debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / main.c
blob3dc7b5a13e64d49bc245d38a82765a2ed56f647b
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 static char *dev_info = "ath9k";
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31 /* We use the hw_value as an index into our private channel structure */
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
35 .hw_value = (_idx), \
36 .max_power = 20, \
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
42 .hw_value = (_idx), \
43 .max_power = 20, \
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
49 * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
70 * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
108 sc->cur_rate_table =
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
111 sc->cur_rate_table =
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
114 sc->cur_rate_table =
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116 else
117 sc->cur_rate_table =
118 sc->hw_rate_table[ATH9K_MODE_11G];
119 break;
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
122 sc->cur_rate_table =
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
125 sc->cur_rate_table =
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
128 sc->cur_rate_table =
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130 else
131 sc->cur_rate_table =
132 sc->hw_rate_table[ATH9K_MODE_11A];
133 break;
134 default:
135 BUG_ON(1);
136 break;
140 static void ath_update_txpow(struct ath_softc *sc)
142 struct ath_hw *ah = sc->sc_ah;
143 u32 txpow;
145 if (sc->curtxpow != sc->config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->curtxpow = txpow;
153 static u8 parse_mpdudensity(u8 mpdudensity)
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
158 * 1 for 1/4 us
159 * 2 for 1/2 us
160 * 3 for 1 us
161 * 4 for 2 us
162 * 5 for 4 us
163 * 6 for 8 us
164 * 7 for 16 us
166 switch (mpdudensity) {
167 case 0:
168 return 0;
169 case 1:
170 case 2:
171 case 3:
172 /* Our lower layer calculations limit our precision to
173 1 microsecond */
174 return 1;
175 case 4:
176 return 2;
177 case 5:
178 return 4;
179 case 6:
180 return 8;
181 case 7:
182 return 16;
183 default:
184 return 0;
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
190 const struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
193 int i, maxrates;
195 switch (band) {
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198 break;
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201 break;
202 default:
203 break;
206 if (rate_table == NULL)
207 return;
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
214 else
215 maxrates = rate_table->rate_cnt;
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
225 sband->n_bitrates++;
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233 struct ieee80211_hw *hw)
235 struct ieee80211_channel *curchan = hw->conf.channel;
236 struct ath9k_channel *channel;
237 u8 chan_idx;
239 chan_idx = curchan->hw_value;
240 channel = &sc->sc_ah->channels[chan_idx];
241 ath9k_update_ichannel(sc, hw, channel);
242 return channel;
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251 struct ath9k_channel *hchan)
253 struct ath_hw *ah = sc->sc_ah;
254 bool fastcc = true, stopped;
255 struct ieee80211_channel *channel = hw->conf.channel;
256 int r;
258 if (sc->sc_flags & SC_OP_INVALID)
259 return -EIO;
261 ath9k_ps_wakeup(sc);
264 * This is only performed if the channel settings have
265 * actually changed.
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
272 ath9k_hw_set_interrupts(ah, 0);
273 ath_drain_all_txq(sc, false);
274 stopped = ath_stoprecv(sc);
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
280 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281 fastcc = false;
283 DPRINTF(sc, ATH_DBG_CONFIG,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc->sc_ah->curchan->channel,
286 channel->center_freq, sc->tx_chan_width);
288 spin_lock_bh(&sc->sc_resetlock);
290 r = ath9k_hw_reset(ah, hchan, fastcc);
291 if (r) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to reset channel (%u Mhz) "
294 "reset status %d\n",
295 channel->center_freq, r);
296 spin_unlock_bh(&sc->sc_resetlock);
297 goto ps_restore;
299 spin_unlock_bh(&sc->sc_resetlock);
301 sc->sc_flags &= ~SC_OP_FULL_RESET;
303 if (ath_startrecv(sc) != 0) {
304 DPRINTF(sc, ATH_DBG_FATAL,
305 "Unable to restart recv logic\n");
306 r = -EIO;
307 goto ps_restore;
310 ath_cache_conf_rate(sc, &hw->conf);
311 ath_update_txpow(sc);
312 ath9k_hw_set_interrupts(ah, sc->imask);
314 ps_restore:
315 ath9k_ps_restore(sc);
316 return r;
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
326 static void ath_ani_calibrate(unsigned long data)
328 struct ath_softc *sc = (struct ath_softc *)data;
329 struct ath_hw *ah = sc->sc_ah;
330 bool longcal = false;
331 bool shortcal = false;
332 bool aniflag = false;
333 unsigned int timestamp = jiffies_to_msecs(jiffies);
334 u32 cal_interval, short_cal_interval;
336 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
343 spin_lock(&sc->ani_lock);
344 if (sc->sc_flags & SC_OP_SCANNING)
345 goto set_timer;
347 /* Only calibrate if awake */
348 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349 goto set_timer;
351 ath9k_ps_wakeup(sc);
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 longcal = true;
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->ani.longcal_timer = timestamp;
360 /* Short calibration applies only while caldone is false */
361 if (!sc->ani.caldone) {
362 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->ani.shortcal_timer = timestamp;
366 sc->ani.resetcal_timer = timestamp;
368 } else {
369 if ((timestamp - sc->ani.resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->ani.caldone)
373 sc->ani.resetcal_timer = timestamp;
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379 aniflag = true;
380 sc->ani.checkani_timer = timestamp;
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
386 if (aniflag)
387 ath9k_hw_ani_monitor(ah, ah->curchan);
389 /* Perform calibration if necessary */
390 if (longcal || shortcal) {
391 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392 sc->rx_chainmask, longcal);
394 if (longcal)
395 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396 ah->curchan);
398 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399 ah->curchan->channel, ah->curchan->channelFlags,
400 sc->ani.noise_floor);
404 ath9k_ps_restore(sc);
406 set_timer:
407 spin_unlock(&sc->ani_lock);
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
422 static void ath_start_ani(struct ath_softc *sc)
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
442 if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
443 (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
457 struct ath_node *an;
459 an = (struct ath_node *)sta->drv_priv;
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
478 static void ath9k_tasklet(unsigned long data)
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->intrstatus;
483 ath9k_ps_wakeup(sc);
485 if (status & ATH9K_INT_FATAL) {
486 ath_reset(sc, false);
487 ath9k_ps_restore(sc);
488 return;
491 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492 spin_lock_bh(&sc->rx.rxflushlock);
493 ath_rx_tasklet(sc, 0);
494 spin_unlock_bh(&sc->rx.rxflushlock);
497 if (status & ATH9K_INT_TX)
498 ath_tx_tasklet(sc);
500 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
509 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
510 if (status & ATH9K_INT_GENTIMER)
511 ath_gen_timer_isr(sc->sc_ah);
513 /* re-enable hardware interrupt */
514 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
515 ath9k_ps_restore(sc);
518 irqreturn_t ath_isr(int irq, void *dev)
520 #define SCHED_INTR ( \
521 ATH9K_INT_FATAL | \
522 ATH9K_INT_RXORN | \
523 ATH9K_INT_RXEOL | \
524 ATH9K_INT_RX | \
525 ATH9K_INT_TX | \
526 ATH9K_INT_BMISS | \
527 ATH9K_INT_CST | \
528 ATH9K_INT_TSFOOR | \
529 ATH9K_INT_GENTIMER)
531 struct ath_softc *sc = dev;
532 struct ath_hw *ah = sc->sc_ah;
533 enum ath9k_int status;
534 bool sched = false;
537 * The hardware is not ready/present, don't
538 * touch anything. Note this can happen early
539 * on if the IRQ is shared.
541 if (sc->sc_flags & SC_OP_INVALID)
542 return IRQ_NONE;
545 /* shared irq, not for us */
547 if (!ath9k_hw_intrpend(ah))
548 return IRQ_NONE;
551 * Figure out the reason(s) for the interrupt. Note
552 * that the hal returns a pseudo-ISR that may include
553 * bits we haven't explicitly enabled so we mask the
554 * value to insure we only process bits we requested.
556 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
557 status &= sc->imask; /* discard unasked-for bits */
560 * If there are no status bits set, then this interrupt was not
561 * for me (should have been caught above).
563 if (!status)
564 return IRQ_NONE;
566 /* Cache the status */
567 sc->intrstatus = status;
569 if (status & SCHED_INTR)
570 sched = true;
573 * If a FATAL or RXORN interrupt is received, we have to reset the
574 * chip immediately.
576 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
577 goto chip_reset;
579 if (status & ATH9K_INT_SWBA)
580 tasklet_schedule(&sc->bcon_tasklet);
582 if (status & ATH9K_INT_TXURN)
583 ath9k_hw_updatetxtriglevel(ah, true);
585 if (status & ATH9K_INT_MIB) {
587 * Disable interrupts until we service the MIB
588 * interrupt; otherwise it will continue to
589 * fire.
591 ath9k_hw_set_interrupts(ah, 0);
593 * Let the hal handle the event. We assume
594 * it will clear whatever condition caused
595 * the interrupt.
