debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blobb8eca7be5f3a03b612344091ec72e608612675c2
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
21 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
26 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
33 int addr, eep_start_loc = 0;
35 eep_start_loc = 64;
37 if (!ath9k_hw_use_flash(ah)) {
38 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
39 "Reading from EEPROM, not flash\n");
42 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
43 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
44 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
45 "Unable to read eeprom region \n");
46 return false;
48 eep_data++;
51 return true;
52 #undef SIZE_EEPROM_4K
55 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
57 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
58 struct ar5416_eeprom_4k *eep =
59 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
60 u16 *eepdata, temp, magic, magic2;
61 u32 sum = 0, el;
62 bool need_swap = false;
63 int i, addr;
66 if (!ath9k_hw_use_flash(ah)) {
67 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
68 &magic)) {
69 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
70 "Reading Magic # failed\n");
71 return false;
74 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
75 "Read Magic = 0x%04X\n", magic);
77 if (magic != AR5416_EEPROM_MAGIC) {
78 magic2 = swab16(magic);
80 if (magic2 == AR5416_EEPROM_MAGIC) {
81 need_swap = true;
82 eepdata = (u16 *) (&ah->eeprom);
84 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
85 temp = swab16(*eepdata);
86 *eepdata = temp;
87 eepdata++;
89 } else {
90 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
91 "Invalid EEPROM Magic. "
92 "endianness mismatch.\n");
93 return -EINVAL;
98 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
99 need_swap ? "True" : "False");
101 if (need_swap)
102 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
103 else
104 el = ah->eeprom.map4k.baseEepHeader.length;
106 if (el > sizeof(struct ar5416_eeprom_4k))
107 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
108 else
109 el = el / sizeof(u16);
111 eepdata = (u16 *)(&ah->eeprom);
113 for (i = 0; i < el; i++)
114 sum ^= *eepdata++;
116 if (need_swap) {
117 u32 integer;
118 u16 word;
120 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
121 "EEPROM Endianness is not native.. Changing\n");
123 word = swab16(eep->baseEepHeader.length);
124 eep->baseEepHeader.length = word;
126 word = swab16(eep->baseEepHeader.checksum);
127 eep->baseEepHeader.checksum = word;
129 word = swab16(eep->baseEepHeader.version);
130 eep->baseEepHeader.version = word;
132 word = swab16(eep->baseEepHeader.regDmn[0]);
133 eep->baseEepHeader.regDmn[0] = word;
135 word = swab16(eep->baseEepHeader.regDmn[1]);
136 eep->baseEepHeader.regDmn[1] = word;
138 word = swab16(eep->baseEepHeader.rfSilent);
139 eep->baseEepHeader.rfSilent = word;
141 word = swab16(eep->baseEepHeader.blueToothOptions);
142 eep->baseEepHeader.blueToothOptions = word;
144 word = swab16(eep->baseEepHeader.deviceCap);
145 eep->baseEepHeader.deviceCap = word;
147 integer = swab32(eep->modalHeader.antCtrlCommon);
148 eep->modalHeader.antCtrlCommon = integer;
150 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
151 integer = swab32(eep->modalHeader.antCtrlChain[i]);
152 eep->modalHeader.antCtrlChain[i] = integer;
155 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
156 word = swab16(eep->modalHeader.spurChans[i].spurChan);
157 eep->modalHeader.spurChans[i].spurChan = word;
161 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
162 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
163 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
164 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
165 sum, ah->eep_ops->get_eeprom_ver(ah));
166 return -EINVAL;
169 return 0;
