2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
27 #include "extent_map.h"
29 #include "transaction.h"
30 #include "print-tree.h"
32 #include "async-thread.h"
42 struct btrfs_bio_stripe stripes
[];
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 (sizeof(struct btrfs_bio_stripe) * (n)))
53 static DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 void btrfs_lock_volumes(void)
58 mutex_lock(&uuid_mutex
);
61 void btrfs_unlock_volumes(void)
63 mutex_unlock(&uuid_mutex
);
66 static void lock_chunks(struct btrfs_root
*root
)
68 mutex_lock(&root
->fs_info
->chunk_mutex
);
71 static void unlock_chunks(struct btrfs_root
*root
)
73 mutex_unlock(&root
->fs_info
->chunk_mutex
);
76 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
78 struct btrfs_device
*device
;
79 WARN_ON(fs_devices
->opened
);
80 while (!list_empty(&fs_devices
->devices
)) {
81 device
= list_entry(fs_devices
->devices
.next
,
82 struct btrfs_device
, dev_list
);
83 list_del(&device
->dev_list
);
90 int btrfs_cleanup_fs_uuids(void)
92 struct btrfs_fs_devices
*fs_devices
;
94 while (!list_empty(&fs_uuids
)) {
95 fs_devices
= list_entry(fs_uuids
.next
,
96 struct btrfs_fs_devices
, list
);
97 list_del(&fs_devices
->list
);
98 free_fs_devices(fs_devices
);
103 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
106 struct btrfs_device
*dev
;
108 list_for_each_entry(dev
, head
, dev_list
) {
109 if (dev
->devid
== devid
&&
110 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
117 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
119 struct btrfs_fs_devices
*fs_devices
;
121 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
122 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
128 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
129 struct bio
*head
, struct bio
*tail
)
132 struct bio
*old_head
;
134 old_head
= pending_bios
->head
;
135 pending_bios
->head
= head
;
136 if (pending_bios
->tail
)
137 tail
->bi_next
= old_head
;
139 pending_bios
->tail
= tail
;
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
153 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
156 struct backing_dev_info
*bdi
;
157 struct btrfs_fs_info
*fs_info
;
158 struct btrfs_pending_bios
*pending_bios
;
162 unsigned long num_run
;
163 unsigned long num_sync_run
;
164 unsigned long batch_run
= 0;
166 unsigned long last_waited
= 0;
169 bdi
= blk_get_backing_dev_info(device
->bdev
);
170 fs_info
= device
->dev_root
->fs_info
;
171 limit
= btrfs_async_submit_limit(fs_info
);
172 limit
= limit
* 2 / 3;
174 /* we want to make sure that every time we switch from the sync
175 * list to the normal list, we unplug
180 spin_lock(&device
->io_lock
);
185 /* take all the bios off the list at once and process them
186 * later on (without the lock held). But, remember the
187 * tail and other pointers so the bios can be properly reinserted
188 * into the list if we hit congestion
190 if (!force_reg
&& device
->pending_sync_bios
.head
) {
191 pending_bios
= &device
->pending_sync_bios
;
194 pending_bios
= &device
->pending_bios
;
198 pending
= pending_bios
->head
;
199 tail
= pending_bios
->tail
;
200 WARN_ON(pending
&& !tail
);
203 * if pending was null this time around, no bios need processing
204 * at all and we can stop. Otherwise it'll loop back up again
205 * and do an additional check so no bios are missed.
207 * device->running_pending is used to synchronize with the
210 if (device
->pending_sync_bios
.head
== NULL
&&
211 device
->pending_bios
.head
== NULL
) {
213 device
->running_pending
= 0;
216 device
->running_pending
= 1;
219 pending_bios
->head
= NULL
;
220 pending_bios
->tail
= NULL
;
222 spin_unlock(&device
->io_lock
);
225 * if we're doing the regular priority list, make sure we unplug
226 * for any high prio bios we've sent down
228 if (pending_bios
== &device
->pending_bios
&& num_sync_run
> 0) {
230 blk_run_backing_dev(bdi
, NULL
);
236 /* we want to work on both lists, but do more bios on the
237 * sync list than the regular list
240 pending_bios
!= &device
->pending_sync_bios
&&
241 device
->pending_sync_bios
.head
) ||
242 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
243 device
->pending_bios
.head
)) {
244 spin_lock(&device
->io_lock
);
245 requeue_list(pending_bios
, pending
, tail
);
250 pending
= pending
->bi_next
;
252 atomic_dec(&fs_info
->nr_async_bios
);
254 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
255 waitqueue_active(&fs_info
->async_submit_wait
))
256 wake_up(&fs_info
->async_submit_wait
);
258 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
259 submit_bio(cur
->bi_rw
, cur
);
263 if (bio_rw_flagged(cur
, BIO_RW_SYNCIO
))
266 if (need_resched()) {
268 blk_run_backing_dev(bdi
, NULL
);
275 * we made progress, there is more work to do and the bdi
276 * is now congested. Back off and let other work structs
279 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 32 &&
280 fs_info
->fs_devices
->open_devices
> 1) {
281 struct io_context
*ioc
;
283 ioc
= current
->io_context
;
286 * the main goal here is that we don't want to
287 * block if we're going to be able to submit
288 * more requests without blocking.
290 * This code does two great things, it pokes into
291 * the elevator code from a filesystem _and_
292 * it makes assumptions about how batching works.
