debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_9287.c
blobc20c21a79b21c5db297236c1fb7960b615ca0a43
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 static int ath9k_hw_AR9287_get_eeprom_ver(struct ath_hw *ah)
21 return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
24 static int ath9k_hw_AR9287_get_eeprom_rev(struct ath_hw *ah)
26 return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
29 static bool ath9k_hw_AR9287_fill_eeprom(struct ath_hw *ah)
31 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
32 u16 *eep_data;
33 int addr, eep_start_loc = AR9287_EEP_START_LOC;
34 eep_data = (u16 *)eep;
36 if (!ath9k_hw_use_flash(ah)) {
37 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
38 "Reading from EEPROM, not flash\n");
41 for (addr = 0; addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
42 addr++) {
43 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
44 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
45 "Unable to read eeprom region \n");
46 return false;
48 eep_data++;
50 return true;
53 static int ath9k_hw_AR9287_check_eeprom(struct ath_hw *ah)
55 u32 sum = 0, el, integer;
56 u16 temp, word, magic, magic2, *eepdata;
57 int i, addr;
58 bool need_swap = false;
59 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
61 if (!ath9k_hw_use_flash(ah)) {
62 if (!ath9k_hw_nvram_read
63 (ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
64 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
65 "Reading Magic # failed\n");
66 return false;
69 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
70 "Read Magic = 0x%04X\n", magic);
71 if (magic != AR5416_EEPROM_MAGIC) {
72 magic2 = swab16(magic);
74 if (magic2 == AR5416_EEPROM_MAGIC) {
75 need_swap = true;
76 eepdata = (u16 *)(&ah->eeprom);
78 for (addr = 0;
79 addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
80 addr++) {
81 temp = swab16(*eepdata);
82 *eepdata = temp;
83 eepdata++;
85 } else {
86 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
87 "Invalid EEPROM Magic. "
88 "endianness mismatch.\n");
89 return -EINVAL;
93 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ?
94 "True" : "False");
96 if (need_swap)
97 el = swab16(ah->eeprom.map9287.baseEepHeader.length);
98 else
99 el = ah->eeprom.map9287.baseEepHeader.length;
101 if (el > sizeof(struct ar9287_eeprom))
102 el = sizeof(struct ar9287_eeprom) / sizeof(u16);
103 else
104 el = el / sizeof(u16);
106 eepdata = (u16 *)(&ah->eeprom);
107 for (i = 0; i < el; i++)
108 sum ^= *eepdata++;
110 if (need_swap) {
111 word = swab16(eep->baseEepHeader.length);
112 eep->baseEepHeader.length = word;
114 word = swab16(eep->baseEepHeader.checksum);
115 eep->baseEepHeader.checksum = word;
117 word = swab16(eep->baseEepHeader.version);
118 eep->baseEepHeader.version = word;
120 word = swab16(eep->baseEepHeader.regDmn[0]);
121 eep->baseEepHeader.regDmn[0] = word;
123 word = swab16(eep->baseEepHeader.regDmn[1]);
124 eep->baseEepHeader.regDmn[1] = word;
126 word = swab16(eep->baseEepHeader.rfSilent);
127 eep->baseEepHeader.rfSilent = word;
129 word = swab16(eep->baseEepHeader.blueToothOptions);
130 eep->baseEepHeader.blueToothOptions = word;
132 word = swab16(eep->baseEepHeader.deviceCap);
133 eep->baseEepHeader.deviceCap = word;
135 integer = swab32(eep->modalHeader.antCtrlCommon);
136 eep->modalHeader.antCtrlCommon = integer;
138 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
139 integer = swab32(eep->modalHeader.antCtrlChain[i]);
140 eep->modalHeader.antCtrlChain[i] = integer;
143 for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
144 word = swab16(eep->modalHeader.spurChans[i].spurChan);
145 eep->modalHeader.spurChans[i].spurChan = word;
149 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
150 || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
151 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
152 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
153 sum, ah->eep_ops->get_eeprom_ver(ah));
154 return -EINVAL;
157 return 0;
160 static u32 ath9k_hw_AR9287_get_eeprom(struct ath_hw *ah,
161 enum eeprom_param param)
163 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
164 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
165 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
166 u16 ver_minor;
168 ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
169 switch (param) {
170 case EEP_NFTHRESH_2:
171 return pModal->noiseFloorThreshCh[0];
172 case AR_EEPROM_MAC(0):
173 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
174 case AR_EEPROM_MAC(1):
175 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
