2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
19 #include <linux/pci.h>
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
29 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
30 enum ath9k_ht_macmode macmode
);
31 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
32 struct ar5416_eeprom_def
*pEepData
,
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
35 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
37 /********************/
38 /* Helper Functions */
39 /********************/
41 static u32
ath9k_hw_mac_usec(struct ath_hw
*ah
, u32 clks
)
43 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
45 if (!ah
->curchan
) /* should really check for CCK instead */
46 return clks
/ ATH9K_CLOCK_RATE_CCK
;
47 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
48 return clks
/ ATH9K_CLOCK_RATE_2GHZ_OFDM
;
50 return clks
/ ATH9K_CLOCK_RATE_5GHZ_OFDM
;
53 static u32
ath9k_hw_mac_to_usec(struct ath_hw
*ah
, u32 clks
)
55 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
57 if (conf_is_ht40(conf
))
58 return ath9k_hw_mac_usec(ah
, clks
) / 2;
60 return ath9k_hw_mac_usec(ah
, clks
);
63 static u32
ath9k_hw_mac_clks(struct ath_hw
*ah
, u32 usecs
)
65 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
67 if (!ah
->curchan
) /* should really check for CCK instead */
68 return usecs
*ATH9K_CLOCK_RATE_CCK
;
69 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
70 return usecs
*ATH9K_CLOCK_RATE_2GHZ_OFDM
;
71 return usecs
*ATH9K_CLOCK_RATE_5GHZ_OFDM
;
74 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
76 struct ieee80211_conf
*conf
= &ah
->ah_sc
->hw
->conf
;
78 if (conf_is_ht40(conf
))
79 return ath9k_hw_mac_clks(ah
, usecs
) * 2;
81 return ath9k_hw_mac_clks(ah
, usecs
);
85 * Read and write, they both share the same lock. We do this to serialize
86 * reads and writes on Atheros 802.11n PCI devices only. This is required
87 * as the FIFO on these devices can only accept sanely 2 requests. After
88 * that the device goes bananas. Serializing the reads/writes prevents this
92 void ath9k_iowrite32(struct ath_hw
*ah
, u32 reg_offset
, u32 val
)
94 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
96 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
97 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
98 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
100 iowrite32(val
, ah
->ah_sc
->mem
+ reg_offset
);
103 unsigned int ath9k_ioread32(struct ath_hw
*ah
, u32 reg_offset
)
106 if (ah
->config
.serialize_regmode
== SER_REG_MODE_ON
) {
108 spin_lock_irqsave(&ah
->ah_sc
->sc_serial_rw
, flags
);
109 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
110 spin_unlock_irqrestore(&ah
->ah_sc
->sc_serial_rw
, flags
);
112 val
= ioread32(ah
->ah_sc
->mem
+ reg_offset
);
116 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
120 BUG_ON(timeout
< AH_TIME_QUANTUM
);
122 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
123 if ((REG_READ(ah
, reg
) & mask
) == val
)
126 udelay(AH_TIME_QUANTUM
);
129 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
136 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
141 for (i
= 0, retval
= 0; i
< n
; i
++) {
142 retval
= (retval
<< 1) | (val
& 1);
148 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
152 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
154 if (flags
& CHANNEL_5GHZ
) {
155 *low
= pCap
->low_5ghz_chan
;
156 *high
= pCap
->high_5ghz_chan
;
159 if ((flags
& CHANNEL_2GHZ
)) {
160 *low
= pCap
->low_2ghz_chan
;
161 *high
= pCap
->high_2ghz_chan
;
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
168 const struct ath_rate_table
*rates
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
175 kbps
= rates
->info
[rateix
].ratekbps
;
180 switch (rates
->info
[rateix
].phy
) {
181 case WLAN_RC_PHY_CCK
:
182 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
183 if (shortPreamble
&& rates
->info
[rateix
].short_preamble
)
185 numBits
= frameLen
<< 3;
186 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
188 case WLAN_RC_PHY_OFDM
:
189 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
190 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
191 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
192 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
193 txTime
= OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
196 } else if (ah
->curchan
&&
197 IS_CHAN_HALF_RATE(ah
->curchan
)) {
198 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
199 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
200 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
201 txTime
= OFDM_SIFS_TIME_HALF
+
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
205 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
206 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
207 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
208 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
209 + (numSymbols
* OFDM_SYMBOL_TIME
);
213 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
214 "Unknown phy %u (rate ix %u)\n",
215 rates
->info
[rateix
].phy
, rateix
);
223 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
224 struct ath9k_channel
*chan
,
225 struct chan_centers
*centers
)
229 if (!IS_CHAN_HT40(chan
)) {
230 centers
->ctl_center
= centers
->ext_center
=
231 centers
->synth_center
= chan
->channel
;
235 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
236 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
237 centers
->synth_center
=
238 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
241 centers
->synth_center
=
242 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
246 centers
->ctl_center
=
247 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
248 centers
->ext_center
=
249 centers
->synth_center
+ (extoff
*
250 ((ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_20
) ?
251 HT40_CHANNEL_CENTER_SHIFT
: 15));
258 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
262 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
265 val
= REG_READ(ah
, AR_SREV
);
266 ah
->hw_version
.macVersion
=
267 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
269 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
271 if (!AR_SREV_9100(ah
))
272 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
274 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
276 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
277 ah
->is_pciexpress
= true;
281 static int ath9k_hw_get_radiorev(struct ath_hw
*ah
)
286 REG_WRITE(ah
, AR_PHY(0x36), 0x00007058);
288 for (i
= 0; i
< 8; i
++)
289 REG_WRITE(ah
, AR_PHY(0x20), 0x00010000);
290 val
= (REG_READ(ah
, AR_PHY(256)) >> 24) & 0xff;
291 val
= ((val
& 0xf0) >> 4) | ((val
& 0x0f) << 4);
293 return ath9k_hw_reverse_bits(val
, 8);
296 /************************************/
297 /* HW Attach, Detach, Init Routines */
298 /************************************/
300 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
302 if (AR_SREV_9100(ah
))
305 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
306 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
307 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
308 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
309 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
310 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
311 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
312 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
313 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
315 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
318 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
320 u32 regAddr
[2] = { AR_STA_ID0
, AR_PHY_BASE
+ (8 << 2) };
322 u32 patternData
[4] = { 0x55555555,
328 for (i
= 0; i
< 2; i
++) {
329 u32 addr
= regAddr
[i
];
332 regHold
[i
] = REG_READ(ah
, addr
);
333 for (j
= 0; j
< 0x100; j
++) {
334 wrData
= (j
<< 16) | j
;
335 REG_WRITE(ah
, addr
, wrData
);
336 rdData
= REG_READ(ah
, addr
);
337 if (rdData
!= wrData
) {
338 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
339 "address test failed "
340 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341 addr
, wrData
, rdData
);
345 for (j
= 0; j
< 4; j
++) {
346 wrData
= patternData
[j
];
347 REG_WRITE(ah
, addr
, wrData
);
348 rdData
= REG_READ(ah
, addr
);
349 if (wrData
!= rdData
) {
350 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
351 "address test failed "
352 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353 addr
, wrData
, rdData
);
357 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
364 static const char *ath9k_hw_devname(u16 devid
)
367 case AR5416_DEVID_PCI
:
368 return "Atheros 5416";
369 case AR5416_DEVID_PCIE
:
370 return "Atheros 5418";
371 case AR9160_DEVID_PCI
:
372 return "Atheros 9160";
373 case AR5416_AR9100_DEVID
:
374 return "Atheros 9100";
375 case AR9280_DEVID_PCI
:
376 case AR9280_DEVID_PCIE
:
377 return "Atheros 9280";
378 case AR9285_DEVID_PCIE
:
379 return "Atheros 9285";
380 case AR5416_DEVID_AR9287_PCI
:
381 case AR5416_DEVID_AR9287_PCIE
:
382 return "Atheros 9287";
388 static void ath9k_hw_init_config(struct ath_hw
*ah
)
392 ah
->config
.dma_beacon_response_time
= 2;
393 ah
->config
.sw_beacon_response_time
= 10;
394 ah
->config
.additional_swba_backoff
= 0;
395 ah
->config
.ack_6mb
= 0x0;
396 ah
->config
.cwm_ignore_extcca
= 0;
397 ah
->config
.pcie_powersave_enable
= 0;
398 ah
->config
.pcie_clock_req
= 0;
399 ah
->config
.pcie_waen
= 0;
400 ah
->config
.analog_shiftreg
= 1;
401 ah
->config
.ht_enable
= 1;
402 ah
->config
.ofdm_trig_low
= 200;
403 ah
->config
.ofdm_trig_high
= 500;
404 ah
->config
.cck_trig_high
= 200;
405 ah
->config
.cck_trig_low
= 100;
406 ah
->config
.enable_ani
= 1;
407 ah
->config
.diversity_control
= ATH9K_ANT_VARIABLE
;
408 ah
->config
.antenna_switch_swap
= 0;
410 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
411 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
412 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
415 ah
->config
.intr_mitigation
= true;
418 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 * This means we use it for all AR5416 devices, and the few
421 * minor PCI AR9280 devices out there.
423 * Serialization is required because these devices do not handle
424 * well the case of two concurrent reads/writes due to the latency
425 * involved. During one read/write another read/write can be issued
426 * on another CPU while the previous read/write may still be working
427 * on our hardware, if we hit this case the hardware poops in a loop.
428 * We prevent this by serializing reads and writes.
430 * This issue is not present on PCI-Express devices or pre-AR5416
431 * devices (legacy, 802.11abg).
