2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
17 #include <asm/processor.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/setup.h>
21 #include <asm/uaccess.h>
22 #include <asm/pgalloc.h>
23 #include <asm/proto.h>
27 * The current flushing context - we pass it instead of 5 arguments:
36 unsigned force_split
: 1;
42 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
43 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
44 * entries change the page attribute in parallel to some other cpu
45 * splitting a large page entry along with changing the attribute.
47 static DEFINE_SPINLOCK(cpa_lock
);
49 #define CPA_FLUSHTLB 1
51 #define CPA_PAGES_ARRAY 4
54 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
56 void update_page_count(int level
, unsigned long pages
)
60 /* Protect against CPA */
61 spin_lock_irqsave(&pgd_lock
, flags
);
62 direct_pages_count
[level
] += pages
;
63 spin_unlock_irqrestore(&pgd_lock
, flags
);
66 static void split_page_count(int level
)
68 direct_pages_count
[level
]--;
69 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
72 void arch_report_meminfo(struct seq_file
*m
)
74 seq_printf(m
, "DirectMap4k: %8lu kB\n",
75 direct_pages_count
[PG_LEVEL_4K
] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m
, "DirectMap2M: %8lu kB\n",
78 direct_pages_count
[PG_LEVEL_2M
] << 11);
80 seq_printf(m
, "DirectMap4M: %8lu kB\n",
81 direct_pages_count
[PG_LEVEL_2M
] << 12);
85 seq_printf(m
, "DirectMap1G: %8lu kB\n",
86 direct_pages_count
[PG_LEVEL_1G
] << 20);
90 static inline void split_page_count(int level
) { }
95 static inline unsigned long highmap_start_pfn(void)
97 return __pa(_text
) >> PAGE_SHIFT
;
100 static inline unsigned long highmap_end_pfn(void)
102 return __pa(roundup(_brk_end
, PMD_SIZE
)) >> PAGE_SHIFT
;
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
110 # define debug_pagealloc 0
114 within(unsigned long addr
, unsigned long start
, unsigned long end
)
116 return addr
>= start
&& addr
< end
;
124 * clflush_cache_range - flush a cache range with clflush
125 * @addr: virtual start address
126 * @size: number of bytes to flush
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
131 void clflush_cache_range(void *vaddr
, unsigned int size
)
133 void *vend
= vaddr
+ size
- 1;
137 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
140 * Flush any possible final partial cacheline:
147 static void __cpa_flush_all(void *arg
)
149 unsigned long cache
= (unsigned long)arg
;
152 * Flush all to work around Errata in early athlons regarding
153 * large page flushing.
157 if (cache
&& boot_cpu_data
.x86
>= 4)
161 static void cpa_flush_all(unsigned long cache
)
163 BUG_ON(irqs_disabled());
165 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
168 static void __cpa_flush_range(void *arg
)
171 * We could optimize that further and do individual per page
172 * tlb invalidates for a low number of pages. Caveat: we must
173 * flush the high aliases on 64bit as well.
178 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
180 unsigned int i
, level
;
183 BUG_ON(irqs_disabled());
184 WARN_ON(PAGE_ALIGN(start
) != start
);
186 on_each_cpu(__cpa_flush_range
, NULL
, 1);
192 * We only need to flush on one CPU,
193 * clflush is a MESI-coherent instruction that
194 * will cause all other CPUs to flush the same
197 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
198 pte_t
*pte
= lookup_address(addr
, &level
);
201 * Only flush present addresses:
203 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
204 clflush_cache_range((void *) addr
, PAGE_SIZE
);
208 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
209 int in_flags
, struct page
**pages
)
211 unsigned int i
, level
;
212 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
214 BUG_ON(irqs_disabled());
216 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
218 if (!cache
|| do_wbinvd
)
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
227 for (i
= 0; i
< numpages
; i
++) {
231 if (in_flags
& CPA_PAGES_ARRAY
)
232 addr
= (unsigned long)page_address(pages
[i
]);
236 pte
= lookup_address(addr
, &level
);
239 * Only flush present addresses:
241 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
242 clflush_cache_range((void *)addr
, PAGE_SIZE
);
247 * Certain areas of memory on x86 require very specific protection flags,
248 * for example the BIOS area or kernel text. Callers don't always get this
249 * right (again, ioremap() on BIOS memory is not uncommon) so this function
250 * checks and fixes these known static required protection bits.