294 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
295 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
297 ioc
->last_waited
== last_waited
)) {
299 * we want to go through our batch of
300 * requests and stop. So, we copy out
301 * the ioc->last_waited time and test
302 * against it before looping
304 last_waited
= ioc
->last_waited
;
305 if (need_resched()) {
307 blk_run_backing_dev(bdi
, NULL
);
314 spin_lock(&device
->io_lock
);
315 requeue_list(pending_bios
, pending
, tail
);
316 device
->running_pending
= 1;
318 spin_unlock(&device
->io_lock
);
319 btrfs_requeue_work(&device
->work
);
326 blk_run_backing_dev(bdi
, NULL
);
333 spin_lock(&device
->io_lock
);
334 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
336 spin_unlock(&device
->io_lock
);
339 * IO has already been through a long path to get here. Checksumming,
340 * async helper threads, perhaps compression. We've done a pretty
341 * good job of collecting a batch of IO and should just unplug
342 * the device right away.
344 * This will help anyone who is waiting on the IO, they might have
345 * already unplugged, but managed to do so before the bio they
346 * cared about found its way down here.
348 blk_run_backing_dev(bdi
, NULL
);
353 static void pending_bios_fn(struct btrfs_work
*work
)
355 struct btrfs_device
*device
;
357 device
= container_of(work
, struct btrfs_device
, work
);
358 run_scheduled_bios(device
);
361 static noinline
int device_list_add(const char *path
,
362 struct btrfs_super_block
*disk_super
,
363 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
365 struct btrfs_device
*device
;
366 struct btrfs_fs_devices
*fs_devices
;
367 u64 found_transid
= btrfs_super_generation(disk_super
);
369 fs_devices
= find_fsid(disk_super
->fsid
);
371 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
374 INIT_LIST_HEAD(&fs_devices
->devices
);
375 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
376 list_add(&fs_devices
->list
, &fs_uuids
);
377 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
378 fs_devices
->latest_devid
= devid
;
379 fs_devices
->latest_trans
= found_transid
;
380 mutex_init(&fs_devices
->device_list_mutex
);
383 device
= __find_device(&fs_devices
->devices
, devid
,
384 disk_super
->dev_item
.uuid
);
387 if (fs_devices
->opened
)
390 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
392 /* we can safely leave the fs_devices entry around */
395 device
->devid
= devid
;
396 device
->work
.func
= pending_bios_fn
;
397 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
399 device
->barriers
= 1;
400 spin_lock_init(&device
->io_lock
);
401 device
->name
= kstrdup(path
, GFP_NOFS
);
406 INIT_LIST_HEAD(&device
->dev_alloc_list
);
408 mutex_lock(&fs_devices
->device_list_mutex
);
409 list_add(&device
->dev_list
, &fs_devices
->devices
);
410 mutex_unlock(&fs_devices
->device_list_mutex
);
412 device
->fs_devices
= fs_devices
;
413 fs_devices
->num_devices
++;
416 if (found_transid
> fs_devices
->latest_trans
) {
417 fs_devices
->latest_devid
= devid
;
418 fs_devices
->latest_trans
= found_transid
;
420 *fs_devices_ret
= fs_devices
;
424 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
426 struct btrfs_fs_devices
*fs_devices
;
427 struct btrfs_device
*device
;
428 struct btrfs_device
*orig_dev
;
430 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
432 return ERR_PTR(-ENOMEM
);
434 INIT_LIST_HEAD(&fs_devices
->devices
);
435 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
436 INIT_LIST_HEAD(&fs_devices
->list
);
437 mutex_init(&fs_devices
->device_list_mutex
);
438 fs_devices
->latest_devid
= orig
->latest_devid
;
439 fs_devices
->latest_trans
= orig
->latest_trans
;
440 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
442 mutex_lock(&orig
->device_list_mutex
);
443 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
444 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
448 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
452 device
->devid
= orig_dev
->devid
;
453 device
->work
.func
= pending_bios_fn
;
454 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
455 device
->barriers
= 1;
456 spin_lock_init(&device
->io_lock
);
457 INIT_LIST_HEAD(&device
->dev_list
);
458 INIT_LIST_HEAD(&device
->dev_alloc_list
);
460 list_add(&device
->dev_list
, &fs_devices
->devices
);
461 device
->fs_devices
= fs_devices
;
462 fs_devices
->num_devices
++;
464 mutex_unlock(&orig
->device_list_mutex
);
467 mutex_unlock(&orig
->device_list_mutex
);
468 free_fs_devices(fs_devices
);
469 return ERR_PTR(-ENOMEM
);
472 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
474 struct btrfs_device
*device
, *next
;
476 mutex_lock(&uuid_mutex
);
478 mutex_lock(&fs_devices
->device_list_mutex
);
479 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
480 if (device
->in_fs_metadata
)
484 close_bdev_exclusive(device
->bdev
, device
->mode
);
486 fs_devices
->open_devices
--;
488 if (device
->writeable
) {
489 list_del_init(&device
->dev_alloc_list
);
490 device
->writeable
= 0;
491 fs_devices
->rw_devices
--;
493 list_del_init(&device
->dev_list
);
494 fs_devices
->num_devices
--;
498 mutex_unlock(&fs_devices
->device_list_mutex
);
500 if (fs_devices
->seed
) {
501 fs_devices
= fs_devices
->seed
;
505 mutex_unlock(&uuid_mutex
);
509 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
511 struct btrfs_device
*device
;
513 if (--fs_devices
->opened
> 0)
516 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
518 close_bdev_exclusive(device
->bdev