176 case AR_EEPROM_MAC(2):
177 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
178 case EEP_REG_0:
179 return pBase->regDmn[0];
180 case EEP_REG_1:
181 return pBase->regDmn[1];
182 case EEP_OP_CAP:
183 return pBase->deviceCap;
184 case EEP_OP_MODE:
185 return pBase->opCapFlags;
186 case EEP_RF_SILENT:
187 return pBase->rfSilent;
188 case EEP_MINOR_REV:
189 return ver_minor;
190 case EEP_TX_MASK:
191 return pBase->txMask;
192 case EEP_RX_MASK:
193 return pBase->rxMask;
194 case EEP_DEV_TYPE:
195 return pBase->deviceType;
196 case EEP_OL_PWRCTRL:
197 return pBase->openLoopPwrCntl;
198 case EEP_TEMPSENSE_SLOPE:
199 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
200 return pBase->tempSensSlope;
201 else
202 return 0;
203 case EEP_TEMPSENSE_SLOPE_PAL_ON:
204 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
205 return pBase->tempSensSlopePalOn;
206 else
207 return 0;
208 default:
209 return 0;
214 static void ath9k_hw_get_AR9287_gain_boundaries_pdadcs(struct ath_hw *ah,
215 struct ath9k_channel *chan,
216 struct cal_data_per_freq_ar9287 *pRawDataSet,
217 u8 *bChans, u16 availPiers,
218 u16 tPdGainOverlap, int16_t *pMinCalPower,
219 u16 *pPdGainBoundaries, u8 *pPDADCValues,
220 u16 numXpdGains)
222 #define TMP_VAL_VPD_TABLE \
223 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
225 int i, j, k;
226 int16_t ss;
227 u16 idxL = 0, idxR = 0, numPiers;
228 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
229 u8 minPwrT4[AR9287_NUM_PD_GAINS];
230 u8 maxPwrT4[AR9287_NUM_PD_GAINS];
231 int16_t vpdStep;
232 int16_t tmpVal;
233 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
234 bool match;
235 int16_t minDelta = 0;
236 struct chan_centers centers;
237 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
238 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
239 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
240 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
241 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
242 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
244 ath9k_hw_get_channel_centers(ah, chan, &centers);
246 for (numPiers = 0; numPiers < availPiers; numPiers++) {
247 if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
248 break;
251 match = ath9k_hw_get_lower_upper_index(
252 (u8)FREQ2FBIN(centers.synth_center,
253 IS_CHAN_2GHZ(chan)), bChans, numPiers,
254 &idxL, &idxR);
256 if (match) {
257 for (i = 0; i < numXpdGains; i++) {
258 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
259 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
260 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
261 pRawDataSet[idxL].pwrPdg[i],
262 pRawDataSet[idxL].vpdPdg[i],
263 AR9287_PD_GAIN_ICEPTS, vpdTableI[i]);
265 } else {
266 for (i = 0; i < numXpdGains; i++) {
267 pVpdL = pRawDataSet[idxL].vpdPdg[i];
268 pPwrL = pRawDataSet[idxL].pwrPdg[i];
269 pVpdR = pRawDataSet[idxR].vpdPdg[i];
270 pPwrR = pRawDataSet[idxR].pwrPdg[i];
272 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
274 maxPwrT4[i] =
275 min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
276 pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
278 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
279 pPwrL, pVpdL,
280 AR9287_PD_GAIN_ICEPTS,
281 vpdTableL[i]);
282 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
283 pPwrR, pVpdR,
284 AR9287_PD_GAIN_ICEPTS,
285 vpdTableR[i]);
287 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
288 vpdTableI[i][j] =
289 (u8)(ath9k_hw_interpolate((u16)
290 FREQ2FBIN(centers. synth_center,
291 IS_CHAN_2GHZ(chan)),
292 bChans[idxL], bChans[idxR],
293 vpdTableL[i][j], vpdTableR[i][j]));
297 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
299 k = 0;
300 for (i = 0; i < numXpdGains; i++) {
301 if (i == (numXpdGains - 1))
302 pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2);
303 else
304 pPdGainBoundaries[i] = (u16)((maxPwrT4[i] +
305 minPwrT4[i+1]) / 4);
307 pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
308 pPdGainBoundaries[i]);
311 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
312 minDelta = pPdGainBoundaries[0] - 23;
313 pPdGainBoundaries[0] = 23;
314 } else
315 minDelta = 0;
317 if (i == 0) {
318 if (AR_SREV_9280_10_OR_LATER(ah))
319 ss = (int16_t)(0 - (minPwrT4[i] / 2));
320 else
321 ss = 0;
322 } else
323 ss = (int16_t)((pPdGainBoundaries[i-1] -
324 (minPwrT4[i] / 2)) -
325 tPdGainOverlap + 1 + minDelta);
327 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
328 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
329 while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1))) {
330 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