597 ath9k_hw_procmibevent(ah);
598 ath9k_hw_set_interrupts(ah, sc->imask);
601 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
602 if (status & ATH9K_INT_TIM_TIMER) {
603 /* Clear RxAbort bit so that we can
604 * receive frames */
605 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
606 ath9k_hw_setrxabort(sc->sc_ah, 0);
607 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
610 chip_reset:
612 ath_debug_stat_interrupt(sc, status);
614 if (sched) {
615 /* turn off every interrupt except SWBA */
616 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
617 tasklet_schedule(&sc->intr_tq);
620 return IRQ_HANDLED;
622 #undef SCHED_INTR
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 enum nl80211_channel_type channel_type)
629 u32 chanmode = 0;
631 switch (chan->band) {
632 case IEEE80211_BAND_2GHZ:
633 switch(channel_type) {
634 case NL80211_CHAN_NO_HT:
635 case NL80211_CHAN_HT20:
636 chanmode = CHANNEL_G_HT20;
637 break;
638 case NL80211_CHAN_HT40PLUS:
639 chanmode = CHANNEL_G_HT40PLUS;
640 break;
641 case NL80211_CHAN_HT40MINUS:
642 chanmode = CHANNEL_G_HT40MINUS;
643 break;
645 break;
646 case IEEE80211_BAND_5GHZ:
647 switch(channel_type) {
648 case NL80211_CHAN_NO_HT:
649 case NL80211_CHAN_HT20:
650 chanmode = CHANNEL_A_HT20;
651 break;
652 case NL80211_CHAN_HT40PLUS:
653 chanmode = CHANNEL_A_HT40PLUS;
654 break;
655 case NL80211_CHAN_HT40MINUS:
656 chanmode = CHANNEL_A_HT40MINUS;
657 break;
659 break;
660 default:
661 break;
664 return chanmode;
667 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
668 struct ath9k_keyval *hk, const u8 *addr,
669 bool authenticator)
671 const u8 *key_rxmic;
672 const u8 *key_txmic;
674 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
675 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
677 if (addr == NULL) {
679 * Group key installation - only two key cache entries are used
680 * regardless of splitmic capability since group key is only
681 * used either for TX or RX.
683 if (authenticator) {
684 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
685 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
686 } else {
687 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
690 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
692 if (!sc->splitmic) {
693 /* TX and RX keys share the same key cache entry. */
694 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
695 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
696 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
699 /* Separate key cache entries for TX and RX */
701 /* TX key goes at first index, RX key at +32. */
702 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
703 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
704 /* TX MIC entry failed. No need to proceed further */
705 DPRINTF(sc, ATH_DBG_FATAL,
706 "Setting TX MIC Key Failed\n");
707 return 0;
710 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
711 /* XXX delete tx key on failure? */
712 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
715 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
717 int i;
719 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
720 if (test_bit(i, sc->keymap) ||
721 test_bit(i + 64, sc->keymap))
722 continue; /* At least one part of TKIP key allocated */
723 if (sc->splitmic &&
724 (test_bit(i + 32, sc->keymap) ||
725 test_bit(i + 64 + 32, sc->keymap)))
726 continue; /* At least one part of TKIP key allocated */
728 /* Found a free slot for a TKIP key */
729 return i;
731 return -1;
734 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
736 int i;
738 /* First, try to find slots that would not be available for TKIP. */
739 if (sc->splitmic) {
740 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
741 if (!test_bit(i, sc->keymap) &&
742 (test_bit(i + 32, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i;
746 if (!test_bit(i + 32, sc->keymap) &&
747 (test_bit(i, sc->keymap) ||
748 test_bit(i + 64, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 32;
751 if (!test_bit(i + 64, sc->keymap) &&
752 (test_bit(i , sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64 + 32, sc->keymap)))
755 return i + 64;
756 if (!test_bit(i + 64 + 32, sc->keymap) &&
757 (test_bit(i, sc->keymap) ||
758 test_bit(i + 32, sc->keymap) ||
759 test_bit(i + 64, sc->keymap)))
760 return i + 64 + 32;
762 } else {
763 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
764 if (!test_bit(i, sc->keymap) &&
765 test_bit(i + 64, sc->keymap))
766 return i;
767 if (test_bit(i, sc->keymap) &&
768 !test_bit(i + 64, sc->keymap))
769 return i + 64;
773 /* No partially used TKIP slots, pick any available slot */
774 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
775 /* Do not allow slots that could be needed for TKIP group keys
776 * to be used. This limitation could be removed if we know that
777 * TKIP will not be used. */
778 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
779 continue;
780 if (sc->splitmic) {
781 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
782 continue;
783 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
784 continue;
787 if (!test_bit(i, sc->keymap))
788 return i; /* Found a free slot for a key */
791 /* No free slot found */
792 return -1;
795 static int ath_key_config(struct ath_softc *sc,
796 struct ieee80211_vif *vif,
797 struct ieee80211_sta *sta,
798 struct ieee80211_key_conf *key)
800 struct ath9k_keyval hk;
801 const u8 *mac = NULL;
802 int ret = 0;
803 int idx;
805 memset(&hk, 0, sizeof(hk));
807 switch (key->alg) {
808 case ALG_WEP:
809 hk.kv_type = ATH9K_CIPHER_WEP;
810 break;
811 case ALG_TKIP:
812 hk.kv_type = ATH9K_CIPHER_TKIP;
813 break;
814 case ALG_CCMP:
815 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816 break;
817 default:
818 return -EOPNOTSUPP;
821 hk.kv_len = key->keylen;
822 memcpy(hk.kv_val, key->key, key->keylen);
824 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825 /* For now, use the default keys for broadcast keys. This may
826 * need to change with virtual interfaces. */
827 idx = key->keyidx;
828 } else if (key->keyidx) {
829 if (WARN_ON(!sta))
830 return -EOPNOTSUPP;
831 mac = sta->addr;
833 if (vif->type != NL80211_IFTYPE_AP) {
834 /* Only keyidx 0 should be used with unicast key, but
835 * allow this for client mode for now. */
836 idx = key->keyidx;
837 } else
838 return -EIO;
839 } else {
840 if (WARN_ON(!sta))
841 return -EOPNOTSUPP;
842 mac = sta->addr;
844 if (key->alg == ALG_TKIP)
845 idx = ath_reserve_key_cache_slot_tkip(sc);
846 else
847 idx = ath_reserve_key_cache_slot(sc);
848 if (idx < 0)
849 return -ENOSPC; /* no free key cache entries */
852 if (key->alg == ALG_TKIP)
853 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
854 vif->type == NL80211_IFTYPE_AP);
855 else
856 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
858 if (!ret)
859 return -EIO;
861 set_bit(idx, sc->keymap);
862 if (key->alg == ALG_TKIP) {
863 set_bit(idx + 64, sc->keymap);
864 if (sc->splitmic) {
865 set_bit(idx + 32, sc->keymap);
866 set_bit(idx + 64 + 32, sc->keymap);
870 return idx;
873 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
875 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
876 if (key->hw_key_idx < IEEE80211_WEP_NKID)
877 return;
879 clear_bit(key->hw_key_idx, sc->keymap);
880 if (key->alg != ALG_TKIP)
881 return;
883 clear_bit(key->hw_key_idx + 64, sc->keymap);
884 if (sc->splitmic) {
885 clear_bit(key->hw_key_idx + 32, sc->keymap);
886 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
890 static void setup_ht_cap(struct ath_softc *sc,
891 struct ieee80211_sta_ht_cap *ht_info)
893 u8 tx_streams, rx_streams;
895 ht_info->ht_supported = true;
896 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
897 IEEE80211_HT_CAP_SM_PS |
898 IEEE80211_HT_CAP_SGI_40 |
899 IEEE80211_HT_CAP_DSSSCCK40;
901 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
902 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
904 /* set up supported mcs set */
905 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
906 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
907 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
909 if (tx_streams != rx_streams) {
910 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
911 tx_streams, rx_streams);
912 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
913 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
914 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
917 ht_info->mcs.rx_mask[0] = 0xff;
918 if (rx_streams >= 2)
919 ht_info->mcs.rx_mask[1] = 0xff;
921 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
924 static void ath9k_bss_assoc_info(struct ath_softc *sc,
925 struct ieee80211_vif *vif,
926 struct ieee80211_bss_conf *bss_conf)
929 if (bss_conf->assoc) {
930 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
931 bss_conf->aid, sc->curbssid);
933 /* New association, store aid */
934 sc->curaid = bss_conf->aid;
935 ath9k_hw_write_associd(sc);
938 * Request a re-configuration of Beacon related timers
939 * on the receipt of the first Beacon frame (i.e.,
940 * after time sync with the AP).
942 sc->sc_flags |= SC_OP_BEACON_SYNC;
944 /* Configure the beacon */
945 ath_beacon_config(sc, vif);
947 /* Reset rssi stats */
948 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
950 ath_start_ani(sc);
951 } else {
952 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
953 sc->curaid = 0;
954 /* Stop ANI */
955 del_timer_sync(&sc->ani.timer);
959 /********************************/
960 /* LED functions */
961 /********************************/
963 static void ath_led_blink_work(struct work_struct *work)
965 struct ath_softc *sc = container_of(work, struct ath_softc,
966 ath_led_blink_work.work);
968 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
969 return;
971 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
972 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
973 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
974 else
975 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
976 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
978 ieee80211_queue_delayed_work(sc->hw,
979 &sc->ath_led_blink_work,
980 (sc->sc_flags & SC_OP_LED_ON) ?