, device
->mode
);
519 fs_devices
->open_devices
--;
521 if (device
->writeable
) {
522 list_del_init(&device
->dev_alloc_list
);
523 fs_devices
->rw_devices
--;
527 device
->writeable
= 0;
528 device
->in_fs_metadata
= 0;
530 WARN_ON(fs_devices
->open_devices
);
531 WARN_ON(fs_devices
->rw_devices
);
532 fs_devices
->opened
= 0;
533 fs_devices
->seeding
= 0;
538 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
540 struct btrfs_fs_devices
*seed_devices
= NULL
;
543 mutex_lock(&uuid_mutex
);
544 ret
= __btrfs_close_devices(fs_devices
);
545 if (!fs_devices
->opened
) {
546 seed_devices
= fs_devices
->seed
;
547 fs_devices
->seed
= NULL
;
549 mutex_unlock(&uuid_mutex
);
551 while (seed_devices
) {
552 fs_devices
= seed_devices
;
553 seed_devices
= fs_devices
->seed
;
554 __btrfs_close_devices(fs_devices
);
555 free_fs_devices(fs_devices
);
560 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
561 fmode_t flags
, void *holder
)
563 struct block_device
*bdev
;
564 struct list_head
*head
= &fs_devices
->devices
;
565 struct btrfs_device
*device
;
566 struct block_device
*latest_bdev
= NULL
;
567 struct buffer_head
*bh
;
568 struct btrfs_super_block
*disk_super
;
569 u64 latest_devid
= 0;
570 u64 latest_transid
= 0;
575 list_for_each_entry(device
, head
, dev_list
) {
581 bdev
= open_bdev_exclusive(device
->name
, flags
, holder
);
583 printk(KERN_INFO
"open %s failed\n", device
->name
);
586 set_blocksize(bdev
, 4096);
588 bh
= btrfs_read_dev_super(bdev
);
592 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
593 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
594 if (devid
!= device
->devid
)
597 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
601 device
->generation
= btrfs_super_generation(disk_super
);
602 if (!latest_transid
|| device
->generation
> latest_transid
) {
603 latest_devid
= devid
;
604 latest_transid
= device
->generation
;
608 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
609 device
->writeable
= 0;
611 device
->writeable
= !bdev_read_only(bdev
);
616 device
->in_fs_metadata
= 0;
617 device
->mode
= flags
;
619 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
620 fs_devices
->rotating
= 1;
622 fs_devices
->open_devices
++;
623 if (device
->writeable
) {
624 fs_devices
->rw_devices
++;
625 list_add(&device
->dev_alloc_list
,
626 &fs_devices
->alloc_list
);
633 close_bdev_exclusive(bdev
, FMODE_READ
);
637 if (fs_devices
->open_devices
== 0) {
641 fs_devices
->seeding
= seeding
;
642 fs_devices
->opened
= 1;
643 fs_devices
->latest_bdev
= latest_bdev
;
644 fs_devices
->latest_devid
= latest_devid
;
645 fs_devices
->latest_trans
= latest_transid
;
646 fs_devices
->total_rw_bytes
= 0;
651 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
652 fmode_t flags
, void *holder
)
656 mutex_lock(&uuid_mutex
);
657 if (fs_devices
->opened
) {
658 fs_devices
->opened
++;
661 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
663 mutex_unlock(&uuid_mutex
);
667 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
668 struct btrfs_fs_devices
**fs_devices_ret
)
670 struct btrfs_super_block
*disk_super
;
671 struct block_device
*bdev
;
672 struct buffer_head
*bh
;
677 mutex_lock(&uuid_mutex
);
679 bdev
= open_bdev_exclusive(path
, flags
, holder
);
686 ret
= set_blocksize(bdev
, 4096);
689 bh
= btrfs_read_dev_super(bdev
);
694 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
695 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
696 transid
= btrfs_super_generation(disk_super
);
697 if (disk_super
->label
[0])
698 printk(KERN_INFO
"device label %s ", disk_super
->label
);
700 /* FIXME, make a readl uuid parser */
701 printk(KERN_INFO
"device fsid %llx-%llx ",
702 *(unsigned long long *)disk_super
->fsid
,
703 *(unsigned long long *)(disk_super
->fsid
+ 8));
705 printk(KERN_CONT
"devid %llu transid %llu %s\n",
706 (unsigned long long)devid
, (unsigned long long)transid
, path
);
707 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
711 close_bdev_exclusive(bdev
, flags
);
713 mutex_unlock(&uuid_mutex
);
718 * this uses a pretty simple search, the expectation is that it is
719 * called very infrequently and that a given device has a small number
722 static noinline
int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
723 struct btrfs_device
*device
,
724 u64 num_bytes
, u64
*start
,
727 struct btrfs_key key
;
728 struct btrfs_root
*root
= device
->dev_root
;
729 struct btrfs_dev_extent
*dev_extent
= NULL
;
730 struct btrfs_path
*path
;
733 u64 search_start
= 0;
734 u64 search_end
= device
->total_bytes
;
738 struct extent_buffer
*l
;
740 path
= btrfs_alloc_path();
746 /* FIXME use last free of some kind */
748 /* we don't want to overwrite the superblock on the drive,
749 * so we make sure to start at an offset of at least 1MB
751 search_start
= max((u64
)1024 * 1024, search_start
);
753 if (root
->fs_info
->alloc_start
+ num_bytes
<= device
->total_bytes
)
754 search_start
= max(root
->fs_info
->alloc_start
, search_start
);
756 key
.objectid
= device
->devid
;
757 key
.offset
= search_start
;
758 key
.type
= BTRFS_DEV_EXTENT_KEY
;
759 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
763 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
770 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
773 slot
= path
->slots
[0];
774 if (slot
>= btrfs_header_nritems(l
)) {
775 ret
= btrfs_next_leaf(root
, path
);
782 if (search_start
>= search_end
) {
786 *start
= search_start
;
790 *start
= last_byte
> search_start
?
