debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blobae7fb5dcb266f8b9cf2b9c3fc4cbb4fe01d0e5f8
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "ath9k.h"
19 static void ath9k_get_txgain_index(struct ath_hw *ah,
20 struct ath9k_channel *chan,
21 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
22 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
24 u8 pcdac, i = 0;
25 u16 idxL = 0, idxR = 0, numPiers;
26 bool match;
27 struct chan_centers centers;
29 ath9k_hw_get_channel_centers(ah, chan, &centers);
31 for (numPiers = 0; numPiers < availPiers; numPiers++)
32 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
33 break;
35 match = ath9k_hw_get_lower_upper_index(
36 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
37 calChans, numPiers, &idxL, &idxR);
38 if (match) {
39 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
40 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
41 } else {
42 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
43 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
44 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 while (pcdac > ah->originalGain[i] &&
48 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
49 i++;
51 *pcdacIdx = i;
52 return;
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
60 u32 i;
61 u32 offset;
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 u16 *eep_data = (u16 *)&ah->eeprom.def;
93 int addr, ar5416_eep_start_loc = 0x100;
95 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
96 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
97 eep_data)) {
98 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
99 "Unable to read eeprom region\n");
100 return false;
102 eep_data++;
104 return true;
105 #undef SIZE_EEPROM_DEF
108 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
110 struct ar5416_eeprom_def *eep =
111 (struct ar5416_eeprom_def *) &ah->eeprom.def;
112 u16 *eepdata, temp, magic, magic2;
113 u32 sum = 0, el;
114 bool need_swap = false;
115 int i, addr, size;
117 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
118 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Reading Magic # failed\n");
119 return false;
122 if (!ath9k_hw_use_flash(ah)) {
123 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
124 "Read Magic = 0x%04X\n", magic);
126 if (magic != AR5416_EEPROM_MAGIC) {
127 magic2 = swab16(magic);
129 if (magic2 == AR5416_EEPROM_MAGIC) {
130 size = sizeof(struct ar5416_eeprom_def);
131 need_swap = true;
132 eepdata = (u16 *) (&ah->eeprom);
134 for (addr = 0; addr < size / sizeof(u16); addr++) {
135 temp = swab16(*eepdata);
136 *eepdata = temp;
137 eepdata++;
139 } else {
140 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
141 "Invalid EEPROM Magic. "
142 "Endianness mismatch.\n");
143 return -EINVAL;
148 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
149 need_swap ? "True" : "False");
151 if (need_swap)
152 el = swab16(ah->eeprom.def.baseEepHeader.length);
153 else
154 el = ah->eeprom.def.baseEepHeader.length;
156 if (el > sizeof(struct ar5416_eeprom_def))
157 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
158 else
159 el = el / sizeof(u16);
161 eepdata = (u16 *)(&ah->eeprom);
163 for (i = 0; i < el; i++)
164 sum ^= *eepdata++;
166 if (need_swap) {
167 u32 integer, j;
168 u16 word;
170 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
171 "EEPROM Endianness is not native.. Changing.\n");
173 word = swab16(eep->baseEepHeader.length);
174 eep->baseEepHeader.length = word;
176 word = swab16(eep->baseEepHeader.checksum);
177 eep->baseEepHeader.checksum = word;
179 word = swab16(eep->baseEepHeader.version);
180 eep->baseEepHeader.version = word;
182 word = swab16(eep->baseEepHeader.regDmn[0]);
183 eep->baseEepHeader.regDmn[0] = word;
185 word = swab16(eep->baseEepHeader.regDmn[1]);
186 eep->baseEepHeader.regDmn[1] = word;
188 word = swab16(eep->baseEepHeader.rfSilent);
189 eep->baseEepHeader.rfSilent = word;
191 word = swab16(eep->baseEepHeader.blueToothOptions);
192 eep->baseEepHeader.blueToothOptions = word;
194 word = swab16(eep->baseEepHeader.deviceCap);
195 eep->baseEepHeader.deviceCap = word;
197 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
198 struct modal_eep_header *pModal =
199 &eep->modalHeader[j];
200 integer = swab32(pModal->antCtrlCommon);
201 pModal->antCtrlCommon = integer;
203 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
204 integer = swab32(pModal->antCtrlChain[i]);
205 pModal->antCtrlChain[i] = integer;
208 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
209 word = swab16(pModal->spurChans[i].spurChan);
210 pModal->spurChans[i].spurChan = word;
215 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
216 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
217 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
218 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
219 sum, ah->eep_ops->get_eeprom_ver(ah));
220 return -EINVAL;
223 return 0;
226 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
227 enum eeprom_param param)
229 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
230 struct modal_eep_header *pModal = eep->modalHeader;
231 struct base_eep_header *pBase = &eep->baseEepHeader;
