1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
68 #include <net/mac80211.h>
70 #include "iwl-commands.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
77 /************************** EEPROM BANDS ****************************
79 * The iwl_eeprom_band definitions below provide the mapping from the
80 * EEPROM contents to the specific channel number supported for each
83 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85 * The specific geography and calibration information for that channel
86 * is contained in the eeprom map itself.
88 * During init, we copy the eeprom information and channel map
89 * information into priv->channel_info_24/52 and priv->channel_map_24/52
91 * channel_map_24/52 provides the index in the channel_info array for a
92 * given channel. We have to have two separate maps as there is channel
93 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
96 * A value of 0xff stored in the channel_map indicates that the channel
97 * is not supported by the hardware at all.
99 * A value of 0xfe in the channel_map indicates that the channel is not
100 * valid for Tx with the current hardware. This means that
101 * while the system can tune and receive on a given channel, it may not
102 * be able to associate or transmit any frames on that
103 * channel. There is no corresponding channel information for that
106 *********************************************************************/
109 const u8 iwl_eeprom_band_1
[14] = {
110 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
114 static const u8 iwl_eeprom_band_2
[] = { /* 4915-5080MHz */
115 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
118 static const u8 iwl_eeprom_band_3
[] = { /* 5170-5320MHz */
119 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
122 static const u8 iwl_eeprom_band_4
[] = { /* 5500-5700MHz */
123 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
126 static const u8 iwl_eeprom_band_5
[] = { /* 5725-5825MHz */
127 145, 149, 153, 157, 161, 165
130 static const u8 iwl_eeprom_band_6
[] = { /* 2.4 ht40 channel */
134 static const u8 iwl_eeprom_band_7
[] = { /* 5.2 ht40 channel */
135 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
139 * struct iwl_txpwr_section: eeprom section information
140 * @offset: indirect address into eeprom image
141 * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142 * @band: band type for the section
143 * @is_common - true: common section, false: channel section
144 * @is_cck - true: cck section, false: not cck section
145 * @is_ht_40 - true: all channel in the section are HT40 channel,
146 * false: legacy or HT 20 MHz
147 * ignore if it is common section
148 * @iwl_eeprom_section_channel: channel array in the section,
149 * ignore if common section
151 struct iwl_txpwr_section
{
154 enum ieee80211_band band
;
158 u8 iwl_eeprom_section_channel
[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS
];
162 * section 1 - 3 are regulatory tx power apply to all channels based on
163 * modulation: CCK, OFDM
164 * Band: 2.4GHz, 5.2GHz
165 * section 4 - 10 are regulatory tx power apply to specified channels
167 * 1L - Channel 1 Legacy
169 * (1,+1) - Channel 1 HT40 "_above_"
171 * Section 1: all CCK channels
172 * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173 * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174 * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175 * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176 * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177 * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178 * Section 8: 2.4 GHz channel: 13L, 13HT
179 * Section 9: 2.4 GHz channel: 140L, 140HT
180 * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
183 static const struct iwl_txpwr_section enhinfo
[] = {