433 if (num_possible_cpus() > 1)
434 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
437 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
439 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
441 regulatory
->country_code
= CTRY_DEFAULT
;
442 regulatory
->power_limit
= MAX_RATE_POWER
;
443 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
445 ah
->hw_version
.magic
= AR5416_MAGIC
;
446 ah
->hw_version
.subvendorid
= 0;
449 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
450 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
451 if (!AR_SREV_9100(ah
))
452 ah
->ah_flags
= AH_USE_EEPROM
;
455 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
;
456 ah
->beacon_interval
= 100;
457 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
458 ah
->slottime
= (u32
) -1;
459 ah
->acktimeout
= (u32
) -1;
460 ah
->ctstimeout
= (u32
) -1;
461 ah
->globaltxtimeout
= (u32
) -1;
463 ah
->gbeacon_rate
= 0;
465 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
468 static int ath9k_hw_rfattach(struct ath_hw
*ah
)
470 bool rfStatus
= false;
473 rfStatus
= ath9k_hw_init_rf(ah
, &ecode
);
475 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
476 "RF setup failed, status: %u\n", ecode
);
483 static int ath9k_hw_rf_claim(struct ath_hw
*ah
)
487 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
489 val
= ath9k_hw_get_radiorev(ah
);
490 switch (val
& AR_RADIO_SREV_MAJOR
) {
492 val
= AR_RAD5133_SREV_MAJOR
;
494 case AR_RAD5133_SREV_MAJOR
:
495 case AR_RAD5122_SREV_MAJOR
:
496 case AR_RAD2133_SREV_MAJOR
:
497 case AR_RAD2122_SREV_MAJOR
:
500 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
501 "Radio Chip Rev 0x%02X not supported\n",
502 val
& AR_RADIO_SREV_MAJOR
);
506 ah
->hw_version
.analog5GhzRev
= val
;
511 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
518 for (i
= 0; i
< 3; i
++) {
519 eeval
= ah
->eep_ops
->get_eeprom(ah
, AR_EEPROM_MAC(i
));
521 ah
->macaddr
[2 * i
] = eeval
>> 8;
522 ah
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
524 if (sum
== 0 || sum
== 0xffff * 3)
525 return -EADDRNOTAVAIL
;
530 static void ath9k_hw_init_rxgain_ini(struct ath_hw
*ah
)
534 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_17
) {
535 rxgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_RXGAIN_TYPE
);
537 if (rxgain_type
== AR5416_EEP_RXGAIN_13DB_BACKOFF
)
538 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
539 ar9280Modes_backoff_13db_rxgain_9280_2
,
540 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2
), 6);
541 else if (rxgain_type
== AR5416_EEP_RXGAIN_23DB_BACKOFF
)
542 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
543 ar9280Modes_backoff_23db_rxgain_9280_2
,
544 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2
), 6);
546 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
547 ar9280Modes_original_rxgain_9280_2
,
548 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
550 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
551 ar9280Modes_original_rxgain_9280_2
,
552 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
556 static void ath9k_hw_init_txgain_ini(struct ath_hw
*ah
)
560 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_19
) {
561 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
563 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
)
564 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
565 ar9280Modes_high_power_tx_gain_9280_2
,
566 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2
), 6);
568 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
569 ar9280Modes_original_tx_gain_9280_2
,
570 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
572 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
573 ar9280Modes_original_tx_gain_9280_2
,
574 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
578 static int ath9k_hw_post_init(struct ath_hw
*ah
)
582 if (!ath9k_hw_chip_test(ah
))
585 ecode
= ath9k_hw_rf_claim(ah
);
589 ecode
= ath9k_hw_eeprom_init(ah
);
593 DPRINTF(ah
->ah_sc
, ATH_DBG_CONFIG
, "Eeprom VER: %d, REV: %d\n",
594 ah
->eep_ops
->get_eeprom_ver(ah
), ah
->eep_ops
->get_eeprom_rev(ah
));
596 ecode
= ath9k_hw_rfattach(ah
);
600 if (!AR_SREV_9100(ah
)) {
601 ath9k_hw_ani_setup(ah
);
602 ath9k_hw_ani_init(ah
);
608 static bool ath9k_hw_devid_supported(u16 devid
)
611 case AR5416_DEVID_PCI
:
612 case AR5416_DEVID_PCIE
:
613 case AR5416_AR9100_DEVID
:
614 case AR9160_DEVID_PCI
:
615 case AR9280_DEVID_PCI
:
616 case AR9280_DEVID_PCIE
:
617 case AR9285_DEVID_PCIE
:
618 case AR5416_DEVID_AR9287_PCI
:
619 case AR5416_DEVID_AR9287_PCIE
:
627 static bool ath9k_hw_macversion_supported(u32 macversion
)
629 switch (macversion
) {
630 case AR_SREV_VERSION_5416_PCI
:
631 case AR_SREV_VERSION_5416_PCIE
:
632 case AR_SREV_VERSION_9160
:
633 case AR_SREV_VERSION_9100
:
634 case AR_SREV_VERSION_9280
:
635 case AR_SREV_VERSION_9285
:
636 case AR_SREV_VERSION_9287
:
639 case AR_SREV_VERSION_9271
:
646 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
648 if (AR_SREV_9160_10_OR_LATER(ah
)) {
649 if (AR_SREV_9280_10_OR_LATER(ah
)) {
650 ah
->iq_caldata
.calData
= &iq_cal_single_sample
;
651 ah
->adcgain_caldata
.calData
=
652 &adc_gain_cal_single_sample
;
653 ah
->adcdc_caldata
.calData
=
654 &adc_dc_cal_single_sample
;
655 ah
->adcdc_calinitdata
.calData
=
658 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
659 ah
->adcgain_caldata
.calData
=
660 &adc_gain_cal_multi_sample
;
661 ah
->adcdc_caldata
.calData
=
662 &adc_dc_cal_multi_sample
;
663 ah
->adcdc_calinitdata
.calData
=
666 ah
->supp_cals
= ADC_GAIN_CAL
| ADC_DC_CAL
| IQ_MISMATCH_CAL
;
670 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
672 if (AR_SREV_9271(ah
)) {
673 INIT_INI_ARRAY(&ah
->iniModes
, ar9271Modes_9271_1_0
,
674 ARRAY_SIZE(ar9271Modes_9271_1_0
), 6);
675 INIT_INI_ARRAY(&ah
->iniCommon
, ar9271Common_9271_1_0
,
676 ARRAY_SIZE(ar9271Common_9271_1_0
), 2);
680 if (AR_SREV_9287_11_OR_LATER(ah
)) {
681 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_1
,
682 ARRAY_SIZE(ar9287Modes_9287_1_1
), 6);
683 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_1
,
684 ARRAY_SIZE(ar9287Common_9287_1_1
), 2);
685 if (ah
->config
.pcie_clock_req
)
686 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
687 ar9287PciePhy_clkreq_off_L1_9287_1_1
,
688 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1
), 2);
690 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
691 ar9287PciePhy_clkreq_always_on_L1_9287_1_1
,
692 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1
),
694 } else if (AR_SREV_9287_10_OR_LATER(ah
)) {
695 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_0
,
696 ARRAY_SIZE(ar9287Modes_9287_1_0
), 6);
697 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_0
,
698 ARRAY_SIZE(ar9287Common_9287_1_0
), 2);
700 if (ah
->config
.pcie_clock_req
)
701 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
702 ar9287PciePhy_clkreq_off_L1_9287_1_0
,
703 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0
), 2);
705 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
706 ar9287PciePhy_clkreq_always_on_L1_9287_1_0
,
707 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0
),
709 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
712 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285_1_2
,
713 ARRAY_SIZE(ar9285Modes_9285_1_2
), 6);
714 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285_1_2
,
715 ARRAY_SIZE(ar9285Common_9285_1_2
), 2);
717 if (ah
->config
.pcie_clock_req
) {
718 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
719 ar9285PciePhy_clkreq_off_L1_9285_1_2
,
720 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2
), 2);
722 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
723 ar9285PciePhy_clkreq_always_on_L1_9285_1_2
,
724 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2
),
727 } else if (AR_SREV_9285_10_OR_LATER(ah
)) {
728 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285
,
729 ARRAY_SIZE(ar9285Modes_9285
), 6);
730 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285
,
731 ARRAY_SIZE(ar9285Common_9285
), 2);
733 if (ah
->config
.pcie_clock_req
) {
734 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
735 ar9285PciePhy_clkreq_off_L1_9285
,
736 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285
), 2);
738 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
739 ar9285PciePhy_clkreq_always_on_L1_9285
,
740 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285
), 2);
742 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
743 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280_2
,
744 ARRAY_SIZE(ar9280Modes_9280_2
), 6);
745 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280_2
,
746 ARRAY_SIZE(ar9280Common_9280_2
), 2);
748 if (ah
->config
.pcie_clock_req
) {
749 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
750 ar9280PciePhy_clkreq_off_L1_9280
,
751 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280
),2);
753 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
754 ar9280PciePhy_clkreq_always_on_L1_9280
,
755 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280
), 2);
757 INIT_INI_ARRAY(&ah
->iniModesAdditional
,
758 ar9280Modes_fast_clock_9280_2
,
759 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2
), 3);
760 } else if (AR_SREV_9280_10_OR_LATER(ah
)) {
761 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280
,
762 ARRAY_SIZE(ar9280Modes_9280
), 6);
763 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280
,
764 ARRAY_SIZE(ar9280Common_9280
), 2);
765 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
766 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9160
,
767 ARRAY_SIZE(ar5416Modes_9160
), 6);
768 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9160
,
769 ARRAY_SIZE(ar5416Common_9160
), 2);
770 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9160
,
771 ARRAY_SIZE(ar5416Bank0_9160
), 2);
772 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9160
,
773 ARRAY_SIZE(ar5416BB_RfGain_9160
), 3);
774 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9160
,
775 ARRAY_SIZE(ar5416Bank1_9160
), 2);
776 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9160
,
777 ARRAY_SIZE(ar5416Bank2_9160
), 2);
778 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9160
,
779 ARRAY_SIZE(ar5416Bank3_9160
), 3);
780 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9160
,
781 ARRAY_SIZE(ar5416Bank6_9160
), 3);
782 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9160
,
783 ARRAY_SIZE(ar5416Bank6TPC_9160
), 3);
784 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9160
,
785 ARRAY_SIZE(ar5416Bank7_9160
), 2);
786 if (AR_SREV_9160_11(ah
)) {
787 INIT_INI_ARRAY(&ah
->iniAddac
,
789 ARRAY_SIZE(ar5416Addac_91601_1
), 2);
791 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9160
,
792 ARRAY_SIZE(ar5416Addac_9160
), 2);
794 } else if (AR_SREV_9100_OR_LATER(ah
)) {
795 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9100
,
796 ARRAY_SIZE(ar5416Modes_9100
), 6);
797 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9100
,
798 ARRAY_SIZE(ar5416Common_9100
), 2);
799 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9100
,
800 ARRAY_SIZE(ar5416Bank0_9100
), 2);
801 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9100
,
802 ARRAY_SIZE(ar5416BB_RfGain_9100
), 3);
803 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9100
,
804 ARRAY_SIZE(ar5416Bank1_9100
), 2);
805 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9100
,
806 ARRAY_SIZE(ar5416Bank2_9100
), 2);
807 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9100
,
808 ARRAY_SIZE(ar5416Bank3_9100
), 3);
809 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9100
,
810 ARRAY_SIZE(ar5416Bank6_9100
), 3);
811 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9100
,
812 ARRAY_SIZE(ar5416Bank6TPC_9100
), 3);
813 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9100
,
814 ARRAY_SIZE(ar5416Bank7_9100
), 2);
815 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9100
,
816 ARRAY_SIZE(ar5416Addac_9100
), 2);
818 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes
,
819 ARRAY_SIZE(ar5416Modes
), 6);
820 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common
,
821 ARRAY_SIZE(ar5416Common
), 2);
822 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0
,
823 ARRAY_SIZE(ar5416Bank0
), 2);
824 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain
,
825 ARRAY_SIZE(ar5416BB_RfGain
), 3);
826 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1
,
827 ARRAY_SIZE(ar5416Bank1
), 2);
828 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2
,
829 ARRAY_SIZE(ar5416Bank2
), 2);
830 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3
,
831 ARRAY_SIZE(ar5416Bank3
), 3);
832 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6
,
833 ARRAY_SIZE(ar5416Bank6
), 3);
834 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC
,
835 ARRAY_SIZE(ar5416Bank6TPC
), 3);
836 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7
,
837 ARRAY_SIZE(ar5416Bank7
), 2);
838 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac
,
839 ARRAY_SIZE(ar5416Addac
), 2);
843 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
845 if (AR_SREV_9287_11(ah
))
846 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
847 ar9287Modes_rx_gain_9287_1_1
,
848 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1
), 6);
849 else if (AR_SREV_9287_10(ah
))
850 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
851 ar9287Modes_rx_gain_9287_1_0
,
852 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0
), 6);
853 else if (AR_SREV_9280_20(ah
))
854 ath9k_hw_init_rxgain_ini(ah
);
856 if (AR_SREV_9287_11(ah
)) {
857 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
858 ar9287Modes_tx_gain_9287_1_1
,
859 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1
), 6);
860 } else if (AR_SREV_9287_10(ah
)) {
861 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
862 ar9287Modes_tx_gain_9287_1_0
,
863 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0
), 6);
864 } else if (AR_SREV_9280_20(ah
)) {
865 ath9k_hw_init_txgain_ini(ah
);
866 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
867 u32 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
870 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
) {
871 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
872 ar9285Modes_high_power_tx_gain_9285_1_2
,
873 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2
), 6);
875 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
876 ar9285Modes_original_tx_gain_9285_1_2
,
877 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2
), 6);
883 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw
*ah
)
887 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
888 test_bit(ATH9K_MODE_11A
, ah
->caps
.wireless_modes
)) {
891 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
892 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