331 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
332 ss++;
335 sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
336 tgtIndex = (u8)(pPdGainBoundaries[i] +
337 tPdGainOverlap - (minPwrT4[i] / 2));
338 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
339 tgtIndex : sizeCurrVpdTable;
341 while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
342 pPDADCValues[k++] = vpdTableI[i][ss++];
344 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
345 vpdTableI[i][sizeCurrVpdTable - 2]);
346 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
347 if (tgtIndex > maxIndex) {
348 while ((ss <= tgtIndex) &&
349 (k < (AR9287_NUM_PDADC_VALUES - 1))) {
350 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
351 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
352 255 : tmpVal);
353 ss++;
358 while (i < AR9287_PD_GAINS_IN_MASK) {
359 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
360 i++;
363 while (k < AR9287_NUM_PDADC_VALUES) {
364 pPDADCValues[k] = pPDADCValues[k-1];
365 k++;
368 #undef TMP_VAL_VPD_TABLE
371 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
372 struct ath9k_channel *chan,
373 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
374 u8 *pCalChans, u16 availPiers,
375 int8_t *pPwr)
377 u16 idxL = 0, idxR = 0, numPiers;
378 bool match;
379 struct chan_centers centers;
381 ath9k_hw_get_channel_centers(ah, chan, &centers);
383 for (numPiers = 0; numPiers < availPiers; numPiers++) {
384 if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
385 break;
388 match = ath9k_hw_get_lower_upper_index(
389 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
390 pCalChans, numPiers,
391 &idxL, &idxR);
393 if (match) {
394 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
395 } else {
396 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
397 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
402 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
403 int32_t txPower, u16 chain)
405 u32 tmpVal;
406 u32 a;
408 tmpVal = REG_READ(ah, 0xa270);
409 tmpVal = tmpVal & 0xFCFFFFFF;
410 tmpVal = tmpVal | (0x3 << 24);
411 REG_WRITE(ah, 0xa270, tmpVal);
413 tmpVal = REG_READ(ah, 0xb270);
414 tmpVal = tmpVal & 0xFCFFFFFF;
415 tmpVal = tmpVal | (0x3 << 24);
416 REG_WRITE(ah, 0xb270, tmpVal);
418 if (chain == 0) {
419 tmpVal = REG_READ(ah, 0xa398);
420 tmpVal = tmpVal & 0xff00ffff;
421 a = (txPower)&0xff;
422 tmpVal = tmpVal | (a << 16);
423 REG_WRITE(ah, 0xa398, tmpVal);
426 if (chain == 1) {
427 tmpVal = REG_READ(ah, 0xb398);
428 tmpVal = tmpVal & 0xff00ffff;
429 a = (txPower)&0xff;
430 tmpVal = tmpVal | (a << 16);
431 REG_WRITE(ah, 0xb398, tmpVal);
435 static void ath9k_hw_set_AR9287_power_cal_table(struct ath_hw *ah,
436 struct ath9k_channel *chan,
437 int16_t *pTxPowerIndexOffset)
439 struct cal_data_per_freq_ar9287 *pRawDataset;
440 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
441 u8 *pCalBChans = NULL;
442 u16 pdGainOverlap_t2;
443 u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
444 u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
445 u16 numPiers = 0, i, j;
446 int16_t tMinCalPower;
447 u16 numXpdGain, xpdMask;
448 u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
449 u32 reg32, regOffset, regChainOffset;
450 int16_t modalIdx, diff = 0;
451 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
452 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
453 xpdMask = pEepData->modalHeader.xpdGain;
454 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
455 AR9287_EEP_MINOR_VER_2)
456 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
457 else
458 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
459 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
461 if (IS_CHAN_2GHZ(chan)) {
462 pCalBChans = pEepData->calFreqPier2G;
463 numPiers = AR9287_NUM_2G_CAL_PIERS;
464 if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
465 pRawDatasetOpenLoop =
466 (struct cal_data_op_loop_ar9287 *)
467 pEepData->calPierData2G[0];
468 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
472 numXpdGain = 0;
473 for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
474 if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
475 if (numXpdGain >= AR9287_NUM_PD_GAINS)
476 break;
477 xpdGainValues[numXpdGain] =
478 (u16)(AR9287_PD_GAINS_IN_MASK-i);
479 numXpdGain++;
483 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
484 (numXpdGain - 1) & 0x3);
485 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
486 xpdGainValues[0]);
487 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
488 xpdGainValues[1]);