170 #undef EEPROM_4K_SIZE
173 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
174 enum eeprom_param param)
176 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
177 struct modal_eep_4k_header *pModal = &eep->modalHeader;
178 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
180 switch (param) {
181 case EEP_NFTHRESH_2:
182 return pModal->noiseFloorThreshCh[0];
183 case AR_EEPROM_MAC(0):
184 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
185 case AR_EEPROM_MAC(1):
186 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
187 case AR_EEPROM_MAC(2):
188 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
189 case EEP_REG_0:
190 return pBase->regDmn[0];
191 case EEP_REG_1:
192 return pBase->regDmn[1];
193 case EEP_OP_CAP:
194 return pBase->deviceCap;
195 case EEP_OP_MODE:
196 return pBase->opCapFlags;
197 case EEP_RF_SILENT:
198 return pBase->rfSilent;
199 case EEP_OB_2:
200 return pModal->ob_0;
201 case EEP_DB_2:
202 return pModal->db1_1;
203 case EEP_MINOR_REV:
204 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
205 case EEP_TX_MASK:
206 return pBase->txMask;
207 case EEP_RX_MASK:
208 return pBase->rxMask;
209 case EEP_FRAC_N_5G:
210 return 0;
211 default:
212 return 0;
216 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
217 struct ath9k_channel *chan,
218 struct cal_data_per_freq_4k *pRawDataSet,
219 u8 *bChans, u16 availPiers,
220 u16 tPdGainOverlap, int16_t *pMinCalPower,
221 u16 *pPdGainBoundaries, u8 *pPDADCValues,
222 u16 numXpdGains)
224 #define TMP_VAL_VPD_TABLE \
225 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
226 int i, j, k;
227 int16_t ss;
228 u16 idxL = 0, idxR = 0, numPiers;
229 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
230 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
231 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
232 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
233 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
234 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
236 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
237 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
238 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
239 int16_t vpdStep;
240 int16_t tmpVal;
241 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
242 bool match;
243 int16_t minDelta = 0;
244 struct chan_centers centers;
245 #define PD_GAIN_BOUNDARY_DEFAULT 58;
247 ath9k_hw_get_channel_centers(ah, chan, &centers);
249 for (numPiers = 0; numPiers < availPiers; numPiers++) {
250 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
251 break;
254 match = ath9k_hw_get_lower_upper_index(
255 (u8)FREQ2FBIN(centers.synth_center,
256 IS_CHAN_2GHZ(chan)), bChans, numPiers,
257 &idxL, &idxR);
259 if (match) {
260 for (i = 0; i < numXpdGains; i++) {
261 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
262 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
263 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
264 pRawDataSet[idxL].pwrPdg[i],
265 pRawDataSet[idxL].vpdPdg[i],
266 AR5416_EEP4K_PD_GAIN_ICEPTS,
267 vpdTableI[i]);
269 } else {
270 for (i = 0; i < numXpdGains; i++) {
271 pVpdL = pRawDataSet[idxL].vpdPdg[i];
272 pPwrL = pRawDataSet[idxL].pwrPdg[i];
273 pVpdR = pRawDataSet[idxR].vpdPdg[i];
274 pPwrR = pRawDataSet[idxR].pwrPdg[i];
276 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
278 maxPwrT4[i] =
279 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
280 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
283 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
284 pPwrL, pVpdL,
285 AR5416_EEP4K_PD_GAIN_ICEPTS,
286 vpdTableL[i]);
287 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
288 pPwrR, pVpdR,
289 AR5416_EEP4K_PD_GAIN_ICEPTS,
290 vpdTableR[i]);
292 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
293 vpdTableI[i][j] =
294 (u8)(ath9k_hw_interpolate((u16)