233 switch (param) {
234 case EEP_NFTHRESH_5:
235 return pModal[0].noiseFloorThreshCh[0];
236 case EEP_NFTHRESH_2:
237 return pModal[1].noiseFloorThreshCh[0];
238 case AR_EEPROM_MAC(0):
239 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
240 case AR_EEPROM_MAC(1):
241 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
242 case AR_EEPROM_MAC(2):
243 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
244 case EEP_REG_0:
245 return pBase->regDmn[0];
246 case EEP_REG_1:
247 return pBase->regDmn[1];
248 case EEP_OP_CAP:
249 return pBase->deviceCap;
250 case EEP_OP_MODE:
251 return pBase->opCapFlags;
252 case EEP_RF_SILENT:
253 return pBase->rfSilent;
254 case EEP_OB_5:
255 return pModal[0].ob;
256 case EEP_DB_5:
257 return pModal[0].db;
258 case EEP_OB_2:
259 return pModal[1].ob;
260 case EEP_DB_2:
261 return pModal[1].db;
262 case EEP_MINOR_REV:
263 return AR5416_VER_MASK;
264 case EEP_TX_MASK:
265 return pBase->txMask;
266 case EEP_RX_MASK:
267 return pBase->rxMask;
268 case EEP_RXGAIN_TYPE:
269 return pBase->rxGainType;
270 case EEP_TXGAIN_TYPE:
271 return pBase->txGainType;
272 case EEP_OL_PWRCTRL:
273 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
274 return pBase->openLoopPwrCntl ? true : false;
275 else
276 return false;
277 case EEP_RC_CHAIN_MASK:
278 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
279 return pBase->rcChainMask;
280 else
281 return 0;
282 case EEP_DAC_HPWR_5G:
283 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
284 return pBase->dacHiPwrMode_5G;
285 else
286 return 0;
287 case EEP_FRAC_N_5G:
288 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
289 return pBase->frac_n_5g;
290 else
291 return 0;
292 default:
293 return 0;
297 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
298 struct modal_eep_header *pModal,
299 struct ar5416_eeprom_def *eep,
300 u8 txRxAttenLocal, int regChainOffset, int i)
302 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
303 txRxAttenLocal = pModal->txRxAttenCh[i];
305 if (AR_SREV_9280_10_OR_LATER(ah)) {
306 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
307 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
308 pModal->bswMargin[i]);
309 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
310 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
311 pModal->bswAtten[i]);
312 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
313 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
314 pModal->xatten2Margin[i]);
315 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
316 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
317 pModal->xatten2Db[i]);
318 } else {
319 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
320 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
321 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
322 | SM(pModal-> bswMargin[i],
323 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
324 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
325 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
326 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
327 | SM(pModal->bswAtten[i],
328 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
332 if (AR_SREV_9280_10_OR_LATER(ah)) {
333 REG_RMW_FIELD(ah,
334 AR_PHY_RXGAIN + regChainOffset,
335 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
336 REG_RMW_FIELD(ah,
337 AR_PHY_RXGAIN + regChainOffset,
338 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
339 } else {
340 REG_WRITE(ah,
341 AR_PHY_RXGAIN + regChainOffset,
342 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
343 ~AR_PHY_RXGAIN_TXRX_ATTEN)
344 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
345 REG_WRITE(ah,
346 AR_PHY_GAIN_2GHZ + regChainOffset,
347 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
348 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
349 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
353 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
354 struct ath9k_channel *chan)
356 struct modal_eep_header *pModal;
357 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
358 int i, regChainOffset;
359 u8 txRxAttenLocal;
361 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
362 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
364 REG_WRITE(ah, AR_PHY_SWITCH_COM,
365 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
367 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
368 if (AR_SREV_9280(ah)) {
369 if (i >= 2)
370 break;
373 if (AR_SREV_5416_20_OR_LATER(ah) &&
374 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
375 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
376 else
377 regChainOffset = i * 0x1000;
379 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
380 pModal->antCtrlChain[i]);
382 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
383 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
384 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
385 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
386 SM(pModal->iqCalICh[i],
387 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
388 SM(pModal->iqCalQCh[i],
389 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
391 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