184 { EEPROM_LB_CCK_20_COMMON
, 1, IEEE80211_BAND_2GHZ
, true, true, false },
185 { EEPROM_LB_OFDM_COMMON
, 3, IEEE80211_BAND_2GHZ
, true, false, false },
186 { EEPROM_HB_OFDM_COMMON
, 3, IEEE80211_BAND_5GHZ
, true, false, false },
187 { EEPROM_LB_OFDM_20_BAND
, 8, IEEE80211_BAND_2GHZ
,
189 {1, 1, 2, 2, 10, 10, 11, 11 } },
190 { EEPROM_LB_OFDM_HT40_BAND
, 5, IEEE80211_BAND_2GHZ
,
193 { EEPROM_HB_OFDM_20_BAND
, 6, IEEE80211_BAND_5GHZ
,
195 { 36, 64, 100, 36, 64, 100 } },
196 { EEPROM_HB_OFDM_HT40_BAND
, 3, IEEE80211_BAND_5GHZ
,
199 { EEPROM_LB_OFDM_20_CHANNEL_13
, 2, IEEE80211_BAND_2GHZ
,
202 { EEPROM_HB_OFDM_20_CHANNEL_140
, 2, IEEE80211_BAND_5GHZ
,
205 { EEPROM_HB_OFDM_HT40_BAND_1
, 2, IEEE80211_BAND_5GHZ
,
210 /******************************************************************************
212 * EEPROM related functions
214 ******************************************************************************/
216 int iwlcore_eeprom_verify_signature(struct iwl_priv
*priv
)
218 u32 gp
= iwl_read32(priv
, CSR_EEPROM_GP
);
219 if ((gp
& CSR_EEPROM_GP_VALID_MSK
) == CSR_EEPROM_GP_BAD_SIGNATURE
) {
220 IWL_ERR(priv
, "EEPROM not found, EEPROM_GP=0x%08x\n", gp
);
225 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature
);
227 static void iwl_set_otp_access(struct iwl_priv
*priv
, enum iwl_access_mode mode
)
231 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
232 if (mode
== IWL_OTP_ACCESS_ABSOLUTE
)
233 iwl_clear_bit(priv
, CSR_OTP_GP_REG
,
234 CSR_OTP_GP_REG_OTP_ACCESS_MODE
);
236 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
237 CSR_OTP_GP_REG_OTP_ACCESS_MODE
);
240 static int iwlcore_get_nvm_type(struct iwl_priv
*priv
)
245 /* OTP only valid for CP/PP and after */
246 switch (priv
->hw_rev
& CSR_HW_REV_TYPE_MSK
) {
247 case CSR_HW_REV_TYPE_NONE
:
248 IWL_ERR(priv
, "Unknown hardware type\n");
250 case CSR_HW_REV_TYPE_3945
:
251 case CSR_HW_REV_TYPE_4965
:
252 case CSR_HW_REV_TYPE_5300
:
253 case CSR_HW_REV_TYPE_5350
:
254 case CSR_HW_REV_TYPE_5100
:
255 case CSR_HW_REV_TYPE_5150
:
256 nvm_type
= NVM_DEVICE_TYPE_EEPROM
;
259 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
260 if (otpgp
& CSR_OTP_GP_REG_DEVICE_SELECT
)
261 nvm_type
= NVM_DEVICE_TYPE_OTP
;
263 nvm_type
= NVM_DEVICE_TYPE_EEPROM
;
270 * The device's EEPROM semaphore prevents conflicts between driver and uCode
271 * when accessing the EEPROM; each access is a series of pulses to/from the
272 * EEPROM chip, not a single event, so even reads could conflict if they
273 * weren't arbitrated by the semaphore.
275 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv
*priv
)
280 for (count
= 0; count
< EEPROM_SEM_RETRY_LIMIT
; count
++) {
281 /* Request semaphore */
282 iwl_set_bit(priv
, CSR_HW_IF_CONFIG_REG
,
283 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
);
285 /* See if we got it */
286 ret
= iwl_poll_direct_bit(priv
, CSR_HW_IF_CONFIG_REG
,
287 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
,
290 IWL_DEBUG_IO(priv
, "Acquired semaphore after %d tries.\n",
298 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore
);
300 void iwlcore_eeprom_release_semaphore(struct iwl_priv
*priv
)
302 iwl_clear_bit(priv
, CSR_HW_IF_CONFIG_REG
,
303 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
);
306 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore
);
308 const u8
*iwlcore_eeprom_query_addr(const struct iwl_priv
*priv
, size_t offset
)
310 BUG_ON(offset
>= priv
->cfg
->eeprom_size
);
311 return &priv
->eeprom
[offset
];
313 EXPORT_SYMBOL(iwlcore_eeprom_query_addr
);
315 static int iwl_init_otp_access(struct iwl_priv
*priv
)
319 /* Enable 40MHz radio clock */
320 _iwl_write32(priv
, CSR_GP_CNTRL
,
321 _iwl_read32(priv
, CSR_GP_CNTRL
) |
322 CSR_GP_CNTRL_REG_FLAG_INIT_DONE
);
324 /* wait for clock to be ready */