791 last_byte
: search_start
;
792 if (search_end
<= *start
) {
798 btrfs_item_key_to_cpu(l
, &key
, slot
);
800 if (key
.objectid
< device
->devid
)
803 if (key
.objectid
> device
->devid
)
806 if (key
.offset
>= search_start
&& key
.offset
> last_byte
&&
808 if (last_byte
< search_start
)
809 last_byte
= search_start
;
810 hole_size
= key
.offset
- last_byte
;
812 if (hole_size
> *max_avail
)
813 *max_avail
= hole_size
;
815 if (key
.offset
> last_byte
&&
816 hole_size
>= num_bytes
) {
821 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
825 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
826 last_byte
= key
.offset
+ btrfs_dev_extent_length(l
, dev_extent
);
832 /* we have to make sure we didn't find an extent that has already
833 * been allocated by the map tree or the original allocation
835 BUG_ON(*start
< search_start
);
837 if (*start
+ num_bytes
> search_end
) {
841 /* check for pending inserts here */
845 btrfs_free_path(path
);
849 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
850 struct btrfs_device
*device
,
854 struct btrfs_path
*path
;
855 struct btrfs_root
*root
= device
->dev_root
;
856 struct btrfs_key key
;
857 struct btrfs_key found_key
;
858 struct extent_buffer
*leaf
= NULL
;
859 struct btrfs_dev_extent
*extent
= NULL
;
861 path
= btrfs_alloc_path();
865 key
.objectid
= device
->devid
;
867 key
.type
= BTRFS_DEV_EXTENT_KEY
;
869 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
871 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
872 BTRFS_DEV_EXTENT_KEY
);
874 leaf
= path
->nodes
[0];
875 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
876 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
877 struct btrfs_dev_extent
);
878 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
879 btrfs_dev_extent_length(leaf
, extent
) < start
);
881 } else if (ret
== 0) {
882 leaf
= path
->nodes
[0];
883 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
884 struct btrfs_dev_extent
);
888 if (device
->bytes_used
> 0)
889 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
890 ret
= btrfs_del_item(trans
, root
, path
);
893 btrfs_free_path(path
);
897 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
898 struct btrfs_device
*device
,
899 u64 chunk_tree
, u64 chunk_objectid
,
900 u64 chunk_offset
, u64 start
, u64 num_bytes
)
903 struct btrfs_path
*path
;
904 struct btrfs_root
*root
= device
->dev_root
;
905 struct btrfs_dev_extent
*extent
;
906 struct extent_buffer
*leaf
;
907 struct btrfs_key key
;
909 WARN_ON(!device
->in_fs_metadata
);
910 path
= btrfs_alloc_path();
914 key
.objectid
= device
->devid
;
916 key
.type
= BTRFS_DEV_EXTENT_KEY
;
917 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
921 leaf
= path
->nodes
[0];
922 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
923 struct btrfs_dev_extent
);
924 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
925 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
926 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
928 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
929 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
932 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
933 btrfs_mark_buffer_dirty(leaf
);
934 btrfs_free_path(path
);
938 static noinline
int find_next_chunk(struct btrfs_root
*root
,
939 u64 objectid
, u64
*offset
)
941 struct btrfs_path
*path
;
943 struct btrfs_key key
;
944 struct btrfs_chunk
*chunk
;
945 struct btrfs_key found_key
;
947 path
= btrfs_alloc_path();
950 key
.objectid
= objectid
;
951 key
.offset
= (u64
)-1;
952 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
954 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
960 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
964 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
966 if (found_key
.objectid
!= objectid
)
969 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
971 *offset
= found_key
.offset
+
972 btrfs_chunk_length(path
->nodes
[0], chunk
);
977 btrfs_free_path(path
);
981 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
984 struct btrfs_key key
;
985 struct btrfs_key found_key
;
986 struct btrfs_path
*path
;
988 root
= root
->fs_info
->chunk_root
;
990 path
= btrfs_alloc_path();
994 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
995 key
.type
= BTRFS_DEV_ITEM_KEY
;
996 key
.offset
= (u64
)-1;
998 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1004 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1005 BTRFS_DEV_ITEM_KEY
);
1009 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1011 *objectid
= found_key
.offset
+ 1;
1015 btrfs_free_path(path
);
1020 * the device information is stored in the chunk root
1021 * the btrfs_device struct should be fully filled in
1023 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1024 struct btrfs_root
*root
,
1025 struct btrfs_device
*device
)
1028 struct btrfs_path
*path
;
1029 struct btrfs_dev_item
*dev_item
;
1030 struct extent_buffer
*leaf
;
1031 struct btrfs_key key
;
1034 root
= root
->fs_info
->chunk_root
;
1036 path
= btrfs_alloc_path();
1040 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1041 key
.type
= BTRFS_DEV_ITEM_KEY
;
1042 key
.offset
= device
->devid
;
1044 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1049 leaf
= path
->nodes
[0];
1050 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1052 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1053 btrfs_set_device_generation(leaf
, dev_item
, 0);
1054 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1055 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1056 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1057 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1058 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1059 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1060 btrfs_set_device_group(leaf
, dev_item
, 0);
1061 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1062 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1063 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1065 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1066 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1067 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1068 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1069 btrfs_mark_buffer_dirty(leaf
);
1073 btrfs_free_path(path
);
1077 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1078 struct btrfs_device
*device
)
1081 struct btrfs_path
*path
;
1082 struct btrfs_key key
;
1083 struct btrfs_trans_handle
*trans
;
1085 root
= root
->fs_info
->chunk_root
;
1087 path
= btrfs_alloc_path();
1091 trans
= btrfs_start_transaction(root
, 1);
1092 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1093 key
.type
= BTRFS_DEV_ITEM_KEY
;
1094 key
.offset
= device
->devid
;
1097 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1106 ret
= btrfs_del_item(trans
, root
, path
);
1110 btrfs_free_path(path
);
1111 unlock_chunks(root
);
1112 btrfs_commit_transaction(trans
, root
);
1116 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1118 struct btrfs_device
*device
;
1119 struct btrfs_device
*next_device
;
1120 struct block_device
*bdev
;
1121 struct buffer_head
*bh
= NULL
;
1122 struct btrfs_super_block
*disk_super
;
1129 mutex_lock(&uuid_mutex
);
1130 mutex_lock(&root
->fs_info
->volume_mutex
);
1132 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1133 root
->fs_info
->avail_system_alloc_bits
|
1134 root
->fs_info
->avail_metadata_alloc_bits
;
1136 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
1137 root
->fs_info
->fs_devices
->rw_devices
<= 4) {
1138 printk(KERN_ERR
"btrfs: unable to go below four devices "
1144 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1145 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1146 printk(KERN_ERR
"btrfs: unable to go below two "
1147 "devices on raid1\n");
1152 if (strcmp(device_path
, "missing") == 0) {
1153 struct list_head
*devices
;
1154 struct btrfs_device
*tmp
;
1157 devices
= &root
->fs_info
->fs_devices
->devices
;
1158 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1159 list_for_each_entry(tmp
, devices
, dev_list
) {
1160 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1165 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1170 printk(KERN_ERR
"btrfs: no missing devices found to "
1175 bdev
= open_bdev_exclusive(device_path
, FMODE_READ
,
1176 root
->fs_info
->bdev_holder
);
1178 ret
= PTR_ERR(bdev
);
1182 set_blocksize(bdev
, 4096);
1183 bh
= btrfs_read_dev_super(bdev
);
1188 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1189 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
1190 dev_uuid
= disk_super
->dev_item
.uuid
;
1191 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1199 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1200 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1206 if (device
->writeable
) {
1207 list_del_init(&device
->dev_alloc_list
);
1208 root
->fs_info
->fs_devices
->rw_devices
--;
1211 ret
= btrfs_shrink_device(device
, 0);
1215 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1219 device
->in_fs_metadata
= 0;
1222 * the device list mutex makes sure that we don't change
1223 * the device list while someone else is writing out all
1224 * the device supers.