295 FREQ2FBIN(centers.
296 synth_center,
297 IS_CHAN_2GHZ
298 (chan)),
299 bChans[idxL], bChans[idxR],
300 vpdTableL[i][j], vpdTableR[i][j]));
305 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
307 k = 0;
309 for (i = 0; i < numXpdGains; i++) {
310 if (i == (numXpdGains - 1))
311 pPdGainBoundaries[i] =
312 (u16)(maxPwrT4[i] / 2);
313 else
314 pPdGainBoundaries[i] =
315 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
317 pPdGainBoundaries[i] =
318 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
320 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
321 minDelta = pPdGainBoundaries[0] - 23;
322 pPdGainBoundaries[0] = 23;
323 } else {
324 minDelta = 0;
327 if (i == 0) {
328 if (AR_SREV_9280_10_OR_LATER(ah))
329 ss = (int16_t)(0 - (minPwrT4[i] / 2));
330 else
331 ss = 0;
332 } else {
333 ss = (int16_t)((pPdGainBoundaries[i - 1] -
334 (minPwrT4[i] / 2)) -
335 tPdGainOverlap + 1 + minDelta);
337 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
338 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
340 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
341 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
342 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
343 ss++;
346 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
347 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
348 (minPwrT4[i] / 2));
349 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
350 tgtIndex : sizeCurrVpdTable;
352 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
353 pPDADCValues[k++] = vpdTableI[i][ss++];
355 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
356 vpdTableI[i][sizeCurrVpdTable - 2]);
357 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
359 if (tgtIndex >= maxIndex) {
360 while ((ss <= tgtIndex) &&
361 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
362 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
363 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
364 255 : tmpVal);
365 ss++;
370 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
371 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
372 i++;
375 while (k < AR5416_NUM_PDADC_VALUES) {
376 pPDADCValues[k] = pPDADCValues[k - 1];
377 k++;
380 return;
381 #undef TMP_VAL_VPD_TABLE
384 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
385 struct ath9k_channel *chan,
386 int16_t *pTxPowerIndexOffset)
388 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
389 struct cal_data_per_freq_4k *pRawDataset;
390 u8 *pCalBChans = NULL;
391 u16 pdGainOverlap_t2;
392 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
393 u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
394 u16 numPiers, i, j;
395 int16_t tMinCalPower;
396 u16 numXpdGain, xpdMask;
397 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
398 u32 reg32, regOffset, regChainOffset;
400 xpdMask = pEepData->modalHeader.xpdGain;
402 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
403 AR5416_EEP_MINOR_VER_2) {
404 pdGainOverlap_t2 =
405 pEepData->modalHeader.pdGainOverlap;
406 } else {
407 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
408 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
411 pCalBChans = pEepData->calFreqPier2G;
412 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
414 numXpdGain = 0;
416 for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
417 if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
418 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
419 break;
420 xpdGainValues[numXpdGain] =
421 (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
422 numXpdGain++;
426 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
427 (numXpdGain - 1) & 0x3);
428 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
429 xpdGainValues[0]);
430 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
431 xpdGainValues[1]);
432 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
434 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
435 if (AR_SREV_5416_20_OR_LATER(ah) &&
436 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
437 (i != 0)) {
438 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
439 } else
440 regChainOffset = i * 0x1000;
442 if (pEepData->baseEepHeader.txMask & (1 << i)) {
443 pRawDataset = pEepData->calPierData2G[i];
445 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
446 pRawDataset, pCalBChans,
447 numPiers, pdGainOverlap_t2,
448 &tMinCalPower, gainBoundaries,
449 pdadcValues, numXpdGain);
451 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
452 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
453 SM(pdGainOverlap_t2,
454 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