325 ret
= iwl_poll_direct_bit(priv
, CSR_GP_CNTRL
,
326 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
,
329 IWL_ERR(priv
, "Time out access OTP\n");
331 iwl_set_bits_prph(priv
, APMG_PS_CTRL_REG
,
332 APMG_PS_CTRL_VAL_RESET_REQ
);
334 iwl_clear_bits_prph(priv
, APMG_PS_CTRL_REG
,
335 APMG_PS_CTRL_VAL_RESET_REQ
);
340 static int iwl_read_otp_word(struct iwl_priv
*priv
, u16 addr
, u16
*eeprom_data
)
346 _iwl_write32(priv
, CSR_EEPROM_REG
,
347 CSR_EEPROM_REG_MSK_ADDR
& (addr
<< 1));
348 ret
= iwl_poll_direct_bit(priv
, CSR_EEPROM_REG
,
349 CSR_EEPROM_REG_READ_VALID_MSK
,
350 IWL_EEPROM_ACCESS_TIMEOUT
);
352 IWL_ERR(priv
, "Time out reading OTP[%d]\n", addr
);
355 r
= _iwl_read_direct32(priv
, CSR_EEPROM_REG
);
356 /* check for ECC errors: */
357 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
358 if (otpgp
& CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
) {
359 /* stop in this case */
360 /* set the uncorrectable OTP ECC bit for acknowledgement */
361 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
362 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
);
363 IWL_ERR(priv
, "Uncorrectable OTP ECC error, abort OTP read\n");
366 if (otpgp
& CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
) {
367 /* continue in this case */
368 /* set the correctable OTP ECC bit for acknowledgement */
369 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
370 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
);
371 IWL_ERR(priv
, "Correctable OTP ECC error, continue read\n");
373 *eeprom_data
= le16_to_cpu((__force __le16
)(r
>> 16));
378 * iwl_is_otp_empty: check for empty OTP
380 static bool iwl_is_otp_empty(struct iwl_priv
*priv
)
382 u16 next_link_addr
= 0, link_value
;
383 bool is_empty
= false;
385 /* locate the beginning of OTP link list */
386 if (!iwl_read_otp_word(priv
, next_link_addr
, &link_value
)) {
388 IWL_ERR(priv
, "OTP is empty\n");
392 IWL_ERR(priv
, "Unable to read first block of OTP list.\n");
401 * iwl_find_otp_image: find EEPROM image in OTP
402 * finding the OTP block that contains the EEPROM image.
403 * the last valid block on the link list (the block _before_ the last block)
404 * is the block we should read and used to configure the device.
405 * If all the available OTP blocks are full, the last block will be the block
406 * we should read and used to configure the device.
407 * only perform this operation if shadow RAM is disabled
409 static int iwl_find_otp_image(struct iwl_priv
*priv
,
412 u16 next_link_addr
= 0, link_value
= 0, valid_addr
;
416 /* set addressing mode to absolute to traverse the link list */
417 iwl_set_otp_access(priv
, IWL_OTP_ACCESS_ABSOLUTE
);
419 /* checking for empty OTP or error */
420 if (iwl_is_otp_empty(priv
))
424 * start traverse link list
425 * until reach the max number of OTP blocks
426 * different devices have different number of OTP blocks
429 /* save current valid block address
430 * check for more block on the link list
432 valid_addr
= next_link_addr
;
433 next_link_addr
= link_value
;
434 IWL_DEBUG_INFO(priv
, "OTP blocks %d addr 0x%x\n",
435 usedblocks
, next_link_addr
);
436 if (iwl_read_otp_word(priv
, next_link_addr
, &link_value
))
440 * reach the end of link list,
441 * set address point to the starting address
446 /* more in the link list, continue */
448 } while (usedblocks
< priv
->cfg
->max_ll_items
);
449 /* OTP full, use last block */
450 IWL_DEBUG_INFO(priv
, "OTP is full, use last block\n");
452 *validblockaddr
= valid_addr
;
453 /* skip first 2 bytes (link list pointer) */
454 *validblockaddr
+= 2;
459 * iwl_eeprom_init - read EEPROM contents
461 * Load the EEPROM contents from adapter into priv->eeprom
463 * NOTE: This routine uses the non-debug IO access functions.