392 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
393 regChainOffset, i);
396 if (AR_SREV_9280_10_OR_LATER(ah)) {
397 if (IS_CHAN_2GHZ(chan)) {
398 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
399 AR_AN_RF2G1_CH0_OB,
400 AR_AN_RF2G1_CH0_OB_S,
401 pModal->ob);
402 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
403 AR_AN_RF2G1_CH0_DB,
404 AR_AN_RF2G1_CH0_DB_S,
405 pModal->db);
406 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
407 AR_AN_RF2G1_CH1_OB,
408 AR_AN_RF2G1_CH1_OB_S,
409 pModal->ob_ch1);
410 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
411 AR_AN_RF2G1_CH1_DB,
412 AR_AN_RF2G1_CH1_DB_S,
413 pModal->db_ch1);
414 } else {
415 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
416 AR_AN_RF5G1_CH0_OB5,
417 AR_AN_RF5G1_CH0_OB5_S,
418 pModal->ob);
419 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
420 AR_AN_RF5G1_CH0_DB5,
421 AR_AN_RF5G1_CH0_DB5_S,
422 pModal->db);
423 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
424 AR_AN_RF5G1_CH1_OB5,
425 AR_AN_RF5G1_CH1_OB5_S,
426 pModal->ob_ch1);
427 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
428 AR_AN_RF5G1_CH1_DB5,
429 AR_AN_RF5G1_CH1_DB5_S,
430 pModal->db_ch1);
432 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
433 AR_AN_TOP2_XPABIAS_LVL,
434 AR_AN_TOP2_XPABIAS_LVL_S,
435 pModal->xpaBiasLvl);
436 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
437 AR_AN_TOP2_LOCALBIAS,
438 AR_AN_TOP2_LOCALBIAS_S,
439 pModal->local_bias);
440 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
441 pModal->force_xpaon);
444 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
445 pModal->switchSettling);
446 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
447 pModal->adcDesiredSize);
449 if (!AR_SREV_9280_10_OR_LATER(ah))
450 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
451 AR_PHY_DESIRED_SZ_PGA,
452 pModal->pgaDesiredSize);
454 REG_WRITE(ah, AR_PHY_RF_CTL4,
455 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
456 | SM(pModal->txEndToXpaOff,
457 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
458 | SM(pModal->txFrameToXpaOn,
459 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
460 | SM(pModal->txFrameToXpaOn,
461 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
463 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
464 pModal->txEndToRxOn);
466 if (AR_SREV_9280_10_OR_LATER(ah)) {
467 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
468 pModal->thresh62);
469 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
470 AR_PHY_EXT_CCA0_THRESH62,
471 pModal->thresh62);
472 } else {
473 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
474 pModal->thresh62);
475 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
476 AR_PHY_EXT_CCA_THRESH62,
477 pModal->thresh62);
480 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
481 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
482 AR_PHY_TX_END_DATA_START,
483 pModal->txFrameToDataStart);
484 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
485 pModal->txFrameToPaOn);
488 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
489 if (IS_CHAN_HT40(chan))
490 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
491 AR_PHY_SETTLING_SWITCH,
492 pModal->swSettleHt40);
495 if (AR_SREV_9280_20_OR_LATER(ah) &&
496 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
497 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
498 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
499 pModal->miscBits);
502 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
503 if (IS_CHAN_2GHZ(chan))
504 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
505 eep->baseEepHeader.dacLpMode);
506 else if (eep->baseEepHeader.dacHiPwrMode_5G)
507 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
508 else
509 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
510 eep->baseEepHeader.dacLpMode);
512 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
513 pModal->miscBits >> 2);
515 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
516 AR_PHY_TX_DESIRED_SCALE_CCK,
517 eep->baseEepHeader.desiredScaleCCK);
521 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
522 struct ath9k_channel *chan)
524 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
525 struct modal_eep_header *pModal;
526 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
527 u8 biaslevel;
529 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
530 return;
532 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
533 return;
535 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
537 if (pModal->xpaBiasLvl != 0xff) {
538 biaslevel = pModal->xpaBiasLvl;
539 } else {
540 u16 resetFreqBin, freqBin, freqCount = 0;
541 struct chan_centers centers;
543 ath9k_hw_get_channel_centers(ah, chan, &centers);
545 resetFreqBin = FREQ2FBIN(centers.synth_center,
546 IS_CHAN_2GHZ(chan));
547 freqBin = XPA_LVL_FREQ(0) & 0xff;
548 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
550 freqCount++;
552 while (freqCount < 3) {
553 if (XPA_LVL_FREQ(freqCount) == 0x0)
554 break;
556 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
557 if (resetFreqBin >= freqBin)
558 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
559 else
560 break;