252 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
255 pgprot_t forbidden
= __pgprot(0);
258 * The BIOS area between 640k and 1Mb needs to be executable for
259 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 if (within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
262 pgprot_val(forbidden
) |= _PAGE_NX
;
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
269 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
270 pgprot_val(forbidden
) |= _PAGE_NX
;
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
276 if (within(pfn
, __pa((unsigned long)__start_rodata
) >> PAGE_SHIFT
,
277 __pa((unsigned long)__end_rodata
) >> PAGE_SHIFT
))
278 pgprot_val(forbidden
) |= _PAGE_RW
;
280 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
286 * Lookup the page table entry for a virtual address. Return a pointer
287 * to the entry and the level of the mapping.
289 * Note: We return pud and pmd either when the entry is marked large
290 * or when the present bit is not set. Otherwise we would return a
291 * pointer to a nonexisting mapping.
293 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
295 pgd_t
*pgd
= pgd_offset_k(address
);
299 *level
= PG_LEVEL_NONE
;
304 pud
= pud_offset(pgd
, address
);
308 *level
= PG_LEVEL_1G
;
309 if (pud_large(*pud
) || !pud_present(*pud
))
312 pmd
= pmd_offset(pud
, address
);
316 *level
= PG_LEVEL_2M
;
317 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
320 *level
= PG_LEVEL_4K
;
322 return pte_offset_kernel(pmd
, address
);
324 EXPORT_SYMBOL_GPL(lookup_address
);
327 * Set the new pmd in all the pgds we know about:
329 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
332 set_pte_atomic(kpte
, pte
);
334 if (!SHARED_KERNEL_PMD
) {
337 list_for_each_entry(page
, &pgd_list
, lru
) {
342 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
343 pud
= pud_offset(pgd
, address
);
344 pmd
= pmd_offset(pud
, address
);
345 set_pte_atomic((pte_t
*)pmd
, pte
);
352 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
353 struct cpa_data
*cpa
)
355 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
, addr
, pfn
;
356 pte_t new_pte
, old_pte
, *tmp
;
357 pgprot_t old_prot
, new_prot
;
361 if (cpa
->force_split
)
364 spin_lock_irqsave(&pgd_lock
, flags
);
366 * Check for races, another CPU might have split this page
369 tmp
= lookup_address(address
, &level
);
375 psize
= PMD_PAGE_SIZE
;
376 pmask
= PMD_PAGE_MASK
;
380 psize
= PUD_PAGE_SIZE
;
381 pmask
= PUD_PAGE_MASK
;
390 * Calculate the number of pages, which fit into this large
391 * page starting at address:
393 nextpage_addr
= (address
+ psize
) & pmask
;
394 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
395 if (numpages
< cpa
->numpages
)
396 cpa
->numpages
= numpages
;
399 * We are safe now. Check whether the new pgprot is the same:
402 old_prot
= new_prot
= pte_pgprot(old_pte
);
404 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
405 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
408 * old_pte points to the large page base address. So we need
409 * to add the offset of the virtual address:
411 pfn
= pte_pfn(old_pte
) + ((address
& (psize
- 1)) >> PAGE_SHIFT
);
414 new_prot
= static_protections(new_prot
, address
, pfn
);
417 * We need to check the full range, whether
418 * static_protection() requires a different pgprot for one of
419 * the pages in the range we try to preserve:
421 addr
= address
+ PAGE_SIZE
;
423 for (i
= 1; i
< cpa
->numpages
; i
++, addr
+= PAGE_SIZE
, pfn
++) {
424 pgprot_t chk_prot
= static_protections(new_prot
, addr
, pfn
);
426 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
431 * If there are no changes, return. maxpages has been updated
434 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
440 * We need to change the attributes. Check, whether we can
441 * change the large page in one go. We request a split, when
442 * the address is not aligned and the number of pages is
443 * smaller than the number of pages in the large page. Note
444 * that we limited the number of possible pages already to
445 * the number of pages in the large page.