981 msecs_to_jiffies(sc->led_off_duration) :
982 msecs_to_jiffies(sc->led_on_duration));
984 sc->led_on_duration = sc->led_on_cnt ?
985 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
986 ATH_LED_ON_DURATION_IDLE;
987 sc->led_off_duration = sc->led_off_cnt ?
988 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
989 ATH_LED_OFF_DURATION_IDLE;
990 sc->led_on_cnt = sc->led_off_cnt = 0;
991 if (sc->sc_flags & SC_OP_LED_ON)
992 sc->sc_flags &= ~SC_OP_LED_ON;
993 else
994 sc->sc_flags |= SC_OP_LED_ON;
997 static void ath_led_brightness(struct led_classdev *led_cdev,
998 enum led_brightness brightness)
1000 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1001 struct ath_softc *sc = led->sc;
1003 switch (brightness) {
1004 case LED_OFF:
1005 if (led->led_type == ATH_LED_ASSOC ||
1006 led->led_type == ATH_LED_RADIO) {
1007 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1008 (led->led_type == ATH_LED_RADIO));
1009 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1010 if (led->led_type == ATH_LED_RADIO)
1011 sc->sc_flags &= ~SC_OP_LED_ON;
1012 } else {
1013 sc->led_off_cnt++;
1015 break;
1016 case LED_FULL:
1017 if (led->led_type == ATH_LED_ASSOC) {
1018 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1019 ieee80211_queue_delayed_work(sc->hw,
1020 &sc->ath_led_blink_work, 0);
1021 } else if (led->led_type == ATH_LED_RADIO) {
1022 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1023 sc->sc_flags |= SC_OP_LED_ON;
1024 } else {
1025 sc->led_on_cnt++;
1027 break;
1028 default:
1029 break;
1033 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1034 char *trigger)
1036 int ret;
1038 led->sc = sc;
1039 led->led_cdev.name = led->name;
1040 led->led_cdev.default_trigger = trigger;
1041 led->led_cdev.brightness_set = ath_led_brightness;
1043 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1044 if (ret)
1045 DPRINTF(sc, ATH_DBG_FATAL,
1046 "Failed to register led:%s", led->name);
1047 else
1048 led->registered = 1;
1049 return ret;
1052 static void ath_unregister_led(struct ath_led *led)
1054 if (led->registered) {
1055 led_classdev_unregister(&led->led_cdev);
1056 led->registered = 0;
1060 static void ath_deinit_leds(struct ath_softc *sc)
1062 ath_unregister_led(&sc->assoc_led);
1063 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1064 ath_unregister_led(&sc->tx_led);
1065 ath_unregister_led(&sc->rx_led);
1066 ath_unregister_led(&sc->radio_led);
1067 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1070 static void ath_init_leds(struct ath_softc *sc)
1072 char *trigger;
1073 int ret;
1075 if (AR_SREV_9287(sc->sc_ah))
1076 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1077 else
1078 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1080 /* Configure gpio 1 for output */
1081 ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1082 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1083 /* LED off, active low */
1084 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1086 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1088 trigger = ieee80211_get_radio_led_name(sc->hw);
1089 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1090 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1091 ret = ath_register_led(sc, &sc->radio_led, trigger);
1092 sc->radio_led.led_type = ATH_LED_RADIO;
1093 if (ret)
1094 goto fail;
1096 trigger = ieee80211_get_assoc_led_name(sc->hw);
1097 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1098 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1099 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1100 sc->assoc_led.led_type = ATH_LED_ASSOC;
1101 if (ret)
1102 goto fail;
1104 trigger = ieee80211_get_tx_led_name(sc->hw);
1105 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1106 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1107 ret = ath_register_led(sc, &sc->tx_led, trigger);
1108 sc->tx_led.led_type = ATH_LED_TX;
1109 if (ret)
1110 goto fail;
1112 trigger = ieee80211_get_rx_led_name(sc->hw);
1113 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1114 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1115 ret = ath_register_led(sc, &sc->rx_led, trigger);
1116 sc->rx_led.led_type = ATH_LED_RX;
1117 if (ret)
1118 goto fail;
1120 return;
1122 fail:
1123 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1124 ath_deinit_leds(sc);
1127 void ath_radio_enable(struct ath_softc *sc)
1129 struct ath_hw *ah = sc->sc_ah;
1130 struct ieee80211_channel *channel = sc->hw->conf.channel;
1131 int r;
1133 ath9k_ps_wakeup(sc);
1134 ath9k_hw_configpcipowersave(ah, 0);
1136 if (!ah->curchan)
1137 ah->curchan = ath_get_curchannel(sc, sc->hw);
1139 spin_lock_bh(&sc->sc_resetlock);
1140 r = ath9k_hw_reset(ah, ah->curchan, false);
1141 if (r) {
1142 DPRINTF(sc, ATH_DBG_FATAL,
1143 "Unable to reset channel %u (%uMhz) ",
1144 "reset status %d\n",
1145 channel->center_freq, r);
1147 spin_unlock_bh(&sc->sc_resetlock);
1149 ath_update_txpow(sc);
1150 if (ath_startrecv(sc) != 0) {
1151 DPRINTF(sc, ATH_DBG_FATAL,
1152 "Unable to restart recv logic\n");
1153 return;
1156 if (sc->sc_flags & SC_OP_BEACONS)
1157 ath_beacon_config(sc, NULL); /* restart beacons */
1159 /* Re-Enable interrupts */
1160 ath9k_hw_set_interrupts(ah, sc->imask);
1162 /* Enable LED */
1163 ath9k_hw_cfg_output(ah, ah->led_pin,
1164 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1165 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1167 ieee80211_wake_queues(sc->hw);
1168 ath9k_ps_restore(sc);
1171 void ath_radio_disable(struct ath_softc *sc)
1173 struct ath_hw *ah = sc->sc_ah;
1174 struct ieee80211_channel *channel = sc->hw->conf.channel;
1175 int r;
1177 ath9k_ps_wakeup(sc);
1178 ieee80211_stop_queues(sc->hw);
1180 /* Disable LED */
1181 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1182 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1184 /* Disable interrupts */
1185 ath9k_hw_set_interrupts(ah, 0);
1187 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1188 ath_stoprecv(sc); /* turn off frame recv */
1189 ath_flushrecv(sc); /* flush recv queue */
1191 if (!ah->curchan)
1192 ah->curchan = ath_get_curchannel(sc, sc->hw);
1194 spin_lock_bh(&sc->sc_resetlock);
1195 r = ath9k_hw_reset(ah, ah->curchan, false);
1196 if (r) {
1197 DPRINTF(sc, ATH_DBG_FATAL,
1198 "Unable to reset channel %u (%uMhz) "
1199 "reset status %d\n",
1200 channel->center_freq, r);
1202 spin_unlock_bh(&sc->sc_resetlock);
1204 ath9k_hw_phy_disable(ah);
1205 ath9k_hw_configpcipowersave(ah, 1);
1206 ath9k_ps_restore(sc);
1207 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1210 /*******************/
1211 /* Rfkill */
1212 /*******************/
1214 static bool ath_is_rfkill_set(struct ath_softc *sc)
1216 struct ath_hw *ah = sc->sc_ah;
1218 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1219 ah->rfkill_polarity;
1222 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1224 struct ath_wiphy *aphy = hw->priv;
1225 struct ath_softc *sc = aphy->sc;
1226 bool blocked = !!ath_is_rfkill_set(sc);
1228 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1230 if (blocked)
1231 ath_radio_disable(sc);
1232 else
1233 ath_radio_enable(sc);
1236 static void ath_start_rfkill_poll(struct ath_softc *sc)
1238 struct ath_hw *ah = sc->sc_ah;
1240 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1241 wiphy_rfkill_start_polling(sc->hw->wiphy);
1244 void ath_cleanup(struct ath_softc *sc)
1246 ath_detach(sc);
1247 free_irq(sc->irq, sc);
1248 ath_bus_cleanup(sc);
1249 kfree(sc->sec_wiphy);
1250 ieee80211_free_hw(sc->hw);
1253 void ath_detach(struct ath_softc *sc)
1255 struct ieee80211_hw *hw = sc->hw;
1256 int i = 0;
1258 ath9k_ps_wakeup(sc);
1260 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1262 ath_deinit_leds(sc);
1264 for (i = 0; i < sc->num_sec_wiphy; i++) {
1265 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1266 if (aphy == NULL)
1267 continue;
1268 sc->sec_wiphy[i] = NULL;
1269 ieee80211_unregister_hw(aphy->hw);
1270 ieee80211_free_hw(aphy->hw);
1272 ieee80211_unregister_hw(hw);
1273 ath_rx_cleanup(sc);
1274 ath_tx_cleanup(sc);
1276 tasklet_kill(&sc->intr_tq);
1277 tasklet_kill(&sc->bcon_tasklet);
1279 if (!(sc->sc_flags & SC_OP_INVALID))
1280 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1282 /* cleanup tx queues */
1283 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1284 if (ATH_TXQ_SETUP(sc, i))
1285 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1287 if ((sc->btcoex_info.no_stomp_timer) &&
1288 sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
1289 ath_gen_timer_free(sc->sc_ah, sc->btcoex_info.no_stomp_timer);
1291 ath9k_hw_detach(sc->sc_ah);
1292 sc->sc_ah = NULL;
1293 ath9k_exit_debug(sc);
1296 static int ath9k_reg_notifier(struct wiphy *wiphy,
1297 struct regulatory_request *request)
1299 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1300 struct ath_wiphy *aphy = hw->priv;
1301 struct ath_softc *sc = aphy->sc;
1302 struct ath_regulatory *reg = &sc->common.regulatory;
1304 return ath_reg_notifier_apply(wiphy, request, reg);
1308 * Initialize and fill ath_softc, ath_sofct is the
1309 * "Software Carrier" struct. Historically it has existed
1310 * to allow the separation between hardware specific
1311 * variables (now in ath_hw) and driver specific variables.
