debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / drivers / usb / host / xhci-hcd.c
blob816c39caca1cf6bf5e1ca9b4a9c8c5d03684fcf3
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
26 #include "xhci.h"
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 /* TODO: copied from ehci-hcd.c - can this be refactored? */
33 * handshake - spin reading hc until handshake completes or fails
34 * @ptr: address of hc register to be read
35 * @mask: bits to look at in result of read
36 * @done: value of those bits when handshake succeeds
37 * @usec: timeout in microseconds
39 * Returns negative errno, or zero on success
41 * Success happens when the "mask" bits have the specified value (hardware
42 * handshake done). There are two failure modes: "usec" have passed (major
43 * hardware flakeout), or the register reads as all-ones (hardware removed).
45 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
46 u32 mask, u32 done, int usec)
48 u32 result;
50 do {
51 result = xhci_readl(xhci, ptr);
52 if (result == ~(u32)0) /* card removed */
53 return -ENODEV;
54 result &= mask;
55 if (result == done)
56 return 0;
57 udelay(1);
58 usec--;
59 } while (usec > 0);
60 return -ETIMEDOUT;
64 * Force HC into halt state.
66 * Disable any IRQs and clear the run/stop bit.
67 * HC will complete any current and actively pipelined transactions, and
68 * should halt within 16 microframes of the run/stop bit being cleared.
69 * Read HC Halted bit in the status register to see when the HC is finished.
70 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
72 int xhci_halt(struct xhci_hcd *xhci)
74 u32 halted;
75 u32 cmd;
76 u32 mask;
78 xhci_dbg(xhci, "// Halt the HC\n");
79 /* Disable all interrupts from the host controller */
80 mask = ~(XHCI_IRQS);
81 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
85 cmd = xhci_readl(xhci, &xhci->op_regs->command);
86 cmd &= mask;
87 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 return handshake(xhci, &xhci->op_regs->status,
90 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
94 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
96 * This resets pipelines, timers, counters, state machines, etc.
97 * Transactions will be terminated immediately, and operational registers
98 * will be set to their defaults.
100 int xhci_reset(struct xhci_hcd *xhci)
102 u32 command;
103 u32 state;
105 state = xhci_readl(xhci, &xhci->op_regs->status);
106 if ((state & STS_HALT) == 0) {
107 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
108 return 0;
111 xhci_dbg(xhci, "// Reset the HC\n");
112 command = xhci_readl(xhci, &xhci->op_regs->command);
113 command |= CMD_RESET;
114 xhci_writel(xhci, command, &xhci->op_regs->command);
115 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
116 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
118 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
122 * Stop the HC from processing the endpoint queues.
124 static void xhci_quiesce(struct xhci_hcd *xhci)
127 * Queues are per endpoint, so we need to disable an endpoint or slot.
129 * To disable a slot, we need to insert a disable slot command on the
130 * command ring and ring the doorbell. This will also free any internal
131 * resources associated with the slot (which might not be what we want).
133 * A Release Endpoint command sounds better - doesn't free internal HC
134 * memory, but removes the endpoints from the schedule and releases the
135 * bandwidth, disables the doorbells, and clears the endpoint enable
136 * flag. Usually used prior to a set interface command.
138 * TODO: Implement after command ring code is done.
140 BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
141 xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
144 #if 0
145 /* Set up MSI-X table for entry 0 (may claim other entries later) */
146 static int xhci_setup_msix(struct xhci_hcd *xhci)
148 int ret;
149 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
151 xhci->msix_count = 0;
152 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
153 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
154 if (!xhci->msix_entries) {
155 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
156 return -ENOMEM;
158 xhci->msix_entries[0].entry = 0;
160 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
161 if (ret) {
162 xhci_err(xhci, "Failed to enable MSI-X\n");
163 goto free_entries;
167 * Pass the xhci pointer value as the request_irq "cookie".
168 * If more irqs are added, this will need to be unique for each one.
170 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
171 "xHCI", xhci_to_hcd(xhci));
172 if (ret) {
173 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
174 goto disable_msix;
176 xhci_dbg(xhci, "Finished setting up MSI-X\n");
177 return 0;
179 disable_msix:
180 pci_disable_msix(pdev);
181 free_entries:
182 kfree(xhci->msix_entries);
183 xhci->msix_entries = NULL;
184 return ret;
187 /* XXX: code duplication; can xhci_setup_msix call this? */
188 /* Free any IRQs and disable MSI-X */
189 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
191 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
192 if (!xhci->msix_entries)
193 return;
195 free_irq(xhci->msix_entries[0].vector, xhci);
196 pci_disable_msix(pdev);
197 kfree(xhci->msix_entries);
198 xhci->msix_entries = NULL;
199 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
201 #endif
204 * Initialize memory for HCD and xHC (one-time init).
206 * Program the PAGESIZE register, initialize the device context array, create
207 * device contexts (?), set up a command ring segment (or two?), create event
208 * ring (one for now).