465 int iwl_eeprom_init(struct iwl_priv
*priv
)
468 u32 gp
= iwl_read32(priv
, CSR_EEPROM_GP
);
472 u16 validblockaddr
= 0;
475 priv
->nvm_device_type
= iwlcore_get_nvm_type(priv
);
476 if (priv
->nvm_device_type
== -ENOENT
)
478 /* allocate eeprom */
479 IWL_DEBUG_INFO(priv
, "NVM size = %d\n", priv
->cfg
->eeprom_size
);
480 sz
= priv
->cfg
->eeprom_size
;
481 priv
->eeprom
= kzalloc(sz
, GFP_KERNEL
);
486 e
= (u16
*)priv
->eeprom
;
488 ret
= priv
->cfg
->ops
->lib
->eeprom_ops
.verify_signature(priv
);
490 IWL_ERR(priv
, "EEPROM not found, EEPROM_GP=0x%08x\n", gp
);
495 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
496 ret
= priv
->cfg
->ops
->lib
->eeprom_ops
.acquire_semaphore(priv
);
498 IWL_ERR(priv
, "Failed to acquire EEPROM semaphore.\n");
502 if (priv
->nvm_device_type
== NVM_DEVICE_TYPE_OTP
) {
503 ret
= iwl_init_otp_access(priv
);
505 IWL_ERR(priv
, "Failed to initialize OTP access.\n");
509 _iwl_write32(priv
, CSR_EEPROM_GP
,
510 iwl_read32(priv
, CSR_EEPROM_GP
) &
511 ~CSR_EEPROM_GP_IF_OWNER_MSK
);
513 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
514 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
|
515 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
);
516 /* traversing the linked list if no shadow ram supported */
517 if (!priv
->cfg
->shadow_ram_support
) {
518 if (iwl_find_otp_image(priv
, &validblockaddr
)) {
523 for (addr
= validblockaddr
; addr
< validblockaddr
+ sz
;
524 addr
+= sizeof(u16
)) {
527 ret
= iwl_read_otp_word(priv
, addr
, &eeprom_data
);
530 e
[cache_addr
/ 2] = eeprom_data
;
531 cache_addr
+= sizeof(u16
);
534 /* eeprom is an array of 16bit values */
535 for (addr
= 0; addr
< sz
; addr
+= sizeof(u16
)) {
538 _iwl_write32(priv
, CSR_EEPROM_REG
,
539 CSR_EEPROM_REG_MSK_ADDR
& (addr
<< 1));
541 ret
= iwl_poll_direct_bit(priv
, CSR_EEPROM_REG
,
542 CSR_EEPROM_REG_READ_VALID_MSK
,
543 IWL_EEPROM_ACCESS_TIMEOUT
);
545 IWL_ERR(priv
, "Time out reading EEPROM[%d]\n", addr
);
548 r
= _iwl_read_direct32(priv
, CSR_EEPROM_REG
);
549 e
[addr
/ 2] = le16_to_cpu((__force __le16
)(r
>> 16));
554 priv
->cfg
->ops
->lib
->eeprom_ops
.release_semaphore(priv
);
557 iwl_eeprom_free(priv
);
561 EXPORT_SYMBOL(iwl_eeprom_init
);
563 void iwl_eeprom_free(struct iwl_priv
*priv
)
568 EXPORT_SYMBOL(iwl_eeprom_free
);
570 int iwl_eeprom_check_version(struct iwl_priv
*priv
)
575 eeprom_ver
= iwl_eeprom_query16(priv
, EEPROM_VERSION
);
576 calib_ver
= priv
->cfg
->ops
->lib
->eeprom_ops
.calib_version(priv
);
578 if (eeprom_ver
< priv
->cfg
->eeprom_ver
||
579 calib_ver
< priv
->cfg
->eeprom_calib_ver
)
584 IWL_ERR(priv
, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
585 eeprom_ver
, priv
->cfg
->eeprom_ver
,
586 calib_ver
, priv
->cfg
->eeprom_calib_ver
);
590 EXPORT_SYMBOL(iwl_eeprom_check_version
);
592 const u8
*iwl_eeprom_query_addr(const struct iwl_priv
*priv
, size_t offset
)
594 return priv
->cfg
->ops
->lib
->eeprom_ops
.query_addr(priv
, offset
);
596 EXPORT_SYMBOL(iwl_eeprom_query_addr
);
598 u16
iwl_eeprom_query16(const struct iwl_priv
*priv
, size_t offset
)
602 return (u16
)priv
->eeprom
[offset
] | ((u16
)priv
->eeprom
[offset
+ 1] << 8);
604 EXPORT_SYMBOL(iwl_eeprom_query16
);
606 void iwl_eeprom_get_mac(const struct iwl_priv
*priv
, u8
*mac
)
608 const u8
*addr
= priv
->cfg
->ops
->lib
->eeprom_ops
.query_addr(priv
,
610 memcpy(mac
, addr
, ETH_ALEN