1313 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid)
1315 struct ath_hw *ah = NULL;
1316 int r = 0, i;
1317 int csz = 0;
1319 /* XXX: hardware will not be ready until ath_open() being called */
1320 sc->sc_flags |= SC_OP_INVALID;
1322 if (ath9k_init_debug(sc) < 0)
1323 printk(KERN_ERR "Unable to create debugfs files\n");
1325 spin_lock_init(&sc->wiphy_lock);
1326 spin_lock_init(&sc->sc_resetlock);
1327 spin_lock_init(&sc->sc_serial_rw);
1328 spin_lock_init(&sc->ani_lock);
1329 spin_lock_init(&sc->sc_pm_lock);
1330 mutex_init(&sc->mutex);
1331 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1332 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1333 (unsigned long)sc);
1336 * Cache line size is used to size and align various
1337 * structures used to communicate with the hardware.
1339 ath_read_cachesize(sc, &csz);
1340 /* XXX assert csz is non-zero */
1341 sc->common.cachelsz = csz << 2; /* convert to bytes */
1343 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1344 if (!ah) {
1345 r = -ENOMEM;
1346 goto bad_no_ah;
1349 ah->ah_sc = sc;
1350 ah->hw_version.devid = devid;
1351 ah->hw_version.subsysid = subsysid;
1352 sc->sc_ah = ah;
1354 r = ath9k_hw_init(ah);
1355 if (r) {
1356 DPRINTF(sc, ATH_DBG_FATAL,
1357 "Unable to initialize hardware; "
1358 "initialization status: %d\n", r);
1359 goto bad;
1362 /* Get the hardware key cache size. */
1363 sc->keymax = ah->caps.keycache_size;
1364 if (sc->keymax > ATH_KEYMAX) {
1365 DPRINTF(sc, ATH_DBG_ANY,
1366 "Warning, using only %u entries in %u key cache\n",
1367 ATH_KEYMAX, sc->keymax);
1368 sc->keymax = ATH_KEYMAX;
1372 * Reset the key cache since some parts do not
1373 * reset the contents on initial power up.
1375 for (i = 0; i < sc->keymax; i++)
1376 ath9k_hw_keyreset(ah, (u16) i);
1378 /* default to MONITOR mode */
1379 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1381 /* Setup rate tables */
1383 ath_rate_attach(sc);
1384 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1385 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1388 * Allocate hardware transmit queues: one queue for
1389 * beacon frames and one data queue for each QoS
1390 * priority. Note that the hal handles reseting
1391 * these queues at the needed time.
1393 sc->beacon.beaconq = ath_beaconq_setup(ah);
1394 if (sc->beacon.beaconq == -1) {
1395 DPRINTF(sc, ATH_DBG_FATAL,
1396 "Unable to setup a beacon xmit queue\n");
1397 r = -EIO;
1398 goto bad2;
1400 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1401 if (sc->beacon.cabq == NULL) {
1402 DPRINTF(sc, ATH_DBG_FATAL,
1403 "Unable to setup CAB xmit queue\n");
1404 r = -EIO;
1405 goto bad2;
1408 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1409 ath_cabq_update(sc);
1411 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1412 sc->tx.hwq_map[i] = -1;
1414 /* Setup data queues */
1415 /* NB: ensure BK queue is the lowest priority h/w queue */
1416 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1417 DPRINTF(sc, ATH_DBG_FATAL,
1418 "Unable to setup xmit queue for BK traffic\n");
1419 r = -EIO;
1420 goto bad2;
1423 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1424 DPRINTF(sc, ATH_DBG_FATAL,
1425 "Unable to setup xmit queue for BE traffic\n");
1426 r = -EIO;
1427 goto bad2;
1429 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1430 DPRINTF(sc, ATH_DBG_FATAL,
1431 "Unable to setup xmit queue for VI traffic\n");
1432 r = -EIO;
1433 goto bad2;
1435 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1436 DPRINTF(sc, ATH_DBG_FATAL,
1437 "Unable to setup xmit queue for VO traffic\n");
1438 r = -EIO;
1439 goto bad2;
1442 /* Initializes the noise floor to a reasonable default value.
1443 * Later on this will be updated during ANI processing. */
1445 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1446 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1448 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1449 ATH9K_CIPHER_TKIP, NULL)) {
1451 * Whether we should enable h/w TKIP MIC.
1452 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1453 * report WMM capable, so it's always safe to turn on
1454 * TKIP MIC in this case.
1456 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1457 0, 1, NULL);
1461 * Check whether the separate key cache entries
1462 * are required to handle both tx+rx MIC keys.
1463 * With split mic keys the number of stations is limited
1464 * to 27 otherwise 59.
1466 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1467 ATH9K_CIPHER_TKIP, NULL)
1468 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1469 ATH9K_CIPHER_MIC, NULL)
1470 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1471 0, NULL))
1472 sc->splitmic = 1;
1474 /* turn on mcast key search if possible */
1475 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1476 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1477 1, NULL);
1479 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1481 /* 11n Capabilities */
1482 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1483 sc->sc_flags |= SC_OP_TXAGGR;
1484 sc->sc_flags |= SC_OP_RXAGGR;
1487 sc->tx_chainmask = ah->caps.tx_chainmask;
1488 sc->rx_chainmask = ah->caps.rx_chainmask;
1490 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1491 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1493 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1494 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1496 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1498 /* initialize beacon slots */
1499 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1500 sc->beacon.bslot[i] = NULL;
1501 sc->beacon.bslot_aphy[i] = NULL;
1504 /* setup channels and rates */
1506 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1507 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1508 sc->rates[IEEE80211_BAND_2GHZ];
1509 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1510 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1511 ARRAY_SIZE(ath9k_2ghz_chantable);
1513 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1514 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1515 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1516 sc->rates[IEEE80211_BAND_5GHZ];
1517 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1518 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1519 ARRAY_SIZE(ath9k_5ghz_chantable);
1522 if (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) {
1523 r = ath9k_hw_btcoex_init(ah);
1524 if (r)
1525 goto bad2;
1528 return 0;
1529 bad2:
1530 /* cleanup tx queues */
1531 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1532 if (ATH_TXQ_SETUP(sc, i))
1533 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1534 bad:
1535 ath9k_hw_detach(ah);
1536 sc->sc_ah = NULL;
1537 bad_no_ah:
1538 ath9k_exit_debug(sc);
1540 return r;
1543 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1545 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1546 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1547 IEEE80211_HW_SIGNAL_DBM |
1548 IEEE80211_HW_AMPDU_AGGREGATION |
1549 IEEE80211_HW_SUPPORTS_PS |
1550 IEEE80211_HW_PS_NULLFUNC_STACK |
1551 IEEE80211_HW_SPECTRUM_MGMT;
1553 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1554 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1556 hw->wiphy->interface_modes =
1557 BIT(NL80211_IFTYPE_AP) |
1558 BIT(NL80211_IFTYPE_STATION) |
1559 BIT(NL80211_IFTYPE_ADHOC) |
1560 BIT(NL80211_IFTYPE_MESH_POINT);
1562 hw->queues = 4;
1563 hw->max_rates = 4;
1564 hw->channel_change_time = 5000;
1565 hw->max_listen_interval = 10;
1566 /* Hardware supports 10 but we use 4 */
1567 hw->max_rate_tries = 4;
1568 hw->sta_data_size = sizeof(struct ath_node);
1569 hw->vif_data_size = sizeof(struct ath_vif);
1571 hw->rate_control_algorithm = "ath9k_rate_control";
1573 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1574 &sc->sbands[IEEE80211_BAND_2GHZ];
1575 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1576 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1577 &sc->sbands[IEEE80211_BAND_5GHZ];
1580 /* Device driver core initialization */
1581 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid)
1583 struct ieee80211_hw *hw = sc->hw;
1584 int error = 0, i;
1585 struct ath_regulatory *reg;
1587 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1589 error = ath_init_softc(devid, sc, subsysid);
1590 if (error != 0)
1591 return error;
1593 /* get mac address from hardware and set in mac80211 */
1595 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1597 ath_set_hw_capab(sc, hw);
1599 error = ath_regd_init(&sc->common.regulatory, sc->hw->wiphy,
1600 ath9k_reg_notifier);
1601 if (error)
1602 return error;
1604 reg = &sc->common.regulatory;
1606 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1607 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1608 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1609 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1612 /* initialize tx/rx engine */
1613 error = ath_tx_init(sc, ATH_TXBUF);
1614 if (error != 0)
1615 goto error_attach;
1617 error = ath_rx_init(sc, ATH_RXBUF);
1618 if (error != 0)
1619 goto error_attach;
1621 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1622 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1623 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1625 error = ieee80211_register_hw(hw);
1627 if (!ath_is_world_regd(reg)) {
1628 error = regulatory_hint(hw->wiphy, reg->alpha2);
1629 if (error)
1630 goto error_attach;
1633 /* Initialize LED control */
1634 ath_init_leds(sc);
1636 ath_start_rfkill_poll(sc);
1638 return 0;
1640 error_attach:
1641 /* cleanup tx queues */
1642 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1643 if (ATH_TXQ_SETUP(sc, i))
1644 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1646 ath9k_hw_detach(sc->sc_ah);
1647 sc->sc_ah = NULL;
1648 ath9k_exit_debug(sc);
1650 return error;
1653 int ath_reset(struct ath_softc *sc, bool retry_tx)
1655 struct ath_hw *ah = sc->sc_ah;
1656 struct ieee80211_hw *hw = sc->hw;
1657 int r;
1659 ath9k_hw_set_interrupts(ah, 0);
1660 ath_drain_all_txq(sc, retry_tx);
1661 ath_stoprecv(sc);
1662 ath_flushrecv(sc);
1664 spin_lock_bh(&sc->sc_resetlock);
1665 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1666 if (r)
1667 DPRINTF(sc, ATH_DBG_FATAL,
1668 "Unable to reset hardware; reset status %d\n", r);
1669 spin_unlock_bh(&sc->sc_resetlock);
1671 if (ath_startrecv(sc) != 0)
1672 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1675 * We may be doing a reset in response to a request
1676 * that changes the channel so update any state that
1677 * might change as a result.