561 freqCount++;
565 if (IS_CHAN_2GHZ(chan)) {
566 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
567 7, 1) & (~0x18)) | biaslevel << 3;
568 } else {
569 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
570 6, 1) & (~0xc0)) | biaslevel << 6;
572 #undef XPA_LVL_FREQ
575 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
576 struct ath9k_channel *chan,
577 struct cal_data_per_freq *pRawDataSet,
578 u8 *bChans, u16 availPiers,
579 u16 tPdGainOverlap, int16_t *pMinCalPower,
580 u16 *pPdGainBoundaries, u8 *pPDADCValues,
581 u16 numXpdGains)
583 int i, j, k;
584 int16_t ss;
585 u16 idxL = 0, idxR = 0, numPiers;
586 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
587 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
588 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
589 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
590 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
591 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
593 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
594 u8 minPwrT4[AR5416_NUM_PD_GAINS];
595 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
596 int16_t vpdStep;
597 int16_t tmpVal;
598 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
599 bool match;
600 int16_t minDelta = 0;
601 struct chan_centers centers;
603 ath9k_hw_get_channel_centers(ah, chan, &centers);
605 for (numPiers = 0; numPiers < availPiers; numPiers++) {
606 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
607 break;
610 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
611 IS_CHAN_2GHZ(chan)),
612 bChans, numPiers, &idxL, &idxR);
614 if (match) {
615 for (i = 0; i < numXpdGains; i++) {
616 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
617 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
618 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
619 pRawDataSet[idxL].pwrPdg[i],
620 pRawDataSet[idxL].vpdPdg[i],
621 AR5416_PD_GAIN_ICEPTS,
622 vpdTableI[i]);
624 } else {
625 for (i = 0; i < numXpdGains; i++) {
626 pVpdL = pRawDataSet[idxL].vpdPdg[i];
627 pPwrL = pRawDataSet[idxL].pwrPdg[i];
628 pVpdR = pRawDataSet[idxR].vpdPdg[i];
629 pPwrR = pRawDataSet[idxR].pwrPdg[i];
631 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
633 maxPwrT4[i] =
634 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
635 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
638 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
639 pPwrL, pVpdL,
640 AR5416_PD_GAIN_ICEPTS,
641 vpdTableL[i]);
642 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
643 pPwrR, pVpdR,
644 AR5416_PD_GAIN_ICEPTS,
645 vpdTableR[i]);
647 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
648 vpdTableI[i][j] =
649 (u8)(ath9k_hw_interpolate((u16)
650 FREQ2FBIN(centers.
651 synth_center,
652 IS_CHAN_2GHZ
653 (chan)),
654 bChans[idxL], bChans[idxR],
655 vpdTableL[i][j], vpdTableR[i][j]));
660 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
662 k = 0;
664 for (i = 0; i < numXpdGains; i++) {
665 if (i == (numXpdGains - 1))
666 pPdGainBoundaries[i] =
667 (u16)(maxPwrT4[i] / 2);
668 else
669 pPdGainBoundaries[i] =
670 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
672 pPdGainBoundaries[i] =
673 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
675 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
676 minDelta = pPdGainBoundaries[0] - 23;
677 pPdGainBoundaries[0] = 23;
678 } else {
679 minDelta = 0;
682 if (i == 0) {
683 if (AR_SREV_9280_10_OR_LATER(ah))
684 ss = (int16_t)(0 - (minPwrT4[i] / 2));
685 else
686 ss = 0;
687 } else {
688 ss = (int16_t)((pPdGainBoundaries[i - 1] -
689 (minPwrT4[i] / 2)) -
690 tPdGainOverlap + 1 + minDelta);
692 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
693 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
695 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
696 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
697 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
698 ss++;
701 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
702 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
703 (minPwrT4[i] / 2));
704 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
705 tgtIndex : sizeCurrVpdTable;
707 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
708 pPDADCValues[k++] = vpdTableI[i][ss++];
711 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
712 vpdTableI[i][sizeCurrVpdTable - 2]);
713 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
715 if (tgtIndex > maxIndex) {
716 while ((ss <= tgtIndex) &&
717 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
718 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
719 (ss - maxIndex + 1) * vpdStep));
720 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
721 255 : tmpVal);
722 ss++;
727 while (i < AR5416_PD_GAINS_IN_MASK) {
728 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
729 i++;
732 while (k < AR5416_NUM_PDADC_VALUES) {
733 pPDADCValues[k] = pPDADCValues[k - 1];
734 k++;
737 return;
740 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
741 struct ath9k_channel *chan,
742 int16_t *pTxPowerIndexOffset)
744 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
745 #define SM_PDGAIN_B(x, y) \