);
612 EXPORT_SYMBOL(iwl_eeprom_get_mac
);
614 static void iwl_init_band_reference(const struct iwl_priv
*priv
,
615 int eep_band
, int *eeprom_ch_count
,
616 const struct iwl_eeprom_channel
**eeprom_ch_info
,
617 const u8
**eeprom_ch_index
)
619 u32 offset
= priv
->cfg
->ops
->lib
->
620 eeprom_ops
.regulatory_bands
[eep_band
- 1];
622 case 1: /* 2.4GHz band */
623 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_1
);
624 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
625 iwl_eeprom_query_addr(priv
, offset
);
626 *eeprom_ch_index
= iwl_eeprom_band_1
;
628 case 2: /* 4.9GHz band */
629 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_2
);
630 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
631 iwl_eeprom_query_addr(priv
, offset
);
632 *eeprom_ch_index
= iwl_eeprom_band_2
;
634 case 3: /* 5.2GHz band */
635 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_3
);
636 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
637 iwl_eeprom_query_addr(priv
, offset
);
638 *eeprom_ch_index
= iwl_eeprom_band_3
;
640 case 4: /* 5.5GHz band */
641 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_4
);
642 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
643 iwl_eeprom_query_addr(priv
, offset
);
644 *eeprom_ch_index
= iwl_eeprom_band_4
;
646 case 5: /* 5.7GHz band */
647 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_5
);
648 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
649 iwl_eeprom_query_addr(priv
, offset
);
650 *eeprom_ch_index
= iwl_eeprom_band_5
;
652 case 6: /* 2.4GHz ht40 channels */
653 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_6
);
654 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
655 iwl_eeprom_query_addr(priv
, offset
);
656 *eeprom_ch_index
= iwl_eeprom_band_6
;
658 case 7: /* 5 GHz ht40 channels */
659 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_7
);
660 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
661 iwl_eeprom_query_addr(priv
, offset
);
662 *eeprom_ch_index
= iwl_eeprom_band_7
;
670 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
674 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
676 * Does not set up a command, or touch hardware.
678 static int iwl_mod_ht40_chan_info(struct iwl_priv
*priv
,
679 enum ieee80211_band band
, u16 channel
,
680 const struct iwl_eeprom_channel
*eeprom_ch
,
681 u8 clear_ht40_extension_channel
)
683 struct iwl_channel_info
*ch_info
;
685 ch_info
= (struct iwl_channel_info
*)
686 iwl_get_channel_info(priv
, band
, channel
);
688 if (!is_channel_valid(ch_info
))
691 IWL_DEBUG_INFO(priv
, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
692 " Ad-Hoc %ssupported\n",
694 is_channel_a_band(ch_info
) ?
696 CHECK_AND_PRINT(IBSS
),
697 CHECK_AND_PRINT(ACTIVE
),
698 CHECK_AND_PRINT(RADAR
),
699 CHECK_AND_PRINT(WIDE
),
700 CHECK_AND_PRINT(DFS
),
702 eeprom_ch
->max_power_avg
,
703 ((eeprom_ch
->flags
& EEPROM_CHANNEL_IBSS
)
704 && !(eeprom_ch
->flags
& EEPROM_CHANNEL_RADAR
)) ?
707 ch_info
->ht40_eeprom
= *eeprom_ch
;
708 ch_info
->ht40_max_power_avg
= eeprom_ch
->max_power_avg
;
709 ch_info
->ht40_curr_txpow
= eeprom_ch
->max_power_avg
;
710 ch_info
->ht40_min_power
= 0;
711 ch_info
->ht40_scan_power
= eeprom_ch
->max_power_avg
;
712 ch_info
->ht40_flags
= eeprom_ch
->flags
;
713 ch_info
->ht40_extension_channel
&= ~clear_ht40_extension_channel
;