1679 ath_cache_conf_rate(sc, &hw->conf);
1681 ath_update_txpow(sc);
1683 if (sc->sc_flags & SC_OP_BEACONS)
1684 ath_beacon_config(sc, NULL); /* restart beacons */
1686 ath9k_hw_set_interrupts(ah, sc->imask);
1688 if (retry_tx) {
1689 int i;
1690 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1691 if (ATH_TXQ_SETUP(sc, i)) {
1692 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1693 ath_txq_schedule(sc, &sc->tx.txq[i]);
1694 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1699 return r;
1703 * This function will allocate both the DMA descriptor structure, and the
1704 * buffers it contains. These are used to contain the descriptors used
1705 * by the system.
1707 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1708 struct list_head *head, const char *name,
1709 int nbuf, int ndesc)
1711 #define DS2PHYS(_dd, _ds) \
1712 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1713 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1714 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1716 struct ath_desc *ds;
1717 struct ath_buf *bf;
1718 int i, bsize, error;
1720 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1721 name, nbuf, ndesc);
1723 INIT_LIST_HEAD(head);
1724 /* ath_desc must be a multiple of DWORDs */
1725 if ((sizeof(struct ath_desc) % 4) != 0) {
1726 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1727 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1728 error = -ENOMEM;
1729 goto fail;
1732 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1735 * Need additional DMA memory because we can't use
1736 * descriptors that cross the 4K page boundary. Assume
1737 * one skipped descriptor per 4K page.
1739 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1740 u32 ndesc_skipped =
1741 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1742 u32 dma_len;
1744 while (ndesc_skipped) {
1745 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1746 dd->dd_desc_len += dma_len;
1748 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1752 /* allocate descriptors */
1753 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1754 &dd->dd_desc_paddr, GFP_KERNEL);
1755 if (dd->dd_desc == NULL) {
1756 error = -ENOMEM;
1757 goto fail;
1759 ds = dd->dd_desc;
1760 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1761 name, ds, (u32) dd->dd_desc_len,
1762 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1764 /* allocate buffers */
1765 bsize = sizeof(struct ath_buf) * nbuf;
1766 bf = kzalloc(bsize, GFP_KERNEL);
1767 if (bf == NULL) {
1768 error = -ENOMEM;
1769 goto fail2;
1771 dd->dd_bufptr = bf;
1773 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1774 bf->bf_desc = ds;
1775 bf->bf_daddr = DS2PHYS(dd, ds);
1777 if (!(sc->sc_ah->caps.hw_caps &
1778 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1780 * Skip descriptor addresses which can cause 4KB
1781 * boundary crossing (addr + length) with a 32 dword
1782 * descriptor fetch.
1784 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1785 ASSERT((caddr_t) bf->bf_desc <
1786 ((caddr_t) dd->dd_desc +
1787 dd->dd_desc_len));
1789 ds += ndesc;
1790 bf->bf_desc = ds;
1791 bf->bf_daddr = DS2PHYS(dd, ds);
1794 list_add_tail(&bf->list, head);
1796 return 0;
1797 fail2:
1798 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1799 dd->dd_desc_paddr);
1800 fail:
1801 memset(dd, 0, sizeof(*dd));
1802 return error;
1803 #undef ATH_DESC_4KB_BOUND_CHECK
1804 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1805 #undef DS2PHYS
1808 void ath_descdma_cleanup(struct ath_softc *sc,
1809 struct ath_descdma *dd,
1810 struct list_head *head)
1812 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1813 dd->dd_desc_paddr);
1815 INIT_LIST_HEAD(head);
1816 kfree(dd->dd_bufptr);
1817 memset(dd, 0, sizeof(*dd));
1820 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1822 int qnum;
1824 switch (queue) {
1825 case 0:
1826 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1827 break;
1828 case 1:
1829 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1830 break;
1831 case 2:
1832 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1833 break;
1834 case 3:
1835 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1836 break;
1837 default:
1838 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1839 break;
1842 return qnum;
1845 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1847 int qnum;
1849 switch (queue) {
1850 case ATH9K_WME_AC_VO:
1851 qnum = 0;
1852 break;
1853 case ATH9K_WME_AC_VI:
1854 qnum = 1;
1855 break;
1856 case ATH9K_WME_AC_BE:
1857 qnum = 2;
1858 break;
1859 case ATH9K_WME_AC_BK:
1860 qnum = 3;
1861 break;
1862 default:
1863 qnum = -1;
1864 break;
1867 return qnum;
1870 /* XXX: Remove me once we don't depend on ath9k_channel for all
1871 * this redundant data */
1872 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1873 struct ath9k_channel *ichan)
1875 struct ieee80211_channel *chan = hw->conf.channel;
1876 struct ieee80211_conf *conf = &hw->conf;
1878 ichan->channel = chan->center_freq;
1879 ichan->chan = chan;
1881 if (chan->band == IEEE80211_BAND_2GHZ) {
1882 ichan->chanmode = CHANNEL_G;
1883 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1884 } else {
1885 ichan->chanmode = CHANNEL_A;
1886 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1889 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1891 if (conf_is_ht(conf)) {
1892 if (conf_is_ht40(conf))
1893 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1895 ichan->chanmode = ath_get_extchanmode(sc, chan,
1896 conf->channel_type);
1900 /**********************/
1901 /* mac80211 callbacks */
1902 /**********************/
1904 static int ath9k_start(struct ieee80211_hw *hw)
1906 struct ath_wiphy *aphy = hw->priv;
1907 struct ath_softc *sc = aphy->sc;
1908 struct ieee80211_channel *curchan = hw->conf.channel;
1909 struct ath9k_channel *init_channel;
1910 int r;
1912 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1913 "initial channel: %d MHz\n", curchan->center_freq);
1915 mutex_lock(&sc->mutex);
1917 if (ath9k_wiphy_started(sc)) {
1918 if (sc->chan_idx == curchan->hw_value) {
1920 * Already on the operational channel, the new wiphy
1921 * can be marked active.
1923 aphy->state = ATH_WIPHY_ACTIVE;
1924 ieee80211_wake_queues(hw);
1925 } else {
1927 * Another wiphy is on another channel, start the new
1928 * wiphy in paused state.
1930 aphy->state = ATH_WIPHY_PAUSED;
1931 ieee80211_stop_queues(hw);
1933 mutex_unlock(&sc->mutex);
1934 return 0;
1936 aphy->state = ATH_WIPHY_ACTIVE;
1938 /* setup initial channel */
1940 sc->chan_idx = curchan->hw_value;
1942 init_channel = ath_get_curchannel(sc, hw);
1944 /* Reset SERDES registers */
1945 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1948 * The basic interface to setting the hardware in a good
1949 * state is ``reset''. On return the hardware is known to
1950 * be powered up and with interrupts disabled. This must
1951 * be followed by initialization of the appropriate bits
1952 * and then setup of the interrupt mask.
1954 spin_lock_bh(&sc->sc_resetlock);
1955 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1956 if (r) {
1957 DPRINTF(sc, ATH_DBG_FATAL,
1958 "Unable to reset hardware; reset status %d "
1959 "(freq %u MHz)\n", r,
1960 curchan->center_freq);
1961 spin_unlock_bh(&sc->sc_resetlock);
1962 goto mutex_unlock;
1964 spin_unlock_bh(&sc->sc_resetlock);
1967 * This is needed only to setup initial state
1968 * but it's best done after a reset.