894 for (j
= 1; j
< ah
->iniModes
.ia_columns
; j
++) {
895 u32 val
= INI_RA(&ah
->iniModes
, i
, j
);
897 INI_RA(&ah
->iniModes
, i
, j
) =
898 ath9k_hw_ini_fixup(ah
,
906 int ath9k_hw_init(struct ath_hw
*ah
)
910 if (!ath9k_hw_devid_supported(ah
->hw_version
.devid
))
913 ath9k_hw_init_defaults(ah
);
914 ath9k_hw_init_config(ah
);
916 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
917 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't reset chip\n");
921 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
922 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Couldn't wakeup chip\n");
926 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
927 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
928 (AR_SREV_9280(ah
) && !ah
->is_pciexpress
)) {
929 ah
->config
.serialize_regmode
=
932 ah
->config
.serialize_regmode
=
937 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
938 ah
->config
.serialize_regmode
);
940 if (!ath9k_hw_macversion_supported(ah
->hw_version
.macVersion
)) {
941 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
942 "Mac Chip Rev 0x%02x.%x is not supported by "
943 "this driver\n", ah
->hw_version
.macVersion
,
944 ah
->hw_version
.macRev
);
948 if (AR_SREV_9100(ah
)) {
949 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
950 ah
->supp_cals
= IQ_MISMATCH_CAL
;
951 ah
->is_pciexpress
= false;
954 if (AR_SREV_9271(ah
))
955 ah
->is_pciexpress
= false;
957 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
959 ath9k_hw_init_cal_settings(ah
);
961 ah
->ani_function
= ATH9K_ANI_ALL
;
962 if (AR_SREV_9280_10_OR_LATER(ah
))
963 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
965 ath9k_hw_init_mode_regs(ah
);
967 if (ah
->is_pciexpress
)
968 ath9k_hw_configpcipowersave(ah
, 0);
970 ath9k_hw_disablepcie(ah
);
972 r
= ath9k_hw_post_init(ah
);
976 ath9k_hw_init_mode_gain_regs(ah
);
977 ath9k_hw_fill_cap_info(ah
);
978 ath9k_hw_init_11a_eeprom_fix(ah
);
980 r
= ath9k_hw_init_macaddr(ah
);
982 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
983 "Failed to initialize MAC address\n");
987 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
988 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
990 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
992 ath9k_init_nfcal_hist_buffer(ah
);
997 static void ath9k_hw_init_bb(struct ath_hw
*ah
,
998 struct ath9k_channel
*chan
)
1002 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1003 if (IS_CHAN_B(chan
))
1004 synthDelay
= (4 * synthDelay
) / 22;
1008 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
1010 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1013 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
1015 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
1016 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
1018 REG_WRITE(ah
, AR_QOS_NO_ACK
,
1019 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
1020 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
1021 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
1023 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
1024 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
1025 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
1026 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
1027 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
1030 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
1031 struct ath9k_channel
*chan
)
1035 if (AR_SREV_9100(ah
)) {
1036 if (chan
&& IS_CHAN_5GHZ(chan
))
1041 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1042 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1044 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1045 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1046 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1047 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1049 if (chan
&& IS_CHAN_5GHZ(chan
)) {
1050 pll
|= SM(0x28, AR_RTC_9160_PLL_DIV
);
1053 if (AR_SREV_9280_20(ah
)) {
1054 if (((chan
->channel
% 20) == 0)
1055 || ((chan
->channel
% 10) == 0))
1061 pll
|= SM(0x2c, AR_RTC_9160_PLL_DIV
);
1064 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1066 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1068 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1069 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1070 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1071 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1073 if (chan
&& IS_CHAN_5GHZ(chan
))
1074 pll
|= SM(0x50, AR_RTC_9160_PLL_DIV
);
1076 pll
|= SM(0x58, AR_RTC_9160_PLL_DIV
);
1078 pll
= AR_RTC_PLL_REFDIV_5
| AR_RTC_PLL_DIV2
;
1080 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1081 pll
|= SM(0x1, AR_RTC_PLL_CLKSEL
);
1082 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1083 pll
|= SM(0x2, AR_RTC_PLL_CLKSEL
);
1085 if (chan
&& IS_CHAN_5GHZ(chan
))
1086 pll
|= SM(0xa, AR_RTC_PLL_DIV
);
1088 pll
|= SM(0xb, AR_RTC_PLL_DIV
);
1091 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
1093 udelay(RTC_PLL_SETTLE_DELAY
);
1095 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
1098 static void ath9k_hw_init_chain_masks(struct ath_hw
*ah
)
1100 int rx_chainmask
, tx_chainmask
;
1102 rx_chainmask
= ah
->rxchainmask
;
1103 tx_chainmask
= ah
->txchainmask
;
1105 switch (rx_chainmask
) {
1107 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1108 AR_PHY_SWAP_ALT_CHAIN
);
1110 if (((ah
)->hw_version
.macVersion
<= AR_SREV_VERSION_9160
)) {
1111 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, 0x7);
1112 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, 0x7);
1118 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
1119 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
1125 REG_WRITE(ah
, AR_SELFGEN_MASK
, tx_chainmask
);
1126 if (tx_chainmask
== 0x5) {
1127 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1128 AR_PHY_SWAP_ALT_CHAIN
);
1130 if (AR_SREV_9100(ah
))
1131 REG_WRITE(ah
, AR_PHY_ANALOG_SWAP
,
1132 REG_READ(ah
, AR_PHY_ANALOG_SWAP
) | 0x00000001);
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
1136 enum nl80211_iftype opmode
)
1138 ah
->mask_reg
= AR_IMR_TXERR
|
1144 if (ah
->config
.intr_mitigation
)
1145 ah
->mask_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
1147 ah
->mask_reg
|= AR_IMR_RXOK
;
1149 ah
->mask_reg
|= AR_IMR_TXOK
;
1151 if (opmode
== NL80211_IFTYPE_AP
)
1152 ah
->mask_reg
|= AR_IMR_MIB
;
1154 REG_WRITE(ah
, AR_IMR
, ah
->mask_reg
);
1155 REG_WRITE(ah
, AR_IMR_S2
, REG_READ(ah
, AR_IMR_S2
) | AR_IMR_S2_GTT
);
1157 if (!AR_SREV_9100(ah
)) {
1158 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
1159 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
1160 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
1164 static bool ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1166 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_ACK
))) {
1167 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad ack timeout %u\n", us
);
1168 ah
->acktimeout
= (u32
) -1;
1171 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1172 AR_TIME_OUT_ACK
, ath9k_hw_mac_to_clks(ah
, us
));
1173 ah
->acktimeout
= us
;
1178 static bool ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1180 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_CTS
))) {
1181 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad cts timeout %u\n", us
);
1182 ah
->ctstimeout
= (u32
) -1;
1185 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1186 AR_TIME_OUT_CTS
, ath9k_hw_mac_to_clks(ah
, us
));
1187 ah
->ctstimeout
= us
;
1192 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1195 DPRINTF(ah
->ah_sc
, ATH_DBG_XMIT
,
1196 "bad global tx timeout %u\n", tu
);
1197 ah
->globaltxtimeout
= (u32
) -1;
1200 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1201 ah
->globaltxtimeout
= tu
;
1206 static void ath9k_hw_init_user_settings(struct ath_hw
*ah
)
1208 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
1211 if (ah
->misc_mode
!= 0)
1212 REG_WRITE(ah
, AR_PCU_MISC
,
1213 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
1214 if (ah
->slottime
!= (u32
) -1)
1215 ath9k_hw_setslottime(ah
, ah
->slottime
);
1216 if (ah
->acktimeout
!= (u32
) -1)
1217 ath9k_hw_set_ack_timeout(ah
, ah
->acktimeout
);
1218 if (ah
->ctstimeout
!= (u32
) -1)
1219 ath9k_hw_set_cts_timeout(ah
, ah
->ctstimeout
);
1220 if (ah
->globaltxtimeout
!= (u32
) -1)
1221 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1224 const char *ath9k_hw_probe(u16 vendorid
, u16 devid
)
1226 return vendorid
== ATHEROS_VENDOR_ID
?
1227 ath9k_hw_devname(devid
) : NULL
;
1230 void ath9k_hw_detach(struct ath_hw
*ah
)
1232 if (!AR_SREV_9100(ah
))
1233 ath9k_hw_ani_disable(ah
);
1235 ath9k_hw_rf_free(ah
);
1236 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1245 static void ath9k_hw_override_ini(struct ath_hw
*ah
,
1246 struct ath9k_channel
*chan
)
1250 if (AR_SREV_9271(ah
)) {
1252 * Enable spectral scan to solution for issues with stuck
1253 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1256 if (AR_SREV_9271_10(ah
)) {
1257 val
= REG_READ(ah
, AR_PHY_SPECTRAL_SCAN
) | AR_PHY_SPECTRAL_SCAN_ENABLE
;
1258 REG_WRITE(ah
, AR_PHY_SPECTRAL_SCAN
, val
);
1260 else if (AR_SREV_9271_11(ah
))
1262 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263 * present on AR9271 1.1
1265 REG_WRITE(ah
, AR_PHY_RF_CTL3
, 0x3a020001);
1270 * Set the RX_ABORT and RX_DIS and clear if off only after
1271 * RXE is set for MAC. This prevents frames with corrupted
1272 * descriptor status.
1274 REG_SET_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
1277 if (!AR_SREV_5416_20_OR_LATER(ah
) ||
1278 AR_SREV_9280_10_OR_LATER(ah
))
1281 * Disable BB clock gating
1282 * Necessary to avoid issues on AR5416 2.0
1284 REG_WRITE(ah
, 0x9800 + (651 << 2), 0x11);
1287 static u32
ath9k_hw_def_ini_fixup(struct ath_hw
*ah
,
1288 struct ar5416_eeprom_def
*pEepData
,
1291 struct base_eep_header
*pBase
= &(pEepData
->baseEepHeader
);
1293 switch (ah
->hw_version
.devid
) {
1294 case AR9280_DEVID_PCI
:
1295 if (reg
== 0x7894) {
1296 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1297 "ini VAL: %x EEPROM: %x\n", value
,
1298 (pBase
->version
& 0xff));
1300 if ((pBase
->version
& 0xff) > 0x0a) {
1301 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1304 value
&= ~AR_AN_TOP2_PWDCLKIND
;
1305 value
|= AR_AN_TOP2_PWDCLKIND
&
1306 (pBase
->pwdclkind
<< AR_AN_TOP2_PWDCLKIND_S
);
1308 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1309 "PWDCLKIND Earlier Rev\n");
1312 DPRINTF(ah
->ah_sc
, ATH_DBG_EEPROM
,
1313 "final ini VAL: %x\n", value
);
1321 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
1322 struct ar5416_eeprom_def
*pEepData
,
1325 if (ah
->eep_map
== EEP_MAP_4KBITS
)
1328 return ath9k_hw_def_ini_fixup(ah
, pEepData
, reg
, value
);
1331 static void ath9k_olc_init(struct ath_hw
*ah
)
1335 if (OLC_FOR_AR9287_10_LATER
) {
1336 REG_SET_BIT(ah
, AR_PHY_TX_PWRCTRL9
,
1337 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL
);
1338 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TXPC0
,
1339 AR9287_AN_TXPC0_TXPCMODE
,
1340 AR9287_AN_TXPC0_TXPCMODE_S
,
1341 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE
);
1344 for (i
= 0; i
< AR9280_TX_GAIN_TABLE_SIZE
; i
++)
1345 ah
->originalGain
[i
] =
1346 MS(REG_READ(ah
, AR_PHY_TX_GAIN_TBL1
+ i
* 4),
1352 static u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
,
1353 struct ath9k_channel
*chan
)
1355 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1357 if (IS_CHAN_B(chan
))
1359 else if (IS_CHAN_G(chan
))
1367 static int ath9k_hw_process_ini(struct ath_hw
*ah
,
1368 struct ath9k_channel
*chan
,
1369 enum ath9k_ht_macmode macmode
)
1371 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1372 int i
, regWrites
= 0;
1373 struct ieee80211_channel
*channel
= chan
->chan
;
1374 u32 modesIndex
, freqIndex
;
1376 switch (chan
->chanmode
) {
1378 case CHANNEL_A_HT20
:
1382 case CHANNEL_A_HT40PLUS
:
1383 case CHANNEL_A_HT40MINUS
:
1388 case CHANNEL_G_HT20
:
1393 case CHANNEL_G_HT40PLUS
:
1394 case CHANNEL_G_HT40MINUS
:
1403 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
1404 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_EXTERNAL_RADIO
);
1405 ah
->eep_ops
->set_addac(ah
, chan
);
1407 if (AR_SREV_5416_22_OR_LATER(ah
)) {
1408 REG_WRITE_ARRAY(&ah
->iniAddac
, 1, regWrites
);
1410 struct ar5416IniArray temp
;
1412 sizeof(u32
) * ah
->iniAddac
.ia_rows
*
1413 ah
->iniAddac
.ia_columns
;
1415 memcpy(ah
->addac5416_21
,
1416 ah
->iniAddac
.ia_array
, addacSize
);
1418 (ah
->addac5416_21
)[31 * ah
->iniAddac
.ia_columns
+ 1] = 0;
1420 temp
.ia_array
= ah
->addac5416_21
;
1421 temp
.ia_columns
= ah
->iniAddac
.ia_columns
;
1422 temp
.ia_rows
= ah
->iniAddac
.ia_rows
;
1423 REG_WRITE_ARRAY(&temp
, 1, regWrites
);
1426 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_INTERNAL_ADDAC
);
1428 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
1429 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
1430 u32 val
= INI_RA(&ah
->iniModes
, i
, modesIndex
);
1432 REG_WRITE(ah
, reg
, val
);
1434 if (reg
>= 0x7800 && reg
< 0x78a0
1435 && ah
->config
.analog_shiftreg
) {
1439 DO_DELAY(regWrites
);
1442 if (AR_SREV_9280(ah
) || AR_SREV_9287_10_OR_LATER(ah
))
1443 REG_WRITE_ARRAY(&ah
->iniModesRxGain
, modesIndex
, regWrites
);
1445 if (AR_SREV_9280(ah
) || AR_SREV_9285_12_OR_LATER(ah
) ||
1446 AR_SREV_9287_10_OR_LATER(ah
))
1447 REG_WRITE_ARRAY(&ah
->iniModesTxGain
, modesIndex
, regWrites
);
1449 for (i
= 0; i
< ah
->iniCommon
.ia_rows
; i
++) {
1450 u32 reg
= INI_RA(&ah
->iniCommon
, i
, 0);
1451 u32 val
= INI_RA(&ah
->iniCommon
, i
, 1);
1453 REG_WRITE(ah
, reg
, val
);
1455 if (reg
>= 0x7800 && reg
< 0x78a0
1456 && ah
->config
.analog_shiftreg
) {
1460 DO_DELAY(regWrites
);
1463 ath9k_hw_write_regs(ah
, modesIndex
, freqIndex
, regWrites
);
1465 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
)) {
1466 REG_WRITE_ARRAY(&ah
->iniModesAdditional
, modesIndex
,
1470 ath9k_hw_override_ini(ah
, chan
);
1471 ath9k_hw_set_regs(ah
, chan
, macmode
);
1472 ath9k_hw_init_chain_masks(ah
);
1474 if (OLC_FOR_AR9280_20_LATER
)
1477 ah
->eep_ops
->set_txpower(ah
, chan
,
1478 ath9k_regd_get_ctl(regulatory
, chan
),
1479 channel
->max_antenna_gain
* 2,
1480 channel
->max_power
* 2,
1481 min((u32
) MAX_RATE_POWER
,
1482 (u32
) regulatory
->power_limit
));
1484 if (!ath9k_hw_set_rf_regs(ah
, chan
, freqIndex
)) {
1485 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1486 "ar5416SetRfRegs failed\n");
1493 /****************************************/
1494 /* Reset and Channel Switching Routines */
1495 /****************************************/
1497 static void ath9k_hw_set_rfmode(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1504 rfMode
|= (IS_CHAN_B(chan
) || IS_CHAN_G(chan
))
1505 ? AR_PHY_MODE_DYNAMIC
: AR_PHY_MODE_OFDM
;
1507 if (!AR_SREV_9280_10_OR_LATER(ah
))
1508 rfMode
|= (IS_CHAN_5GHZ(chan
)) ?