719 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
720 * find the highest tx power from all chains for the channel
722 static s8
iwl_get_max_txpower_avg(struct iwl_priv
*priv
,
723 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
, int element
)
725 s8 max_txpower_avg
= 0; /* (dBm) */
727 IWL_DEBUG_INFO(priv
, "%d - "
728 "chain_a: %d dB chain_b: %d dB "
729 "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
731 enhanced_txpower
[element
].chain_a_max
>> 1,
732 enhanced_txpower
[element
].chain_b_max
>> 1,
733 enhanced_txpower
[element
].chain_c_max
>> 1,
734 enhanced_txpower
[element
].mimo2_max
>> 1,
735 enhanced_txpower
[element
].mimo3_max
>> 1);
736 /* Take the highest tx power from any valid chains */
737 if ((priv
->cfg
->valid_tx_ant
& ANT_A
) &&
738 (enhanced_txpower
[element
].chain_a_max
> max_txpower_avg
))
739 max_txpower_avg
= enhanced_txpower
[element
].chain_a_max
;
740 if ((priv
->cfg
->valid_tx_ant
& ANT_B
) &&
741 (enhanced_txpower
[element
].chain_b_max
> max_txpower_avg
))
742 max_txpower_avg
= enhanced_txpower
[element
].chain_b_max
;
743 if ((priv
->cfg
->valid_tx_ant
& ANT_C
) &&
744 (enhanced_txpower
[element
].chain_c_max
> max_txpower_avg
))
745 max_txpower_avg
= enhanced_txpower
[element
].chain_c_max
;
746 if (((priv
->cfg
->valid_tx_ant
== ANT_AB
) |
747 (priv
->cfg
->valid_tx_ant
== ANT_BC
) |
748 (priv
->cfg
->valid_tx_ant
== ANT_AC
)) &&
749 (enhanced_txpower
[element
].mimo2_max
> max_txpower_avg
))
750 max_txpower_avg
= enhanced_txpower
[element
].mimo2_max
;
751 if ((priv
->cfg
->valid_tx_ant
== ANT_ABC
) &&
752 (enhanced_txpower
[element
].mimo3_max
> max_txpower_avg
))
753 max_txpower_avg
= enhanced_txpower
[element
].mimo3_max
;
755 /* max. tx power in EEPROM is in 1/2 dBm format
756 * convert from 1/2 dBm to dBm
758 return max_txpower_avg
>> 1;
762 * iwl_update_common_txpower: update channel tx power
763 * update tx power per band based on EEPROM enhanced tx power info.
765 static s8
iwl_update_common_txpower(struct iwl_priv
*priv
,
766 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
,
767 int section
, int element
)
769 struct iwl_channel_info
*ch_info
;
771 bool is_ht40
= false;
772 s8 max_txpower_avg
; /* (dBm) */
774 /* it is common section, contain all type (Legacy, HT and HT40)
775 * based on the element in the section to determine
778 if (element
== EEPROM_TXPOWER_COMMON_HT40_INDEX
)
781 iwl_get_max_txpower_avg(priv
, enhanced_txpower
, element
);
782 ch_info
= priv
->channel_info
;
784 for (ch
= 0; ch
< priv
->channel_count
; ch
++) {
785 /* find matching band and update tx power if needed */
786 if ((ch_info
->band
== enhinfo
[section
].band
) &&
787 (ch_info
->max_power_avg
< max_txpower_avg
) && (!is_ht40
)) {
788 /* Update regulatory-based run-time data */
789 ch_info
->max_power_avg
= ch_info
->curr_txpow
=
791 ch_info
->scan_power
= max_txpower_avg
;
793 if ((ch_info
->band
== enhinfo
[section
].band
) && is_ht40
&&
794 ch_info
->ht40_max_power_avg
&&
795 (ch_info
->ht40_max_power_avg
< max_txpower_avg
)) {
796 /* Update regulatory-based run-time data */
797 ch_info
->ht40_max_power_avg
= max_txpower_avg
;
798 ch_info
->ht40_curr_txpow
= max_txpower_avg
;
799 ch_info
->ht40_scan_power
= max_txpower_avg
;
803 return max_txpower_avg
;
807 * iwl_update_channel_txpower: update channel tx power
808 * update channel tx power based on EEPROM enhanced tx power info.