1970 ath_update_txpow(sc);
1973 * Setup the hardware after reset:
1974 * The receive engine is set going.
1975 * Frame transmit is handled entirely
1976 * in the frame output path; there's nothing to do
1977 * here except setup the interrupt mask.
1979 if (ath_startrecv(sc) != 0) {
1980 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1981 r = -EIO;
1982 goto mutex_unlock;
1985 /* Setup our intr mask. */
1986 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1987 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1988 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1990 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1991 sc->imask |= ATH9K_INT_GTT;
1993 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1994 sc->imask |= ATH9K_INT_CST;
1996 ath_cache_conf_rate(sc, &hw->conf);
1998 sc->sc_flags &= ~SC_OP_INVALID;
2000 /* Disable BMISS interrupt when we're not associated */
2001 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2002 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2004 ieee80211_wake_queues(hw);
2006 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2008 if ((sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) &&
2009 !(sc->sc_flags & SC_OP_BTCOEX_ENABLED)) {
2010 ath_btcoex_set_weight(&sc->btcoex_info, AR_BT_COEX_WGHT,
2011 AR_STOMP_LOW_WLAN_WGHT);
2012 ath9k_hw_btcoex_enable(sc->sc_ah);
2014 ath_pcie_aspm_disable(sc);
2015 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2016 ath_btcoex_timer_resume(sc, &sc->btcoex_info);
2019 mutex_unlock:
2020 mutex_unlock(&sc->mutex);
2022 return r;
2025 static int ath9k_tx(struct ieee80211_hw *hw,
2026 struct sk_buff *skb)
2028 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2029 struct ath_wiphy *aphy = hw->priv;
2030 struct ath_softc *sc = aphy->sc;
2031 struct ath_tx_control txctl;
2032 int hdrlen, padsize;
2034 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2035 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2036 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2037 goto exit;
2040 if (sc->ps_enabled) {
2041 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2043 * mac80211 does not set PM field for normal data frames, so we
2044 * need to update that based on the current PS mode.
2046 if (ieee80211_is_data(hdr->frame_control) &&
2047 !ieee80211_is_nullfunc(hdr->frame_control) &&
2048 !ieee80211_has_pm(hdr->frame_control)) {
2049 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2050 "while in PS mode\n");
2051 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2055 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2057 * We are using PS-Poll and mac80211 can request TX while in
2058 * power save mode. Need to wake up hardware for the TX to be
2059 * completed and if needed, also for RX of buffered frames.
2061 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2062 ath9k_ps_wakeup(sc);
2063 ath9k_hw_setrxabort(sc->sc_ah, 0);
2064 if (ieee80211_is_pspoll(hdr->frame_control)) {
2065 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2066 "buffered frame\n");
2067 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2068 } else {
2069 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2070 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2073 * The actual restore operation will happen only after
2074 * the sc_flags bit is cleared. We are just dropping
2075 * the ps_usecount here.
2077 ath9k_ps_restore(sc);
2080 memset(&txctl, 0, sizeof(struct ath_tx_control));
2083 * As a temporary workaround, assign seq# here; this will likely need
2084 * to be cleaned up to work better with Beacon transmission and virtual
2085 * BSSes.
2087 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2088 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2089 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2090 sc->tx.seq_no += 0x10;
2091 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2092 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2095 /* Add the padding after the header if this is not already done */
2096 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2097 if (hdrlen & 3) {
2098 padsize = hdrlen % 4;
2099 if (skb_headroom(skb) < padsize)
2100 return -1;
2101 skb_push(skb, padsize);
2102 memmove(skb->data, skb->data + padsize, hdrlen);
2105 /* Check if a tx queue is available */
2107 txctl.txq = ath_test_get_txq(sc, skb);
2108 if (!txctl.txq)
2109 goto exit;
2111 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2113 if (ath_tx_start(hw, skb, &txctl) != 0) {
2114 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2115 goto exit;
2118 return 0;
2119 exit:
2120 dev_kfree_skb_any(skb);
2121 return 0;
2124 static void ath9k_stop(struct ieee80211_hw *hw)
2126 struct ath_wiphy *aphy = hw->priv;
2127 struct ath_softc *sc = aphy->sc;
2129 mutex_lock(&sc->mutex);
2131 aphy->state = ATH_WIPHY_INACTIVE;
2133 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2134 cancel_delayed_work_sync(&sc->tx_complete_work);
2136 if (!sc->num_sec_wiphy) {
2137 cancel_delayed_work_sync(&sc->wiphy_work);
2138 cancel_work_sync(&sc->chan_work);
2141 if (sc->sc_flags & SC_OP_INVALID) {
2142 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2143 mutex_unlock(&sc->mutex);
2144 return;
2147 if (ath9k_wiphy_started(sc)) {
2148 mutex_unlock(&sc->mutex);
2149 return; /* another wiphy still in use */
2152 if (sc->sc_flags & SC_OP_BTCOEX_ENABLED) {
2153 ath9k_hw_btcoex_disable(sc->sc_ah);
2154 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2155 ath_btcoex_timer_pause(sc, &sc->btcoex_info);
2158 /* make sure h/w will not generate any interrupt
2159 * before setting the invalid flag. */
2160 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2162 if (!(sc->sc_flags & SC_OP_INVALID)) {
2163 ath_drain_all_txq(sc, false);
2164 ath_stoprecv(sc);
2165 ath9k_hw_phy_disable(sc->sc_ah);
2166 } else
2167 sc->rx.rxlink = NULL;
2169 wiphy_rfkill_stop_polling(sc->hw->wiphy);
2171 /* disable HAL and put h/w to sleep */
2172 ath9k_hw_disable(sc->sc_ah);
2173 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2174 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
2176 sc->sc_flags |= SC_OP_INVALID;
2178 mutex_unlock(&sc->mutex);
2180 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2183 static int ath9k_add_interface(struct ieee80211_hw *hw,
2184 struct ieee80211_if_init_conf *conf)
2186 struct ath_wiphy *aphy = hw->priv;
2187 struct ath_softc *sc = aphy->sc;
2188 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2189 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2190 int ret = 0;
2192 mutex_lock(&sc->mutex);
2194 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2195 sc->nvifs > 0) {
2196 ret = -ENOBUFS;
2197 goto out;
2200 switch (conf->type) {
2201 case NL80211_IFTYPE_STATION:
2202 ic_opmode = NL80211_IFTYPE_STATION;
2203 break;
2204 case NL80211_IFTYPE_ADHOC:
2205 case NL80211_IFTYPE_AP:
2206 case NL80211_IFTYPE_MESH_POINT:
2207 if (sc->nbcnvifs >= ATH_BCBUF) {
2208 ret = -ENOBUFS;
2209 goto out;
2211 ic_opmode = conf->type;
2212 break;
2213 default:
2214 DPRINTF(sc, ATH_DBG_FATAL,
2215 "Interface type %d not yet supported\n", conf->type);
2216 ret = -EOPNOTSUPP;
2217 goto out;
2220 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2222 /* Set the VIF opmode */
2223 avp->av_opmode = ic_opmode;
2224 avp->av_bslot = -1;
2226 sc->nvifs++;
2228 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2229 ath9k_set_bssid_mask(hw);
2231 if (sc->nvifs > 1)
2232 goto out; /* skip global settings for secondary vif */
2234 if (ic_opmode == NL80211_IFTYPE_AP) {
2235 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2236 sc->sc_flags |= SC_OP_TSF_RESET;
2239 /* Set the device opmode */
2240 sc->sc_ah->opmode = ic_opmode;
2243 * Enable MIB interrupts when there are hardware phy counters.
2244 * Note we only do this (at the moment) for station mode.