1226 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1227 list_del_init(&device
->dev_list
);
1228 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1230 device
->fs_devices
->num_devices
--;
1232 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1233 struct btrfs_device
, dev_list
);
1234 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1235 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1236 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1237 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1240 close_bdev_exclusive(device
->bdev
, device
->mode
);
1241 device
->bdev
= NULL
;
1242 device
->fs_devices
->open_devices
--;
1245 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1246 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1248 if (device
->fs_devices
->open_devices
== 0) {
1249 struct btrfs_fs_devices
*fs_devices
;
1250 fs_devices
= root
->fs_info
->fs_devices
;
1251 while (fs_devices
) {
1252 if (fs_devices
->seed
== device
->fs_devices
)
1254 fs_devices
= fs_devices
->seed
;
1256 fs_devices
->seed
= device
->fs_devices
->seed
;
1257 device
->fs_devices
->seed
= NULL
;
1258 __btrfs_close_devices(device
->fs_devices
);
1259 free_fs_devices(device
->fs_devices
);
1263 * at this point, the device is zero sized. We want to
1264 * remove it from the devices list and zero out the old super
1266 if (device
->writeable
) {
1267 /* make sure this device isn't detected as part of
1270 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1271 set_buffer_dirty(bh
);
1272 sync_dirty_buffer(bh
);
1275 kfree(device
->name
);
1283 close_bdev_exclusive(bdev
, FMODE_READ
);
1285 mutex_unlock(&root
->fs_info
->volume_mutex
);
1286 mutex_unlock(&uuid_mutex
);
1291 * does all the dirty work required for changing file system's UUID.
1293 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1294 struct btrfs_root
*root
)
1296 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1297 struct btrfs_fs_devices
*old_devices
;
1298 struct btrfs_fs_devices
*seed_devices
;
1299 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1300 struct btrfs_device
*device
;
1303 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1304 if (!fs_devices
->seeding
)
1307 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1311 old_devices
= clone_fs_devices(fs_devices
);
1312 if (IS_ERR(old_devices
)) {
1313 kfree(seed_devices
);
1314 return PTR_ERR(old_devices
);
1317 list_add(&old_devices
->list
, &fs_uuids
);
1319 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1320 seed_devices
->opened
= 1;
1321 INIT_LIST_HEAD(&seed_devices
->devices
);
1322 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1323 mutex_init(&seed_devices
->device_list_mutex
);
1324 list_splice_init(&fs_devices
->devices
, &seed_devices
->devices
);
1325 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1326 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1327 device
->fs_devices
= seed_devices
;
1330 fs_devices
->seeding
= 0;
1331 fs_devices
->num_devices
= 0;
1332 fs_devices
->open_devices
= 0;
1333 fs_devices
->seed
= seed_devices
;
1335 generate_random_uuid(fs_devices
->fsid
);
1336 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1337 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1338 super_flags
= btrfs_super_flags(disk_super
) &
1339 ~BTRFS_SUPER_FLAG_SEEDING
;
1340 btrfs_set_super_flags(disk_super
, super_flags
);
1346 * strore the expected generation for seed devices in device items.