447 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
449 * The address is aligned and the number of pages
450 * covers the full page.
452 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
453 __set_pmd_pte(kpte
, address
, new_pte
);
454 cpa
->flags
|= CPA_FLUSHTLB
;
459 spin_unlock_irqrestore(&pgd_lock
, flags
);
464 static int split_large_page(pte_t
*kpte
, unsigned long address
)
466 unsigned long flags
, pfn
, pfninc
= 1;
467 unsigned int i
, level
;
472 if (!debug_pagealloc
)
473 spin_unlock(&cpa_lock
);
474 base
= alloc_pages(GFP_KERNEL
| __GFP_NOTRACK
, 0);
475 if (!debug_pagealloc
)
476 spin_lock(&cpa_lock
);
480 spin_lock_irqsave(&pgd_lock
, flags
);
482 * Check for races, another CPU might have split this page
485 tmp
= lookup_address(address
, &level
);
489 pbase
= (pte_t
*)page_address(base
);
490 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
491 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
493 * If we ever want to utilize the PAT bit, we need to
494 * update this function to make sure it's converted from
495 * bit 12 to bit 7 when we cross from the 2MB level to
498 WARN_ON_ONCE(pgprot_val(ref_prot
) & _PAGE_PAT_LARGE
);
501 if (level
== PG_LEVEL_1G
) {
502 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
503 pgprot_val(ref_prot
) |= _PAGE_PSE
;
508 * Get the target pfn from the original entry:
510 pfn
= pte_pfn(*kpte
);
511 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
512 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
514 if (address
>= (unsigned long)__va(0) &&
515 address
< (unsigned long)__va(max_low_pfn_mapped
<< PAGE_SHIFT
))
516 split_page_count(level
);
519 if (address
>= (unsigned long)__va(1UL<<32) &&
520 address
< (unsigned long)__va(max_pfn_mapped
<< PAGE_SHIFT
))
521 split_page_count(level
);
525 * Install the new, split up pagetable.
527 * We use the standard kernel pagetable protections for the new
528 * pagetable protections, the actual ptes set above control the
529 * primary protection behavior:
531 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
534 * Intel Atom errata AAH41 workaround.
536 * The real fix should be in hw or in a microcode update, but
537 * we also probabilistically try to reduce the window of having
538 * a large TLB mixed with 4K TLBs while instruction fetches are
547 * If we dropped out via the lookup_address check under
548 * pgd_lock then stick the page back into the pool:
552 spin_unlock_irqrestore(&pgd_lock
, flags
);
557 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
561 * Ignore all non primary paths.
567 * Ignore the NULL PTE for kernel identity mapping, as it is expected
569 * Also set numpages to '1' indicating that we processed cpa req for
570 * one virtual address page and its pfn. TBD: numpages can be set based
571 * on the initial value and the level returned by lookup_address().