210 int xhci_init(struct usb_hcd *hcd)
212 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
213 int retval = 0;
215 xhci_dbg(xhci, "xhci_init\n");
216 spin_lock_init(&xhci->lock);
217 retval = xhci_mem_init(xhci, GFP_KERNEL);
218 xhci_dbg(xhci, "Finished xhci_init\n");
220 return retval;
224 * Called in interrupt context when there might be work
225 * queued on the event ring
227 * xhci->lock must be held by caller.
229 static void xhci_work(struct xhci_hcd *xhci)
231 u32 temp;
232 u64 temp_64;
235 * Clear the op reg interrupt status first,
236 * so we can receive interrupts from other MSI-X interrupters.
237 * Write 1 to clear the interrupt status.
239 temp = xhci_readl(xhci, &xhci->op_regs->status);
240 temp |= STS_EINT;
241 xhci_writel(xhci, temp, &xhci->op_regs->status);
242 /* FIXME when MSI-X is supported and there are multiple vectors */
243 /* Clear the MSI-X event interrupt status */
245 /* Acknowledge the interrupt */
246 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
247 temp |= 0x3;
248 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
249 /* Flush posted writes */
250 xhci_readl(xhci, &xhci->ir_set->irq_pending);
252 /* FIXME this should be a delayed service routine that clears the EHB */
253 xhci_handle_event(xhci);
255 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
256 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
257 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
258 /* Flush posted writes -- FIXME is this necessary? */
259 xhci_readl(xhci, &xhci->ir_set->irq_pending);
262 /*-------------------------------------------------------------------------*/
265 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
266 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
267 * indicators of an event TRB error, but we check the status *first* to be safe.
269 irqreturn_t xhci_irq(struct usb_hcd *hcd)
271 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
272 u32 temp, temp2;
273 union xhci_trb *trb;
275 spin_lock(&xhci->lock);
276 trb = xhci->event_ring->dequeue;
277 /* Check if the xHC generated the interrupt, or the irq is shared */
278 temp = xhci_readl(xhci, &xhci->op_regs->status);
279 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
280 if (temp == 0xffffffff && temp2 == 0xffffffff)
281 goto hw_died;
283 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
284 spin_unlock(&xhci->lock);
285 return IRQ_NONE;
287 xhci_dbg(xhci, "op reg status = %08x\n", temp);
288 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
289 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
290 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
291 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
292 lower_32_bits(trb->link.segment_ptr),
293 upper_32_bits(trb->link.segment_ptr),
294 (unsigned int) trb->link.intr_target,
295 (unsigned int) trb->link.control);
297 if (temp & STS_FATAL) {
298 xhci_warn(xhci, "WARNING: Host System Error\n");
299 xhci_halt(xhci);
300 hw_died:
301 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
302 spin_unlock(&xhci->lock);
303 return -ESHUTDOWN;
306 xhci_work(xhci);
307 spin_unlock(&xhci->lock);
309 return IRQ_HANDLED;
312 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
313 void xhci_event_ring_work(unsigned long arg)
315 unsigned long flags;
316 int temp;
317 u64 temp_64;
318 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
319 int i, j;
321 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
323 spin_lock_irqsave(&xhci->lock, flags);
324 temp = xhci_readl(xhci, &xhci->op_regs->status);
325 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
326 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
327 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
328 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
329 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
330 xhci->error_bitmask = 0;
331 xhci_dbg(xhci, "Event ring:\n");
332 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
333 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
334 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
335 temp_64 &= ~ERST_PTR_MASK;
336 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
337 xhci_dbg(xhci, "Command ring:\n");
338 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
339 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
340 xhci_dbg_cmd_ptrs(xhci);
341 for (i = 0; i < MAX_HC_SLOTS; ++i) {
342 if (xhci->devs[i]) {
343 for (j = 0; j < 31; ++j) {
344 if (xhci->devs[i]->ep_rings[j]) {
345 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
346 xhci_debug_segment(xhci, xhci->devs[i]->ep_rings[j]->deq_seg);
352 if (xhci->noops_submitted != NUM_TEST_NOOPS)
353 if (xhci_setup_one_noop(xhci))
354 xhci_ring_cmd_db(xhci);
355 spin_unlock_irqrestore(&xhci->lock, flags);
357 if (!xhci->zombie)
358 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
359 else
360 xhci_dbg(xhci, "Quit polling the event ring.\n");
362 #endif
365 * Start the HC after it was halted.
367 * This function is called by the USB core when the HC driver is added.
368 * Its opposite is xhci_stop().
370 * xhci_init() must be called once before this function can be called.
371 * Reset the HC, enable device slot contexts, program DCBAAP, and
372 * set command ring pointer and event ring pointer.
374 * Setup MSI-X vectors and enable interrupts.