455 | SM(gainBoundaries[0],
456 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
457 | SM(gainBoundaries[1],
458 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
459 | SM(gainBoundaries[2],
460 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
461 | SM(gainBoundaries[3],
462 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
465 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
466 for (j = 0; j < 32; j++) {
467 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
468 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
469 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
470 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
471 REG_WRITE(ah, regOffset, reg32);
473 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
474 "PDADC (%d,%4x): %4.4x %8.8x\n",
475 i, regChainOffset, regOffset,
476 reg32);
477 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
478 "PDADC: Chain %d | "
479 "PDADC %3d Value %3d | "
480 "PDADC %3d Value %3d | "
481 "PDADC %3d Value %3d | "
482 "PDADC %3d Value %3d |\n",
483 i, 4 * j, pdadcValues[4 * j],
484 4 * j + 1, pdadcValues[4 * j + 1],
485 4 * j + 2, pdadcValues[4 * j + 2],
486 4 * j + 3,
487 pdadcValues[4 * j + 3]);
489 regOffset += 4;
494 *pTxPowerIndexOffset = 0;
497 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
498 struct ath9k_channel *chan,
499 int16_t *ratesArray,
500 u16 cfgCtl,
501 u16 AntennaReduction,
502 u16 twiceMaxRegulatoryPower,
503 u16 powerLimit)
505 #define CMP_TEST_GRP \
506 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
507 pEepData->ctlIndex[i]) \
508 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
509 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
511 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
512 int i;
513 int16_t twiceLargestAntenna;
514 u16 twiceMinEdgePower;
515 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
516 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
517 u16 numCtlModes, *pCtlMode, ctlMode, freq;
518 struct chan_centers centers;
519 struct cal_ctl_data_4k *rep;
520 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
521 static const u16 tpScaleReductionTable[5] =
522 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
523 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
524 0, { 0, 0, 0, 0}
526 struct cal_target_power_leg targetPowerOfdmExt = {
527 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
528 0, { 0, 0, 0, 0 }
530 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
531 0, {0, 0, 0, 0}
533 u16 ctlModesFor11g[] =
534 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
535 CTL_2GHT40
538 ath9k_hw_get_channel_centers(ah, chan, &centers);
540 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
541 twiceLargestAntenna = (int16_t)min(AntennaReduction -
542 twiceLargestAntenna, 0);
544 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
545 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
546 maxRegAllowedPower -=
547 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
550 scaledPower = min(powerLimit, maxRegAllowedPower);
551 scaledPower = max((u16)0, scaledPower);
553 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
554 pCtlMode = ctlModesFor11g;
556 ath9k_hw_get_legacy_target_powers(ah, chan,
557 pEepData->calTargetPowerCck,
558 AR5416_NUM_2G_CCK_TARGET_POWERS,
559 &targetPowerCck, 4, false);
560 ath9k_hw_get_legacy_target_powers(ah, chan,
561 pEepData->calTargetPower2G,
562 AR5416_NUM_2G_20_TARGET_POWERS,
563 &targetPowerOfdm, 4, false);
564 ath9k_hw_get_target_powers(ah, chan,
565 pEepData->calTargetPower2GHT20,
566 AR5416_NUM_2G_20_TARGET_POWERS,
567 &targetPowerHt20, 8, false);
569 if (IS_CHAN_HT40(chan)) {
570 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
571 ath9k_hw_get_target_powers(ah, chan,
572 pEepData->calTargetPower2GHT40,
573 AR5416_NUM_2G_40_TARGET_POWERS,
574 &targetPowerHt40, 8, true);
575 ath9k_hw_get_legacy_target_powers(ah, chan,
576 pEepData->calTargetPowerCck,
577 AR5416_NUM_2G_CCK_TARGET_POWERS,
578 &targetPowerCckExt, 4, true);
579 ath9k_hw_get_legacy_target_powers(ah, chan,
580 pEepData->calTargetPower2G,
581 AR5416_NUM_2G_20_TARGET_POWERS,
582 &targetPowerOfdmExt, 4, true);
585 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
586 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
587 (pCtlMode[ctlMode] == CTL_2GHT40);
589 if (isHt40CtlMode)
590 freq = centers.synth_center;
591 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
592 freq = centers.ext_center;
593 else
594 freq = centers.ctl_center;
596 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
