2 * arch/arm/kernel/kprobes.c
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/cacheflush.h>
29 #define MIN_STACK_SIZE(addr) \
30 min((unsigned long)MAX_STACK_SIZE, \
31 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
33 #define flush_insns(addr, cnt) \
34 flush_icache_range((unsigned long)(addr), \
35 (unsigned long)(addr) + \
36 sizeof(kprobe_opcode_t) * (cnt))
38 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
39 #define JPROBE_MAGIC_ADDR 0xffffffff
41 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
42 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
45 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
48 kprobe_opcode_t tmp_insn
[MAX_INSN_SIZE
];
49 unsigned long addr
= (unsigned long)p
->addr
;
52 if (addr
& 0x3 || in_exception_text(addr
))
57 p
->ainsn
.insn
= tmp_insn
;
59 switch (arm_kprobe_decode_insn(insn
, &p
->ainsn
)) {
60 case INSN_REJECTED
: /* not supported */
63 case INSN_GOOD
: /* instruction uses slot */
64 p
->ainsn
.insn
= get_insn_slot();
67 for (is
= 0; is
< MAX_INSN_SIZE
; ++is
)
68 p
->ainsn
.insn
[is
] = tmp_insn
[is
];
69 flush_insns(p
->ainsn
.insn
, MAX_INSN_SIZE
);
72 case INSN_GOOD_NO_SLOT
: /* instruction doesn't need insn slot */
80 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
82 *p
->addr
= KPROBE_BREAKPOINT_INSTRUCTION
;
83 flush_insns(p
->addr
, 1);
86 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
89 flush_insns(p
->addr
, 1);
92 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
95 free_insn_slot(p
->ainsn
.insn
, 0);
100 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
102 kcb
->prev_kprobe
.kp
= kprobe_running();
103 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
106 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
108 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
109 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
112 static void __kprobes
set_current_kprobe(struct kprobe
*p
)
114 __get_cpu_var(current_kprobe
) = p
;
117 static void __kprobes
singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
118 struct kprobe_ctlblk
*kcb
)
121 p
->ainsn
.insn_handler(p
, regs
);
125 * Called with IRQs disabled. IRQs must remain disabled from that point
126 * all the way until processing this kprobe is complete. The current
127 * kprobes implementation cannot process more than one nested level of
128 * kprobe, and that level is reserved for user kprobe handlers, so we can't
129 * risk encountering a new kprobe in an interrupt handler.
131 void __kprobes
kprobe_handler(struct pt_regs
*regs
)
133 struct kprobe
*p
, *cur
;
134 struct kprobe_ctlblk
*kcb
;
135 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)regs
->ARM_pc
;
137 kcb
= get_kprobe_ctlblk();
138 cur
= kprobe_running();
139 p
= get_kprobe(addr
);
143 /* Kprobe is pending, so we're recursing. */
144 switch (kcb
->kprobe_status
) {
145 case KPROBE_HIT_ACTIVE
:
146 case KPROBE_HIT_SSDONE
:
147 /* A pre- or post-handler probe got us here. */
148 kprobes_inc_nmissed_count(p
);
149 save_previous_kprobe(kcb
);
150 set_current_kprobe(p
);
151 kcb
->kprobe_status
= KPROBE_REENTER
;
152 singlestep(p
, regs
, kcb
);
153 restore_previous_kprobe(kcb
);
156 /* impossible cases */
160 set_current_kprobe(p
);
161 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
164 * If we have no pre-handler or it returned 0, we
165 * continue with normal processing. If we have a
166 * pre-handler and it returned non-zero, it prepped
167 * for calling the break_handler below on re-entry,
168 * so get out doing nothing more here.
170 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
)) {
171 kcb
->kprobe_status
= KPROBE_HIT_SS
;
172 singlestep(p
, regs
, kcb
);
173 if (p
->post_handler
) {
174 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
175 p
->post_handler(p
, regs
, 0);
177 reset_current_kprobe();
181 /* We probably hit a jprobe. Call its break handler. */
182 if (cur
->break_handler
&& cur
->break_handler(cur
, regs
)) {
183 kcb
->kprobe_status
= KPROBE_HIT_SS
;
184 singlestep(cur
, regs
, kcb
);
185 if (cur
->post_handler
) {
186 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
187 cur
->post_handler(cur
, regs
, 0);
190 reset_current_kprobe();
193 * The probe was removed and a race is in progress.
194 * There is nothing we can do about it. Let's restart
195 * the instruction. By the time we can restart, the
196 * real instruction will be there.
201 static int __kprobes
kprobe_trap_handler(struct pt_regs
*regs
, unsigned int instr
)
204 local_irq_save(flags
);
205 kprobe_handler(regs
);
206 local_irq_restore(flags
);
210 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, unsigned int fsr
)
212 struct kprobe
*cur
= kprobe_running();
213 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
215 switch (kcb
->kprobe_status
) {
219 * We are here because the instruction being single
220 * stepped caused a page fault. We reset the current
221 * kprobe and the PC to point back to the probe address
222 * and allow the page fault handler to continue as a
225 regs
->ARM_pc
= (long)cur
->addr
;
226 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
227 restore_previous_kprobe(kcb
);
229 reset_current_kprobe();
233 case KPROBE_HIT_ACTIVE
:
234 case KPROBE_HIT_SSDONE
:
236 * We increment the nmissed count for accounting,
237 * we can also use npre/npostfault count for accounting
238 * these specific fault cases.
240 kprobes_inc_nmissed_count(cur
);
243 * We come here because instructions in the pre/post
244 * handler caused the page_fault, this could happen
245 * if handler tries to access user space by
246 * copy_from_user(), get_user() etc. Let the
247 * user-specified handler try to fix it.