376 int xhci_run(struct usb_hcd *hcd)
378 u32 temp;
379 u64 temp_64;
380 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
381 void (*doorbell)(struct xhci_hcd *) = NULL;
383 hcd->uses_new_polling = 1;
384 hcd->poll_rh = 0;
386 xhci_dbg(xhci, "xhci_run\n");
387 #if 0 /* FIXME: MSI not setup yet */
388 /* Do this at the very last minute */
389 ret = xhci_setup_msix(xhci);
390 if (!ret)
391 return ret;
393 return -ENOSYS;
394 #endif
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 init_timer(&xhci->event_ring_timer);
397 xhci->event_ring_timer.data = (unsigned long) xhci;
398 xhci->event_ring_timer.function = xhci_event_ring_work;
399 /* Poll the event ring */
400 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
401 xhci->zombie = 0;
402 xhci_dbg(xhci, "Setting event ring polling timer\n");
403 add_timer(&xhci->event_ring_timer);
404 #endif
406 xhci_dbg(xhci, "Command ring memory map follows:\n");
407 xhci_debug_ring(xhci, xhci->cmd_ring);
408 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
409 xhci_dbg_cmd_ptrs(xhci);
411 xhci_dbg(xhci, "ERST memory map follows:\n");
412 xhci_dbg_erst(xhci, &xhci->erst);
413 xhci_dbg(xhci, "Event ring:\n");
414 xhci_debug_ring(xhci, xhci->event_ring);
415 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
416 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
417 temp_64 &= ~ERST_PTR_MASK;
418 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
420 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
421 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
422 temp &= ~ER_IRQ_INTERVAL_MASK;
423 temp |= (u32) 160;
424 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
426 /* Set the HCD state before we enable the irqs */
427 hcd->state = HC_STATE_RUNNING;
428 temp = xhci_readl(xhci, &xhci->op_regs->command);
429 temp |= (CMD_EIE);
430 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
431 temp);
432 xhci_writel(xhci, temp, &xhci->op_regs->command);
434 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
436 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
437 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
438 &xhci->ir_set->irq_pending);
439 xhci_print_ir_set(xhci, xhci->ir_set, 0);
441 if (NUM_TEST_NOOPS > 0)
442 doorbell = xhci_setup_one_noop(xhci);
444 temp = xhci_readl(xhci, &xhci->op_regs->command);
445 temp |= (CMD_RUN);
446 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
447 temp);
448 xhci_writel(xhci, temp, &xhci->op_regs->command);
449 /* Flush PCI posted writes */
450 temp = xhci_readl(xhci, &xhci->op_regs->command);
451 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
452 if (doorbell)
453 (*doorbell)(xhci);
455 xhci_dbg(xhci, "Finished xhci_run\n");
456 return 0;
460 * Stop xHCI driver.
462 * This function is called by the USB core when the HC driver is removed.
463 * Its opposite is xhci_run().
465 * Disable device contexts, disable IRQs, and quiesce the HC.
466 * Reset the HC, finish any completed transactions, and cleanup memory.
468 void xhci_stop(struct usb_hcd *hcd)
470 u32 temp;
471 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
473 spin_lock_irq(&xhci->lock);
474 if (HC_IS_RUNNING(hcd->state))
475 xhci_quiesce(xhci);
476 xhci_halt(xhci);
477 xhci_reset(xhci);
478 spin_unlock_irq(&xhci->lock);
480 #if 0 /* No MSI yet */
481 xhci_cleanup_msix(xhci);
482 #endif
483 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
484 /* Tell the event ring poll function not to reschedule */
485 xhci->zombie = 1;
486 del_timer_sync(&xhci->event_ring_timer);
487 #endif
489 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
490 temp = xhci_readl(xhci, &xhci->op_regs->status);
491 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
492 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
493 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
494 &xhci->ir_set->irq_pending);
495 xhci_print_ir_set(xhci, xhci->ir_set, 0);
497 xhci_dbg(xhci, "cleaning up memory\n");
498 xhci_mem_cleanup(xhci);
499 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
500 xhci_readl(xhci, &xhci->op_regs->status));
504 * Shutdown HC (not bus-specific)
506 * This is called when the machine is rebooting or halting. We assume that the
507 * machine will be powered off, and the HC's internal state will be reset.
508 * Don't bother to free memory.
510 void xhci_shutdown(struct usb_hcd *hcd)
512 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 spin_lock_irq(&xhci->lock);
515 xhci_halt(xhci);
516 spin_unlock_irq(&xhci->lock);
518 #if 0
519 xhci_cleanup_msix(xhci);
520 #endif
522 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
523 xhci_readl(xhci, &xhci->op_regs->status));
526 /*-------------------------------------------------------------------------*/
529 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
530 * HCDs. Find the index for an endpoint given its descriptor. Use the return
531 * value to right shift 1 for the bitmask.
533 * Index = (epnum * 2) + direction - 1,
534 * where direction = 0 for OUT, 1 for IN.
535 * For control endpoints, the IN index is used (OUT index is unused), so
536 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
538 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
540 unsigned int index;
541 if (usb_endpoint_xfer_control(desc))
542 index = (unsigned int) (usb_endpoint_num(desc)*2);
543 else
544 index = (unsigned int) (usb_endpoint_num(desc)*2) +
545 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
546 return index;
549 /* Find the flag for this endpoint (for use in the control context). Use the
550 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
551 * bit 1, etc.