573 if (within(vaddr
, PAGE_OFFSET
,
574 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
576 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
579 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
580 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
587 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
589 unsigned long address
;
592 pte_t
*kpte
, old_pte
;
594 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
595 struct page
*page
= cpa
->pages
[cpa
->curpage
];
596 if (unlikely(PageHighMem(page
)))
598 address
= (unsigned long)page_address(page
);
599 } else if (cpa
->flags
& CPA_ARRAY
)
600 address
= cpa
->vaddr
[cpa
->curpage
];
602 address
= *cpa
->vaddr
;
604 kpte
= lookup_address(address
, &level
);
606 return __cpa_process_fault(cpa
, address
, primary
);
609 if (!pte_val(old_pte
))
610 return __cpa_process_fault(cpa
, address
, primary
);
612 if (level
== PG_LEVEL_4K
) {
614 pgprot_t new_prot
= pte_pgprot(old_pte
);
615 unsigned long pfn
= pte_pfn(old_pte
);
617 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
618 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
620 new_prot
= static_protections(new_prot
, address
, pfn
);
623 * We need to keep the pfn from the existing PTE,
624 * after all we're only going to change it's attributes
625 * not the memory it points to
627 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
630 * Do we really change anything ?
632 if (pte_val(old_pte
) != pte_val(new_pte
)) {
633 set_pte_atomic(kpte
, new_pte
);
634 cpa
->flags
|= CPA_FLUSHTLB
;
641 * Check, whether we can keep the large page intact
642 * and just change the pte:
644 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
646 * When the range fits into the existing large page,
647 * return. cp->numpages and cpa->tlbflush have been updated in
654 * We have to split the large page:
656 err
= split_large_page(kpte
, address
);
659 * Do a global flush tlb after splitting the large page
660 * and before we do the actual change page attribute in the PTE.
662 * With out this, we violate the TLB application note, that says
663 * "The TLBs may contain both ordinary and large-page
664 * translations for a 4-KByte range of linear addresses. This
665 * may occur if software modifies the paging structures so that
666 * the page size used for the address range changes. If the two
667 * translations differ with respect to page frame or attributes
668 * (e.g., permissions), processor behavior is undefined and may
669 * be implementation-specific."
671 * We do this global tlb flush inside the cpa_lock, so that we
672 * don't allow any other cpu, with stale tlb entries change the
673 * page attribute in parallel, that also falls into the
674 * just split large page entry.
683 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
685 static int cpa_process_alias(struct cpa_data
*cpa
)
687 struct cpa_data alias_cpa
;
688 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
689 unsigned long vaddr
, remapped
;
692 if (cpa
->pfn
>= max_pfn_mapped
)
696 if (cpa
->pfn
>= max_low_pfn_mapped
&& cpa
->pfn
< (1UL<<(32-PAGE_SHIFT
)))
700 * No need to redo, when the primary call touched the direct
703 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
704 struct page
*page
= cpa
->pages
[cpa
->curpage
];
705 if (unlikely(PageHighMem(page
)))
707 vaddr
= (unsigned long)page_address(page
);
708 } else if (cpa
->flags
& CPA_ARRAY
)
709 vaddr
= cpa
->vaddr
[cpa
->curpage
];
713 if (!(within(vaddr
, PAGE_OFFSET
,
714 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
717 alias_cpa
.vaddr
= &laddr
;
718 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
720 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
727 * If the primary call didn't touch the high mapping already
728 * and the physical address is inside the kernel map, we need
729 * to touch the high mapped kernel as well:
731 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
732 within(cpa
->pfn
, highmap_start_pfn(), highmap_end_pfn())) {
733 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
734 __START_KERNEL_map
- phys_base
;
736 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
737 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
740 * The high mapping range is imprecise, so ignore the
743 __change_page_attr_set_clr(&alias_cpa
, 0);
748 * If the PMD page was partially used for per-cpu remapping,
749 * the recycled area needs to be split and modified. Because
750 * the area is always proper subset of a PMD page
751 * cpa->numpages is guaranteed to be 1 for these areas, so
752 * there's no need to loop over and check for further remaps.
754 remapped
= (unsigned long)pcpu_lpage_remapped((void *)laddr
);
756 WARN_ON(cpa
->numpages
> 1);
758 alias_cpa
.vaddr
= &remapped
;
759 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
760 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
768 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
770 int ret
, numpages
= cpa
->numpages
;
774 * Store the remaining nr of pages for the large page
775 * preservation check.