489 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
490 xpdGainValues[2]);
492 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
493 regChainOffset = i * 0x1000;
494 if (pEepData->baseEepHeader.txMask & (1 << i)) {
495 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)
496 pEepData->calPierData2G[i];
497 if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
498 int8_t txPower;
499 ar9287_eeprom_get_tx_gain_index(ah, chan,
500 pRawDatasetOpenLoop,
501 pCalBChans, numPiers,
502 &txPower);
503 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
504 } else {
505 pRawDataset =
506 (struct cal_data_per_freq_ar9287 *)
507 pEepData->calPierData2G[i];
508 ath9k_hw_get_AR9287_gain_boundaries_pdadcs(
509 ah, chan, pRawDataset,
510 pCalBChans, numPiers,
511 pdGainOverlap_t2,
512 &tMinCalPower, gainBoundaries,
513 pdadcValues, numXpdGain);
516 if (i == 0) {
517 if (!ath9k_hw_AR9287_get_eeprom(
518 ah, EEP_OL_PWRCTRL)) {
519 REG_WRITE(ah, AR_PHY_TPCRG5 +
520 regChainOffset,
521 SM(pdGainOverlap_t2,
522 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
523 SM(gainBoundaries[0],
524 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
525 | SM(gainBoundaries[1],
526 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
527 | SM(gainBoundaries[2],
528 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
529 | SM(gainBoundaries[3],
530 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
534 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
535 pEepData->baseEepHeader.pwrTableOffset) {
536 diff = (u16)
537 (pEepData->baseEepHeader.pwrTableOffset
538 - (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
539 diff *= 2;
541 for (j = 0;
542 j < ((u16)AR9287_NUM_PDADC_VALUES-diff);
543 j++)
544 pdadcValues[j] = pdadcValues[j+diff];
546 for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
547 j < AR9287_NUM_PDADC_VALUES; j++)
548 pdadcValues[j] =
549 pdadcValues[
550 AR9287_NUM_PDADC_VALUES-diff];
553 if (!ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
554 regOffset = AR_PHY_BASE + (672 << 2) +
555 regChainOffset;
556 for (j = 0; j < 32; j++) {
557 reg32 = ((pdadcValues[4*j + 0]
558 & 0xFF) << 0) |
559 ((pdadcValues[4*j + 1]
560 & 0xFF) << 8) |
561 ((pdadcValues[4*j + 2]
562 & 0xFF) << 16) |
563 ((pdadcValues[4*j + 3]
564 & 0xFF) << 24) ;
565 REG_WRITE(ah, regOffset, reg32);
567 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
568 "PDADC (%d,%4x): %4.4x %8.8x\n",
569 i, regChainOffset, regOffset,
570 reg32);
572 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
573 "PDADC: Chain %d | "
574 "PDADC %3d Value %3d | "
575 "PDADC %3d Value %3d | "
576 "PDADC %3d Value %3d | "
577 "PDADC %3d Value %3d |\n",
578 i, 4 * j, pdadcValues[4 * j],
579 4 * j + 1,
580 pdadcValues[4 * j + 1],
581 4 * j + 2,
582 pdadcValues[4 * j + 2],
583 4 * j + 3,
584 pdadcValues[4 * j + 3]);
586 regOffset += 4;
592 *pTxPowerIndexOffset = 0;
595 static void ath9k_hw_set_AR9287_power_per_rate_table(struct ath_hw *ah,
596 struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl,
597 u16 AntennaReduction, u16 twiceMaxRegulatoryPower,
598 u16 powerLimit)
600 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
601 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
602 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
603 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
604 static const u16 tpScaleReductionTable[5] =
605 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
606 int i;
607 int16_t twiceLargestAntenna;
608 struct cal_ctl_data_ar9287 *rep;
609 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
610 targetPowerCck = {0, {0, 0, 0, 0} };
611 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
612 targetPowerCckExt = {0, {0, 0, 0, 0} };
613 struct cal_target_power_ht targetPowerHt20,
614 targetPowerHt40 = {0, {0, 0, 0, 0} };
615 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
616 u16 ctlModesFor11g[] =
617 {CTL_11B, CTL_11G, CTL_2GHT20,
618 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
619 u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
620 struct chan_centers centers;
621 int tx_chainmask;
622 u16 twiceMinEdgePower;
623 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
624 tx_chainmask = ah->txchainmask;
626 ath9k_hw_get_channel_centers(ah, chan, &centers);
628 twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
629 pEepData->modalHeader.antennaGainCh[1]);
631 twiceLargestAntenna = (int16_t)min((AntennaReduction) -
632 twiceLargestAntenna, 0);
634 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
635 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
636 maxRegAllowedPower -=