553 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
555 return 1 << (xhci_get_endpoint_index(desc) + 1);
558 /* Compute the last valid endpoint context index. Basically, this is the
559 * endpoint index plus one. For slot contexts with more than valid endpoint,
560 * we find the most significant bit set in the added contexts flags.
561 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
562 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
564 static inline unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
566 return fls(added_ctxs) - 1;
569 /* Returns 1 if the arguments are OK;
570 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
572 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
573 struct usb_host_endpoint *ep, int check_ep, const char *func) {
574 if (!hcd || (check_ep && !ep) || !udev) {
575 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
576 func);
577 return -EINVAL;
579 if (!udev->parent) {
580 printk(KERN_DEBUG "xHCI %s called for root hub\n",
581 func);
582 return 0;
584 if (!udev->slot_id) {
585 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
586 func);
587 return -EINVAL;
589 return 1;
593 * non-error returns are a promise to giveback() the urb later
594 * we drop ownership so next owner (or urb unlink) can get it
596 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 unsigned long flags;
600 int ret = 0;
601 unsigned int slot_id, ep_index;
603 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
604 return -EINVAL;
606 slot_id = urb->dev->slot_id;
607 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
609 spin_lock_irqsave(&xhci->lock, flags);
610 if (!xhci->devs || !xhci->devs[slot_id]) {
611 if (!in_interrupt())
612 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
613 ret = -EINVAL;
614 goto exit;
616 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
617 if (!in_interrupt())
618 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
619 ret = -ESHUTDOWN;
620 goto exit;
622 if (usb_endpoint_xfer_control(&urb->ep->desc))
623 /* We have a spinlock and interrupts disabled, so we must pass
624 * atomic context to this function, which may allocate memory.
626 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
627 slot_id, ep_index);
628 else if (usb_endpoint_xfer_bulk(&urb->ep->desc))
629 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
630 slot_id, ep_index);
631 else
632 ret = -EINVAL;
633 exit:
634 spin_unlock_irqrestore(&xhci->lock, flags);
635 return ret;
639 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
640 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
641 * should pick up where it left off in the TD, unless a Set Transfer Ring
642 * Dequeue Pointer is issued.
644 * The TRBs that make up the buffers for the canceled URB will be "removed" from
645 * the ring. Since the ring is a contiguous structure, they can't be physically
646 * removed. Instead, there are two options:
648 * 1) If the HC is in the middle of processing the URB to be canceled, we
649 * simply move the ring's dequeue pointer past those TRBs using the Set
650 * Transfer Ring Dequeue Pointer command. This will be the common case,
651 * when drivers timeout on the last submitted URB and attempt to cancel.
653 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
654 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
655 * HC will need to invalidate the any TRBs it has cached after the stop
656 * endpoint command, as noted in the xHCI 0.95 errata.
658 * 3) The TD may have completed by the time the Stop Endpoint Command
659 * completes, so software needs to handle that case too.
661 * This function should protect against the TD enqueueing code ringing the
662 * doorbell while this code is waiting for a Stop Endpoint command to complete.
663 * It also needs to account for multiple cancellations on happening at the same
664 * time for the same endpoint.
666 * Note that this function can be called in any context, or so says
667 * usb_hcd_unlink_urb()
669 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 unsigned long flags;
672 int ret;
673 struct xhci_hcd *xhci;
674 struct xhci_td *td;
675 unsigned int ep_index;
676 struct xhci_ring *ep_ring;
678 xhci = hcd_to_xhci(hcd);
679 spin_lock_irqsave(&xhci->lock, flags);
680 /* Make sure the URB hasn't completed or been unlinked already */
681 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
682 if (ret || !urb->hcpriv)
683 goto done;
685 xhci_dbg(xhci, "Cancel URB %p\n", urb);
686 xhci_dbg(xhci, "Event ring:\n");
687 xhci_debug_ring(xhci, xhci->event_ring);
688 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
689 ep_ring = xhci->devs[urb->dev->slot_id]->ep_rings[ep_index];
690 xhci_dbg(xhci, "Endpoint ring:\n");
691 xhci_debug_ring(xhci, ep_ring);
692 td = (struct xhci_td *) urb->hcpriv;
694 ep_ring->cancels_pending++;
695 list_add_tail(&td->cancelled_td_list, &ep_ring->cancelled_td_list);
696 /* Queue a stop endpoint command, but only if this is
697 * the first cancellation to be handled.
699 if (ep_ring->cancels_pending == 1) {
700 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
701 xhci_ring_cmd_db(xhci);
703 done:
704 spin_unlock_irqrestore(&xhci->lock, flags);
705 return ret;
708 /* Drop an endpoint from a new bandwidth configuration for this device.
709 * Only one call to this function is allowed per endpoint before
710 * check_bandwidth() or reset_bandwidth() must be called.