777 cpa
->numpages
= numpages
;
778 /* for array changes, we can't use large page */
779 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
782 if (!debug_pagealloc
)
783 spin_lock(&cpa_lock
);
784 ret
= __change_page_attr(cpa
, checkalias
);
785 if (!debug_pagealloc
)
786 spin_unlock(&cpa_lock
);
791 ret
= cpa_process_alias(cpa
);
797 * Adjust the number of pages with the result of the
798 * CPA operation. Either a large page has been
799 * preserved or a single page update happened.
801 BUG_ON(cpa
->numpages
> numpages
);
802 numpages
-= cpa
->numpages
;
803 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
806 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
812 static inline int cache_attr(pgprot_t attr
)
814 return pgprot_val(attr
) &
815 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
818 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
819 pgprot_t mask_set
, pgprot_t mask_clr
,
820 int force_split
, int in_flag
,
824 int ret
, cache
, checkalias
;
827 * Check, if we are requested to change a not supported
830 mask_set
= canon_pgprot(mask_set
);
831 mask_clr
= canon_pgprot(mask_clr
);
832 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
835 /* Ensure we are PAGE_SIZE aligned */
836 if (in_flag
& CPA_ARRAY
) {
838 for (i
= 0; i
< numpages
; i
++) {
839 if (addr
[i
] & ~PAGE_MASK
) {
840 addr
[i
] &= PAGE_MASK
;
844 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
846 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
847 * No need to cehck in that case
849 if (*addr
& ~PAGE_MASK
) {
852 * People should not be passing in unaligned addresses:
858 /* Must avoid aliasing mappings in the highmem code */
865 cpa
.numpages
= numpages
;
866 cpa
.mask_set
= mask_set
;
867 cpa
.mask_clr
= mask_clr
;
870 cpa
.force_split
= force_split
;
872 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
873 cpa
.flags
|= in_flag
;
875 /* No alias checking for _NX bit modifications */
876 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
878 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
881 * Check whether we really changed something:
883 if (!(cpa
.flags
& CPA_FLUSHTLB
))
887 * No need to flush, when we did not set any of the caching
890 cache
= cache_attr(mask_set
);
893 * On success we use clflush, when the CPU supports it to
894 * avoid the wbindv. If the CPU does not support it and in the
895 * error case we fall back to cpa_flush_all (which uses
898 if (!ret
&& cpu_has_clflush
) {
899 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
900 cpa_flush_array(addr
, numpages
, cache
,
903 cpa_flush_range(*addr
, numpages
, cache
);
905 cpa_flush_all(cache
);
911 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
912 pgprot_t mask
, int array
)
914 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
915 (array
? CPA_ARRAY
: 0), NULL
);
918 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
919 pgprot_t mask
, int array
)
921 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
922 (array
? CPA_ARRAY
: 0), NULL
);
925 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
928 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
929 CPA_PAGES_ARRAY
, pages
);
932 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
935 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
936 CPA_PAGES_ARRAY
, pages
);
939 int _set_memory_uc(unsigned long addr
, int numpages
)
942 * for now UC MINUS. see comments in ioremap_nocache()
944 return change_page_attr_set(&addr
, numpages
,
945 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
948 int set_memory_uc(unsigned long addr
, int numpages
)
953 * for now UC MINUS. see comments in ioremap_nocache()
955 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
956 _PAGE_CACHE_UC_MINUS