637 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
639 scaledPower = min(powerLimit, maxRegAllowedPower);
641 switch (ar5416_get_ntxchains(tx_chainmask)) {
642 case 1:
643 break;
644 case 2:
645 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
646 break;
647 case 3:
648 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
649 break;
651 scaledPower = max((u16)0, scaledPower);
653 if (IS_CHAN_2GHZ(chan)) {
654 numCtlModes =
655 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
656 pCtlMode = ctlModesFor11g;
658 ath9k_hw_get_legacy_target_powers(ah, chan,
659 pEepData->calTargetPowerCck,
660 AR9287_NUM_2G_CCK_TARGET_POWERS,
661 &targetPowerCck, 4, false);
662 ath9k_hw_get_legacy_target_powers(ah, chan,
663 pEepData->calTargetPower2G,
664 AR9287_NUM_2G_20_TARGET_POWERS,
665 &targetPowerOfdm, 4, false);
666 ath9k_hw_get_target_powers(ah, chan,
667 pEepData->calTargetPower2GHT20,
668 AR9287_NUM_2G_20_TARGET_POWERS,
669 &targetPowerHt20, 8, false);
671 if (IS_CHAN_HT40(chan)) {
672 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
673 ath9k_hw_get_target_powers(ah, chan,
674 pEepData->calTargetPower2GHT40,
675 AR9287_NUM_2G_40_TARGET_POWERS,
676 &targetPowerHt40, 8, true);
677 ath9k_hw_get_legacy_target_powers(ah, chan,
678 pEepData->calTargetPowerCck,
679 AR9287_NUM_2G_CCK_TARGET_POWERS,
680 &targetPowerCckExt, 4, true);
681 ath9k_hw_get_legacy_target_powers(ah, chan,
682 pEepData->calTargetPower2G,
683 AR9287_NUM_2G_20_TARGET_POWERS,
684 &targetPowerOfdmExt, 4, true);
688 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
689 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
690 (pCtlMode[ctlMode] == CTL_2GHT40);
691 if (isHt40CtlMode)
692 freq = centers.synth_center;
693 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
694 freq = centers.ext_center;
695 else
696 freq = centers.ctl_center;
698 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
699 ah->eep_ops->get_eeprom_rev(ah) <= 2)
700 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
702 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
703 if ((((cfgCtl & ~CTL_MODE_M) |
704 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
705 pEepData->ctlIndex[i]) ||
706 (((cfgCtl & ~CTL_MODE_M) |
707 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
708 ((pEepData->ctlIndex[i] &
709 CTL_MODE_M) | SD_NO_CTL))) {
711 rep = &(pEepData->ctlData[i]);
712 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
713 freq,
714 rep->ctlEdges[ar5416_get_ntxchains(
715 tx_chainmask) - 1],
716 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
718 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
719 twiceMaxEdgePower = min(
720 twiceMaxEdgePower,
721 twiceMinEdgePower);
722 else {
723 twiceMaxEdgePower = twiceMinEdgePower;
724 break;
729 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
731 switch (pCtlMode[ctlMode]) {
732 case CTL_11B:
733 for (i = 0;
734 i < ARRAY_SIZE(targetPowerCck.tPow2x);
735 i++) {
736 targetPowerCck.tPow2x[i] = (u8)min(
737 (u16)targetPowerCck.tPow2x[i],
738 minCtlPower);
740 break;
741 case CTL_11A:
742 case CTL_11G:
743 for (i = 0;
744 i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
745 i++) {
746 targetPowerOfdm.tPow2x[i] = (u8)min(
747 (u16)targetPowerOfdm.tPow2x[i],
748 minCtlPower);
750 break;
751 case CTL_5GHT20:
752 case CTL_2GHT20:
753 for (i = 0;
754 i < ARRAY_SIZE(targetPowerHt20.tPow2x);
755 i++) {
756 targetPowerHt20.tPow2x[i] = (u8)min(
757 (u16)targetPowerHt20.tPow2x[i],
758 minCtlPower);
760 break;
761 case CTL_11B_EXT:
762 targetPowerCckExt.tPow2x[0] = (u8)min(
763 (u16)targetPowerCckExt.tPow2x[0],
764 minCtlPower);
765 break;
766 case CTL_11A_EXT:
767 case CTL_11G_EXT:
768 targetPowerOfdmExt.tPow2x[0] = (u8)min(
769 (u16)targetPowerOfdmExt.tPow2x[0],
770 minCtlPower);
771 break;
772 case CTL_5GHT40:
773 case CTL_2GHT40:
774 for (i = 0;
775 i < ARRAY_SIZE(targetPowerHt40.tPow2x);
776 i++) {
777 targetPowerHt40.tPow2x[i] = (u8)min(
778 (u16)targetPowerHt40.tPow2x[i],
779 minCtlPower);
781 break;
782 default:
783 break;
787 ratesArray[rate6mb] =
788 ratesArray[rate9mb] =
789 ratesArray[rate12mb] =
790 ratesArray[rate18mb] =
791 ratesArray[rate24mb] =
792 targetPowerOfdm.tPow2x[0];
794 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
795 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
796 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
797 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
799 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
800 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
802 if (IS_CHAN_2GHZ(chan)) {