1348 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1349 struct btrfs_root
*root
)
1351 struct btrfs_path
*path
;
1352 struct extent_buffer
*leaf
;
1353 struct btrfs_dev_item
*dev_item
;
1354 struct btrfs_device
*device
;
1355 struct btrfs_key key
;
1356 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1357 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1361 path
= btrfs_alloc_path();
1365 root
= root
->fs_info
->chunk_root
;
1366 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1368 key
.type
= BTRFS_DEV_ITEM_KEY
;
1371 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1375 leaf
= path
->nodes
[0];
1377 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1378 ret
= btrfs_next_leaf(root
, path
);
1383 leaf
= path
->nodes
[0];
1384 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1385 btrfs_release_path(root
, path
);
1389 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1390 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1391 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1394 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1395 struct btrfs_dev_item
);
1396 devid
= btrfs_device_id(leaf
, dev_item
);
1397 read_extent_buffer(leaf
, dev_uuid
,
1398 (unsigned long)btrfs_device_uuid(dev_item
),
1400 read_extent_buffer(leaf
, fs_uuid
,
1401 (unsigned long)btrfs_device_fsid(dev_item
),
1403 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1406 if (device
->fs_devices
->seeding
) {
1407 btrfs_set_device_generation(leaf
, dev_item
,
1408 device
->generation
);
1409 btrfs_mark_buffer_dirty(leaf
);
1417 btrfs_free_path(path
);
1421 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1423 struct btrfs_trans_handle
*trans
;
1424 struct btrfs_device
*device
;
1425 struct block_device
*bdev
;
1426 struct list_head
*devices
;
1427 struct super_block
*sb
= root
->fs_info
->sb
;
1429 int seeding_dev
= 0;
1432 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1435 bdev
= open_bdev_exclusive(device_path
, 0, root
->fs_info
->bdev_holder
);
1439 if (root
->fs_info
->fs_devices
->seeding
) {
1441 down_write(&sb
->s_umount
);
1442 mutex_lock(&uuid_mutex
);
1445 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1446 mutex_lock(&root
->fs_info
->volume_mutex
);
1448 devices
= &root
->fs_info
->fs_devices
->devices
;
1450 * we have the volume lock, so we don't need the extra
1451 * device list mutex while reading the list here.
1453 list_for_each_entry(device
, devices
, dev_list
) {
1454 if (device
->bdev
== bdev
) {
1460 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1462 /* we can safely leave the fs_devices entry around */
1467 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1468 if (!device
->name
) {
1474 ret
= find_next_devid(root
, &device
->devid
);
1480 trans
= btrfs_start_transaction(root
, 1);
1483 device
->barriers
= 1;
1484 device
->writeable
= 1;
1485 device
->work
.func
= pending_bios_fn
;
1486 generate_random_uuid(device
->uuid
);
1487 spin_lock_init(&device
->io_lock
);
1488 device
->generation
= trans
->transid
;
1489 device
->io_width
= root
->sectorsize
;
1490 device
->io_align
= root
->sectorsize
;
1491 device
->sector_size
= root
->sectorsize
;
1492 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1493 device
->disk_total_bytes
= device
->total_bytes
;
1494 device
->dev_root
= root
->fs_info
->dev_root
;
1495 device
->bdev
= bdev
;
1496 device
->in_fs_metadata
= 1;
1498 set_blocksize(device
->bdev
, 4096);
1501 sb
->s_flags
&= ~MS_RDONLY
;
1502 ret
= btrfs_prepare_sprout(trans
, root
);
1506 device
->fs_devices
= root
->fs_info
->fs_devices
;
1509 * we don't want write_supers to jump in here with our device
1512 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1513 list_add(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1514 list_add(&device
->dev_alloc_list
,
1515 &root
->fs_info
->fs_devices
->alloc_list
);
1516 root
->fs_info
->fs_devices
->num_devices
++;
1517 root
->fs_info
->fs_devices
->open_devices
++;
1518 root
->fs_info
->fs_devices
->rw_devices
++;
1519 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1521 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1522 root
->fs_info
->fs_devices
->rotating
= 1;
1524 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1525 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1526 total_bytes
+ device
->total_bytes
);
1528 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1529 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1531 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1534 ret
= init_first_rw_device(trans
, root
, device
);
1536 ret
= btrfs_finish_sprout(trans
, root
);
1539 ret
= btrfs_add_device(trans
, root
, device
);
1543 * we've got more storage, clear any full flags on the space
1546 btrfs_clear_space_info_full(root
->fs_info
);
1548 unlock_chunks(root
);
1549 btrfs_commit_transaction(trans
, root
);
1552 mutex_unlock(&uuid_mutex
);
1553 up_write(&sb
->s_umount
);
1555 ret
= btrfs_relocate_sys_chunks(root
);
1559 mutex_unlock(&root
->fs_info
->volume_mutex
);
1562 close_bdev_exclusive(bdev
, 0);
1564 mutex_unlock(&uuid_mutex
);
1565 up_write(&sb
->s_umount
);
1570 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1571 struct btrfs_device
*device
)
1574 struct btrfs_path
*path
;
1575 struct btrfs_root
*root
;
1576 struct btrfs_dev_item
*dev_item
;
1577 struct extent_buffer
*leaf
;
1578 struct btrfs_key key
;
1580 root
= device
->dev_root
->fs_info
->chunk_root
;
1582 path
= btrfs_alloc_path();
1586 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1587 key
.type
= BTRFS_DEV_ITEM_KEY
;
1588 key
.offset
= device
->devid
;
1590 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1599 leaf
= path
->nodes
[0];
1600 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1602 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1603 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1604 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1605 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1606 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1607 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
1608 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1609 btrfs_mark_buffer_dirty(leaf
);
1612 btrfs_free_path(path
);
1616 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1617 struct btrfs_device
*device
, u64 new_size
)
1619 struct btrfs_super_block
*super_copy
=
1620 &device
->dev_root
->fs_info
->super_copy
;
1621 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1622 u64 diff
= new_size
- device
->total_bytes
;
1624 if (!device
->writeable
)
1626 if (new_size
<= device
->total_bytes
)
1629 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1630 device
->fs_devices
->total_rw_bytes
+= diff
;
1632 device
->total_bytes
= new_size
;
1633 device
->disk_total_bytes