2246 if ((conf->type == NL80211_IFTYPE_STATION) ||
2247 (conf->type == NL80211_IFTYPE_ADHOC) ||
2248 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2249 sc->imask |= ATH9K_INT_MIB;
2250 sc->imask |= ATH9K_INT_TSFOOR;
2253 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2255 if (conf->type == NL80211_IFTYPE_AP ||
2256 conf->type == NL80211_IFTYPE_ADHOC ||
2257 conf->type == NL80211_IFTYPE_MONITOR)
2258 ath_start_ani(sc);
2260 out:
2261 mutex_unlock(&sc->mutex);
2262 return ret;
2265 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2266 struct ieee80211_if_init_conf *conf)
2268 struct ath_wiphy *aphy = hw->priv;
2269 struct ath_softc *sc = aphy->sc;
2270 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2271 int i;
2273 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2275 mutex_lock(&sc->mutex);
2277 /* Stop ANI */
2278 del_timer_sync(&sc->ani.timer);
2280 /* Reclaim beacon resources */
2281 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2282 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2283 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2284 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2285 ath_beacon_return(sc, avp);
2288 sc->sc_flags &= ~SC_OP_BEACONS;
2290 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2291 if (sc->beacon.bslot[i] == conf->vif) {
2292 printk(KERN_DEBUG "%s: vif had allocated beacon "
2293 "slot\n", __func__);
2294 sc->beacon.bslot[i] = NULL;
2295 sc->beacon.bslot_aphy[i] = NULL;
2299 sc->nvifs--;
2301 mutex_unlock(&sc->mutex);
2304 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2306 struct ath_wiphy *aphy = hw->priv;
2307 struct ath_softc *sc = aphy->sc;
2308 struct ieee80211_conf *conf = &hw->conf;
2309 struct ath_hw *ah = sc->sc_ah;
2310 bool all_wiphys_idle = false, disable_radio = false;
2312 mutex_lock(&sc->mutex);
2314 /* Leave this as the first check */
2315 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2317 spin_lock_bh(&sc->wiphy_lock);
2318 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2319 spin_unlock_bh(&sc->wiphy_lock);
2321 if (conf->flags & IEEE80211_CONF_IDLE){
2322 if (all_wiphys_idle)
2323 disable_radio = true;
2325 else if (all_wiphys_idle) {
2326 ath_radio_enable(sc);
2327 DPRINTF(sc, ATH_DBG_CONFIG,
2328 "not-idle: enabling radio\n");
2332 if (changed & IEEE80211_CONF_CHANGE_PS) {
2333 if (conf->flags & IEEE80211_CONF_PS) {
2334 if (!(ah->caps.hw_caps &
2335 ATH9K_HW_CAP_AUTOSLEEP)) {
2336 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2337 sc->imask |= ATH9K_INT_TIM_TIMER;
2338 ath9k_hw_set_interrupts(sc->sc_ah,
2339 sc->imask);
2341 ath9k_hw_setrxabort(sc->sc_ah, 1);
2343 sc->ps_enabled = true;
2344 } else {
2345 sc->ps_enabled = false;
2346 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2347 if (!(ah->caps.hw_caps &
2348 ATH9K_HW_CAP_AUTOSLEEP)) {
2349 ath9k_hw_setrxabort(sc->sc_ah, 0);
2350 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2351 SC_OP_WAIT_FOR_CAB |
2352 SC_OP_WAIT_FOR_PSPOLL_DATA |
2353 SC_OP_WAIT_FOR_TX_ACK);
2354 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2355 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2356 ath9k_hw_set_interrupts(sc->sc_ah,
2357 sc->imask);
2363 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2364 struct ieee80211_channel *curchan = hw->conf.channel;
2365 int pos = curchan->hw_value;
2367 aphy->chan_idx = pos;
2368 aphy->chan_is_ht = conf_is_ht(conf);
2370 if (aphy->state == ATH_WIPHY_SCAN ||
2371 aphy->state == ATH_WIPHY_ACTIVE)
2372 ath9k_wiphy_pause_all_forced(sc, aphy);
2373 else {
2375 * Do not change operational channel based on a paused
2376 * wiphy changes.
2378 goto skip_chan_change;
2381 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2382 curchan->center_freq);
2384 /* XXX: remove me eventualy */
2385 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2387 ath_update_chainmask(sc, conf_is_ht(conf));
2389 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2390 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2391 mutex_unlock(&sc->mutex);
2392 return -EINVAL;
2396 skip_chan_change:
2397 if (changed & IEEE80211_CONF_CHANGE_POWER)
2398 sc->config.txpowlimit = 2 * conf->power_level;
2400 if (disable_radio) {
2401 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2402 ath_radio_disable(sc);
2405 mutex_unlock(&sc->mutex);
2407 return 0;
2410 #define SUPPORTED_FILTERS \
2411 (FIF_PROMISC_IN_BSS | \
2412 FIF_ALLMULTI | \
2413 FIF_CONTROL | \
2414 FIF_PSPOLL | \
2415 FIF_OTHER_BSS | \
2416 FIF_BCN_PRBRESP_PROMISC | \
2417 FIF_FCSFAIL)
2419 /* FIXME: sc->sc_full_reset ? */
2420 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2421 unsigned int changed_flags,
2422 unsigned int *total_flags,
2423 u64 multicast)
2425 struct ath_wiphy *aphy = hw->priv;
2426 struct ath_softc *sc = aphy->sc;
2427 u32 rfilt;
2429 changed_flags &= SUPPORTED_FILTERS;
2430 *total_flags &= SUPPORTED_FILTERS;
2432 sc->rx.rxfilter = *total_flags;
2433 ath9k_ps_wakeup(sc);
2434 rfilt = ath_calcrxfilter(sc);
2435 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2436 ath9k_ps_restore(sc);
2438 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt);
2441 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2442 struct ieee80211_vif *vif,
2443 enum sta_notify_cmd cmd,
2444 struct ieee80211_sta *sta)
2446 struct ath_wiphy *aphy = hw->priv;
2447 struct ath_softc *sc = aphy->sc;
2449 switch (cmd) {
2450 case STA_NOTIFY_ADD:
2451 ath_node_attach(sc, sta);
2452 break;
2453 case STA_NOTIFY_REMOVE:
2454 ath_node_detach(sc, sta);
2455 break;
2456 default:
2457 break;
2461 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2462 const struct ieee80211_tx_queue_params *params)
2464 struct ath_wiphy *aphy = hw->priv;
2465 struct ath_softc *sc = aphy->sc;
2466 struct ath9k_tx_queue_info qi;
2467 int ret = 0, qnum;
2469 if (queue >= WME_NUM_AC)
2470 return 0;
2472 mutex_lock(&sc->mutex);
2474 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2476 qi.tqi_aifs = params->aifs;
2477 qi.tqi_cwmin = params->cw_min;
2478 qi.tqi_cwmax = params->cw_max;
2479 qi.tqi_burstTime = params->txop;
2480 qnum = ath_get_hal_qnum(queue, sc);
2482 DPRINTF(sc, ATH_DBG_CONFIG,
2483 "Configure tx [queue/halq] [%d/%d], "
2484 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2485 queue, qnum, params->aifs, params->cw_min,
2486 params->cw_max, params->txop);
2488 ret = ath_txq_update(sc, qnum, &qi);
2489 if (ret)
2490 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2492 mutex_unlock(&sc->mutex);
2494 return ret;
2497 static int ath9k_set_key(struct ieee80211_hw *hw,
2498 enum set_key_cmd cmd,
2499 struct ieee80211_vif *vif,
2500 struct ieee80211_sta *sta,
2501 struct ieee80211_key_conf *key)
2503 struct ath_wiphy *aphy = hw->priv;
2504 struct ath_softc *sc = aphy->sc;
2505 int ret = 0;
2507 if (modparam_nohwcrypt)
2508 return -ENOSPC;
2510 mutex_lock(&sc->mutex);
2511 ath9k_ps_wakeup(sc);
2512 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2514 switch (cmd) {
2515 case SET_KEY:
2516 ret = ath_key_config(sc, vif, sta, key);
2517 if (ret >= 0) {
2518 key->hw_key_idx = ret;
2519 /* push IV and Michael MIC generation to stack */
2520 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2521 if (key->alg == ALG_TKIP)
2522 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2523 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2524 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2525 ret = 0;
2527 break;
2528 case DISABLE_KEY:
2529 ath_key_delete(sc, key);
2530 break;
2531 default:
2532 ret = -EINVAL;
2535 ath9k_ps_restore(sc);
2536 mutex_unlock(&sc->mutex);
2538 return ret;
2541 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2542 struct ieee80211_vif *vif,
2543 struct ieee80211_bss_conf *bss_conf,
2544 u32 changed)
2546 struct ath_wiphy *aphy = hw->priv;
2547 struct ath_softc *sc = aphy->sc;
2548 struct ath_hw *ah = sc->sc_ah;
2549 struct ath_vif *avp = (void *)vif->drv_priv;
2550 u32 rfilt = 0;
2551 int error, i;
2553 mutex_lock(&sc->mutex);
2556 * TODO: Need to decide which hw opmode to use for
2557 * multi-interface cases
2558 * XXX: This belongs into add_interface!
2560 if (vif->type == NL80211_IFTYPE_AP &&
2561 ah->opmode != NL80211_IFTYPE_AP) {
2562 ah->opmode = NL80211_IFTYPE_STATION;
2563 ath9k_hw_setopmode(ah);
2564 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2565 sc->curaid = 0;
2566 ath9k_hw_write_associd(sc);
2567 /* Request full reset to get hw opmode changed properly */
2568 sc->sc_flags |= SC_OP_FULL_RESET;
2571 if ((changed & BSS_CHANGED_BSSID) &&
2572 !is_zero_ether_addr(bss_conf->bssid)) {
2573 switch (vif->type) {
2574 case NL80211_IFTYPE_STATION:
2575 case NL80211_IFTYPE_ADHOC:
2576 case NL80211_IFTYPE_MESH_POINT:
2577 /* Set BSSID */
2578 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2579 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2580 sc->curaid = 0;
2581 ath9k_hw_write_associd(sc);
2583 /* Set aggregation protection mode parameters */
2584 sc->config.ath_aggr_prot = 0;
2586 DPRINTF(sc, ATH_DBG_CONFIG,
2587 "RX filter 0x%x bssid %pM aid 0x%x\n",
2588 rfilt, sc->curbssid, sc->curaid);
2590 /* need to reconfigure the beacon */
2591 sc->sc_flags &= ~SC_OP_BEACONS ;
2593 break;
2594 default:
2595 break;
2599 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2600 (vif->type == NL80211_IFTYPE_AP) ||
2601 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2602 if ((changed & BSS_CHANGED_BEACON) ||
2603 (changed & BSS_CHANGED_BEACON_ENABLED &&
2604 bss_conf->enable_beacon)) {
2606 * Allocate and setup the beacon frame.