803 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
804 ratesArray[rate2s] = ratesArray[rate2l] =
805 targetPowerCck.tPow2x[1];
806 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
807 targetPowerCck.tPow2x[2];
808 ratesArray[rate11s] = ratesArray[rate11l] =
809 targetPowerCck.tPow2x[3];
811 if (IS_CHAN_HT40(chan)) {
812 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
813 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
815 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
816 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
817 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
818 if (IS_CHAN_2GHZ(chan))
819 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
822 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
823 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
826 static void ath9k_hw_AR9287_set_txpower(struct ath_hw *ah,
827 struct ath9k_channel *chan, u16 cfgCtl,
828 u8 twiceAntennaReduction,
829 u8 twiceMaxRegulatoryPower,
830 u8 powerLimit)
832 #define INCREASE_MAXPOW_BY_TWO_CHAIN 6
833 #define INCREASE_MAXPOW_BY_THREE_CHAIN 10
834 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
835 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
836 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
837 int16_t ratesArray[Ar5416RateSize];
838 int16_t txPowerIndexOffset = 0;
839 u8 ht40PowerIncForPdadc = 2;
840 int i;
842 memset(ratesArray, 0, sizeof(ratesArray));
844 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
845 AR9287_EEP_MINOR_VER_2)
846 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
848 ath9k_hw_set_AR9287_power_per_rate_table(ah, chan,
849 &ratesArray[0], cfgCtl,
850 twiceAntennaReduction,
851 twiceMaxRegulatoryPower,
852 powerLimit);
854 ath9k_hw_set_AR9287_power_cal_table(ah, chan, &txPowerIndexOffset);
856 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
857 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
858 if (ratesArray[i] > AR9287_MAX_RATE_POWER)
859 ratesArray[i] = AR9287_MAX_RATE_POWER;
862 if (AR_SREV_9280_10_OR_LATER(ah)) {
863 for (i = 0; i < Ar5416RateSize; i++)
864 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
867 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
868 ATH9K_POW_SM(ratesArray[rate18mb], 24)
869 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
870 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
871 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
873 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
874 ATH9K_POW_SM(ratesArray[rate54mb], 24)
875 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
876 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
877 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
879 if (IS_CHAN_2GHZ(chan)) {
880 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
881 ATH9K_POW_SM(ratesArray[rate2s], 24)
882 | ATH9K_POW_SM(ratesArray[rate2l], 16)
883 | ATH9K_POW_SM(ratesArray[rateXr], 8)
884 | ATH9K_POW_SM(ratesArray[rate1l], 0));
885 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
886 ATH9K_POW_SM(ratesArray[rate11s], 24)
887 | ATH9K_POW_SM(ratesArray[rate11l], 16)
888 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
889 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
892 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
893 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
894 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
895 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
896 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
898 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
899 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
900 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
901 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
902 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
904 if (IS_CHAN_HT40(chan)) {
905 if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
906 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
907 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
908 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
909 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
910 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
912 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
913 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
914 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
915 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
916 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
917 } else {
918 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
919 ATH9K_POW_SM(ratesArray[rateHt40_3] +