746 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
748 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
749 struct cal_data_per_freq *pRawDataset;
750 u8 *pCalBChans = NULL;
751 u16 pdGainOverlap_t2;
752 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
753 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
754 u16 numPiers, i, j;
755 int16_t tMinCalPower;
756 u16 numXpdGain, xpdMask;
757 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
758 u32 reg32, regOffset, regChainOffset;
759 int16_t modalIdx;
761 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
762 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
764 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
765 AR5416_EEP_MINOR_VER_2) {
766 pdGainOverlap_t2 =
767 pEepData->modalHeader[modalIdx].pdGainOverlap;
768 } else {
769 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
770 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
773 if (IS_CHAN_2GHZ(chan)) {
774 pCalBChans = pEepData->calFreqPier2G;
775 numPiers = AR5416_NUM_2G_CAL_PIERS;
776 } else {
777 pCalBChans = pEepData->calFreqPier5G;
778 numPiers = AR5416_NUM_5G_CAL_PIERS;
781 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
782 pRawDataset = pEepData->calPierData2G[0];
783 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
784 pRawDataset)->vpdPdg[0][0];
787 numXpdGain = 0;
789 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
790 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
791 if (numXpdGain >= AR5416_NUM_PD_GAINS)
792 break;
793 xpdGainValues[numXpdGain] =
794 (u16)(AR5416_PD_GAINS_IN_MASK - i);
795 numXpdGain++;
799 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
800 (numXpdGain - 1) & 0x3);
801 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
802 xpdGainValues[0]);
803 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
804 xpdGainValues[1]);
805 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
806 xpdGainValues[2]);
808 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
809 if (AR_SREV_5416_20_OR_LATER(ah) &&
810 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
811 (i != 0)) {
812 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
813 } else
814 regChainOffset = i * 0x1000;
816 if (pEepData->baseEepHeader.txMask & (1 << i)) {
817 if (IS_CHAN_2GHZ(chan))
818 pRawDataset = pEepData->calPierData2G[i];
819 else
820 pRawDataset = pEepData->calPierData5G[i];
823 if (OLC_FOR_AR9280_20_LATER) {
824 u8 pcdacIdx;
825 u8 txPower;
827 ath9k_get_txgain_index(ah, chan,
828 (struct calDataPerFreqOpLoop *)pRawDataset,
829 pCalBChans, numPiers, &txPower, &pcdacIdx);
830 ath9k_olc_get_pdadcs(ah, pcdacIdx,
831 txPower/2, pdadcValues);
832 } else {
833 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
834 chan, pRawDataset,
835 pCalBChans, numPiers,
836 pdGainOverlap_t2,
837 &tMinCalPower,
838 gainBoundaries,
839 pdadcValues,
840 numXpdGain);
843 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
844 if (OLC_FOR_AR9280_20_LATER) {
845 REG_WRITE(ah,
846 AR_PHY_TPCRG5 + regChainOffset,
847 SM(0x6,
848 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
849 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
850 SM_PD_GAIN(3) | SM_PD_GAIN(4));
851 } else {
852 REG_WRITE(ah,
853 AR_PHY_TPCRG5 + regChainOffset,
854 SM(pdGainOverlap_t2,
855 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
856 SM_PDGAIN_B(0, 1) |
857 SM_PDGAIN_B(1, 2) |
858 SM_PDGAIN_B(2, 3) |
859 SM_PDGAIN_B(3, 4));
863 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
864 for (j = 0; j < 32; j++) {
865 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
866 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
867 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
868 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
869 REG_WRITE(ah, regOffset, reg32);
871 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
872 "PDADC (%d,%4x): %4.4x %8.8x\n",
873 i, regChainOffset, regOffset,
874 reg32);
875 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
876 "PDADC: Chain %d | PDADC %3d "
877 "Value %3d | PDADC %3d Value %3d | "
878 "PDADC %3d Value %3d | PDADC %3d "
879 "Value %3d |\n",
880 i, 4 * j, pdadcValues[4 * j],
881 4 * j + 1, pdadcValues[4 * j + 1],
882 4 * j + 2, pdadcValues[4 * j + 2],
883 4 * j + 3,
884 pdadcValues[4 * j + 3]);
886 regOffset += 4;
891 *pTxPowerIndexOffset = 0;
892 #undef SM_PD_GAIN
893 #undef SM_PDGAIN_B
896 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
897 struct ath9k_channel *chan,
898 int16_t *ratesArray,
899 u16 cfgCtl,
900 u16 AntennaReduction,
901 u16 twiceMaxRegulatoryPower,
902 u16 powerLimit)
904 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
905 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
907 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
908 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
909 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
910 static const u16 tpScaleReductionTable[5] =
911 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
913 int i;
914 int16_t twiceLargestAntenna;
915 struct cal_ctl_data *rep;
916 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
917 0, { 0, 0, 0, 0}
919 struct cal_target_power_leg targetPowerOfdmExt = {
