Merge git://www.linux-watchdog.org/linux-watchdog
[linux/fpc-iii.git] / drivers / cpufreq / imx6q-cpufreq.c
blobe37cdaedbb5b39b244e3aa6caec947721297999d
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
39 return cpufreq_frequency_table_verify(policy, freq_table);
42 static unsigned int imx6q_get_speed(unsigned int cpu)
44 return clk_get_rate(arm_clk) / 1000;
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48 unsigned int target_freq, unsigned int relation)
50 struct cpufreq_freqs freqs;
51 struct opp *opp;
52 unsigned long freq_hz, volt, volt_old;
53 unsigned int index;
54 int ret;
56 ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 relation, &index);
58 if (ret) {
59 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 target_freq, ret);
61 return ret;
64 freqs.new = freq_table[index].frequency;
65 freq_hz = freqs.new * 1000;
66 freqs.old = clk_get_rate(arm_clk) / 1000;
68 if (freqs.old == freqs.new)
69 return 0;
71 rcu_read_lock();
72 opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
73 if (IS_ERR(opp)) {
74 rcu_read_unlock();
75 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76 return PTR_ERR(opp);
79 volt = opp_get_voltage(opp);
80 rcu_read_unlock();
81 volt_old = regulator_get_voltage(arm_reg);
83 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84 freqs.old / 1000, volt_old / 1000,
85 freqs.new / 1000, volt / 1000);
87 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
89 /* scaling up? scale voltage before frequency */
90 if (freqs.new > freqs.old) {
91 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
92 if (ret) {
93 dev_err(cpu_dev,
94 "failed to scale vddarm up: %d\n", ret);
95 freqs.new = freqs.old;
96 goto post_notify;
100 * Need to increase vddpu and vddsoc for safety
101 * if we are about to run at 1.2 GHz.
103 if (freqs.new == FREQ_1P2_GHZ / 1000) {
104 regulator_set_voltage_tol(pu_reg,
105 PU_SOC_VOLTAGE_HIGH, 0);
106 regulator_set_voltage_tol(soc_reg,
107 PU_SOC_VOLTAGE_HIGH, 0);
112 * The setpoints are selected per PLL/PDF frequencies, so we need to
113 * reprogram PLL for frequency scaling. The procedure of reprogramming
114 * PLL1 is as below.
116 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118 * - Disable pll2_pfd2_396m_clk
120 clk_prepare_enable(pll2_pfd2_396m_clk);
121 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
122 clk_set_parent(pll1_sw_clk, step_clk);
123 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
124 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
126 * If we are leaving 396 MHz set-point, we need to enable
127 * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
128 * their use count correct.
130 if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
131 clk_prepare_enable(pll1_sys_clk);
132 clk_disable_unprepare(pll2_pfd2_396m_clk);
134 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
135 clk_disable_unprepare(pll2_pfd2_396m_clk);
136 } else {
138 * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
139 * to provide the frequency.