711 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
712 * add the endpoint to the schedule with possibly new parameters denoted by a
713 * different endpoint descriptor in usb_host_endpoint.
714 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
715 * not allowed.
717 * The USB core will not allow URBs to be queued to an endpoint that is being
718 * disabled, so there's no need for mutual exclusion to protect
719 * the xhci->devs[slot_id] structure.
721 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
722 struct usb_host_endpoint *ep)
724 struct xhci_hcd *xhci;
725 struct xhci_container_ctx *in_ctx, *out_ctx;
726 struct xhci_input_control_ctx *ctrl_ctx;
727 struct xhci_slot_ctx *slot_ctx;
728 unsigned int last_ctx;
729 unsigned int ep_index;
730 struct xhci_ep_ctx *ep_ctx;
731 u32 drop_flag;
732 u32 new_add_flags, new_drop_flags, new_slot_info;
733 int ret;
735 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
736 if (ret <= 0)
737 return ret;
738 xhci = hcd_to_xhci(hcd);
739 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
741 drop_flag = xhci_get_endpoint_flag(&ep->desc);
742 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
743 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
744 __func__, drop_flag);
745 return 0;
748 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
749 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
750 __func__);
751 return -EINVAL;
754 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
755 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
756 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
757 ep_index = xhci_get_endpoint_index(&ep->desc);
758 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
759 /* If the HC already knows the endpoint is disabled,
760 * or the HCD has noted it is disabled, ignore this request
762 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
763 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
764 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
765 __func__, ep);
766 return 0;
769 ctrl_ctx->drop_flags |= drop_flag;
770 new_drop_flags = ctrl_ctx->drop_flags;
772 ctrl_ctx->add_flags = ~drop_flag;
773 new_add_flags = ctrl_ctx->add_flags;
775 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
776 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
777 /* Update the last valid endpoint context, if we deleted the last one */
778 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
779 slot_ctx->dev_info &= ~LAST_CTX_MASK;
780 slot_ctx->dev_info |= LAST_CTX(last_ctx);
782 new_slot_info = slot_ctx->dev_info;
784 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
786 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
787 (unsigned int) ep->desc.bEndpointAddress,
788 udev->slot_id,
789 (unsigned int) new_drop_flags,
790 (unsigned int) new_add_flags,
791 (unsigned int) new_slot_info);
792 return 0;
795 /* Add an endpoint to a new possible bandwidth configuration for this device.
796 * Only one call to this function is allowed per endpoint before
797 * check_bandwidth() or reset_bandwidth() must be called.
798 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
799 * add the endpoint to the schedule with possibly new parameters denoted by a
800 * different endpoint descriptor in usb_host_endpoint.
801 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
802 * not allowed.
804 * The USB core will not allow URBs to be queued to an endpoint until the
805 * configuration or alt setting is installed in the device, so there's no need
806 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
808 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
809 struct usb_host_endpoint *ep)
811 struct xhci_hcd *xhci;
812 struct xhci_container_ctx *in_ctx, *out_ctx;
813 unsigned int ep_index;
814 struct xhci_ep_ctx *ep_ctx;
815 struct xhci_slot_ctx *slot_ctx;
816 struct xhci_input_control_ctx *ctrl_ctx;
817 u32 added_ctxs;
818 unsigned int last_ctx;
819 u32 new_add_flags, new_drop_flags, new_slot_info;
820 int ret = 0;
822 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
823 if (ret <= 0) {
824 /* So we won't queue a reset ep command for a root hub */
825 ep->hcpriv = NULL;
826 return ret;
828 xhci = hcd_to_xhci(hcd);
830 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
831 last_ctx = xhci_last_valid_endpoint(added_ctxs);
832 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
833 /* FIXME when we have to issue an evaluate endpoint command to
834 * deal with ep0 max packet size changing once we get the
835 * descriptors
837 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
838 __func__, added_ctxs);
839 return 0;
842 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
843 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
844 __func__);
845 return -EINVAL;
848 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
849 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
850 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
851 ep_index = xhci_get_endpoint_index(&ep->desc);
852 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
853 /* If the HCD has already noted the endpoint is enabled,
854 * ignore this request.
856 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
857 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
858 __func__, ep);
859 return 0;
863 * Configuration and alternate setting changes must be done in
864 * process context, not interrupt context (or so documenation
865 * for usb_set_interface() and usb_set_configuration() claim).
867 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
868 udev, ep, GFP_KERNEL) < 0) {
869 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
870 __func__, ep->desc.bEndpointAddress);
871 return -ENOMEM;
874 ctrl_ctx->add_flags |= added_ctxs;
875 new_add_flags = ctrl_ctx->add_flags;
877 /* If xhci_endpoint_disable() was called for this endpoint, but the
878 * xHC hasn't been notified yet through the check_bandwidth() call,
879 * this re-adds a new state for the endpoint from the new endpoint
880 * descriptors. We must drop and re-add this endpoint, so we leave the
881 * drop flags alone.