1509 AR_PHY_MODE_RF5GHZ
: AR_PHY_MODE_RF2GHZ
;
1511 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
))
1512 rfMode
|= (AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE
);
1514 REG_WRITE(ah
, AR_PHY_MODE
, rfMode
);
1517 static void ath9k_hw_mark_phy_inactive(struct ath_hw
*ah
)
1519 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_DIS
);
1522 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1527 * set AHB_MODE not to do cacheline prefetches
1529 regval
= REG_READ(ah
, AR_AHB_MODE
);
1530 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
1533 * let mac dma reads be in 128 byte chunks
1535 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
1536 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
1539 * Restore TX Trigger Level to its pre-reset value.
1540 * The initial value depends on whether aggregation is enabled, and is
1541 * adjusted whenever underruns are detected.
1543 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1546 * let mac dma writes be in 128 byte chunks
1548 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
1549 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
1552 * Setup receive FIFO threshold to hold off TX activities
1554 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1557 * reduce the number of usable entries in PCU TXBUF to avoid
1558 * wrap around issues.
1560 if (AR_SREV_9285(ah
)) {
1561 /* For AR9285 the number of Fifos are reduced to half.
1562 * So set the usable tx buf size also to half to
1563 * avoid data/delimiter underruns
1565 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1566 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1567 } else if (!AR_SREV_9271(ah
)) {
1568 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1569 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1573 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1577 val
= REG_READ(ah
, AR_STA_ID1
);
1578 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
1580 case NL80211_IFTYPE_AP
:
1581 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
1582 | AR_STA_ID1_KSRCH_MODE
);
1583 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1585 case NL80211_IFTYPE_ADHOC
:
1586 case NL80211_IFTYPE_MESH_POINT
:
1587 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
1588 | AR_STA_ID1_KSRCH_MODE
);
1589 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1591 case NL80211_IFTYPE_STATION
:
1592 case NL80211_IFTYPE_MONITOR
:
1593 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
1598 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
,
1603 u32 coef_exp
, coef_man
;
1605 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1606 if ((coef_scaled
>> coef_exp
) & 0x1)
1609 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1611 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1613 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1614 *coef_exponent
= coef_exp
- 16;
1617 static void ath9k_hw_set_delta_slope(struct ath_hw
*ah
,
1618 struct ath9k_channel
*chan
)
1620 u32 coef_scaled
, ds_coef_exp
, ds_coef_man
;
1621 u32 clockMhzScaled
= 0x64000000;
1622 struct chan_centers centers
;
1624 if (IS_CHAN_HALF_RATE(chan
))
1625 clockMhzScaled
= clockMhzScaled
>> 1;
1626 else if (IS_CHAN_QUARTER_RATE(chan
))
1627 clockMhzScaled
= clockMhzScaled
>> 2;
1629 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1630 coef_scaled
= clockMhzScaled
/ centers
.synth_center
;
1632 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1635 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1636 AR_PHY_TIMING3_DSC_MAN
, ds_coef_man
);
1637 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1638 AR_PHY_TIMING3_DSC_EXP
, ds_coef_exp
);
1640 coef_scaled
= (9 * coef_scaled
) / 10;
1642 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1645 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1646 AR_PHY_HALFGI_DSC_MAN
, ds_coef_man
);
1647 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1648 AR_PHY_HALFGI_DSC_EXP
, ds_coef_exp
);
1651 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1656 if (AR_SREV_9100(ah
)) {
1657 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1658 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
1659 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
1660 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
1661 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1664 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1665 AR_RTC_FORCE_WAKE_ON_INT
);
1667 if (AR_SREV_9100(ah
)) {
1668 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1669 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1671 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1673 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1674 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1675 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1676 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1678 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1681 rst_flags
= AR_RTC_RC_MAC_WARM
;
1682 if (type
== ATH9K_RESET_COLD
)
1683 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1686 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1689 REG_WRITE(ah
, AR_RTC_RC
, 0);
1690 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1691 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
1692 "RTC stuck in MAC reset\n");
1696 if (!AR_SREV_9100(ah
))
1697 REG_WRITE(ah
, AR_RC
, 0);
1699 ath9k_hw_init_pll(ah
, NULL
);
1701 if (AR_SREV_9100(ah
))
1707 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1709 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1710 AR_RTC_FORCE_WAKE_ON_INT
);
1712 if (!AR_SREV_9100(ah
))
1713 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1715 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1718 if (!AR_SREV_9100(ah
))
1719 REG_WRITE(ah
, AR_RC
, 0);
1721 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1723 if (!ath9k_hw_wait(ah
,
1728 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "RTC not waking up\n");
1732 ath9k_hw_read_revisions(ah
);
1734 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1737 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1739 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1740 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1743 case ATH9K_RESET_POWER_ON
:
1744 return ath9k_hw_set_reset_power_on(ah
);
1745 case ATH9K_RESET_WARM
:
1746 case ATH9K_RESET_COLD
:
1747 return ath9k_hw_set_reset(ah
, type
);
1753 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1754 enum ath9k_ht_macmode macmode
)
1757 u32 enableDacFifo
= 0;
1759 if (AR_SREV_9285_10_OR_LATER(ah
))
1760 enableDacFifo
= (REG_READ(ah
, AR_PHY_TURBO
) &
1761 AR_PHY_FC_ENABLE_DAC_FIFO
);
1763 phymode
= AR_PHY_FC_HT_EN
| AR_PHY_FC_SHORT_GI_40
1764 | AR_PHY_FC_SINGLE_HT_LTF1
| AR_PHY_FC_WALSH
| enableDacFifo
;
1766 if (IS_CHAN_HT40(chan
)) {
1767 phymode
|= AR_PHY_FC_DYN2040_EN
;
1769 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
1770 (chan
->chanmode
== CHANNEL_G_HT40PLUS
))
1771 phymode
|= AR_PHY_FC_DYN2040_PRI_CH
;
1773 if (ah
->extprotspacing
== ATH9K_HT_EXTPROTSPACING_25
)
1774 phymode
|= AR_PHY_FC_DYN2040_EXT_CH
;
1776 REG_WRITE(ah
, AR_PHY_TURBO
, phymode
);
1778 ath9k_hw_set11nmac2040(ah
, macmode
);
1780 REG_WRITE(ah
, AR_GTXTO
, 25 << AR_GTXTO_TIMEOUT_LIMIT_S
);
1781 REG_WRITE(ah
, AR_CST
, 0xF << AR_CST_TIMEOUT_LIMIT_S
);
1784 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1785 struct ath9k_channel
*chan
)
1787 if (OLC_FOR_AR9280_20_LATER
) {
1788 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1790 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1793 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1796 ah
->chip_fullsleep
= false;
1797 ath9k_hw_init_pll(ah
, chan
);
1798 ath9k_hw_set_rfmode(ah
, chan
);
1803 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1804 struct ath9k_channel
*chan
,
1805 enum ath9k_ht_macmode macmode
)
1807 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1808 struct ieee80211_channel
*channel
= chan
->chan
;
1809 u32 synthDelay
, qnum
;
1811 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1812 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1813 DPRINTF(ah
->ah_sc
, ATH_DBG_QUEUE
,
1814 "Transmit frames pending on queue %d\n", qnum
);
1819 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, AR_PHY_RFBUS_REQ_EN
);
1820 if (!ath9k_hw_wait(ah
, AR_PHY_RFBUS_GRANT
, AR_PHY_RFBUS_GRANT_EN
,
1821 AR_PHY_RFBUS_GRANT_EN
, AH_WAIT_TIMEOUT
)) {
1822 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1823 "Could not kill baseband RX\n");
1827 ath9k_hw_set_regs(ah
, chan
, macmode
);
1829 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1830 ath9k_hw_ar9280_set_channel(ah
, chan
);
1832 if (!(ath9k_hw_set_channel(ah
, chan
))) {
1833 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
1834 "Failed to set channel\n");
1839 ah
->eep_ops
->set_txpower(ah
, chan
,
1840 ath9k_regd_get_ctl(regulatory
, chan
),
1841 channel
->max_antenna_gain
* 2,
1842 channel
->max_power
* 2,
1843 min((u32
) MAX_RATE_POWER
,
1844 (u32
) regulatory
->power_limit
));
1846 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1847 if (IS_CHAN_B(chan
))
1848 synthDelay
= (4 * synthDelay
) / 22;
1852 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1854 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, 0);
1856 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1857 ath9k_hw_set_delta_slope(ah
, chan
);
1859 if (AR_SREV_9280_10_OR_LATER(ah
))
1860 ath9k_hw_9280_spur_mitigate(ah
, chan
);
1862 ath9k_hw_spur_mitigate(ah
, chan
);
1864 if (!chan
->oneTimeCalsDone
)
1865 chan
->oneTimeCalsDone
= true;
1870 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1872 int bb_spur
= AR_NO_SPUR
;
1875 int bb_spur_off
, spur_subchannel_sd
;
1877 int spur_delta_phase
;
1879 int upper
, lower
, cur_vit_mask
;
1882 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
1883 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
1885 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
1886 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
1888 int inc
[4] = { 0, 100, 0, 0 };
1889 struct chan_centers centers
;
1896 bool is2GHz
= IS_CHAN_2GHZ(chan
);
1898 memset(&mask_m
, 0, sizeof(int8_t) * 123);
1899 memset(&mask_p
, 0, sizeof(int8_t) * 123);
1901 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1902 freq
= centers
.synth_center
;
1904 ah
->config
.spurmode
= SPUR_ENABLE_EEPROM
;
1905 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
1906 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
1909 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_2GHZ
;
1911 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_5GHZ
;
1913 if (AR_NO_SPUR
== cur_bb_spur
)
1915 cur_bb_spur
= cur_bb_spur
- freq
;
1917 if (IS_CHAN_HT40(chan
)) {
1918 if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT40
) &&
1919 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT40
)) {
1920 bb_spur
= cur_bb_spur
;
1923 } else if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT20
) &&
1924 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT20
)) {
1925 bb_spur
= cur_bb_spur
;
1930 if (AR_NO_SPUR
== bb_spur
) {
1931 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1932 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1935 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1936 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1939 bin
= bb_spur
* 320;
1941 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
1943 newVal
= tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
1944 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
1945 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
1946 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
1947 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), newVal
);
1949 newVal
= (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
1950 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
1951 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
1952 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
1953 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
1954 REG_WRITE(ah
, AR_PHY_SPUR_REG
, newVal
);
1956 if (IS_CHAN_HT40(chan
)) {
1958 spur_subchannel_sd
= 1;
1959 bb_spur_off
= bb_spur
+ 10;
1961 spur_subchannel_sd
= 0;
1962 bb_spur_off
= bb_spur
- 10;
1965 spur_subchannel_sd
= 0;
1966 bb_spur_off
= bb_spur
;
1969 if (IS_CHAN_HT40(chan
))
1971 ((bb_spur
* 262144) /
1972 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
1975 ((bb_spur
* 524288) /
1976 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
1978 denominator
= IS_CHAN_2GHZ(chan
) ? 44 : 40;
1979 spur_freq_sd
= ((bb_spur_off
* 2048) / denominator
) & 0x3ff;
1981 newVal
= (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
1982 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
1983 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
1984 REG_WRITE(ah
, AR_PHY_TIMING11
, newVal
);
1986 newVal
= spur_subchannel_sd
<< AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S
;
1987 REG_WRITE(ah
, AR_PHY_SFCORR_EXT
, newVal
);
1993 for (i
= 0; i
< 4; i
++) {
1997 for (bp
= 0; bp
< 30; bp
++) {
1998 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
1999 pilot_mask
= pilot_mask
| 0x1 << bp
;
2000 chan_mask
= chan_mask
| 0x1 << bp
;
2005 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2006 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2009 cur_vit_mask
= 6100;
2013 for (i
= 0; i
< 123; i
++) {
2014 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2016 /* workaround for gcc bug #37014 */
2017 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2023 if (cur_vit_mask
< 0)
2024 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2026 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2028 cur_vit_mask
-= 100;
2031 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2032 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2033 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2034 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2035 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2036 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2037 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2038 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2039 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2040 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2042 tmp_mask
= (mask_m
[31] << 28)
2043 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2044 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2045 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2046 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2047 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2048 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2049 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2050 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2051 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2053 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2054 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2055 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2056 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2057 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2058 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2059 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2060 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2061 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2062 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2064 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2065 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2066 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2067 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2068 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2069 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2070 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2071 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2072 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2073 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2075 tmp_mask
= (mask_p
[15] << 28)
2076 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2077 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2078 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2079 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2080 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2081 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2082 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2083 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2084 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2086 tmp_mask
= (mask_p
[30] << 28)
2087 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2088 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2089 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2090 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2091 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2092 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2093 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2094 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2095 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2097 tmp_mask
= (mask_p
[45] << 28)
2098 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2099 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2100 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2101 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2102 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2103 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2104 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2105 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2106 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2108 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2109 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2110 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2111 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2112 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2113 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2114 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2115 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2116 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2117 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2120 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2122 int bb_spur
= AR_NO_SPUR
;
2125 int spur_delta_phase
;
2127 int upper
, lower
, cur_vit_mask
;
2130 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
2131 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