597 ah->eep_ops->get_eeprom_rev(ah) <= 2)
598 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
600 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
601 pEepData->ctlIndex[i]; i++) {
603 if (CMP_TEST_GRP) {
604 rep = &(pEepData->ctlData[i]);
606 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
607 freq,
608 rep->ctlEdges[
609 ar5416_get_ntxchains(ah->txchainmask) - 1],
610 IS_CHAN_2GHZ(chan),
611 AR5416_EEP4K_NUM_BAND_EDGES);
613 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
614 twiceMaxEdgePower =
615 min(twiceMaxEdgePower,
616 twiceMinEdgePower);
617 } else {
618 twiceMaxEdgePower = twiceMinEdgePower;
619 break;
624 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
626 switch (pCtlMode[ctlMode]) {
627 case CTL_11B:
628 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
629 targetPowerCck.tPow2x[i] =
630 min((u16)targetPowerCck.tPow2x[i],
631 minCtlPower);
633 break;
634 case CTL_11G:
635 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
636 targetPowerOfdm.tPow2x[i] =
637 min((u16)targetPowerOfdm.tPow2x[i],
638 minCtlPower);
640 break;
641 case CTL_2GHT20:
642 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
643 targetPowerHt20.tPow2x[i] =
644 min((u16)targetPowerHt20.tPow2x[i],
645 minCtlPower);
647 break;
648 case CTL_11B_EXT:
649 targetPowerCckExt.tPow2x[0] =
650 min((u16)targetPowerCckExt.tPow2x[0],
651 minCtlPower);
652 break;
653 case CTL_11G_EXT:
654 targetPowerOfdmExt.tPow2x[0] =
655 min((u16)targetPowerOfdmExt.tPow2x[0],
656 minCtlPower);
657 break;
658 case CTL_2GHT40:
659 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
660 targetPowerHt40.tPow2x[i] =
661 min((u16)targetPowerHt40.tPow2x[i],
662 minCtlPower);
664 break;
665 default:
666 break;
670 ratesArray[rate6mb] =
671 ratesArray[rate9mb] =
672 ratesArray[rate12mb] =
673 ratesArray[rate18mb] =
674 ratesArray[rate24mb] =
675 targetPowerOfdm.tPow2x[0];
677 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
678 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
679 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
680 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
682 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
683 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
685 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
686 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
687 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
688 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
690 if (IS_CHAN_HT40(chan)) {
691 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
692 ratesArray[rateHt40_0 + i] =
693 targetPowerHt40.tPow2x[i];
695 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
696 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
697 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
698 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
701 #undef CMP_TEST_GRP
704 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
705 struct ath9k_channel *chan,
706 u16 cfgCtl,
707 u8 twiceAntennaReduction,
708 u8 twiceMaxRegulatoryPower,
709 u8 powerLimit)
711 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
712 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
713 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
714 int16_t ratesArray[Ar5416RateSize];
715 int16_t txPowerIndexOffset = 0;
716 u8 ht40PowerIncForPdadc = 2;
717 int i;
719 memset(ratesArray, 0, sizeof(ratesArray));
721 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
722 AR5416_EEP_MINOR_VER_2) {
723 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
726 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
727 &ratesArray[0], cfgCtl,
728 twiceAntennaReduction,
729 twiceMaxRegulatoryPower,
730 powerLimit);
732 ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
734 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
735 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
736 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
737 ratesArray[i] = AR5416_MAX_RATE_POWER;
741 /* Update regulatory */
743 i = rate6mb;
744 if (IS_CHAN_HT40(chan))
745 i = rateHt40_0;
746 else if (IS_CHAN_HT20(chan))
747 i = rateHt20_0;
749 regulatory->max_power_level = ratesArray[i];
751 if (AR_SREV_9280_10_OR_LATER(ah)) {
752 for (i = 0; i < Ar5416RateSize; i++)
753 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
756 /* OFDM power per rate */
757 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
758 ATH9K_POW_SM(ratesArray[rate18mb], 24)
759 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
760 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
761 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