883 new_drop_flags = ctrl_ctx->drop_flags;
885 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
886 /* Update the last valid endpoint context, if we just added one past */
887 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
888 slot_ctx->dev_info &= ~LAST_CTX_MASK;
889 slot_ctx->dev_info |= LAST_CTX(last_ctx);
891 new_slot_info = slot_ctx->dev_info;
893 /* Store the usb_device pointer for later use */
894 ep->hcpriv = udev;
896 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
897 (unsigned int) ep->desc.bEndpointAddress,
898 udev->slot_id,
899 (unsigned int) new_drop_flags,
900 (unsigned int) new_add_flags,
901 (unsigned int) new_slot_info);
902 return 0;
905 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
907 struct xhci_input_control_ctx *ctrl_ctx;
908 struct xhci_ep_ctx *ep_ctx;
909 struct xhci_slot_ctx *slot_ctx;
910 int i;
912 /* When a device's add flag and drop flag are zero, any subsequent
913 * configure endpoint command will leave that endpoint's state
914 * untouched. Make sure we don't leave any old state in the input
915 * endpoint contexts.
917 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
918 ctrl_ctx->drop_flags = 0;
919 ctrl_ctx->add_flags = 0;
920 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
921 slot_ctx->dev_info &= ~LAST_CTX_MASK;
922 /* Endpoint 0 is always valid */
923 slot_ctx->dev_info |= LAST_CTX(1);
924 for (i = 1; i < 31; ++i) {
925 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
926 ep_ctx->ep_info = 0;
927 ep_ctx->ep_info2 = 0;
928 ep_ctx->deq = 0;
929 ep_ctx->tx_info = 0;
933 /* Called after one or more calls to xhci_add_endpoint() or
934 * xhci_drop_endpoint(). If this call fails, the USB core is expected
935 * to call xhci_reset_bandwidth().
937 * Since we are in the middle of changing either configuration or
938 * installing a new alt setting, the USB core won't allow URBs to be
939 * enqueued for any endpoint on the old config or interface. Nothing
940 * else should be touching the xhci->devs[slot_id] structure, so we
941 * don't need to take the xhci->lock for manipulating that.
943 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
945 int i;
946 int ret = 0;
947 int timeleft;
948 unsigned long flags;
949 struct xhci_hcd *xhci;
950 struct xhci_virt_device *virt_dev;
951 struct xhci_input_control_ctx *ctrl_ctx;
952 struct xhci_slot_ctx *slot_ctx;
954 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
955 if (ret <= 0)
956 return ret;
957 xhci = hcd_to_xhci(hcd);
959 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
960 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
961 __func__);
962 return -EINVAL;
964 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
965 virt_dev = xhci->devs[udev->slot_id];
967 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
968 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
969 ctrl_ctx->add_flags |= SLOT_FLAG;
970 ctrl_ctx->add_flags &= ~EP0_FLAG;
971 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
972 ctrl_ctx->drop_flags &= ~EP0_FLAG;
973 xhci_dbg(xhci, "New Input Control Context:\n");
974 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
975 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
976 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
978 spin_lock_irqsave(&xhci->lock, flags);
979 ret = xhci_queue_configure_endpoint(xhci, virt_dev->in_ctx->dma,
980 udev->slot_id);
981 if (ret < 0) {
982 spin_unlock_irqrestore(&xhci->lock, flags);
983 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
984 return -ENOMEM;
986 xhci_ring_cmd_db(xhci);
987 spin_unlock_irqrestore(&xhci->lock, flags);
989 /* Wait for the configure endpoint command to complete */
990 timeleft = wait_for_completion_interruptible_timeout(
991 &virt_dev->cmd_completion,
992 USB_CTRL_SET_TIMEOUT);
993 if (timeleft <= 0) {
994 xhci_warn(xhci, "%s while waiting for configure endpoint command\n",
995 timeleft == 0 ? "Timeout" : "Signal");
996 /* FIXME cancel the configure endpoint command */
997 return -ETIME;
1000 switch (virt_dev->cmd_status) {
1001 case COMP_ENOMEM:
1002 dev_warn(&udev->dev, "Not enough host controller resources "
1003 "for new device state.\n");
1004 ret = -ENOMEM;
1005 /* FIXME: can we allocate more resources for the HC? */
1006 break;
1007 case COMP_BW_ERR:
1008 dev_warn(&udev->dev, "Not enough bandwidth "
1009 "for new device state.\n");
1010 ret = -ENOSPC;
1011 /* FIXME: can we go back to the old state? */
1012 break;
1013 case COMP_TRB_ERR:
1014 /* the HCD set up something wrong */
1015 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, add flag = 1, "
1016 "and endpoint is not disabled.\n");
1017 ret = -EINVAL;