2133 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
2134 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
2136 int inc
[4] = { 0, 100, 0, 0 };
2143 bool is2GHz
= IS_CHAN_2GHZ(chan
);
2145 memset(&mask_m
, 0, sizeof(int8_t) * 123);
2146 memset(&mask_p
, 0, sizeof(int8_t) * 123);
2148 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
2149 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
2150 if (AR_NO_SPUR
== cur_bb_spur
)
2152 cur_bb_spur
= cur_bb_spur
- (chan
->channel
* 10);
2153 if ((cur_bb_spur
> -95) && (cur_bb_spur
< 95)) {
2154 bb_spur
= cur_bb_spur
;
2159 if (AR_NO_SPUR
== bb_spur
)
2164 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
2165 new = tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
2166 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
2167 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
2168 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
2170 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), new);
2172 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
2173 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
2174 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
2175 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
2176 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
2177 REG_WRITE(ah
, AR_PHY_SPUR_REG
, new);
2179 spur_delta_phase
= ((bb_spur
* 524288) / 100) &
2180 AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2182 denominator
= IS_CHAN_2GHZ(chan
) ? 440 : 400;
2183 spur_freq_sd
= ((bb_spur
* 2048) / denominator
) & 0x3ff;
2185 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2186 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2187 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2188 REG_WRITE(ah
, AR_PHY_TIMING11
, new);
2194 for (i
= 0; i
< 4; i
++) {
2198 for (bp
= 0; bp
< 30; bp
++) {
2199 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2200 pilot_mask
= pilot_mask
| 0x1 << bp
;
2201 chan_mask
= chan_mask
| 0x1 << bp
;
2206 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2207 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2210 cur_vit_mask
= 6100;
2214 for (i
= 0; i
< 123; i
++) {
2215 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2217 /* workaround for gcc bug #37014 */
2218 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2224 if (cur_vit_mask
< 0)
2225 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2227 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2229 cur_vit_mask
-= 100;
2232 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2233 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2234 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2235 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2236 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2237 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2238 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2239 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2240 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2241 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2243 tmp_mask
= (mask_m
[31] << 28)
2244 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2245 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2246 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2247 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2248 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2249 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2250 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2251 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2252 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2254 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2255 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2256 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2257 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2258 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2259 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2260 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2261 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2262 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2263 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2265 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2266 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2267 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2268 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2269 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2270 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2271 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2272 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2273 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2274 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2276 tmp_mask
= (mask_p
[15] << 28)
2277 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2278 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2279 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2280 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2281 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2282 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2283 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2284 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2285 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2287 tmp_mask
= (mask_p
[30] << 28)
2288 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2289 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2290 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2291 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2292 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2293 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2294 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2295 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2296 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2298 tmp_mask
= (mask_p
[45] << 28)
2299 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2300 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2301 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2302 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2303 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2304 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2305 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2306 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2307 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2309 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2310 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2311 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2312 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2313 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2314 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2315 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2316 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2317 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2318 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2321 static void ath9k_enable_rfkill(struct ath_hw
*ah
)
2323 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
,
2324 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB
);
2326 REG_CLR_BIT(ah
, AR_GPIO_INPUT_MUX2
,
2327 AR_GPIO_INPUT_MUX2_RFSILENT
);
2329 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
2330 REG_SET_BIT(ah
, AR_PHY_TEST
, RFSILENT_BB
);
2333 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2334 bool bChannelChange
)
2337 struct ath_softc
*sc
= ah
->ah_sc
;
2338 struct ath9k_channel
*curchan
= ah
->curchan
;
2341 int i
, rx_chainmask
, r
;
2343 ah
->extprotspacing
= sc
->ht_extprotspacing
;
2344 ah
->txchainmask
= sc
->tx_chainmask
;
2345 ah
->rxchainmask
= sc
->rx_chainmask
;
2347 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2351 ath9k_hw_getnf(ah
, curchan
);
2353 if (bChannelChange
&&
2354 (ah
->chip_fullsleep
!= true) &&
2355 (ah
->curchan
!= NULL
) &&
2356 (chan
->channel
!= ah
->curchan
->channel
) &&
2357 ((chan
->channelFlags
& CHANNEL_ALL
) ==
2358 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
2359 (!AR_SREV_9280(ah
) || (!IS_CHAN_A_5MHZ_SPACED(chan
) &&
2360 !IS_CHAN_A_5MHZ_SPACED(ah
->curchan
)))) {
2362 if (ath9k_hw_channel_change(ah
, chan
, sc
->tx_chan_width
)) {
2363 ath9k_hw_loadnf(ah
, ah
->curchan
);
2364 ath9k_hw_start_nfcal(ah
);
2369 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
2370 if (saveDefAntenna
== 0)
2373 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
2375 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
2376 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
2377 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
2379 ath9k_hw_mark_phy_inactive(ah
);
2381 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2383 AR9271_RESET_POWER_DOWN_CONTROL
,
2384 AR9271_RADIO_RF_RST
);
2388 if (!ath9k_hw_chip_reset(ah
, chan
)) {
2389 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
, "Chip reset failed\n");
2393 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2394 ah
->htc_reset_init
= false;
2396 AR9271_RESET_POWER_DOWN_CONTROL
,
2397 AR9271_GATE_MAC_CTL
);
2401 if (AR_SREV_9280_10_OR_LATER(ah
))
2402 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
2404 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2405 /* Enable ASYNC FIFO */
2406 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2407 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL
);
2408 REG_SET_BIT(ah
, AR_PHY_MODE
, AR_PHY_MODE_ASYNCFIFO
);
2409 REG_CLR_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2410 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2411 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2412 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2414 r
= ath9k_hw_process_ini(ah
, chan
, sc
->tx_chan_width
);
2418 /* Setup MFP options for CCMP */
2419 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2420 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2421 * frames when constructing CCMP AAD. */
2422 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
2424 ah
->sw_mgmt_crypto
= false;
2425 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
2426 /* Disable hardware crypto for management frames */
2427 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
2428 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
2429 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2430 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
2431 ah
->sw_mgmt_crypto
= true;
2433 ah
->sw_mgmt_crypto
= true;
2435 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
2436 ath9k_hw_set_delta_slope(ah
, chan
);
2438 if (AR_SREV_9280_10_OR_LATER(ah
))
2439 ath9k_hw_9280_spur_mitigate(ah
, chan
);
2441 ath9k_hw_spur_mitigate(ah
, chan
);
2443 ah
->eep_ops
->set_board_values(ah
, chan
);
2445 ath9k_hw_decrease_chain_power(ah
, chan
);
2447 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(ah
->macaddr
));
2448 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(ah
->macaddr
+ 4)
2450 | AR_STA_ID1_RTS_USE_DEF
2452 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
2453 | ah
->sta_id1_defaults
);
2454 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2456 REG_WRITE(ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
2457 REG_WRITE(ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
2459 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
2461 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
2462 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
2463 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2465 REG_WRITE(ah
, AR_ISR
, ~0);
2467 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
2469 if (AR_SREV_9280_10_OR_LATER(ah
))
2470 ath9k_hw_ar9280_set_channel(ah
, chan
);
2472 if (!(ath9k_hw_set_channel(ah
, chan
)))
2475 for (i
= 0; i
< AR_NUM_DCU
; i
++)
2476 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
2479 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
2480 ath9k_hw_resettxqueue(ah
, i
);
2482 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
2483 ath9k_hw_init_qos(ah
);
2485 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2486 ath9k_enable_rfkill(ah
);
2488 ath9k_hw_init_user_settings(ah
);
2490 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2491 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
,
2492 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR
);
2493 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
,
2494 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR
);
2495 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
,
2496 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR
);
2498 REG_WRITE(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR
);
2499 REG_WRITE(ah
, AR_USEC
, AR_USEC_ASYNC_FIFO_DUR
);
2501 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2502 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2503 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2504 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2506 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2507 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2508 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2511 REG_WRITE(ah
, AR_STA_ID1
,
2512 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
2514 ath9k_hw_set_dma(ah
);
2516 REG_WRITE(ah
, AR_OBS
, 8);
2518 if (ah
->config
.intr_mitigation
) {
2519 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
2520 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
2523 ath9k_hw_init_bb(ah
, chan
);
2525 if (!ath9k_hw_init_cal(ah
, chan
))
2528 rx_chainmask
= ah
->rxchainmask
;
2529 if ((rx_chainmask
== 0x5) || (rx_chainmask
== 0x3)) {
2530 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
2531 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
2534 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2537 * For big endian systems turn on swapping for descriptors
2539 if (AR_SREV_9100(ah
)) {
2541 mask
= REG_READ(ah
, AR_CFG
);
2542 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
2543 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2544 "CFG Byte Swap Set 0x%x\n", mask
);
2547 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
2548 REG_WRITE(ah
, AR_CFG
, mask
);
2549 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
2550 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
2553 /* Configure AR9271 target WLAN */
2554 if (AR_SREV_9271(ah
))
2555 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
2558 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
2562 if (ah
->ah_sc
->sc_flags
& SC_OP_BTCOEX_ENABLED
)
2563 ath9k_hw_btcoex_enable(ah
);
2568 /************************/
2569 /* Key Cache Management */
2570 /************************/
2572 bool ath9k_hw_keyreset(struct ath_hw
*ah
, u16 entry
)
2576 if (entry
>= ah
->caps
.keycache_size
) {
2577 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2578 "keychache entry %u out of range\n", entry
);
2582 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
2584 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
2585 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
2586 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
2587 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
2588 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
2589 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
2590 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
2591 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
2593 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2594 u16 micentry
= entry
+ 64;
2596 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
2597 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2598 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
2599 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2606 bool ath9k_hw_keysetmac(struct ath_hw
*ah
, u16 entry
, const u8
*mac
)
2610 if (entry
>= ah
->caps
.keycache_size
) {
2611 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2612 "keychache entry %u out of range\n", entry
);
2617 macHi
= (mac
[5] << 8) | mac
[4];
2618 macLo
= (mac
[3] << 24) |
2623 macLo
|= (macHi
& 1) << 31;
2628 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
2629 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| AR_KEYTABLE_VALID
);
2634 bool ath9k_hw_set_keycache_entry(struct ath_hw
*ah
, u16 entry
,
2635 const struct ath9k_keyval
*k
,
2638 const struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2639 u32 key0
, key1
, key2
, key3
, key4
;
2642 if (entry
>= pCap
->keycache_size
) {
2643 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2644 "keycache entry %u out of range\n", entry
);
2648 switch (k
->kv_type
) {
2649 case ATH9K_CIPHER_AES_OCB
:
2650 keyType
= AR_KEYTABLE_TYPE_AES
;
2652 case ATH9K_CIPHER_AES_CCM
:
2653 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_CIPHER_AESCCM
)) {
2654 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2655 "AES-CCM not supported by mac rev 0x%x\n",
2656 ah
->hw_version
.macRev
);
2659 keyType
= AR_KEYTABLE_TYPE_CCM
;
2661 case ATH9K_CIPHER_TKIP
:
2662 keyType
= AR_KEYTABLE_TYPE_TKIP
;
2663 if (ATH9K_IS_MIC_ENABLED(ah
)
2664 && entry
+ 64 >= pCap
->keycache_size
) {
2665 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2666 "entry %u inappropriate for TKIP\n", entry
);
2670 case ATH9K_CIPHER_WEP
:
2671 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
2672 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
2673 "WEP key length %u too small\n", k
->kv_len
);
2676 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
2677 keyType
= AR_KEYTABLE_TYPE_40
;
2678 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2679 keyType
= AR_KEYTABLE_TYPE_104
;
2681 keyType
= AR_KEYTABLE_TYPE_128
;
2683 case ATH9K_CIPHER_CLR
:
2684 keyType
= AR_KEYTABLE_TYPE_CLR
;
2687 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2688 "cipher %u not supported\n", k
->kv_type
);
2692 key0
= get_unaligned_le32(k
->kv_val
+ 0);
2693 key1
= get_unaligned_le16(k
->kv_val
+ 4);
2694 key2
= get_unaligned_le32(k
->kv_val
+ 6);
2695 key3
= get_unaligned_le16(k
->kv_val
+ 10);
2696 key4
= get_unaligned_le32(k
->kv_val
+ 12);
2697 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2701 * Note: Key cache registers access special memory area that requires
2702 * two 32-bit writes to actually update the values in the internal
2703 * memory. Consequently, the exact order and pairs used here must be
2707 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2708 u16 micentry
= entry
+ 64;
2711 * Write inverted key[47:0] first to avoid Michael MIC errors
2712 * on frames that could be sent or received at the same time.