920 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
921 0, { 0, 0, 0, 0 }
923 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
924 0, {0, 0, 0, 0}
926 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
927 u16 ctlModesFor11a[] =
928 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
929 u16 ctlModesFor11g[] =
930 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
931 CTL_2GHT40
933 u16 numCtlModes, *pCtlMode, ctlMode, freq;
934 struct chan_centers centers;
935 int tx_chainmask;
936 u16 twiceMinEdgePower;
938 tx_chainmask = ah->txchainmask;
940 ath9k_hw_get_channel_centers(ah, chan, &centers);
942 twiceLargestAntenna = max(
943 pEepData->modalHeader
944 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
945 pEepData->modalHeader
946 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
948 twiceLargestAntenna = max((u8)twiceLargestAntenna,
949 pEepData->modalHeader
950 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
952 twiceLargestAntenna = (int16_t)min(AntennaReduction -
953 twiceLargestAntenna, 0);
955 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
957 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
958 maxRegAllowedPower -=
959 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
962 scaledPower = min(powerLimit, maxRegAllowedPower);
964 switch (ar5416_get_ntxchains(tx_chainmask)) {
965 case 1:
966 break;
967 case 2:
968 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
969 break;
970 case 3:
971 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
972 break;
975 scaledPower = max((u16)0, scaledPower);
977 if (IS_CHAN_2GHZ(chan)) {
978 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
979 SUB_NUM_CTL_MODES_AT_2G_40;
980 pCtlMode = ctlModesFor11g;
982 ath9k_hw_get_legacy_target_powers(ah, chan,
983 pEepData->calTargetPowerCck,
984 AR5416_NUM_2G_CCK_TARGET_POWERS,
985 &targetPowerCck, 4, false);
986 ath9k_hw_get_legacy_target_powers(ah, chan,
987 pEepData->calTargetPower2G,
988 AR5416_NUM_2G_20_TARGET_POWERS,
989 &targetPowerOfdm, 4, false);
990 ath9k_hw_get_target_powers(ah, chan,
991 pEepData->calTargetPower2GHT20,
992 AR5416_NUM_2G_20_TARGET_POWERS,
993 &targetPowerHt20, 8, false);
995 if (IS_CHAN_HT40(chan)) {
996 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
997 ath9k_hw_get_target_powers(ah, chan,
998 pEepData->calTargetPower2GHT40,
999 AR5416_NUM_2G_40_TARGET_POWERS,
1000 &targetPowerHt40, 8, true);
1001 ath9k_hw_get_legacy_target_powers(ah, chan,
1002 pEepData->calTargetPowerCck,
1003 AR5416_NUM_2G_CCK_TARGET_POWERS,
1004 &targetPowerCckExt, 4, true);
1005 ath9k_hw_get_legacy_target_powers(ah, chan,
1006 pEepData->calTargetPower2G,
1007 AR5416_NUM_2G_20_TARGET_POWERS,
1008 &targetPowerOfdmExt, 4, true);
1010 } else {
1011 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1012 SUB_NUM_CTL_MODES_AT_5G_40;
1013 pCtlMode = ctlModesFor11a;
1015 ath9k_hw_get_legacy_target_powers(ah, chan,
1016 pEepData->calTargetPower5G,
1017 AR5416_NUM_5G_20_TARGET_POWERS,
1018 &targetPowerOfdm, 4, false);
1019 ath9k_hw_get_target_powers(ah, chan,
1020 pEepData->calTargetPower5GHT20,
1021 AR5416_NUM_5G_20_TARGET_POWERS,
1022 &targetPowerHt20, 8, false);
1024 if (IS_CHAN_HT40(chan)) {
1025 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1026 ath9k_hw_get_target_powers(ah, chan,
1027 pEepData->calTargetPower5GHT40,
1028 AR5416_NUM_5G_40_TARGET_POWERS,
1029 &targetPowerHt40, 8, true);
1030 ath9k_hw_get_legacy_target_powers(ah, chan,
1031 pEepData->calTargetPower5G,
1032 AR5416_NUM_5G_20_TARGET_POWERS,
1033 &targetPowerOfdmExt, 4, true);
1037 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1038 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1039 (pCtlMode[ctlMode] == CTL_2GHT40);
1040 if (isHt40CtlMode)
1041 freq = centers.synth_center;
1042 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1043 freq = centers.ext_center;
1044 else
1045 freq = centers.ctl_center;
1047 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1048 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1049 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1051 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1052 if ((((cfgCtl & ~CTL_MODE_M) |
1053 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1054 pEepData->ctlIndex[i]) ||
1055 (((cfgCtl & ~CTL_MODE_M) |
1056 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1057 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1058 rep = &(pEepData->ctlData[i]);
1060 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1061 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1062 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1064 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1065 twiceMaxEdgePower = min(twiceMaxEdgePower,
1066 twiceMinEdgePower);
1067 } else {
1068 twiceMaxEdgePower = twiceMinEdgePower;
1069 break;
1074 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1076 switch (pCtlMode[ctlMode]) {
1077 case CTL_11B:
1078 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1079 targetPowerCck.tPow2x[i] =
1080 min((u16)targetPowerCck.tPow2x[i],
1081 minCtlPower);
1083 break;
1084 case CTL_11A:
1085 case CTL_11G:
1086 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1087 targetPowerOfdm.tPow2x[i] =