1018 break;
1019 case COMP_SUCCESS:
1020 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1021 break;
1022 default:
1023 xhci_err(xhci, "ERROR: unexpected command completion "
1024 "code 0x%x.\n", virt_dev->cmd_status);
1025 ret = -EINVAL;
1026 break;
1028 if (ret) {
1029 /* Callee should call reset_bandwidth() */
1030 return ret;
1033 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1034 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1035 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1037 xhci_zero_in_ctx(xhci, virt_dev);
1038 /* Free any old rings */
1039 for (i = 1; i < 31; ++i) {
1040 if (virt_dev->new_ep_rings[i]) {
1041 xhci_ring_free(xhci, virt_dev->ep_rings[i]);
1042 virt_dev->ep_rings[i] = virt_dev->new_ep_rings[i];
1043 virt_dev->new_ep_rings[i] = NULL;
1047 return ret;
1050 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1052 struct xhci_hcd *xhci;
1053 struct xhci_virt_device *virt_dev;
1054 int i, ret;
1056 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1057 if (ret <= 0)
1058 return;
1059 xhci = hcd_to_xhci(hcd);
1061 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1062 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1063 __func__);
1064 return;
1066 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1067 virt_dev = xhci->devs[udev->slot_id];
1068 /* Free any rings allocated for added endpoints */
1069 for (i = 0; i < 31; ++i) {
1070 if (virt_dev->new_ep_rings[i]) {
1071 xhci_ring_free(xhci, virt_dev->new_ep_rings[i]);
1072 virt_dev->new_ep_rings[i] = NULL;
1075 xhci_zero_in_ctx(xhci, virt_dev);
1078 /* Deal with stalled endpoints. The core should have sent the control message
1079 * to clear the halt condition. However, we need to make the xHCI hardware
1080 * reset its sequence number, since a device will expect a sequence number of
1081 * zero after the halt condition is cleared.
1082 * Context: in_interrupt
1084 void xhci_endpoint_reset(struct usb_hcd *hcd,
1085 struct usb_host_endpoint *ep)
1087 struct xhci_hcd *xhci;
1088 struct usb_device *udev;
1089 unsigned int ep_index;
1090 unsigned long flags;
1091 int ret;
1092 struct xhci_dequeue_state deq_state;
1093 struct xhci_ring *ep_ring;
1095 xhci = hcd_to_xhci(hcd);
1096 udev = (struct usb_device *) ep->hcpriv;
1097 /* Called with a root hub endpoint (or an endpoint that wasn't added
1098 * with xhci_add_endpoint()
1100 if (!ep->hcpriv)
1101 return;
1102 ep_index = xhci_get_endpoint_index(&ep->desc);
1103 ep_ring = xhci->devs[udev->slot_id]->ep_rings[ep_index];
1104 if (!ep_ring->stopped_td) {
1105 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1106 ep->desc.bEndpointAddress);
1107 return;
1110 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1111 spin_lock_irqsave(&xhci->lock, flags);
1112 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1114 * Can't change the ring dequeue pointer until it's transitioned to the
1115 * stopped state, which is only upon a successful reset endpoint
1116 * command. Better hope that last command worked!
1118 if (!ret) {
1119 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1120 /* We need to move the HW's dequeue pointer past this TD,
1121 * or it will attempt to resend it on the next doorbell ring.
1123 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1124 ep_index, ep_ring->stopped_td, &deq_state);
1125 xhci_dbg(xhci, "Queueing new dequeue state\n");
1126 xhci_queue_new_dequeue_state(xhci, ep_ring,
1127 udev->slot_id,
1128 ep_index, &deq_state);
1129 kfree(ep_ring->stopped_td);
1130 xhci_ring_cmd_db(xhci);
1132 spin_unlock_irqrestore(&xhci->lock, flags);
1134 if (ret)
1135 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1139 * At this point, the struct usb_device is about to go away, the device has
1140 * disconnected, and all traffic has been stopped and the endpoints have been
1141 * disabled. Free any HC data structures associated with that device.
1143 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1145 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1146 unsigned long flags;
1148 if (udev->slot_id == 0)
1149 return;
1151 spin_lock_irqsave(&xhci->lock, flags);
1152 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1153 spin_unlock_irqrestore(&xhci->lock, flags);
1154 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1155 return;
1157 xhci_ring_cmd_db(xhci);
1158 spin_unlock_irqrestore(&xhci->lock, flags);
1160 * Event command completion handler will free any data structures
1161 * associated with the slot. XXX Can free sleep?
1166 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1167 * timed out, or allocating memory failed. Returns 1 on success.