920 ht40PowerIncForPdadc, 24)
921 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
922 ht40PowerIncForPdadc, 16)
923 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
924 ht40PowerIncForPdadc, 8)
925 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
926 ht40PowerIncForPdadc, 0));
928 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
929 ATH9K_POW_SM(ratesArray[rateHt40_7] +
930 ht40PowerIncForPdadc, 24)
931 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
932 ht40PowerIncForPdadc, 16)
933 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
934 ht40PowerIncForPdadc, 8)
935 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
936 ht40PowerIncForPdadc, 0));
939 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
940 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
941 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
942 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
943 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
946 if (IS_CHAN_2GHZ(chan))
947 i = rate1l;
948 else
949 i = rate6mb;
951 if (AR_SREV_9280_10_OR_LATER(ah))
952 regulatory->max_power_level =
953 ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
954 else
955 regulatory->max_power_level = ratesArray[i];
957 switch (ar5416_get_ntxchains(ah->txchainmask)) {
958 case 1:
959 break;
960 case 2:
961 regulatory->max_power_level +=
962 INCREASE_MAXPOW_BY_TWO_CHAIN;
963 break;
964 case 3:
965 regulatory->max_power_level +=
966 INCREASE_MAXPOW_BY_THREE_CHAIN;
967 break;
968 default:
969 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
970 "Invalid chainmask configuration\n");
971 break;
975 static void ath9k_hw_AR9287_set_addac(struct ath_hw *ah,
976 struct ath9k_channel *chan)
980 static void ath9k_hw_AR9287_set_board_values(struct ath_hw *ah,
981 struct ath9k_channel *chan)
983 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
984 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
985 u16 antWrites[AR9287_ANT_16S];
986 u32 regChainOffset;
987 u8 txRxAttenLocal;
988 int i, j, offset_num;
990 pModal = &eep->modalHeader;
992 antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
993 antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
994 antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
995 antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
996 antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
997 antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
998 antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF);
999 antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
1001 offset_num = 8;
1003 for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
1004 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
1005 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
1006 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
1007 antWrites[j++] = 0;
1008 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
1009 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
1010 antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
1011 antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
1014 REG_WRITE(ah, AR_PHY_SWITCH_COM,
1015 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1017 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
1018 regChainOffset = i * 0x1000;
1020 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1021 pModal->antCtrlChain[i]);
1023 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1024 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
1025 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1026 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1027 SM(pModal->iqCalICh[i],
1028 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1029 SM(pModal->iqCalQCh[i],
1030 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1032 txRxAttenLocal = pModal->txRxAttenCh[i];
1034 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1035 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1036 pModal->bswMargin[i]);
1037 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1038 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1039 pModal->bswAtten[i]);
1040 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1041 AR9280_PHY_RXGAIN_TXRX_ATTEN,
1042 txRxAttenLocal);
1043 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1044 AR9280_PHY_RXGAIN_TXRX_MARGIN,
1045 pModal->rxTxMarginCh[i]);
1049 if (IS_CHAN_HT40(chan))
1050 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1051 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1052 else