762 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
763 ATH9K_POW_SM(ratesArray[rate54mb], 24)
764 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
765 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
766 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
768 /* CCK power per rate */
769 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
770 ATH9K_POW_SM(ratesArray[rate2s], 24)
771 | ATH9K_POW_SM(ratesArray[rate2l], 16)
772 | ATH9K_POW_SM(ratesArray[rateXr], 8)
773 | ATH9K_POW_SM(ratesArray[rate1l], 0));
774 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
775 ATH9K_POW_SM(ratesArray[rate11s], 24)
776 | ATH9K_POW_SM(ratesArray[rate11l], 16)
777 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
778 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
780 /* HT20 power per rate */
781 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
782 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
783 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
784 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
785 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
786 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
787 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
788 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
789 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
790 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
792 /* HT40 power per rate */
793 if (IS_CHAN_HT40(chan)) {
794 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
795 ATH9K_POW_SM(ratesArray[rateHt40_3] +
796 ht40PowerIncForPdadc, 24)
797 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
798 ht40PowerIncForPdadc, 16)
799 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
800 ht40PowerIncForPdadc, 8)
801 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
802 ht40PowerIncForPdadc, 0));
803 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
804 ATH9K_POW_SM(ratesArray[rateHt40_7] +
805 ht40PowerIncForPdadc, 24)
806 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
807 ht40PowerIncForPdadc, 16)
808 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
809 ht40PowerIncForPdadc, 8)
810 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
811 ht40PowerIncForPdadc, 0));
812 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
813 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
814 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
815 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
816 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
820 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
821 struct ath9k_channel *chan)
823 struct modal_eep_4k_header *pModal;
824 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
825 u8 biaslevel;
827 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
828 return;
830 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
831 return;
833 pModal = &eep->modalHeader;
835 if (pModal->xpaBiasLvl != 0xff) {
836 biaslevel = pModal->xpaBiasLvl;
837 INI_RA(&ah->iniAddac, 7, 1) =
838 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
842 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
843 struct modal_eep_4k_header *pModal,
844 struct ar5416_eeprom_4k *eep,
845 u8 txRxAttenLocal)
847 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
848 pModal->antCtrlChain[0]);
850 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
851 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
852 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
853 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
854 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
855 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
857 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
858 AR5416_EEP_MINOR_VER_3) {
859 txRxAttenLocal = pModal->txRxAttenCh[0];
861 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
862 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
863 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
864 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
865 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
866 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
867 pModal->xatten2Margin[0]);
868 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
869 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
871 /* Set the block 1 value to block 0 value */
872 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
873 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
874 pModal->bswMargin[0]);
875 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
876 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