, NULL
);
960 ret
= _set_memory_uc(addr
, numpages
);
967 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
971 EXPORT_SYMBOL(set_memory_uc
);
973 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
979 * for now UC MINUS. see comments in ioremap_nocache()
981 for (i
= 0; i
< addrinarray
; i
++) {
982 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
983 _PAGE_CACHE_UC_MINUS
, NULL
);
988 ret
= change_page_attr_set(addr
, addrinarray
,
989 __pgprot(_PAGE_CACHE_UC_MINUS
), 1);
996 for (j
= 0; j
< i
; j
++)
997 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1001 EXPORT_SYMBOL(set_memory_array_uc
);
1003 int _set_memory_wc(unsigned long addr
, int numpages
)
1006 unsigned long addr_copy
= addr
;
1008 ret
= change_page_attr_set(&addr
, numpages
,
1009 __pgprot(_PAGE_CACHE_UC_MINUS
), 0);
1011 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1012 __pgprot(_PAGE_CACHE_WC
),
1013 __pgprot(_PAGE_CACHE_MASK
),
1019 int set_memory_wc(unsigned long addr
, int numpages
)
1024 return set_memory_uc(addr
, numpages
);
1026 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1027 _PAGE_CACHE_WC
, NULL
);
1031 ret
= _set_memory_wc(addr
, numpages
);
1038 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1042 EXPORT_SYMBOL(set_memory_wc
);
1044 int _set_memory_wb(unsigned long addr
, int numpages
)
1046 return change_page_attr_clear(&addr
, numpages
,
1047 __pgprot(_PAGE_CACHE_MASK
), 0);
1050 int set_memory_wb(unsigned long addr
, int numpages
)
1054 ret
= _set_memory_wb(addr
, numpages
);
1058 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1061 EXPORT_SYMBOL(set_memory_wb
);
1063 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1068 ret
= change_page_attr_clear(addr
, addrinarray
,
1069 __pgprot(_PAGE_CACHE_MASK
), 1);
1073 for (i
= 0; i
< addrinarray
; i
++)
1074 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1078 EXPORT_SYMBOL(set_memory_array_wb
);
1080 int set_memory_x(unsigned long addr
, int numpages
)
1082 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1084 EXPORT_SYMBOL(set_memory_x
);
1086 int set_memory_nx(unsigned long addr
, int numpages
)
1088 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1090 EXPORT_SYMBOL(set_memory_nx
);
1092 int set_memory_ro(unsigned long addr
, int numpages
)
1094 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1096 EXPORT_SYMBOL_GPL(set_memory_ro
);
1098 int set_memory_rw(unsigned long addr
, int numpages
)
1100 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1102 EXPORT_SYMBOL_GPL(set_memory_rw
);
1104 int set_memory_np(unsigned long addr
, int numpages
)
1106 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1109 int set_memory_4k(unsigned long addr
, int numpages
)
1111 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1112 __pgprot(0), 1, 0, NULL
);
1115 int set_pages_uc(struct page
*page
, int numpages
)
1117 unsigned long addr
= (unsigned long)page_address(page
);
1119 return set_memory_uc(addr
, numpages
);
1121 EXPORT_SYMBOL(set_pages_uc
);
1123 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1125 unsigned long start
;
1130 for (i
= 0; i
< addrinarray
; i
++) {
1131 if (PageHighMem(pages
[i
]))
1133 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1134 end
= start
+ PAGE_SIZE
;
1135 if (reserve_memtype(start
, end
, _PAGE_CACHE_UC_MINUS
, NULL
))
1139 if (cpa_set_pages_array(pages
, addrinarray
,
1140 __pgprot(_PAGE_CACHE_UC_MINUS
)) == 0) {
1141 return 0; /* Success */
1145 for (i
= 0; i
< free_idx
; i
++) {
1146 if (PageHighMem(pages
[i
]))
1148 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1149 end
= start
+ PAGE_SIZE
;
1150 free_memtype(start
, end
);
1154 EXPORT_SYMBOL(set_pages_array_uc
);
1156 int set_pages_wb(struct page
*page