= new_size
;
1634 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1636 return btrfs_update_device(trans
, device
);
1639 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1640 struct btrfs_device
*device
, u64 new_size
)
1643 lock_chunks(device
->dev_root
);
1644 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1645 unlock_chunks(device
->dev_root
);
1649 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1650 struct btrfs_root
*root
,
1651 u64 chunk_tree
, u64 chunk_objectid
,
1655 struct btrfs_path
*path
;
1656 struct btrfs_key key
;
1658 root
= root
->fs_info
->chunk_root
;
1659 path
= btrfs_alloc_path();
1663 key
.objectid
= chunk_objectid
;
1664 key
.offset
= chunk_offset
;
1665 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1667 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1670 ret
= btrfs_del_item(trans
, root
, path
);
1673 btrfs_free_path(path
);
1677 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1680 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1681 struct btrfs_disk_key
*disk_key
;
1682 struct btrfs_chunk
*chunk
;
1689 struct btrfs_key key
;
1691 array_size
= btrfs_super_sys_array_size(super_copy
);
1693 ptr
= super_copy
->sys_chunk_array
;
1696 while (cur
< array_size
) {
1697 disk_key
= (struct btrfs_disk_key
*)ptr
;
1698 btrfs_disk_key_to_cpu(&key
, disk_key
);
1700 len
= sizeof(*disk_key
);
1702 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1703 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1704 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1705 len
+= btrfs_chunk_item_size(num_stripes
);
1710 if (key
.objectid
== chunk_objectid
&&
1711 key
.offset
== chunk_offset
) {
1712 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1714 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1723 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1724 u64 chunk_tree
, u64 chunk_objectid
,
1727 struct extent_map_tree
*em_tree
;
1728 struct btrfs_root
*extent_root
;
1729 struct btrfs_trans_handle
*trans
;
1730 struct extent_map
*em
;
1731 struct map_lookup
*map
;
1735 root
= root
->fs_info
->chunk_root
;
1736 extent_root
= root
->fs_info
->extent_root
;
1737 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1739 /* step one, relocate all the extents inside this chunk */
1740 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1743 trans
= btrfs_start_transaction(root
, 1);
1749 * step two, delete the device extents and the
1750 * chunk tree entries
1752 spin_lock(&em_tree
->lock
);
1753 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1754 spin_unlock(&em_tree
->lock
);
1756 BUG_ON(em
->start
> chunk_offset
||
1757 em
->start
+ em
->len
< chunk_offset
);
1758 map
= (struct map_lookup
*)em
->bdev
;
1760 for (i
= 0; i
< map
->num_stripes
; i
++) {
1761 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1762 map
->stripes
[i
].physical
);
1765 if (map
->stripes
[i
].dev
) {
1766 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1770 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1775 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1776 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1780 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1783 spin_lock(&em_tree
->lock
);
1784 remove_extent_mapping(em_tree
, em
);
1785 spin_unlock(&em_tree
->lock
);
1790 /* once for the tree */
1791 free_extent_map(em
);
1793 free_extent_map(em
);
1795 unlock_chunks(root
);
1796 btrfs_end_transaction(trans
, root
);
1800 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1802 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1803 struct btrfs_path
*path
;
1804 struct extent_buffer
*leaf
;
1805 struct btrfs_chunk
*chunk
;
1806 struct btrfs_key key
;
1807 struct btrfs_key found_key
;
1808 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1812 path
= btrfs_alloc_path();
1816 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1817 key
.offset
= (u64
)-1;
1818 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1821 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1826 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1833 leaf
= path
->nodes
[0];
1834 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1836 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1837 struct btrfs_chunk
);
1838 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1839 btrfs_release_path(chunk_root
, path
);
1841 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1842 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1848 if (found_key
.offset
== 0)
1850 key
.offset
= found_key
.offset
- 1;
1854 btrfs_free_path(path
);
1858 static u64
div_factor(u64 num
, int factor
)
1867 int btrfs_balance(struct btrfs_root
*dev_root
)
1870 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
1871 struct btrfs_device
*device
;
1874 struct btrfs_path
*path
;
1875 struct btrfs_key key
;
1876 struct btrfs_chunk
*chunk
;
1877 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
1878 struct btrfs_trans_handle
*trans
;
1879 struct btrfs_key found_key
;
1881 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1884 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
1885 dev_root
= dev_root
->fs_info
->dev_root
;
1887 /* step one make some room on all the devices */
1888 list_for_each_entry(device
, devices
, dev_list
) {
1889 old_size
= device
->total_bytes
;
1890 size_to_free
= div_factor(old_size
, 1);
1891 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
1892 if (!device
->writeable
||
1893 device
->total_bytes
- device
->bytes_used
> size_to_free
)
1896 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
1899 trans
= btrfs_start_transaction(dev_root
, 1);
1902 ret
= btrfs_grow_device(trans
, device
, old_size
);
1905 btrfs_end_transaction(trans
, dev_root
);
1908 /* step two, relocate all the chunks */
1909 path
= btrfs_alloc_path();
1912 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1913 key
.offset
= (u64
)-1;
1914 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1917 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1922 * this shouldn't happen, it means the last relocate
1928 ret
= btrfs_previous_item(chunk_root
, path
, 0,
1929 BTRFS_CHUNK_ITEM_KEY
);
1933 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1935 if (found_key
.objectid
!= key
.objectid
)
1938 chunk
= btrfs_item_ptr(path
->nodes
[0],
1940 struct btrfs_chunk
);
1941 key
.offset
= found_key
.offset
;
1942 /* chunk zero is special */
1943 if (key
.offset
== 0)
1946 btrfs_release_path(chunk_root
, path
);
1947 ret
= btrfs_relocate_chunk(chunk_root
,
1948 chunk_root
->root_key
.objectid
,
1955 btrfs_free_path(path
);
1956 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
1961 * shrinking a device means finding all of the device extents past
1962 * the new size, and then following the back refs to the chunks.
