs;
3372 r = kvm_vfio_ops_init();
3373 WARN_ON(r);
3375 return 0;
3377 out_undebugfs:
3378 unregister_syscore_ops(&kvm_syscore_ops);
3379 misc_deregister(&kvm_dev);
3380 out_unreg:
3381 kvm_async_pf_deinit();
3382 out_free:
3383 kmem_cache_destroy(kvm_vcpu_cache);
3384 out_free_3:
3385 unregister_reboot_notifier(&kvm_reboot_notifier);
3386 unregister_cpu_notifier(&kvm_cpu_notifier);
3387 out_free_2:
3388 out_free_1:
3389 kvm_arch_hardware_unsetup();
3390 out_free_0a:
3391 free_cpumask_var(cpus_hardware_enabled);
3392 out_free_0:
3393 kvm_irqfd_exit();
3394 out_irqfd:
3395 kvm_arch_exit();
3396 out_fail:
3397 return r;
3399 EXPORT_SYMBOL_GPL(kvm_init);
3401 void kvm_exit(void)
3403 kvm_exit_debug();
3404 misc_deregister(&kvm_dev);
3405 kmem_cache_destroy(kvm_vcpu_cache);
3406 kvm_async_pf_deinit();
3407 unregister_syscore_ops(&kvm_syscore_ops);
3408 unregister_reboot_notifier(&kvm_reboot_notifier);
3409 unregister_cpu_notifier(&kvm_cpu_notifier);
3410 on_each_cpu(hardware_disable_nolock, NULL, 1);
3411 kvm_arch_hardware_unsetup();
3412 kvm_arch_exit();
3413 kvm_irqfd_exit();
3414 free_cpumask_var(cpus_hardware_enabled);
3415 kvm_vfio_ops_exit();
3417 EXPORT_SYMBOL_GPL(kvm_exit);