141 clk_disable_unprepare(pll1_sys_clk);
144 /* Ensure the arm clock divider is what we expect */
145 ret = clk_set_rate(arm_clk, freqs.new * 1000);
146 if (ret) {
147 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
148 regulator_set_voltage_tol(arm_reg, volt_old, 0);
149 freqs.new = freqs.old;
150 goto post_notify;
153 /* scaling down? scale voltage after frequency */
154 if (freqs.new < freqs.old) {
155 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
156 if (ret) {
157 dev_warn(cpu_dev,
158 "failed to scale vddarm down: %d\n", ret);
159 ret = 0;
162 if (freqs.old == FREQ_1P2_GHZ / 1000) {
163 regulator_set_voltage_tol(pu_reg,
164 PU_SOC_VOLTAGE_NORMAL, 0);
165 regulator_set_voltage_tol(soc_reg,
166 PU_SOC_VOLTAGE_NORMAL, 0);
170 post_notify:
171 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
173 return ret;
176 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
178 int ret;
180 ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
181 if (ret) {
182 dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
183 return ret;
186 policy->cpuinfo.transition_latency = transition_latency;
187 policy->cur = clk_get_rate(arm_clk) / 1000;
188 cpumask_setall(policy->cpus);
189 cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
191 return 0;
194 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
196 cpufreq_frequency_table_put_attr(policy->cpu);
197 return 0;
200 static struct freq_attr *imx6q_cpufreq_attr[] = {
201 &cpufreq_freq_attr_scaling_available_freqs,
202 NULL,
205 static struct cpufreq_driver imx6q_cpufreq_driver = {
206 .verify = imx6q_verify_speed,
207 .target = imx6q_set_target,
208 .get = imx6q_get_speed,
209 .init = imx6q_cpufreq_init,
210 .exit = imx6q_cpufreq_exit,
211 .name = "imx6q-cpufreq",
212 .attr = imx6q_cpufreq_attr,
215 static int imx6q_cpufreq_probe(struct platform_device *pdev)
217 struct device_node *np;
218 struct opp *opp;
219 unsigned long min_volt, max_volt;
220 int num, ret;
222 cpu_dev = &pdev->dev;
224 np = of_find_node_by_path("/cpus/cpu@0");
225 if (!np) {
226 dev_err(cpu_dev, "failed to find cpu0 node\n");
227 return -ENOENT;
230 cpu_dev->of_node = np;
232 arm_clk = devm_clk_get(cpu_dev, "arm");
233 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
234 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
235 step_clk = devm_clk_get(cpu_dev, "step");
236 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
237 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
238 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
239 dev_err(cpu_dev, "failed to get clocks\n");
240 ret = -ENOENT;
241 goto put_node;
244 arm_reg = devm_regulator_get(cpu_dev, "arm");
245 pu_reg = devm_regulator_get(cpu_dev, "pu");
246 soc_reg = devm_regulator_get(cpu_dev, "soc");
247 if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
248 dev_err(cpu_dev, "failed to get regulators\n");
249 ret = -ENOENT;
250 goto put_node;
253 /* We expect an OPP table supplied by platform */
254 num = opp_get_opp_count(cpu_dev);
255 if (num < 0) {
256 ret = num;
257 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
258 goto put_node;
261 ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
262 if (ret) {
263 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
264 goto put_node;
267 if (of_property_read_u32(np, "clock-latency", &transition_latency))
268 transition_latency = CPUFREQ_ETERNAL;
271 * OPP is maintained in order of increasing frequency, and
272 * freq_table initialised from OPP is therefore sorted in the
273 * same order.
275 rcu_read_lock();
276 opp = opp_find_freq_exact(cpu_dev,
277 freq_table[0].frequency * 1000, true);
278 min_volt = opp_get_voltage(opp);
279 opp = opp_find_freq_exact(cpu_dev,
280 freq_table[--num].frequency * 1000, true);
281 max_volt = opp_get_voltage(opp);
282 rcu_read_unlock();
283 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
284 if (ret > 0)
285 transition_latency += ret * 1000;
287 /* Count vddpu and vddsoc latency in for 1.2 GHz support */
288 if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
289 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
290 PU_SOC_VOLTAGE_HIGH);
291 if (ret > 0)
292 transition_latency += ret * 1000;
293 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
294 PU_SOC_VOLTAGE_HIGH);
295 if (ret > 0)
296 transition_latency += ret * 1000;
299 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
300 if (ret) {
301 dev_err(cpu_dev, "failed register driver: %d\n", ret);
302 goto free_freq_table;
305 of_node_put(np);
306 return 0;
308 free_freq_table:
309 opp_free_cpufreq_table(cpu_dev, &freq_table);
310 put_node:
311 of_node_put(np);
312 return ret;
315 static int imx6q_cpufreq_remove(struct platform_device *pdev)
317 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
318 opp_free_cpufreq_table(cpu_dev, &freq_table);
320 return 0;
323 static struct platform_driver imx6q_cpufreq_platdrv = {
324 .driver = {
325 .name = "imx6q-cpufreq",
326 .owner = THIS_MODULE,
328 .probe = imx6q_cpufreq_probe,
329 .remove = imx6q_cpufreq_remove,
331 module_platform_driver(imx6q_cpufreq_platdrv);
333 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
334 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
335 MODULE_LICENSE("GPL");