1088 min((u16)targetPowerOfdm.tPow2x[i],
1089 minCtlPower);
1091 break;
1092 case CTL_5GHT20:
1093 case CTL_2GHT20:
1094 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1095 targetPowerHt20.tPow2x[i] =
1096 min((u16)targetPowerHt20.tPow2x[i],
1097 minCtlPower);
1099 break;
1100 case CTL_11B_EXT:
1101 targetPowerCckExt.tPow2x[0] = min((u16)
1102 targetPowerCckExt.tPow2x[0],
1103 minCtlPower);
1104 break;
1105 case CTL_11A_EXT:
1106 case CTL_11G_EXT:
1107 targetPowerOfdmExt.tPow2x[0] = min((u16)
1108 targetPowerOfdmExt.tPow2x[0],
1109 minCtlPower);
1110 break;
1111 case CTL_5GHT40:
1112 case CTL_2GHT40:
1113 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1114 targetPowerHt40.tPow2x[i] =
1115 min((u16)targetPowerHt40.tPow2x[i],
1116 minCtlPower);
1118 break;
1119 default:
1120 break;
1124 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1125 ratesArray[rate18mb] = ratesArray[rate24mb] =
1126 targetPowerOfdm.tPow2x[0];
1127 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1128 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1129 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1130 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1132 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1133 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1135 if (IS_CHAN_2GHZ(chan)) {
1136 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1137 ratesArray[rate2s] = ratesArray[rate2l] =
1138 targetPowerCck.tPow2x[1];
1139 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1140 targetPowerCck.tPow2x[2];
1141 ratesArray[rate11s] = ratesArray[rate11l] =
1142 targetPowerCck.tPow2x[3];
1144 if (IS_CHAN_HT40(chan)) {
1145 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1146 ratesArray[rateHt40_0 + i] =
1147 targetPowerHt40.tPow2x[i];
1149 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1150 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1151 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1152 if (IS_CHAN_2GHZ(chan)) {
1153 ratesArray[rateExtCck] =
1154 targetPowerCckExt.tPow2x[0];
1159 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1160 struct ath9k_channel *chan,
1161 u16 cfgCtl,
1162 u8 twiceAntennaReduction,
1163 u8 twiceMaxRegulatoryPower,
1164 u8 powerLimit)
1166 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1167 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1168 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1169 struct modal_eep_header *pModal =
1170 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1171 int16_t ratesArray[Ar5416RateSize];
1172 int16_t txPowerIndexOffset = 0;
1173 u8 ht40PowerIncForPdadc = 2;
1174 int i, cck_ofdm_delta = 0;
1176 memset(ratesArray, 0, sizeof(ratesArray));
1178 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1179 AR5416_EEP_MINOR_VER_2) {
1180 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1183 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1184 &ratesArray[0], cfgCtl,
1185 twiceAntennaReduction,
1186 twiceMaxRegulatoryPower,
1187 powerLimit);
1189 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1191 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1192 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1193 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1194 ratesArray[i] = AR5416_MAX_RATE_POWER;
1197 if (AR_SREV_9280_10_OR_LATER(ah)) {
1198 for (i = 0; i < Ar5416RateSize; i++)
1199 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1202 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1203 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1204 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1205 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1206 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1207 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1208 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1209 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1210 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1211 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1213 if (IS_CHAN_2GHZ(chan)) {
1214 if (OLC_FOR_AR9280_20_LATER) {
1215 cck_ofdm_delta = 2;
1216 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1217 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1218 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1219 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1220 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1221 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1222 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1223 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1224 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1225 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1226 } else {
1227 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1228 ATH9K_POW_SM(ratesArray[rate2s], 24)
1229 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1230 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1231 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1232 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1233 ATH9K_POW_SM(ratesArray[rate11s], 24)