, int numpages
)
1158 unsigned long addr
= (unsigned long)page_address(page
);
1160 return set_memory_wb(addr
, numpages
);
1162 EXPORT_SYMBOL(set_pages_wb
);
1164 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1167 unsigned long start
;
1171 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1172 __pgprot(_PAGE_CACHE_MASK
));
1176 for (i
= 0; i
< addrinarray
; i
++) {
1177 if (PageHighMem(pages
[i
]))
1179 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1180 end
= start
+ PAGE_SIZE
;
1181 free_memtype(start
, end
);
1186 EXPORT_SYMBOL(set_pages_array_wb
);
1188 int set_pages_x(struct page
*page
, int numpages
)
1190 unsigned long addr
= (unsigned long)page_address(page
);
1192 return set_memory_x(addr
, numpages
);
1194 EXPORT_SYMBOL(set_pages_x
);
1196 int set_pages_nx(struct page
*page
, int numpages
)
1198 unsigned long addr
= (unsigned long)page_address(page
);
1200 return set_memory_nx(addr
, numpages
);
1202 EXPORT_SYMBOL(set_pages_nx
);
1204 int set_pages_ro(struct page
*page
, int numpages
)
1206 unsigned long addr
= (unsigned long)page_address(page
);
1208 return set_memory_ro(addr
, numpages
);
1211 int set_pages_rw(struct page
*page
, int numpages
)
1213 unsigned long addr
= (unsigned long)page_address(page
);
1215 return set_memory_rw(addr
, numpages
);
1218 #ifdef CONFIG_DEBUG_PAGEALLOC
1220 static int __set_pages_p(struct page
*page
, int numpages
)
1222 unsigned long tempaddr
= (unsigned long) page_address(page
);
1223 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1224 .numpages
= numpages
,
1225 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1226 .mask_clr
= __pgprot(0),
1230 * No alias checking needed for setting present flag. otherwise,
1231 * we may need to break large pages for 64-bit kernel text
1232 * mappings (this adds to complexity if we want to do this from
1233 * atomic context especially). Let's keep it simple!
1235 return __change_page_attr_set_clr(&cpa
, 0);
1238 static int __set_pages_np(struct page
*page
, int numpages
)
1240 unsigned long tempaddr
= (unsigned long) page_address(page
);
1241 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1242 .numpages
= numpages
,
1243 .mask_set
= __pgprot(0),
1244 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1248 * No alias checking needed for setting not present flag. otherwise,
1249 * we may need to break large pages for 64-bit kernel text
1250 * mappings (this adds to complexity if we want to do this from
1251 * atomic context especially). Let's keep it simple!
1253 return __change_page_attr_set_clr(&cpa
, 0);
1256 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1258 if (PageHighMem(page
))
1261 debug_check_no_locks_freed(page_address(page
),
1262 numpages
* PAGE_SIZE
);
1266 * If page allocator is not up yet then do not call c_p_a():
1268 if (!debug_pagealloc_enabled
)
1272 * The return value is ignored as the calls cannot fail.
1273 * Large pages for identity mappings are not used at boot time
1274 * and hence no memory allocations during large page split.
1277 __set_pages_p(page
, numpages
);
1279 __set_pages_np(page
, numpages
);
1282 * We should perform an IPI and flush all tlbs,
1283 * but that can deadlock->flush only current cpu:
1288 #ifdef CONFIG_HIBERNATION
1290 bool kernel_page_present(struct page
*page
)
1295 if (PageHighMem(page
))
1298 pte
= lookup_address((unsigned long)page_address(page
), &level
);
1299 return (pte_val(*pte
) & _PAGE_PRESENT
);
1302 #endif /* CONFIG_HIBERNATION */
1304 #endif /* CONFIG_DEBUG_PAGEALLOC */
1307 * The testcases use internal knowledge of the implementation that shouldn't
1308 * be exposed to the rest of the kernel. Include these directly here.
1310 #ifdef CONFIG_CPA_DEBUG
1311 #include "pageattr-test.c"