1169 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1171 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1172 unsigned long flags;
1173 int timeleft;
1174 int ret;
1176 spin_lock_irqsave(&xhci->lock, flags);
1177 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1178 if (ret) {
1179 spin_unlock_irqrestore(&xhci->lock, flags);
1180 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1181 return 0;
1183 xhci_ring_cmd_db(xhci);
1184 spin_unlock_irqrestore(&xhci->lock, flags);
1186 /* XXX: how much time for xHC slot assignment? */
1187 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1188 USB_CTRL_SET_TIMEOUT);
1189 if (timeleft <= 0) {
1190 xhci_warn(xhci, "%s while waiting for a slot\n",
1191 timeleft == 0 ? "Timeout" : "Signal");
1192 /* FIXME cancel the enable slot request */
1193 return 0;
1196 if (!xhci->slot_id) {
1197 xhci_err(xhci, "Error while assigning device slot ID\n");
1198 return 0;
1200 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1201 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1202 /* Disable slot, if we can do it without mem alloc */
1203 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1204 spin_lock_irqsave(&xhci->lock, flags);
1205 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1206 xhci_ring_cmd_db(xhci);
1207 spin_unlock_irqrestore(&xhci->lock, flags);
1208 return 0;
1210 udev->slot_id = xhci->slot_id;
1211 /* Is this a LS or FS device under a HS hub? */
1212 /* Hub or peripherial? */
1213 return 1;
1217 * Issue an Address Device command (which will issue a SetAddress request to
1218 * the device).
1219 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1220 * we should only issue and wait on one address command at the same time.
1222 * We add one to the device address issued by the hardware because the USB core
1223 * uses address 1 for the root hubs (even though they're not really devices).
1225 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1227 unsigned long flags;
1228 int timeleft;
1229 struct xhci_virt_device *virt_dev;
1230 int ret = 0;
1231 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1232 struct xhci_slot_ctx *slot_ctx;
1233 struct xhci_input_control_ctx *ctrl_ctx;
1234 u64 temp_64;
1236 if (!udev->slot_id) {
1237 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1238 return -EINVAL;
1241 virt_dev = xhci->devs[udev->slot_id];
1243 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1244 if (!udev->config)
1245 xhci_setup_addressable_virt_dev(xhci, udev);
1246 /* Otherwise, assume the core has the device configured how it wants */
1247 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1248 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1250 spin_lock_irqsave(&xhci->lock, flags);
1251 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1252 udev->slot_id);
1253 if (ret) {
1254 spin_unlock_irqrestore(&xhci->lock, flags);
1255 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1256 return ret;
1258 xhci_ring_cmd_db(xhci);
1259 spin_unlock_irqrestore(&xhci->lock, flags);
1261 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1262 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1263 USB_CTRL_SET_TIMEOUT);
1264 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1265 * the SetAddress() "recovery interval" required by USB and aborting the
1266 * command on a timeout.
1268 if (timeleft <= 0) {
1269 xhci_warn(xhci, "%s while waiting for a slot\n",
1270 timeleft == 0 ? "Timeout" : "Signal");
1271 /* FIXME cancel the address device command */
1272 return -ETIME;
1275 switch (virt_dev->cmd_status) {
1276 case COMP_CTX_STATE:
1277 case COMP_EBADSLT:
1278 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1279 udev->slot_id);
1280 ret = -EINVAL;
1281 break;
1282 case COMP_TX_ERR:
1283 dev_warn(&udev->dev, "Device not responding to set address.\n");
1284 ret = -EPROTO;
1285 break;
1286 case COMP_SUCCESS:
1287 xhci_dbg(xhci, "Successful Address Device command\n");
1288 break;
1289 default:
1290 xhci_err(xhci, "ERROR: unexpected command completion "
1291 "code 0x%x.\n", virt_dev->cmd_status);
1292 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1293 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1294 ret = -EINVAL;
1295 break;
1297 if (ret) {
1298 return ret;
1300 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1301 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1302 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1303 udev->slot_id,
1304 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1305 (unsigned long long)
1306 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1307 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1308 (unsigned long long)virt_dev->out_ctx->dma);
1309 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1310 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1311 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1312 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1314 * USB core uses address 1 for the roothubs, so we add one to the
1315 * address given back to us by the HC.
1317 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1318 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1319 /* Zero the input context control for later use */
1320 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1321 ctrl_ctx->add_flags = 0;
1322 ctrl_ctx->drop_flags = 0;
1324 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1325 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1326 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1328 return 0;
1331 int xhci_get_frame(struct usb_hcd *hcd)
1333 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1334 /* EHCI mods by the periodic size. Why? */
1335 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1338 MODULE_DESCRIPTION(DRIVER_DESC);
1339 MODULE_AUTHOR(DRIVER_AUTHOR);
1340 MODULE_LICENSE("GPL");
1342 static int __init xhci_hcd_init(void)
1344 #ifdef CONFIG_PCI
1345 int retval = 0;
1347 retval = xhci_register_pci();
1349 if (retval < 0) {
1350 printk(KERN_DEBUG "Problem registering PCI driver.");
1351 return retval;
1353 #endif
1355 * Check the compiler generated sizes of structures that must be laid
1356 * out in specific ways for hardware access.
1358 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1359 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1360 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1361 /* xhci_device_control has eight fields, and also
1362 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1364 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1365 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1366 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1367 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1368 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1369 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1370 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1371 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1372 return 0;
1374 module_init(xhci_hcd_init);
1376 static void __exit xhci_hcd_cleanup(void)
1378 #ifdef CONFIG_PCI
1379 xhci_unregister_pci();
1380 #endif
1382 module_exit(xhci_hcd_cleanup);