810 static s8
iwl_update_channel_txpower(struct iwl_priv
*priv
,
811 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
,
812 int section
, int element
)
814 struct iwl_channel_info
*ch_info
;
817 s8 max_txpower_avg
; /* (dBm) */
819 channel
= enhinfo
[section
].iwl_eeprom_section_channel
[element
];
821 iwl_get_max_txpower_avg(priv
, enhanced_txpower
, element
);
823 ch_info
= priv
->channel_info
;
824 for (ch
= 0; ch
< priv
->channel_count
; ch
++) {
825 /* find matching channel and update tx power if needed */
826 if (ch_info
->channel
== channel
) {
827 if ((ch_info
->max_power_avg
< max_txpower_avg
) &&
828 (!enhinfo
[section
].is_ht40
)) {
829 /* Update regulatory-based run-time data */
830 ch_info
->max_power_avg
= max_txpower_avg
;
831 ch_info
->curr_txpow
= max_txpower_avg
;
832 ch_info
->scan_power
= max_txpower_avg
;
834 if ((enhinfo
[section
].is_ht40
) &&
835 (ch_info
->ht40_max_power_avg
) &&
836 (ch_info
->ht40_max_power_avg
< max_txpower_avg
)) {
837 /* Update regulatory-based run-time data */
838 ch_info
->ht40_max_power_avg
= max_txpower_avg
;
839 ch_info
->ht40_curr_txpow
= max_txpower_avg
;
840 ch_info
->ht40_scan_power
= max_txpower_avg
;
846 return max_txpower_avg
;
850 * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
852 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv
*priv
)
854 int eeprom_section_count
= 0;
855 int section
, element
;
856 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
;
858 s8 max_txpower_avg
; /* (dBm) */
860 /* Loop through all the sections
861 * adjust bands and channel's max tx power
862 * Set the tx_power_user_lmt to the highest power
863 * supported by any channels and chains
865 for (section
= 0; section
< ARRAY_SIZE(enhinfo
); section
++) {
866 eeprom_section_count
= enhinfo
[section
].count
;
867 offset
= enhinfo
[section
].offset
;
868 enhanced_txpower
= (struct iwl_eeprom_enhanced_txpwr
*)
869 iwl_eeprom_query_addr(priv
, offset
);
871 for (element
= 0; element
< eeprom_section_count
; element
++) {
872 if (enhinfo
[section
].is_common
)
874 iwl_update_common_txpower(priv
,
875 enhanced_txpower
, section
, element
);
878 iwl_update_channel_txpower(priv
,
879 enhanced_txpower
, section
, element
);
881 /* Update the tx_power_user_lmt to the highest power
882 * supported by any channel */
883 if (max_txpower_avg
> priv
->tx_power_user_lmt
)
884 priv
->tx_power_user_lmt
= max_txpower_avg
;
888 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower
);
890 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
894 * iwl_init_channel_map - Set up driver's info for all possible channels
896 int iwl_init_channel_map(struct iwl_priv
*priv
)
898 int eeprom_ch_count
= 0;
899 const u8
*eeprom_ch_index
= NULL
;
900 const struct iwl_eeprom_channel
*eeprom_ch_info
= NULL
;
902 struct iwl_channel_info
*ch_info
;
904 if (priv
->channel_count
) {
905 IWL_DEBUG_INFO(priv
, "Channel map already initialized.\n");
909 IWL_DEBUG_INFO(priv
, "Initializing regulatory info from EEPROM\n");
911 priv
->channel_count
=
912 ARRAY_SIZE(iwl_eeprom_band_1
) +
913 ARRAY_SIZE(iwl_eeprom_band_2
) +
914 ARRAY_SIZE(iwl_eeprom_band_3
) +
915 ARRAY_SIZE(iwl_eeprom_band_4
) +
916 ARRAY_SIZE(iwl_eeprom_band_5
);
918 IWL_DEBUG_INFO(priv
, "Parsing data for %d channels.\n", priv
->channel_count
);
920 priv
->channel_info
= kzalloc(sizeof(struct iwl_channel_info
) *
921 priv
->channel_count
, GFP_KERNEL
);
922 if (!priv
->channel_info
) {
923 IWL_ERR(priv
, "Could not allocate channel_info\n");
924 priv
->channel_count
= 0;
928 ch_info
= priv
->channel_info
;
930 /* Loop through the 5 EEPROM bands adding them in order to the
931 * channel map we maintain (that contains additional information than
932 * what just in the EEPROM) */
933 for (band
= 1; band
<= 5; band
++) {
935 iwl_init_band_reference(priv
, band
, &eeprom_ch_count
,
936 &eeprom_ch_info
, &eeprom_ch_index
);
938 /* Loop through each band adding each of the channels */
939 for (ch
= 0; ch
< eeprom_ch_count
; ch
++) {
940 ch_info
->channel
= eeprom_ch_index
[ch
];
941 ch_info
->band
= (band
== 1) ? IEEE80211_BAND_2GHZ
:
944 /* permanently store EEPROM's channel regulatory flags
945 * and max power in channel info database. */
946 ch_info
->eeprom
= eeprom_ch_info
[ch
];
948 /* Copy the run-time flags so they are there even on
949 * invalid channels */
950 ch_info
->flags
= eeprom_ch_info
[ch
].flags
;
951 /* First write that ht40 is not enabled, and then enable
953 ch_info
->ht40_extension_channel
=
954 IEEE80211_CHAN_NO_HT40
;
956 if (!(is_channel_valid(ch_info
))) {
957 IWL_DEBUG_INFO(priv
, "Ch. %d Flags %x [%sGHz] - "
961 is_channel_a_band(ch_info
) ?