2713 * The correct key will be written in the end once everything
2716 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
2717 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
2719 /* Write key[95:48] */
2720 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2721 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2723 /* Write key[127:96] and key type */
2724 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2725 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2727 /* Write MAC address for the entry */
2728 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2730 if (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) {
2732 * TKIP uses two key cache entries:
2733 * Michael MIC TX/RX keys in the same key cache entry
2734 * (idx = main index + 64):
2735 * key0 [31:0] = RX key [31:0]
2736 * key1 [15:0] = TX key [31:16]
2737 * key1 [31:16] = reserved
2738 * key2 [31:0] = RX key [63:32]
2739 * key3 [15:0] = TX key [15:0]
2740 * key3 [31:16] = reserved
2741 * key4 [31:0] = TX key [63:32]
2743 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
2745 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2746 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2747 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
2748 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
2749 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
2751 /* Write RX[31:0] and TX[31:16] */
2752 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2753 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
2755 /* Write RX[63:32] and TX[15:0] */
2756 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2757 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
2759 /* Write TX[63:32] and keyType(reserved) */
2760 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
2761 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2762 AR_KEYTABLE_TYPE_CLR
);
2766 * TKIP uses four key cache entries (two for group
2768 * Michael MIC TX/RX keys are in different key cache
2769 * entries (idx = main index + 64 for TX and
2770 * main index + 32 + 96 for RX):
2771 * key0 [31:0] = TX/RX MIC key [31:0]
2772 * key1 [31:0] = reserved
2773 * key2 [31:0] = TX/RX MIC key [63:32]
2774 * key3 [31:0] = reserved
2775 * key4 [31:0] = reserved
2777 * Upper layer code will call this function separately
2778 * for TX and RX keys when these registers offsets are
2783 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2784 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2786 /* Write MIC key[31:0] */
2787 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2788 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2790 /* Write MIC key[63:32] */
2791 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2792 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2794 /* Write TX[63:32] and keyType(reserved) */
2795 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
2796 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2797 AR_KEYTABLE_TYPE_CLR
);
2800 /* MAC address registers are reserved for the MIC entry */
2801 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
2802 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
2805 * Write the correct (un-inverted) key[47:0] last to enable
2806 * TKIP now that all other registers are set with correct
2809 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2810 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2812 /* Write key[47:0] */
2813 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2814 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2816 /* Write key[95:48] */
2817 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2818 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2820 /* Write key[127:96] and key type */
2821 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2822 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2824 /* Write MAC address for the entry */
2825 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2831 bool ath9k_hw_keyisvalid(struct ath_hw
*ah
, u16 entry
)
2833 if (entry
< ah
->caps
.keycache_size
) {
2834 u32 val
= REG_READ(ah
, AR_KEYTABLE_MAC1(entry
));
2835 if (val
& AR_KEYTABLE_VALID
)
2841 /******************************/
2842 /* Power Management (Chipset) */
2843 /******************************/
2845 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
2847 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2849 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2850 AR_RTC_FORCE_WAKE_EN
);
2851 if (!AR_SREV_9100(ah
))
2852 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2854 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
2859 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
2861 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2863 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2865 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2866 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2867 AR_RTC_FORCE_WAKE_ON_INT
);
2869 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2870 AR_RTC_FORCE_WAKE_EN
);
2875 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
2881 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2882 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2883 if (ath9k_hw_set_reset_reg(ah
,
2884 ATH9K_RESET_POWER_ON
) != true) {
2888 if (AR_SREV_9100(ah
))
2889 REG_SET_BIT(ah
, AR_RTC_RESET
,
2892 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2893 AR_RTC_FORCE_WAKE_EN
);
2896 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2897 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2898 if (val
== AR_RTC_STATUS_ON
)
2901 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2902 AR_RTC_FORCE_WAKE_EN
);
2905 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2906 "Failed to wakeup in %uus\n", POWER_UP_TIME
/ 20);
2911 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2916 static bool ath9k_hw_setpower_nolock(struct ath_hw
*ah
,
2917 enum ath9k_power_mode mode
)
2919 int status
= true, setChip
= true;
2920 static const char *modes
[] = {
2927 if (ah
->power_mode
== mode
)
2930 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "%s -> %s\n",
2931 modes
[ah
->power_mode
], modes
[mode
]);
2934 case ATH9K_PM_AWAKE
:
2935 status
= ath9k_hw_set_power_awake(ah
, setChip
);
2937 case ATH9K_PM_FULL_SLEEP
:
2938 ath9k_set_power_sleep(ah
, setChip
);
2939 ah
->chip_fullsleep
= true;
2941 case ATH9K_PM_NETWORK_SLEEP
:
2942 ath9k_set_power_network_sleep(ah
, setChip
);
2945 DPRINTF(ah
->ah_sc
, ATH_DBG_FATAL
,
2946 "Unknown power mode %u\n", mode
);
2949 ah
->power_mode
= mode
;
2954 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2956 unsigned long flags
;
2959 spin_lock_irqsave(&ah
->ah_sc
->sc_pm_lock
, flags
);
2960 ret
= ath9k_hw_setpower_nolock(ah
, mode
);
2961 spin_unlock_irqrestore(&ah
->ah_sc
->sc_pm_lock
, flags
);
2966 void ath9k_ps_wakeup(struct ath_softc
*sc
)
2968 unsigned long flags
;
2970 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2971 if (++sc
->ps_usecount
!= 1)
2974 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_AWAKE
);
2977 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
2980 void ath9k_ps_restore(struct ath_softc
*sc
)
2982 unsigned long flags
;
2984 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2985 if (--sc
->ps_usecount
!= 0)
2988 if (sc
->ps_enabled
&&
2989 !(sc
->sc_flags
& (SC_OP_WAIT_FOR_BEACON
|
2990 SC_OP_WAIT_FOR_CAB
|
2991 SC_OP_WAIT_FOR_PSPOLL_DATA
|
2992 SC_OP_WAIT_FOR_TX_ACK
)))
2993 ath9k_hw_setpower_nolock(sc
->sc_ah
, ATH9K_PM_NETWORK_SLEEP
);
2996 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
3000 * Helper for ASPM support.
3002 * Disable PLL when in L0s as well as receiver clock when in L1.
3003 * This power saving option must be enabled through the SerDes.
3005 * Programming the SerDes must go through the same 288 bit serial shift
3006 * register as the other analog registers. Hence the 9 writes.
3008 void ath9k_hw_configpcipowersave(struct ath_hw
*ah
, int restore
)
3012 if (ah
->is_pciexpress
!= true)
3015 /* Do not touch SerDes registers */
3016 if (ah
->config
.pcie_powersave_enable
== 2)
3019 /* Nothing to do on restore for 11N */
3023 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3025 * AR9280 2.0 or later chips use SerDes values from the
3026 * initvals.h initialized depending on chipset during
3029 for (i
= 0; i
< ah
->iniPcieSerdes
.ia_rows
; i
++) {
3030 REG_WRITE(ah
, INI_RA(&ah
->iniPcieSerdes
, i
, 0),
3031 INI_RA(&ah
->iniPcieSerdes
, i
, 1));
3033 } else if (AR_SREV_9280(ah
) &&
3034 (ah
->hw_version
.macRev
== AR_SREV_REVISION_9280_10
)) {
3035 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fd00);
3036 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3038 /* RX shut off when elecidle is asserted */
3039 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xa8000019);
3040 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x13160820);
3041 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980560);
3043 /* Shut off CLKREQ active in L1 */
3044 if (ah
->config
.pcie_clock_req
)
3045 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffc);
3047 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffd);
3049 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3050 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3051 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00043007);
3053 /* Load the new settings */
3054 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3057 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
3058 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3060 /* RX shut off when elecidle is asserted */
3061 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000039);
3062 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x53160824);
3063 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980579);
3066 * Ignore ah->ah_config.pcie_clock_req setting for
3069 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x001defff);
3071 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3072 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3073 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e3007);
3075 /* Load the new settings */
3076 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3081 /* set bit 19 to allow forcing of pcie core into L1 state */
3082 REG_SET_BIT(ah
, AR_PCIE_PM_CTRL
, AR_PCIE_PM_CTRL_ENA
);
3084 /* Several PCIe massages to ensure proper behaviour */
3085 if (ah
->config
.pcie_waen
) {
3086 REG_WRITE(ah
, AR_WA
, ah
->config
.pcie_waen
);
3088 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
) || AR_SREV_9287(ah
))
3089 REG_WRITE(ah
, AR_WA
, AR9285_WA_DEFAULT
);
3091 * On AR9280 chips bit 22 of 0x4004 needs to be set to
3092 * otherwise card may disappear.
3094 else if (AR_SREV_9280(ah
))
3095 REG_WRITE(ah
, AR_WA
, AR9280_WA_DEFAULT
);
3097 REG_WRITE(ah
, AR_WA
, AR_WA_DEFAULT
);
3101 /**********************/
3102 /* Interrupt Handling */
3103 /**********************/
3105 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
3109 if (AR_SREV_9100(ah
))
3112 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
3113 if ((host_isr
& AR_INTR_MAC_IRQ
) && (host_isr
!= AR_INTR_SPURIOUS
))
3116 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
3117 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
3118 && (host_isr
!= AR_INTR_SPURIOUS
))
3124 bool ath9k_hw_getisr(struct ath_hw
*ah
, enum ath9k_int
*masked
)
3128 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3130 bool fatal_int
= false;
3132 if (!AR_SREV_9100(ah
)) {
3133 if (REG_READ(ah
, AR_INTR_ASYNC_CAUSE
) & AR_INTR_MAC_IRQ
) {
3134 if ((REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
)
3135 == AR_RTC_STATUS_ON
) {
3136 isr
= REG_READ(ah
, AR_ISR
);
3140 sync_cause
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
) &
3141 AR_INTR_SYNC_DEFAULT
;
3145 if (!isr
&& !sync_cause
)
3149 isr
= REG_READ(ah
, AR_ISR
);
3153 if (isr
& AR_ISR_BCNMISC
) {
3155 isr2
= REG_READ(ah
, AR_ISR_S2
);
3156 if (isr2
& AR_ISR_S2_TIM
)
3157 mask2
|= ATH9K_INT_TIM
;
3158 if (isr2
& AR_ISR_S2_DTIM
)
3159 mask2
|= ATH9K_INT_DTIM
;
3160 if (isr2
& AR_ISR_S2_DTIMSYNC
)
3161 mask2
|= ATH9K_INT_DTIMSYNC
;
3162 if (isr2
& (AR_ISR_S2_CABEND
))
3163 mask2
|= ATH9K_INT_CABEND
;
3164 if (isr2
& AR_ISR_S2_GTT
)
3165 mask2
|= ATH9K_INT_GTT
;
3166 if (isr2
& AR_ISR_S2_CST
)
3167 mask2
|= ATH9K_INT_CST
;
3168 if (isr2
& AR_ISR_S2_TSFOOR
)
3169 mask2
|= ATH9K_INT_TSFOOR
;
3172 isr
= REG_READ(ah
, AR_ISR_RAC
);
3173 if (isr
== 0xffffffff) {
3178 *masked
= isr
& ATH9K_INT_COMMON
;
3180 if (ah
->config
.intr_mitigation
) {
3181 if (isr
& (AR_ISR_RXMINTR
| AR_ISR_RXINTM
))
3182 *masked
|= ATH9K_INT_RX
;
3185 if (isr
& (AR_ISR_RXOK
| AR_ISR_RXERR
))
3186 *masked
|= ATH9K_INT_RX
;
3188 (AR_ISR_TXOK
| AR_ISR_TXDESC
| AR_ISR_TXERR
|
3192 *masked
|= ATH9K_INT_TX
;
3194 s0_s
= REG_READ(ah
, AR_ISR_S0_S
);
3195 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXOK
);
3196 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXDESC
);
3198 s1_s
= REG_READ(ah
, AR_ISR_S1_S
);
3199 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXERR
);
3200 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXEOL
);
3203 if (isr
& AR_ISR_RXORN
) {
3204 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3205 "receive FIFO overrun interrupt\n");
3208 if (!AR_SREV_9100(ah
)) {
3209 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3210 u32 isr5
= REG_READ(ah
, AR_ISR_S5_S
);
3211 if (isr5
& AR_ISR_S5_TIM_TIMER
)
3212 *masked
|= ATH9K_INT_TIM_TIMER
;
3219 if (AR_SREV_9100(ah
))
3222 if (isr
& AR_ISR_GENTMR
) {
3225 s5_s
= REG_READ(ah
, AR_ISR_S5_S
);
3226 if (isr
& AR_ISR_GENTMR
) {
3227 ah
->intr_gen_timer_trigger
=
3228 MS(s5_s
, AR_ISR_S5_GENTIMER_TRIG
);
3230 ah
->intr_gen_timer_thresh
=
3231 MS(s5_s
, AR_ISR_S5_GENTIMER_THRESH
);
3233 if (ah
->intr_gen_timer_trigger
)
3234 *masked
|= ATH9K_INT_GENTIMER
;
3242 (AR_INTR_SYNC_HOST1_FATAL
| AR_INTR_SYNC_HOST1_PERR
))
3246 if (sync_cause
& AR_INTR_SYNC_HOST1_FATAL
) {
3247 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3248 "received PCI FATAL interrupt\n");
3250 if (sync_cause
& AR_INTR_SYNC_HOST1_PERR
) {
3251 DPRINTF(ah
->ah_sc
, ATH_DBG_ANY
,
3252 "received PCI PERR interrupt\n");
3254 *masked
|= ATH9K_INT_FATAL
;
3256 if (sync_cause
& AR_INTR_SYNC_RADM_CPL_TIMEOUT
) {
3257 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3258 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3259 REG_WRITE(ah
, AR_RC
, AR_RC_HOSTIF
);
3260 REG_WRITE(ah
, AR_RC
, 0);
3261 *masked
|= ATH9K_INT_FATAL
;
3263 if (sync_cause
& AR_INTR_SYNC_LOCAL_TIMEOUT
) {
3264 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
,
3265 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3268 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE_CLR
, sync_cause
);
3269 (void) REG_READ(ah
, AR_INTR_SYNC_CAUSE_CLR
);
3275 enum ath9k_int