2608 * Stop any previous beacon DMA. This may be
2609 * necessary, for example, when an ibss merge
2610 * causes reconfiguration; we may be called
2611 * with beacon transmission active.
2613 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2615 error = ath_beacon_alloc(aphy, vif);
2616 if (!error)
2617 ath_beacon_config(sc, vif);
2621 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2622 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2623 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2624 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2625 ath9k_hw_keysetmac(sc->sc_ah,
2626 (u16)i,
2627 sc->curbssid);
2630 /* Only legacy IBSS for now */
2631 if (vif->type == NL80211_IFTYPE_ADHOC)
2632 ath_update_chainmask(sc, 0);
2634 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2635 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2636 bss_conf->use_short_preamble);
2637 if (bss_conf->use_short_preamble)
2638 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2639 else
2640 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2643 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2644 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2645 bss_conf->use_cts_prot);
2646 if (bss_conf->use_cts_prot &&
2647 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2648 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2649 else
2650 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2653 if (changed & BSS_CHANGED_ASSOC) {
2654 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2655 bss_conf->assoc);
2656 ath9k_bss_assoc_info(sc, vif, bss_conf);
2660 * The HW TSF has to be reset when the beacon interval changes.
2661 * We set the flag here, and ath_beacon_config_ap() would take this
2662 * into account when it gets called through the subsequent
2663 * config_interface() call - with IFCC_BEACON in the changed field.
2666 if (changed & BSS_CHANGED_BEACON_INT) {
2667 sc->sc_flags |= SC_OP_TSF_RESET;
2668 sc->beacon_interval = bss_conf->beacon_int;
2671 mutex_unlock(&sc->mutex);
2674 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2676 u64 tsf;
2677 struct ath_wiphy *aphy = hw->priv;
2678 struct ath_softc *sc = aphy->sc;
2680 mutex_lock(&sc->mutex);
2681 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2682 mutex_unlock(&sc->mutex);
2684 return tsf;
2687 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2689 struct ath_wiphy *aphy = hw->priv;
2690 struct ath_softc *sc = aphy->sc;
2692 mutex_lock(&sc->mutex);
2693 ath9k_hw_settsf64(sc->sc_ah, tsf);
2694 mutex_unlock(&sc->mutex);
2697 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2699 struct ath_wiphy *aphy = hw->priv;
2700 struct ath_softc *sc = aphy->sc;
2702 mutex_lock(&sc->mutex);
2703 ath9k_hw_reset_tsf(sc->sc_ah);
2704 mutex_unlock(&sc->mutex);
2707 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2708 enum ieee80211_ampdu_mlme_action action,
2709 struct ieee80211_sta *sta,
2710 u16 tid, u16 *ssn)
2712 struct ath_wiphy *aphy = hw->priv;
2713 struct ath_softc *sc = aphy->sc;
2714 int ret = 0;
2716 switch (action) {
2717 case IEEE80211_AMPDU_RX_START:
2718 if (!(sc->sc_flags & SC_OP_RXAGGR))
2719 ret = -ENOTSUPP;
2720 break;
2721 case IEEE80211_AMPDU_RX_STOP:
2722 break;
2723 case IEEE80211_AMPDU_TX_START:
2724 ath_tx_aggr_start(sc, sta, tid, ssn);
2725 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2726 break;
2727 case IEEE80211_AMPDU_TX_STOP:
2728 ath_tx_aggr_stop(sc, sta, tid);
2729 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2730 break;
2731 case IEEE80211_AMPDU_TX_OPERATIONAL:
2732 ath_tx_aggr_resume(sc, sta, tid);
2733 break;
2734 default:
2735 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2738 return ret;
2741 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2743 struct ath_wiphy *aphy = hw->priv;
2744 struct ath_softc *sc = aphy->sc;
2746 mutex_lock(&sc->mutex);
2747 if (ath9k_wiphy_scanning(sc)) {
2748 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2749 "same time\n");
2751 * Do not allow the concurrent scanning state for now. This
2752 * could be improved with scanning control moved into ath9k.
2754 mutex_unlock(&sc->mutex);
2755 return;
2758 aphy->state = ATH_WIPHY_SCAN;
2759 ath9k_wiphy_pause_all_forced(sc, aphy);
2761 spin_lock_bh(&sc->ani_lock);
2762 sc->sc_flags |= SC_OP_SCANNING;
2763 spin_unlock_bh(&sc->ani_lock);
2764 mutex_unlock(&sc->mutex);
2767 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2769 struct ath_wiphy *aphy = hw->priv;
2770 struct ath_softc *sc = aphy->sc;
2772 mutex_lock(&sc->mutex);
2773 spin_lock_bh(&sc->ani_lock);
2774 aphy->state = ATH_WIPHY_ACTIVE;
2775 sc->sc_flags &= ~SC_OP_SCANNING;
2776 sc->sc_flags |= SC_OP_FULL_RESET;
2777 spin_unlock_bh(&sc->ani_lock);
2778 ath_beacon_config(sc, NULL);
2779 mutex_unlock(&sc->mutex);
2782 struct ieee80211_ops ath9k_ops = {
2783 .tx = ath9k_tx,
2784 .start = ath9k_start,
2785 .stop = ath9k_stop,
2786 .add_interface = ath9k_add_interface,
2787 .remove_interface = ath9k_remove_interface,
2788 .config = ath9k_config,
2789 .configure_filter = ath9k_configure_filter,
2790 .sta_notify = ath9k_sta_notify,
2791 .conf_tx = ath9k_conf_tx,
2792 .bss_info_changed = ath9k_bss_info_changed,
2793 .set_key = ath9k_set_key,
2794 .get_tsf = ath9k_get_tsf,
2795 .set_tsf = ath9k_set_tsf,
2796 .reset_tsf = ath9k_reset_tsf,
2797 .ampdu_action = ath9k_ampdu_action,
2798 .sw_scan_start = ath9k_sw_scan_start,
2799 .sw_scan_complete = ath9k_sw_scan_complete,
2800 .rfkill_poll = ath9k_rfkill_poll_state,
2803 static struct {
2804 u32 version;
2805 const char * name;
2806 } ath_mac_bb_names[] = {
2807 { AR_SREV_VERSION_5416_PCI, "5416" },
2808 { AR_SREV_VERSION_5416_PCIE, "5418" },
2809 { AR_SREV_VERSION_9100, "9100" },
2810 { AR_SREV_VERSION_9160, "9160" },
2811 { AR_SREV_VERSION_9280, "9280" },
2812 { AR_SREV_VERSION_9285, "9285" },
2813 { AR_SREV_VERSION_9287, "9287" }
2816 static struct {
2817 u16 version;
2818 const char * name;
2819 } ath_rf_names[] = {
2820 { 0, "5133" },
2821 { AR_RAD5133_SREV_MAJOR, "5133" },
2822 { AR_RAD5122_SREV_MAJOR, "5122" },
2823 { AR_RAD2133_SREV_MAJOR, "2133" },
2824 { AR_RAD2122_SREV_MAJOR, "2122" }
2828 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2830 const char *
2831 ath_mac_bb_name(u32 mac_bb_version)
2833 int i;
2835 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2836 if (ath_mac_bb_names[i].version == mac_bb_version) {
2837 return ath_mac_bb_names[i].name;
2841 return "????";
2845 * Return the RF name. "????" is returned if the RF is unknown.
2847 const char *
2848 ath_rf_name(u16 rf_version)
2850 int i;
2852 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2853 if (ath_rf_names[i].version == rf_version) {
2854 return ath_rf_names[i].name;
2858 return "????";
2861 static int __init ath9k_init(void)
2863 int error;
2865 /* Register rate control algorithm */
2866 error = ath_rate_control_register();
2867 if (error != 0) {
2868 printk(KERN_ERR
2869 "ath9k: Unable to register rate control "
2870 "algorithm: %d\n",
2871 error);
2872 goto err_out;
2875 error = ath9k_debug_create_root();
2876 if (error) {
2877 printk(KERN_ERR
2878 "ath9k: Unable to create debugfs root: %d\n",
2879 error);
2880 goto err_rate_unregister;
2883 error = ath_pci_init();
2884 if (error < 0) {
2885 printk(KERN_ERR
2886 "ath9k: No PCI devices found, driver not installed.\n");
2887 error = -ENODEV;
2888 goto err_remove_root;
2891 error = ath_ahb_init();
2892 if (error < 0) {
2893 error = -ENODEV;
2894 goto err_pci_exit;
2897 return 0;
2899 err_pci_exit:
2900 ath_pci_exit();
2902 err_remove_root:
2903 ath9k_debug_remove_root();
2904 err_rate_unregister:
2905 ath_rate_control_unregister();
2906 err_out:
2907 return error;
2909 module_init(ath9k_init);
2911 static void __exit ath9k_exit(void)
2913 ath_ahb_exit();
2914 ath_pci_exit();
2915 ath9k_debug_remove_root();
2916 ath_rate_control_unregister();
2917 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2919 module_exit(ath9k_exit);