877 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
878 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
879 pModal->xatten2Margin[0]);
880 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
881 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
882 pModal->xatten2Db[0]);
885 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
886 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
887 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
888 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
890 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
891 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
892 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
893 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
895 if (AR_SREV_9285_11(ah))
896 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
900 * Read EEPROM header info and program the device for correct operation
901 * given the channel value.
903 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
904 struct ath9k_channel *chan)
906 struct modal_eep_4k_header *pModal;
907 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
908 u8 txRxAttenLocal;
909 u8 ob[5], db1[5], db2[5];
910 u8 ant_div_control1, ant_div_control2;
911 u32 regVal;
913 pModal = &eep->modalHeader;
914 txRxAttenLocal = 23;
916 REG_WRITE(ah, AR_PHY_SWITCH_COM,
917 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
919 /* Single chain for 4K EEPROM*/
920 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
922 /* Initialize Ant Diversity settings from EEPROM */
923 if (pModal->version >= 3) {
924 ant_div_control1 = pModal->antdiv_ctl1;
925 ant_div_control2 = pModal->antdiv_ctl2;
927 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
928 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
930 regVal |= SM(ant_div_control1,
931 AR_PHY_9285_ANT_DIV_CTL);
932 regVal |= SM(ant_div_control2,
933 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
934 regVal |= SM((ant_div_control2 >> 2),
935 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
936 regVal |= SM((ant_div_control1 >> 1),
937 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
938 regVal |= SM((ant_div_control1 >> 2),
939 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
942 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
943 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
944 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
945 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
946 regVal |= SM((ant_div_control1 >> 3),
947 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
949 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
950 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
953 if (pModal->version >= 2) {
954 ob[0] = pModal->ob_0;
955 ob[1] = pModal->ob_1;
956 ob[2] = pModal->ob_2;
957 ob[3] = pModal->ob_3;
958 ob[4] = pModal->ob_4;
960 db1[0] = pModal->db1_0;
961 db1[1] = pModal->db1_1;
962 db1[2] = pModal->db1_2;
963 db1[3] = pModal->db1_3;
964 db1[4] = pModal->db1_4;
966 db2[0] = pModal->db2_0;
967 db2[1] = pModal->db2_1;
968 db2[2] = pModal->db2_2;
969 db2[3] = pModal->db2_3;
970 db2[4] = pModal->db2_4;
971 } else if (pModal->version == 1) {
972 ob[0] = pModal->ob_0;
973 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
974 db1[0] = pModal->db1_0;
975 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
976 db2[0] = pModal->db2_0;
977 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
978 } else {
979 int i;
981 for (i = 0; i < 5; i++) {
982 ob[i] = pModal->ob_0;
983 db1[i] = pModal->db1_0;
984 db2[i] = pModal->db1_0;
988 if (AR_SREV_9271(ah)) {
989 ath9k_hw_analog_shift_rmw(ah,
990 AR9285_AN_RF2G3,
991 AR9271_AN_RF2G3_OB_cck,
992 AR9271_AN_RF2G3_OB_cck_S,
993 ob[0]);
994 ath9k_hw_analog_shift_rmw(ah,
995 AR9285_AN_RF2G3,
996 AR9271_AN_RF2G3_OB_psk,
997 AR9271_AN_RF2G3_OB_psk_S,
998 ob[1]);
999 ath9k_hw_analog_shift_rmw(ah,
1000 AR9285_AN_RF2G3,
1001 AR9271_AN_RF2G3_OB_qam,
1002 AR9271_AN_RF2G3_OB_qam_S,
1003 ob[2]);
1004 ath9k_hw_analog_shift_rmw(ah,
1005 AR9285_AN_RF2G3,
1006 AR9271_AN_RF2G3_DB_1,
1007 AR9271_AN_RF2G3_DB_1_S,
1008 db1[0]);
1009 ath9k_hw_analog_shift_rmw(ah,
1010 AR9285_AN_RF2G4,
1011 AR9271_AN_RF2G4_DB_2,
1012 AR9271_AN_RF2G4_DB_2_S,
1013 db2[0]);
1014 } else {
1015 ath9k_hw_analog_shift_rmw(ah,
1016 AR9285_AN_RF2G3,
1017 AR9285_AN_RF2G3_OB_0,
1018 AR9285_AN_RF2G3_OB_0_S,
1019 ob[0]);
1020 ath9k_hw_analog_shift_rmw(ah,
1021 AR9285_AN_RF2G3,
1022 AR9285_AN_RF2G3_OB_1,
1023 AR9285_AN_RF2G3_OB_1_S,
1024 ob[1]);
1025 ath9k_hw_analog_shift_rmw(ah,
1026 AR9285_AN_RF2G3,
1027 AR9285_AN_RF2G3_OB_2,
1028 AR9285_AN_RF2G3_OB_2_S,