ath9k_hw_set_interrupts(struct ath_hw
*ah
, enum ath9k_int ints
)
3277 u32 omask
= ah
->mask_reg
;
3279 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3281 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "0x%x => 0x%x\n", omask
, ints
);
3283 if (omask
& ATH9K_INT_GLOBAL
) {
3284 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "disable IER\n");
3285 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
3286 (void) REG_READ(ah
, AR_IER
);
3287 if (!AR_SREV_9100(ah
)) {
3288 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
3289 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
3291 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
3292 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
3296 mask
= ints
& ATH9K_INT_COMMON
;
3299 if (ints
& ATH9K_INT_TX
) {
3300 if (ah
->txok_interrupt_mask
)
3301 mask
|= AR_IMR_TXOK
;
3302 if (ah
->txdesc_interrupt_mask
)
3303 mask
|= AR_IMR_TXDESC
;
3304 if (ah
->txerr_interrupt_mask
)
3305 mask
|= AR_IMR_TXERR
;
3306 if (ah
->txeol_interrupt_mask
)
3307 mask
|= AR_IMR_TXEOL
;
3309 if (ints
& ATH9K_INT_RX
) {
3310 mask
|= AR_IMR_RXERR
;
3311 if (ah
->config
.intr_mitigation
)
3312 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
3314 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
3315 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
3316 mask
|= AR_IMR_GENTMR
;
3319 if (ints
& (ATH9K_INT_BMISC
)) {
3320 mask
|= AR_IMR_BCNMISC
;
3321 if (ints
& ATH9K_INT_TIM
)
3322 mask2
|= AR_IMR_S2_TIM
;
3323 if (ints
& ATH9K_INT_DTIM
)
3324 mask2
|= AR_IMR_S2_DTIM
;
3325 if (ints
& ATH9K_INT_DTIMSYNC
)
3326 mask2
|= AR_IMR_S2_DTIMSYNC
;
3327 if (ints
& ATH9K_INT_CABEND
)
3328 mask2
|= AR_IMR_S2_CABEND
;
3329 if (ints
& ATH9K_INT_TSFOOR
)
3330 mask2
|= AR_IMR_S2_TSFOOR
;
3333 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
3334 mask
|= AR_IMR_BCNMISC
;
3335 if (ints
& ATH9K_INT_GTT
)
3336 mask2
|= AR_IMR_S2_GTT
;
3337 if (ints
& ATH9K_INT_CST
)
3338 mask2
|= AR_IMR_S2_CST
;
3341 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "new IMR 0x%x\n", mask
);
3342 REG_WRITE(ah
, AR_IMR
, mask
);
3343 mask
= REG_READ(ah
, AR_IMR_S2
) & ~(AR_IMR_S2_TIM
|
3345 AR_IMR_S2_DTIMSYNC
|
3349 AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
3350 REG_WRITE(ah
, AR_IMR_S2
, mask
| mask2
);
3351 ah
->mask_reg
= ints
;
3353 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3354 if (ints
& ATH9K_INT_TIM_TIMER
)
3355 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3357 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3360 if (ints
& ATH9K_INT_GLOBAL
) {
3361 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "enable IER\n");
3362 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
3363 if (!AR_SREV_9100(ah
)) {
3364 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
,
3366 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, AR_INTR_MAC_IRQ
);
3369 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
,
3370 AR_INTR_SYNC_DEFAULT
);
3371 REG_WRITE(ah
, AR_INTR_SYNC_MASK
,
3372 AR_INTR_SYNC_DEFAULT
);
3374 DPRINTF(ah
->ah_sc
, ATH_DBG_INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
3375 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
3381 /*******************/
3382 /* Beacon Handling */
3383 /*******************/
3385 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
3389 ah
->beacon_interval
= beacon_period
;
3391 switch (ah
->opmode
) {
3392 case NL80211_IFTYPE_STATION
:
3393 case NL80211_IFTYPE_MONITOR
:
3394 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3395 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, 0xffff);
3396 REG_WRITE(ah
, AR_NEXT_SWBA
, 0x7ffff);
3397 flags
|= AR_TBTT_TIMER_EN
;
3399 case NL80211_IFTYPE_ADHOC
:
3400 case NL80211_IFTYPE_MESH_POINT
:
3401 REG_SET_BIT(ah
, AR_TXCFG
,
3402 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
3403 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
3404 TU_TO_USEC(next_beacon
+
3405 (ah
->atim_window
? ah
->
3407 flags
|= AR_NDP_TIMER_EN
;
3408 case NL80211_IFTYPE_AP
:
3409 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3410 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
3411 TU_TO_USEC(next_beacon
-
3413 dma_beacon_response_time
));
3414 REG_WRITE(ah
, AR_NEXT_SWBA
,
3415 TU_TO_USEC(next_beacon
-
3417 sw_beacon_response_time
));
3419 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
3422 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
,
3423 "%s: unsupported opmode: %d\n",
3424 __func__
, ah
->opmode
);
3429 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3430 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3431 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
3432 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
3434 beacon_period
&= ~ATH9K_BEACON_ENA
;
3435 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
3436 beacon_period
&= ~ATH9K_BEACON_RESET_TSF
;
3437 ath9k_hw_reset_tsf(ah
);
3440 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
3443 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
3444 const struct ath9k_beacon_state
*bs
)
3446 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
3447 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3449 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
3451 REG_WRITE(ah
, AR_BEACON_PERIOD
,
3452 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3453 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
3454 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3456 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
3457 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
3459 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
3461 if (bs
->bs_sleepduration
> beaconintval
)
3462 beaconintval
= bs
->bs_sleepduration
;
3464 dtimperiod
= bs
->bs_dtimperiod
;
3465 if (bs
->bs_sleepduration
> dtimperiod
)
3466 dtimperiod
= bs
->bs_sleepduration
;
3468 if (beaconintval
== dtimperiod
)
3469 nextTbtt
= bs
->bs_nextdtim
;
3471 nextTbtt
= bs
->bs_nexttbtt
;
3473 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
3474 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
3475 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
3476 DPRINTF(ah
->ah_sc
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
3478 REG_WRITE(ah
, AR_NEXT_DTIM
,
3479 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
3480 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
3482 REG_WRITE(ah
, AR_SLEEP1
,
3483 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
3484 | AR_SLEEP1_ASSUME_DTIM
);
3486 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
3487 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
3489 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
3491 REG_WRITE(ah
, AR_SLEEP2
,
3492 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
3494 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
3495 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
3497 REG_SET_BIT(ah
, AR_TIMER_MODE
,
3498 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
3501 /* TSF Out of Range Threshold */
3502 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
3505 /*******************/
3506 /* HW Capabilities */
3507 /*******************/
3509 void ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
3511 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3512 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3513 struct ath_btcoex_info
*btcoex_info
= &ah
->ah_sc
->btcoex_info
;
3515 u16 capField
= 0, eeval
;
3517 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
3518 regulatory
->current_rd
= eeval
;
3520 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
3521 if (AR_SREV_9285_10_OR_LATER(ah
))
3522 eeval
|= AR9285_RDEXT_DEFAULT
;
3523 regulatory
->current_rd_ext
= eeval
;
3525 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
3527 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
3528 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
3529 if (regulatory
->current_rd
== 0x64 ||
3530 regulatory
->current_rd
== 0x65)
3531 regulatory
->current_rd
+= 5;
3532 else if (regulatory
->current_rd
== 0x41)
3533 regulatory
->current_rd
= 0x43;
3534 DPRINTF(ah
->ah_sc
, ATH_DBG_REGULATORY
,
3535 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
3538 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
3539 bitmap_zero(pCap
->wireless_modes
, ATH9K_MODE_MAX
);
3541 if (eeval
& AR5416_OPFLAGS_11A
) {
3542 set_bit(ATH9K_MODE_11A
, pCap
->wireless_modes
);
3543 if (ah
->config
.ht_enable
) {
3544 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT20
))
3545 set_bit(ATH9K_MODE_11NA_HT20
,
3546 pCap
->wireless_modes
);
3547 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT40
)) {
3548 set_bit(ATH9K_MODE_11NA_HT40PLUS
,
3549 pCap
->wireless_modes
);
3550 set_bit(ATH9K_MODE_11NA_HT40MINUS
,
3551 pCap
->wireless_modes
);
3556 if (eeval
& AR5416_OPFLAGS_11G
) {
3557 set_bit(ATH9K_MODE_11G
, pCap
->wireless_modes
);
3558 if (ah
->config
.ht_enable
) {
3559 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT20
))
3560 set_bit(ATH9K_MODE_11NG_HT20
,
3561 pCap
->wireless_modes
);
3562 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT40
)) {
3563 set_bit(ATH9K_MODE_11NG_HT40PLUS
,
3564 pCap
->wireless_modes
);
3565 set_bit(ATH9K_MODE_11NG_HT40MINUS
,
3566 pCap
->wireless_modes
);
3571 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
3573 * For AR9271 we will temporarilly uses the rx chainmax as read from
3576 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
3577 !(eeval
& AR5416_OPFLAGS_11A
) &&
3578 !(AR_SREV_9271(ah
)))
3579 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3580 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
3582 /* Use rx_chainmask from EEPROM. */
3583 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
3585 if (!(AR_SREV_9280(ah
) && (ah
->hw_version
.macRev
== 0)))
3586 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
3588 pCap
->low_2ghz_chan
= 2312;
3589 pCap
->high_2ghz_chan
= 2732;
3591 pCap
->low_5ghz_chan
= 4920;
3592 pCap
->high_5ghz_chan
= 6100;
3594 pCap
->hw_caps
&= ~ATH9K_HW_CAP_CIPHER_CKIP
;
3595 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_TKIP
;
3596 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_AESCCM
;
3598 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MIC_CKIP
;
3599 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_TKIP
;
3600 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_AESCCM
;
3602 if (ah
->config
.ht_enable
)
3603 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
3605 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
3607 pCap
->hw_caps
|= ATH9K_HW_CAP_GTT
;
3608 pCap
->hw_caps
|= ATH9K_HW_CAP_VEOL
;
3609 pCap
->hw_caps
|= ATH9K_HW_CAP_BSSIDMASK
;
3610 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MCAST_KEYSEARCH
;
3612 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
3613 pCap
->total_queues
=
3614 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
3616 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
3618 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
3619 pCap
->keycache_size
=
3620 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
3622 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
3624 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCC
;
3625 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
3627 if (AR_SREV_9285_10_OR_LATER(ah
))
3628 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
3629 else if (AR_SREV_9280_10_OR_LATER(ah
))
3630 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
3632 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
3634 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
3635 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
3636 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
3638 pCap
->rts_aggr_limit
= (8 * 1024);
3641 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
3643 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3644 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
3645 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
3647 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
3648 ah
->rfkill_polarity
=
3649 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
3651 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
3655 if ((ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
) ||
3656 (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
) ||
3657 (ah
->hw_version
.macVersion
== AR_SREV_VERSION_9160
) ||
3658 (ah
->hw_version
.macVersion
== AR_SREV_VERSION_9100
) ||
3659 (ah
->hw_version
.macVersion
== AR_SREV_VERSION_9280
) ||
3660 (ah
->hw_version
.macVersion
== AR_SREV_VERSION_9285
))
3661 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
3663 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
3665 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
3666 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
3668 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
3670 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
3672 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3673 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
3674 AR_EEPROM_EEREGCAP_EN_KK_U2
|
3675 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
3678 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3679 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
3682 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
3684 pCap
->num_antcfg_5ghz
=
3685 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_5GHZ
);
3686 pCap
->num_antcfg_2ghz
=
3687 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_2GHZ
);
3689 if (AR_SREV_9280_10_OR_LATER(ah
) &&
3690 ath_btcoex_supported(ah
->hw_version
.subsysid
)) {
3691 btcoex_info
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
3692 btcoex_info
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
3694 if (AR_SREV_9285(ah
)) {
3695 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_3WIRE
;
3696 btcoex_info
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
3698 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_2WIRE
;
3701 btcoex_info
->btcoex_scheme
= ATH_BTCOEX_CFG_NONE
;
3705 bool ath9k_hw_getcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3706 u32 capability
, u32
*result
)
3708 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3710 case ATH9K_CAP_CIPHER
:
3711 switch (capability
) {
3712 case ATH9K_CIPHER_AES_CCM
:
3713 case ATH9K_CIPHER_AES_OCB
:
3714 case ATH9K_CIPHER_TKIP
:
3715 case ATH9K_CIPHER_WEP
:
3716 case ATH9K_CIPHER_MIC
:
3717 case ATH9K_CIPHER_CLR
:
3722 case ATH9K_CAP_TKIP_MIC
:
3723 switch (capability
) {
3727 return (ah
->sta_id1_defaults
&
3728 AR_STA_ID1_CRPT_MIC_ENABLE
) ? true :
3731 case ATH9K_CAP_TKIP_SPLIT
:
3732 return (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) ?
3734 case ATH9K_CAP_DIVERSITY
:
3735 return (REG_READ(ah
, AR_PHY_CCK_DETECT
) &
3736 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
) ?