1053 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1054 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1056 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1057 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1059 REG_WRITE(ah, AR_PHY_RF_CTL4,
1060 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1061 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1062 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1063 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1065 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
1066 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1068 REG_RMW_FIELD(ah, AR_PHY_CCA,
1069 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
1070 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1071 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
1073 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB1,
1074 AR9287_AN_RF2G3_DB1_S, pModal->db1);
1075 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB2,
1076 AR9287_AN_RF2G3_DB2_S, pModal->db2);
1077 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1078 AR9287_AN_RF2G3_OB_CCK,
1079 AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
1080 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1081 AR9287_AN_RF2G3_OB_PSK,
1082 AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
1083 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1084 AR9287_AN_RF2G3_OB_QAM,
1085 AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
1086 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
1087 AR9287_AN_RF2G3_OB_PAL_OFF,
1088 AR9287_AN_RF2G3_OB_PAL_OFF_S,
1089 pModal->ob_pal_off);
1091 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1092 AR9287_AN_RF2G3_DB1, AR9287_AN_RF2G3_DB1_S,
1093 pModal->db1);
1094 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1, AR9287_AN_RF2G3_DB2,
1095 AR9287_AN_RF2G3_DB2_S, pModal->db2);
1096 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1097 AR9287_AN_RF2G3_OB_CCK,
1098 AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
1099 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1100 AR9287_AN_RF2G3_OB_PSK,
1101 AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
1102 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1103 AR9287_AN_RF2G3_OB_QAM,
1104 AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
1105 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
1106 AR9287_AN_RF2G3_OB_PAL_OFF,
1107 AR9287_AN_RF2G3_OB_PAL_OFF_S,
1108 pModal->ob_pal_off);
1110 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1111 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1112 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1113 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1115 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1116 AR9287_AN_TOP2_XPABIAS_LVL,
1117 AR9287_AN_TOP2_XPABIAS_LVL_S,
1118 pModal->xpaBiasLvl);
1121 static u8 ath9k_hw_AR9287_get_num_ant_config(struct ath_hw *ah,
1122 enum ieee80211_band freq_band)
1124 return 1;
1127 static u16 ath9k_hw_AR9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
1128 struct ath9k_channel *chan)
1130 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
1131 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
1133 return pModal->antCtrlCommon & 0xFFFF;
1136 static u16 ath9k_hw_AR9287_get_spur_channel(struct ath_hw *ah,
1137 u16 i, bool is2GHz)
1139 #define EEP_MAP9287_SPURCHAN \
1140 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1141 u16 spur_val = AR_NO_SPUR;
1143 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1144 "Getting spur idx %d is2Ghz. %d val %x\n",
1145 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1147 switch (ah->config.spurmode) {
1148 case SPUR_DISABLE:
1149 break;
1150 case SPUR_ENABLE_IOCTL:
1151 spur_val = ah->config.spurchans[i][is2GHz];
1152 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1153 "Getting spur val from new loc. %d\n", spur_val);
1154 break;
1155 case SPUR_ENABLE_EEPROM:
1156 spur_val = EEP_MAP9287_SPURCHAN;
1157 break;
1160 return spur_val;
1162 #undef EEP_MAP9287_SPURCHAN
1165 const struct eeprom_ops eep_AR9287_ops = {
1166 .check_eeprom = ath9k_hw_AR9287_check_eeprom,
1167 .get_eeprom = ath9k_hw_AR9287_get_eeprom,
1168 .fill_eeprom = ath9k_hw_AR9287_fill_eeprom,
1169 .get_eeprom_ver = ath9k_hw_AR9287_get_eeprom_ver,
1170 .get_eeprom_rev = ath9k_hw_AR9287_get_eeprom_rev,
1171 .get_num_ant_config = ath9k_hw_AR9287_get_num_ant_config,
1172 .get_eeprom_antenna_cfg = ath9k_hw_AR9287_get_eeprom_antenna_cfg,
1173 .set_board_values = ath9k_hw_AR9287_set_board_values,
1174 .set_addac = ath9k_hw_AR9287_set_addac,
1175 .set_txpower = ath9k_hw_AR9287_set_txpower,
1176 .get_spur_channel = ath9k_hw_AR9287_get_spur_channel