1029 ob[2]);
1030 ath9k_hw_analog_shift_rmw(ah,
1031 AR9285_AN_RF2G3,
1032 AR9285_AN_RF2G3_OB_3,
1033 AR9285_AN_RF2G3_OB_3_S,
1034 ob[3]);
1035 ath9k_hw_analog_shift_rmw(ah,
1036 AR9285_AN_RF2G3,
1037 AR9285_AN_RF2G3_OB_4,
1038 AR9285_AN_RF2G3_OB_4_S,
1039 ob[4]);
1041 ath9k_hw_analog_shift_rmw(ah,
1042 AR9285_AN_RF2G3,
1043 AR9285_AN_RF2G3_DB1_0,
1044 AR9285_AN_RF2G3_DB1_0_S,
1045 db1[0]);
1046 ath9k_hw_analog_shift_rmw(ah,
1047 AR9285_AN_RF2G3,
1048 AR9285_AN_RF2G3_DB1_1,
1049 AR9285_AN_RF2G3_DB1_1_S,
1050 db1[1]);
1051 ath9k_hw_analog_shift_rmw(ah,
1052 AR9285_AN_RF2G3,
1053 AR9285_AN_RF2G3_DB1_2,
1054 AR9285_AN_RF2G3_DB1_2_S,
1055 db1[2]);
1056 ath9k_hw_analog_shift_rmw(ah,
1057 AR9285_AN_RF2G4,
1058 AR9285_AN_RF2G4_DB1_3,
1059 AR9285_AN_RF2G4_DB1_3_S,
1060 db1[3]);
1061 ath9k_hw_analog_shift_rmw(ah,
1062 AR9285_AN_RF2G4,
1063 AR9285_AN_RF2G4_DB1_4,
1064 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1066 ath9k_hw_analog_shift_rmw(ah,
1067 AR9285_AN_RF2G4,
1068 AR9285_AN_RF2G4_DB2_0,
1069 AR9285_AN_RF2G4_DB2_0_S,
1070 db2[0]);
1071 ath9k_hw_analog_shift_rmw(ah,
1072 AR9285_AN_RF2G4,
1073 AR9285_AN_RF2G4_DB2_1,
1074 AR9285_AN_RF2G4_DB2_1_S,
1075 db2[1]);
1076 ath9k_hw_analog_shift_rmw(ah,
1077 AR9285_AN_RF2G4,
1078 AR9285_AN_RF2G4_DB2_2,
1079 AR9285_AN_RF2G4_DB2_2_S,
1080 db2[2]);
1081 ath9k_hw_analog_shift_rmw(ah,
1082 AR9285_AN_RF2G4,
1083 AR9285_AN_RF2G4_DB2_3,
1084 AR9285_AN_RF2G4_DB2_3_S,
1085 db2[3]);
1086 ath9k_hw_analog_shift_rmw(ah,
1087 AR9285_AN_RF2G4,
1088 AR9285_AN_RF2G4_DB2_4,
1089 AR9285_AN_RF2G4_DB2_4_S,
1090 db2[4]);
1094 if (AR_SREV_9285_11(ah))
1095 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
1097 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1098 pModal->switchSettling);
1099 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1100 pModal->adcDesiredSize);
1102 REG_WRITE(ah, AR_PHY_RF_CTL4,
1103 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1104 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1105 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1106 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1108 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1109 pModal->txEndToRxOn);
1110 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1111 pModal->thresh62);
1112 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1113 pModal->thresh62);
1115 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1116 AR5416_EEP_MINOR_VER_2) {
1117 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1118 pModal->txFrameToDataStart);
1119 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1120 pModal->txFrameToPaOn);
1123 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1124 AR5416_EEP_MINOR_VER_3) {
1125 if (IS_CHAN_HT40(chan))
1126 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1127 AR_PHY_SETTLING_SWITCH,
1128 pModal->swSettleHt40);
1132 static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
1133 struct ath9k_channel *chan)
1135 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1136 struct modal_eep_4k_header *pModal = &eep->modalHeader;
1138 return pModal->antCtrlCommon & 0xFFFF;
1141 static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
1142 enum ieee80211_band freq_band)
1144 return 1;
1147 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1149 #define EEP_MAP4K_SPURCHAN \
1150 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1152 u16 spur_val = AR_NO_SPUR;
1154 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1155 "Getting spur idx %d is2Ghz. %d val %x\n",
1156 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1158 switch (ah->config.spurmode) {
1159 case SPUR_DISABLE:
1160 break;
1161 case SPUR_ENABLE_IOCTL:
1162 spur_val = ah->config.spurchans[i][is2GHz];
1163 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1164 "Getting spur val from new loc. %d\n", spur_val);
1165 break;
1166 case SPUR_ENABLE_EEPROM:
1167 spur_val = EEP_MAP4K_SPURCHAN;
1168 break;
1171 return spur_val;
1173 #undef EEP_MAP4K_SPURCHAN
1176 const struct eeprom_ops eep_4k_ops = {
1177 .check_eeprom = ath9k_hw_4k_check_eeprom,
1178 .get_eeprom = ath9k_hw_4k_get_eeprom,
1179 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1180 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1181 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1182 .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
1183 .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
1184 .set_board_values = ath9k_hw_4k_set_board_values,
1185 .set_addac = ath9k_hw_4k_set_addac,
1186 .set_txpower = ath9k_hw_4k_set_txpower,
1187 .get_spur_channel = ath9k_hw_4k_get_spur_channel