3738 case ATH9K_CAP_MCAST_KEYSRCH
:
3739 switch (capability
) {
3743 if (REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_ADHOC
) {
3746 return (ah
->sta_id1_defaults
&
3747 AR_STA_ID1_MCAST_KSRCH
) ? true :
3752 case ATH9K_CAP_TXPOW
:
3753 switch (capability
) {
3757 *result
= regulatory
->power_limit
;
3760 *result
= regulatory
->max_power_level
;
3763 *result
= regulatory
->tp_scale
;
3768 return (AR_SREV_9280_20_OR_LATER(ah
) &&
3769 (ah
->eep_ops
->get_eeprom(ah
, EEP_RC_CHAIN_MASK
) == 1))
3776 bool ath9k_hw_setcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3777 u32 capability
, u32 setting
, int *status
)
3782 case ATH9K_CAP_TKIP_MIC
:
3784 ah
->sta_id1_defaults
|=
3785 AR_STA_ID1_CRPT_MIC_ENABLE
;
3787 ah
->sta_id1_defaults
&=
3788 ~AR_STA_ID1_CRPT_MIC_ENABLE
;
3790 case ATH9K_CAP_DIVERSITY
:
3791 v
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
3793 v
|= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3795 v
&= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3796 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, v
);
3798 case ATH9K_CAP_MCAST_KEYSRCH
:
3800 ah
->sta_id1_defaults
|= AR_STA_ID1_MCAST_KSRCH
;
3802 ah
->sta_id1_defaults
&= ~AR_STA_ID1_MCAST_KSRCH
;
3809 /****************************/
3810 /* GPIO / RFKILL / Antennae */
3811 /****************************/
3813 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
3817 u32 gpio_shift
, tmp
;
3820 addr
= AR_GPIO_OUTPUT_MUX3
;
3822 addr
= AR_GPIO_OUTPUT_MUX2
;
3824 addr
= AR_GPIO_OUTPUT_MUX1
;
3826 gpio_shift
= (gpio
% 6) * 5;
3828 if (AR_SREV_9280_20_OR_LATER(ah
)
3829 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
3830 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
3831 (0x1f << gpio_shift
));
3833 tmp
= REG_READ(ah
, addr
);
3834 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
3835 tmp
&= ~(0x1f << gpio_shift
);
3836 tmp
|= (type
<< gpio_shift
);
3837 REG_WRITE(ah
, addr
, tmp
);
3841 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
3845 ASSERT(gpio
< ah
->caps
.num_gpio_pins
);
3847 gpio_shift
= gpio
<< 1;
3851 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
3852 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3855 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
3857 #define MS_REG_READ(x, y) \
3858 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3860 if (gpio
>= ah
->caps
.num_gpio_pins
)
3863 if (AR_SREV_9287_10_OR_LATER(ah
))
3864 return MS_REG_READ(AR9287
, gpio
) != 0;
3865 else if (AR_SREV_9285_10_OR_LATER(ah
))
3866 return MS_REG_READ(AR9285
, gpio
) != 0;
3867 else if (AR_SREV_9280_10_OR_LATER(ah
))
3868 return MS_REG_READ(AR928X
, gpio
) != 0;
3870 return MS_REG_READ(AR
, gpio
) != 0;
3873 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
3878 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
3880 gpio_shift
= 2 * gpio
;
3884 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
3885 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3888 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
3890 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
3894 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
3896 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
3899 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
3901 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
3904 bool ath9k_hw_setantennaswitch(struct ath_hw
*ah
,
3905 enum ath9k_ant_setting settings
,
3906 struct ath9k_channel
*chan
,
3911 static u8 tx_chainmask_cfg
, rx_chainmask_cfg
;
3913 if (AR_SREV_9280(ah
)) {
3914 if (!tx_chainmask_cfg
) {
3916 tx_chainmask_cfg
= *tx_chainmask
;
3917 rx_chainmask_cfg
= *rx_chainmask
;
3921 case ATH9K_ANT_FIXED_A
:
3922 *tx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3923 *rx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3924 *antenna_cfgd
= true;
3926 case ATH9K_ANT_FIXED_B
:
3927 if (ah
->caps
.tx_chainmask
>
3928 ATH9K_ANTENNA1_CHAINMASK
) {
3929 *tx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
3931 *rx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
3932 *antenna_cfgd
= true;
3934 case ATH9K_ANT_VARIABLE
:
3935 *tx_chainmask
= tx_chainmask_cfg
;
3936 *rx_chainmask
= rx_chainmask_cfg
;
3937 *antenna_cfgd
= true;
3943 ah
->config
.diversity_control
= settings
;
3949 /*********************/
3950 /* General Operation */
3951 /*********************/
3953 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
3955 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
3956 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
3958 if (phybits
& AR_PHY_ERR_RADAR
)
3959 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
3960 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
3961 bits
|= ATH9K_RX_FILTER_PHYERR
;
3966 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
3970 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
3973 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
3974 phybits
|= AR_PHY_ERR_RADAR
;
3975 if (bits
& ATH9K_RX_FILTER_PHYERR
)
3976 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
3977 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
3980 REG_WRITE(ah
, AR_RXCFG
,
3981 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
3983 REG_WRITE(ah
, AR_RXCFG
,
3984 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
3987 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
3989 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
);
3992 bool ath9k_hw_disable(struct ath_hw
*ah
)
3994 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
3997 return ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
);
4000 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
)
4002 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
4003 struct ath9k_channel
*chan
= ah
->curchan
;
4004 struct ieee80211_channel
*channel
= chan
->chan
;
4006 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
4008 ah
->eep_ops
->set_txpower(ah
, chan
,
4009 ath9k_regd_get_ctl(regulatory
, chan
),
4010 channel
->max_antenna_gain
* 2,
4011 channel
->max_power
* 2,
4012 min((u32
) MAX_RATE_POWER
,
4013 (u32
) regulatory
->power_limit
));
4016 void ath9k_hw_setmac(struct ath_hw
*ah
, const u8
*mac
)
4018 memcpy(ah
->macaddr
, mac
, ETH_ALEN
);
4021 void ath9k_hw_setopmode(struct ath_hw
*ah
)
4023 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
4026 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
4028 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
4029 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
4032 void ath9k_hw_setbssidmask(struct ath_softc
*sc
)
4034 REG_WRITE(sc
->sc_ah
, AR_BSSMSKL
, get_unaligned_le32(sc
->bssidmask
));
4035 REG_WRITE(sc
->sc_ah
, AR_BSSMSKU
, get_unaligned_le16(sc
->bssidmask
+ 4));
4038 void ath9k_hw_write_associd(struct ath_softc
*sc
)
4040 REG_WRITE(sc
->sc_ah
, AR_BSS_ID0
, get_unaligned_le32(sc
->curbssid
));
4041 REG_WRITE(sc
->sc_ah
, AR_BSS_ID1
, get_unaligned_le16(sc
->curbssid
+ 4) |
4042 ((sc
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
4045 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
4049 tsf
= REG_READ(ah
, AR_TSF_U32
);
4050 tsf
= (tsf
<< 32) | REG_READ(ah
, AR_TSF_L32
);
4055 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
4057 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
4058 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
4061 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
4063 ath9k_ps_wakeup(ah
->ah_sc
);
4064 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
4065 AH_TSF_WRITE_TIMEOUT
))
4066 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
,
4067 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4069 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
4070 ath9k_ps_restore(ah
->ah_sc
);
4073 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
4076 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
4078 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
4081 bool ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
4083 if (us
< ATH9K_SLOT_TIME_9
|| us
> ath9k_hw_mac_to_usec(ah
, 0xffff)) {
4084 DPRINTF(ah
->ah_sc
, ATH_DBG_RESET
, "bad slot time %u\n", us
);
4085 ah
->slottime
= (u32
) -1;
4088 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, ath9k_hw_mac_to_clks(ah
, us
));
4094 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, enum ath9k_ht_macmode mode
)
4098 if (mode
== ATH9K_HT_MACMODE_2040
&&
4099 !ah
->config
.cwm_ignore_extcca
)
4100 macmode
= AR_2040_JOINED_RX_CLEAR
;
4104 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
4107 /* HW Generic timers configuration */
4109 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
4111 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4112 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4113 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4114 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4115 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4116 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4117 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4118 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4119 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
4120 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
4121 AR_NDP2_TIMER_MODE
, 0x0002},
4122 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
4123 AR_NDP2_TIMER_MODE
, 0x0004},
4124 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
4125 AR_NDP2_TIMER_MODE
, 0x0008},
4126 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
4127 AR_NDP2_TIMER_MODE
, 0x0010},
4128 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
4129 AR_NDP2_TIMER_MODE
, 0x0020},
4130 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
4131 AR_NDP2_TIMER_MODE
, 0x0040},
4132 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
4133 AR_NDP2_TIMER_MODE
, 0x0080}
4136 /* HW generic timer primitives */
4138 /* compute and clear index of rightmost 1 */
4139 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
4149 return timer_table
->gen_timer_index
[b
];
4152 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
4154 return REG_READ(ah
, AR_TSF_L32
);
4157 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
4158 void (*trigger
)(void *),
4159 void (*overflow
)(void *),
4163 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4164 struct ath_gen_timer
*timer
;
4166 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
4168 if (timer
== NULL
) {
4169 printk(KERN_DEBUG
"Failed to allocate memory"
4170 "for hw timer[%d]\n", timer_index
);
4174 /* allocate a hardware generic timer slot */
4175 timer_table
->timers
[timer_index
] = timer
;
4176 timer
->index
= timer_index
;
4177 timer
->trigger
= trigger
;
4178 timer
->overflow
= overflow
;
4184 void ath_gen_timer_start(struct ath_hw
*ah
,
4185 struct ath_gen_timer
*timer
,
4186 u32 timer_next
, u32 timer_period
)
4188 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4191 BUG_ON(!timer_period
);
4193 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4195 tsf
= ath9k_hw_gettsf32(ah
);
4197 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
, "curent tsf %x period %x"
4198 "timer_next %x\n", tsf
, timer_period
, timer_next
);
4201 * Pull timer_next forward if the current TSF already passed it
4202 * because of software latency
4204 if (timer_next
< tsf
)
4205 timer_next
= tsf
+ timer_period
;
4208 * Program generic timer registers
4210 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
4212 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
4214 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4215 gen_tmr_configuration
[timer
->index
].mode_mask
);
4217 /* Enable both trigger and thresh interrupt masks */
4218 REG_SET_BIT(ah
, AR_IMR_S5
,
4219 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4220 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4222 if ((ah
->ah_sc
->imask
& ATH9K_INT_GENTIMER
) == 0) {
4223 ath9k_hw_set_interrupts(ah
, 0);
4224 ah
->ah_sc
->imask
|= ATH9K_INT_GENTIMER
;
4225 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4229 void ath_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4231 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4233 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
4234 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
4238 /* Clear generic timer enable bits. */
4239 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4240 gen_tmr_configuration
[timer
->index
].mode_mask
);
4242 /* Disable both trigger and thresh interrupt masks */
4243 REG_CLR_BIT(ah
, AR_IMR_S5
,
4244 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4245 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4247 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4249 /* if no timer is enabled, turn off interrupt mask */
4250 if (timer_table
->timer_mask
.val
== 0) {
4251 ath9k_hw_set_interrupts(ah
, 0);
4252 ah
->ah_sc
->imask
&= ~ATH9K_INT_GENTIMER
;
4253 ath9k_hw_set_interrupts(ah
, ah
->ah_sc
->imask
);
4257 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4259 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4261 /* free the hardware generic timer slot */
4262 timer_table
->timers
[timer
->index
] = NULL
;
4267 * Generic Timer Interrupts handling
4269 void ath_gen_timer_isr(struct ath_hw
*ah
)
4271 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4272 struct ath_gen_timer
*timer
;
4273 u32 trigger_mask
, thresh_mask
, index
;
4275 /* get hardware generic timer interrupt status */
4276 trigger_mask
= ah
->intr_gen_timer_trigger
;
4277 thresh_mask
= ah
->intr_gen_timer_thresh
;
4278 trigger_mask
&= timer_table
->timer_mask
.val
;
4279 thresh_mask
&= timer_table
->timer_mask
.val
;
4281 trigger_mask
&= ~thresh_mask
;
4283 while (thresh_mask
) {
4284 index
= rightmost_index(timer_table
, &thresh_mask
);
4285 timer
= timer_table
->timers
[index
];
4287 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4288 "TSF overflow for Gen timer %d\n", index
);
4289 timer
->overflow(timer
->arg
);
4292 while (trigger_mask
) {
4293 index
= rightmost_index(timer_table
, &trigger_mask
);
4294 timer
= timer_table
->timers
[index
];
4296 DPRINTF(ah
->ah_sc
, ATH_DBG_HWTIMER
,
4297 "Gen timer[%d] trigger\n", index
);
4298 timer
->trigger(timer
->arg
);
4303 * Primitive to disable ASPM
4305 void ath_pcie_aspm_disable(struct ath_softc
*sc
)
4307 struct pci_dev
*pdev
= to_pci_dev(sc
->dev
);
4310 pci_read_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, &aspm
);
4311 aspm
&= ~(ATH_PCIE_CAP_LINK_L0S
| ATH_PCIE_CAP_LINK_L1
);
4312 pci_write_config_byte(pdev
, ATH_PCIE_CAP_LINK_CTRL
, aspm
);