1234 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1235 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1236 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1240 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1241 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1242 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1243 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1244 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1245 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1246 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1247 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1248 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1249 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1251 if (IS_CHAN_HT40(chan)) {
1252 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1253 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1254 ht40PowerIncForPdadc, 24)
1255 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1256 ht40PowerIncForPdadc, 16)
1257 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1258 ht40PowerIncForPdadc, 8)
1259 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1260 ht40PowerIncForPdadc, 0));
1261 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1262 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1263 ht40PowerIncForPdadc, 24)
1264 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1265 ht40PowerIncForPdadc, 16)
1266 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1267 ht40PowerIncForPdadc, 8)
1268 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1269 ht40PowerIncForPdadc, 0));
1270 if (OLC_FOR_AR9280_20_LATER) {
1271 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1272 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1273 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1274 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1275 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1276 } else {
1277 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1278 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1279 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1280 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1281 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1285 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1286 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1287 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1289 i = rate6mb;
1291 if (IS_CHAN_HT40(chan))
1292 i = rateHt40_0;
1293 else if (IS_CHAN_HT20(chan))
1294 i = rateHt20_0;
1296 if (AR_SREV_9280_10_OR_LATER(ah))
1297 regulatory->max_power_level =
1298 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1299 else
1300 regulatory->max_power_level = ratesArray[i];
1302 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1303 case 1:
1304 break;
1305 case 2:
1306 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1307 break;
1308 case 3:
1309 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1310 break;
1311 default:
1312 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1313 "Invalid chainmask configuration\n");
1314 break;
1318 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1319 enum ieee80211_band freq_band)
1321 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1322 struct modal_eep_header *pModal =
1323 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1324 struct base_eep_header *pBase = &eep->baseEepHeader;
1325 u8 num_ant_config;
1327 num_ant_config = 1;
1329 if (pBase->version >= 0x0E0D)
1330 if (pModal->useAnt1)
1331 num_ant_config += 1;
1333 return num_ant_config;
1336 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1337 struct ath9k_channel *chan)
1339 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1340 struct modal_eep_header *pModal =
1341 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1343 return pModal->antCtrlCommon & 0xFFFF;
1346 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1348 #define EEP_DEF_SPURCHAN \
1349 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1351 u16 spur_val = AR_NO_SPUR;
1353 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1354 "Getting spur idx %d is2Ghz. %d val %x\n",
1355 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1357 switch (ah->config.spurmode) {
1358 case SPUR_DISABLE:
1359 break;
1360 case SPUR_ENABLE_IOCTL:
1361 spur_val = ah->config.spurchans[i][is2GHz];
1362 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1363 "Getting spur val from new loc. %d\n", spur_val);
1364 break;
1365 case SPUR_ENABLE_EEPROM:
1366 spur_val = EEP_DEF_SPURCHAN;
1367 break;
1370 return spur_val;
1372 #undef EEP_DEF_SPURCHAN
1375 const struct eeprom_ops eep_def_ops = {
1376 .check_eeprom = ath9k_hw_def_check_eeprom,
1377 .get_eeprom = ath9k_hw_def_get_eeprom,
1378 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1379 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1380 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1381 .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
1382 .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
1383 .set_board_values = ath9k_hw_def_set_board_values,
1384 .set_addac = ath9k_hw_def_set_addac,
1385 .set_txpower = ath9k_hw_def_set_txpower,
1386 .get_spur_channel = ath9k_hw_def_get_spur_channel