249 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, fsr
))
260 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
261 unsigned long val
, void *data
)
264 * notify_die() is currently never called on ARM,
265 * so this callback is currently empty.
271 * When a retprobed function returns, trampoline_handler() is called,
272 * calling the kretprobe's handler. We construct a struct pt_regs to
273 * give a view of registers r0-r11 to the user return-handler. This is
274 * not a complete pt_regs structure, but that should be plenty sufficient
275 * for kretprobe handlers which should normally be interested in r0 only
278 void __naked __kprobes
kretprobe_trampoline(void)
280 __asm__
__volatile__ (
281 "stmdb sp!, {r0 - r11} \n\t"
283 "bl trampoline_handler \n\t"
285 "ldmia sp!, {r0 - r11} \n\t"
290 /* Called from kretprobe_trampoline */
291 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
293 struct kretprobe_instance
*ri
= NULL
;
294 struct hlist_head
*head
, empty_rp
;
295 struct hlist_node
*node
, *tmp
;
296 unsigned long flags
, orig_ret_address
= 0;
297 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
299 INIT_HLIST_HEAD(&empty_rp
);
300 kretprobe_hash_lock(current
, &head
, &flags
);
303 * It is possible to have multiple instances associated with a given
304 * task either because multiple functions in the call path have
305 * a return probe installed on them, and/or more than one return
306 * probe was registered for a target function.
308 * We can handle this because:
309 * - instances are always inserted at the head of the list
310 * - when multiple return probes are registered for the same
311 * function, the first instance's ret_addr will point to the
312 * real return address, and all the rest will point to
313 * kretprobe_trampoline
315 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
316 if (ri
->task
!= current
)
317 /* another task is sharing our hash bucket */
320 if (ri
->rp
&& ri
->rp
->handler
) {
321 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
322 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
323 ri
->rp
->handler(ri
, regs
);
324 __get_cpu_var(current_kprobe
) = NULL
;
327 orig_ret_address
= (unsigned long)ri
->ret_addr
;
328 recycle_rp_inst(ri
, &empty_rp
);
330 if (orig_ret_address
!= trampoline_address
)
332 * This is the real return address. Any other
333 * instances associated with this task are for
334 * other calls deeper on the call stack
339 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
340 kretprobe_hash_unlock(current
, &flags
);
342 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
343 hlist_del(&ri
->hlist
);
347 return (void *)orig_ret_address
;
350 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
351 struct pt_regs
*regs
)
353 ri
->ret_addr
= (kprobe_opcode_t
*)regs
->ARM_lr
;
355 /* Replace the return addr with trampoline addr. */
356 regs
->ARM_lr
= (unsigned long)&kretprobe_trampoline
;
359 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
361 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
362 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
363 long sp_addr
= regs
->ARM_sp
;
365 kcb
->jprobe_saved_regs
= *regs
;
366 memcpy(kcb
->jprobes_stack
, (void *)sp_addr
, MIN_STACK_SIZE(sp_addr
));
367 regs
->ARM_pc
= (long)jp
->entry
;
368 regs
->ARM_cpsr
|= PSR_I_BIT
;
373 void __kprobes
jprobe_return(void)
375 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
377 __asm__
__volatile__ (
379 * Setup an empty pt_regs. Fill SP and PC fields as
380 * they're needed by longjmp_break_handler.
382 "sub sp, %0, %1 \n\t"
383 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR
)"\n\t"
384 "str %0, [sp, %2] \n\t"
385 "str r0, [sp, %3] \n\t"
387 "bl kprobe_handler \n\t"
390 * Return to the context saved by setjmp_pre_handler
391 * and restored by longjmp_break_handler.
393 "ldr r0, [sp, %4] \n\t"
394 "msr cpsr_cxsf, r0 \n\t"
395 "ldmia sp, {r0 - pc} \n\t"
397 : "r" (kcb
->jprobe_saved_regs
.ARM_sp
),
398 "I" (sizeof(struct pt_regs
)),
399 "J" (offsetof(struct pt_regs
, ARM_sp
)),
400 "J" (offsetof(struct pt_regs
, ARM_pc
)),
401 "J" (offsetof(struct pt_regs
, ARM_cpsr
))
405 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
407 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
408 long stack_addr
= kcb
->jprobe_saved_regs
.ARM_sp
;
409 long orig_sp
= regs
->ARM_sp
;
410 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
412 if (regs
->ARM_pc
== JPROBE_MAGIC_ADDR
) {
413 if (orig_sp
!= stack_addr
) {
414 struct pt_regs
*saved_regs
=
415 (struct pt_regs
*)kcb
->jprobe_saved_regs
.ARM_sp
;
416 printk("current sp %lx does not match saved sp %lx\n",
417 orig_sp
, stack_addr
);
418 printk("Saved registers for jprobe %p\n", jp
);
419 show_regs(saved_regs
);
420 printk("Current registers\n");
424 *regs
= kcb
->jprobe_saved_regs
;
425 memcpy((void *)stack_addr
, kcb
->jprobes_stack
,
426 MIN_STACK_SIZE(stack_addr
));
427 preempt_enable_no_resched();
433 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
438 static struct undef_hook kprobes_break_hook
= {
439 .instr_mask
= 0xffffffff,
440 .instr_val
= KPROBE_BREAKPOINT_INSTRUCTION
,
441 .cpsr_mask
= MODE_MASK
,
442 .cpsr_val
= SVC_MODE
,
443 .fn
= kprobe_trap_handler
,
446 int __init
arch_init_kprobes()
448 arm_kprobe_decode_init();
449 register_undef_hook(&kprobes_break_hook
);