967 /* Initialize regulatory-based run-time data */
968 ch_info
->max_power_avg
= ch_info
->curr_txpow
=
969 eeprom_ch_info
[ch
].max_power_avg
;
970 ch_info
->scan_power
= eeprom_ch_info
[ch
].max_power_avg
;
971 ch_info
->min_power
= 0;
973 IWL_DEBUG_INFO(priv
, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
974 " Ad-Hoc %ssupported\n",
976 is_channel_a_band(ch_info
) ?
978 CHECK_AND_PRINT_I(VALID
),
979 CHECK_AND_PRINT_I(IBSS
),
980 CHECK_AND_PRINT_I(ACTIVE
),
981 CHECK_AND_PRINT_I(RADAR
),
982 CHECK_AND_PRINT_I(WIDE
),
983 CHECK_AND_PRINT_I(DFS
),
984 eeprom_ch_info
[ch
].flags
,
985 eeprom_ch_info
[ch
].max_power_avg
,
986 ((eeprom_ch_info
[ch
].
987 flags
& EEPROM_CHANNEL_IBSS
)
988 && !(eeprom_ch_info
[ch
].
989 flags
& EEPROM_CHANNEL_RADAR
))
992 /* Set the tx_power_user_lmt to the highest power
993 * supported by any channel */
994 if (eeprom_ch_info
[ch
].max_power_avg
>
995 priv
->tx_power_user_lmt
)
996 priv
->tx_power_user_lmt
=
997 eeprom_ch_info
[ch
].max_power_avg
;
1003 /* Check if we do have HT40 channels */
1004 if (priv
->cfg
->ops
->lib
->eeprom_ops
.regulatory_bands
[5] ==
1005 EEPROM_REGULATORY_BAND_NO_HT40
&&
1006 priv
->cfg
->ops
->lib
->eeprom_ops
.regulatory_bands
[6] ==
1007 EEPROM_REGULATORY_BAND_NO_HT40
)
1010 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1011 for (band
= 6; band
<= 7; band
++) {
1012 enum ieee80211_band ieeeband
;
1014 iwl_init_band_reference(priv
, band
, &eeprom_ch_count
,
1015 &eeprom_ch_info
, &eeprom_ch_index
);
1017 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1019 (band
== 6) ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
1021 /* Loop through each band adding each of the channels */
1022 for (ch
= 0; ch
< eeprom_ch_count
; ch
++) {
1023 /* Set up driver's info for lower half */
1024 iwl_mod_ht40_chan_info(priv
, ieeeband
,
1025 eeprom_ch_index
[ch
],
1026 &eeprom_ch_info
[ch
],
1027 IEEE80211_CHAN_NO_HT40PLUS
);
1029 /* Set up driver's info for upper half */
1030 iwl_mod_ht40_chan_info(priv
, ieeeband
,
1031 eeprom_ch_index
[ch
] + 4,
1032 &eeprom_ch_info
[ch
],
1033 IEEE80211_CHAN_NO_HT40MINUS
);
1037 /* for newer device (6000 series and up)
1038 * EEPROM contain enhanced tx power information
1039 * driver need to process addition information
1040 * to determine the max channel tx power limits
1042 if (priv
->cfg
->ops
->lib
->eeprom_ops
.update_enhanced_txpower
)
1043 priv
->cfg
->ops
->lib
->eeprom_ops
.update_enhanced_txpower(priv
);
1047 EXPORT_SYMBOL(iwl_init_channel_map
);
1050 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1052 void iwl_free_channel_map(struct iwl_priv
*priv
)
1054 kfree(priv
->channel_info
);
1055 priv
->channel_count
= 0;
1057 EXPORT_SYMBOL(iwl_free_channel_map
);
1060 * iwl_get_channel_info - Find driver's private channel info
1062 * Based on band and channel number.
1064 const struct iwl_channel_info
*iwl_get_channel_info(const struct iwl_priv
*priv
,
1065 enum ieee80211_band band
, u16 channel
)
1070 case IEEE80211_BAND_5GHZ
:
1071 for (i
= 14; i
< priv
->channel_count
; i
++) {
1072 if (priv
->channel_info
[i
].channel
== channel
)
1073 return &priv
->channel_info
[i
];
1076 case IEEE80211_BAND_2GHZ
:
1077 if (channel
>= 1 && channel
<= 14)
1078 return &priv
->channel_info
[channel
- 1];
1086 EXPORT_SYMBOL(iwl_get_channel_info
);