1963 * The chunk relocation code actually frees the device extent
1965 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
1967 struct btrfs_trans_handle
*trans
;
1968 struct btrfs_root
*root
= device
->dev_root
;
1969 struct btrfs_dev_extent
*dev_extent
= NULL
;
1970 struct btrfs_path
*path
;
1977 struct extent_buffer
*l
;
1978 struct btrfs_key key
;
1979 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1980 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1981 u64 diff
= device
->total_bytes
- new_size
;
1983 if (new_size
>= device
->total_bytes
)
1986 path
= btrfs_alloc_path();
1990 trans
= btrfs_start_transaction(root
, 1);
2000 device
->total_bytes
= new_size
;
2001 if (device
->writeable
)
2002 device
->fs_devices
->total_rw_bytes
-= diff
;
2003 unlock_chunks(root
);
2004 btrfs_end_transaction(trans
, root
);
2006 key
.objectid
= device
->devid
;
2007 key
.offset
= (u64
)-1;
2008 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2011 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2015 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
2024 slot
= path
->slots
[0];
2025 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
2027 if (key
.objectid
!= device
->devid
)
2030 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2031 length
= btrfs_dev_extent_length(l
, dev_extent
);
2033 if (key
.offset
+ length
<= new_size
)
2036 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2037 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2038 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2039 btrfs_release_path(root
, path
);
2041 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
2047 /* Shrinking succeeded, else we would be at "done". */
2048 trans
= btrfs_start_transaction(root
, 1);
2055 device
->disk_total_bytes
= new_size
;
2056 /* Now btrfs_update_device() will change the on-disk size. */
2057 ret
= btrfs_update_device(trans
, device
);
2059 unlock_chunks(root
);
2060 btrfs_end_transaction(trans
, root
);
2063 WARN_ON(diff
> old_total
);
2064 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
2065 unlock_chunks(root
);
2066 btrfs_end_transaction(trans
, root
);
2068 btrfs_free_path(path
);
2072 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
2073 struct btrfs_root
*root
,
2074 struct btrfs_key
*key
,
2075 struct btrfs_chunk
*chunk
, int item_size
)
2077 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2078 struct btrfs_disk_key disk_key
;
2082 array_size
= btrfs_super_sys_array_size(super_copy
);
2083 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
2086 ptr
= super_copy
->sys_chunk_array
+ array_size
;
2087 btrfs_cpu_key_to_disk(&disk_key
, key
);
2088 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
2089 ptr
+= sizeof(disk_key
);
2090 memcpy(ptr
, chunk
, item_size
);
2091 item_size
+= sizeof(disk_key
);
2092 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
2096 static noinline u64
chunk_bytes_by_type(u64 type
, u64 calc_size
,
2097 int num_stripes
, int sub_stripes
)
2099 if (type
& (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_DUP
))
2101 else if (type
& BTRFS_BLOCK_GROUP_RAID10
)
2102 return calc_size
* (num_stripes
/ sub_stripes
);
2104 return calc_size
* num_stripes
;
2107 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2108 struct btrfs_root
*extent_root
,
2109 struct map_lookup
**map_ret
,
2110 u64
*num_bytes
, u64
*stripe_size
,
2111 u64 start
, u64 type
)
2113 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
2114 struct btrfs_device
*device
= NULL
;
2115 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
2116 struct list_head
*cur
;
2117 struct map_lookup
*map
= NULL
;
2118 struct extent_map_tree
*em_tree
;
2119 struct extent_map
*em
;
2120 struct list_head private_devs
;
2121 int min_stripe_size
= 1 * 1024 * 1024;
2122 u64 calc_size
= 1024 * 1024 * 1024;
2123 u64 max_chunk_size
= calc_size
;
2128 int num_stripes
= 1;
2129 int min_stripes
= 1;
2130 int sub_stripes
= 0;
2134 int stripe_len
= 64 * 1024;
2136 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
2137 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
2139 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
2141 if (list_empty(&fs_devices
->alloc_list
))
2144 if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
2145 num_stripes
= fs_devices
->rw_devices
;
2148 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
2152 if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
2153 num_stripes
= min_t(u64
, 2, fs_devices
->rw_devices
);
2154 if (num_stripes
< 2)
2158 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2159 num_stripes
= fs_devices
->rw_devices
;
2160 if (num_stripes
< 4)
2162 num_stripes
&= ~(u32
)1;
2167 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
2168 max_chunk_size
= 10 * calc_size
;
2169 min_stripe_size
= 64 * 1024 * 1024;
2170 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
2171 max_chunk_size
= 4 * calc_size
;
2172 min_stripe_size
= 32 * 1024 * 1024;
2173 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2174 calc_size
= 8 * 1024 * 1024;
2175 max_chunk_size
= calc_size
* 2;
2176 min_stripe_size
= 1 * 1024 * 1024;
2179 /* we don't want a chunk larger than 10% of writeable space */
2180 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2185 if (!map
|| map
->num_stripes
!= num_stripes
) {
2187 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2190 map
->num_stripes
= num_stripes
;
2193 if (calc_size
* num_stripes
> max_chunk_size
) {
2194 calc_size
= max_chunk_size
;
2195 do_div(calc_size
, num_stripes
);
2196 do_div(calc_size
, stripe_len
);
2197 calc_size
*= stripe_len
;
2199 /* we don't want tiny stripes */
2200 calc_size
= max_t(u64
, min_stripe_size
, calc_size
);
2202 do_div(calc_size
, stripe_len
);
2203 calc_size
*= stripe_len
;
2205 cur
= fs_devices
->alloc_list
.next
;
2208 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2209 min_free
= calc_size
* 2;
2211 min_free
= calc_size
;
2214 * we add 1MB because we never use the first 1MB of the device, unless
2215 * we've looped, then we are likely allocating the maximum amount of
2216 * space left already
2219 min_free
+= 1024 * 1024;
2221 INIT_LIST_HEAD(&private_devs
);
2222 while (index
< num_stripes
) {
2223 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2224 BUG_ON(!device
->writeable
);
2225 if (device
->total_bytes
> device
->bytes_used
)
2226 avail
= device
->total_bytes
- device
->bytes_used
;
2231 if (device
->in_fs_metadata
&& avail
>= min_free
) {
2232 ret
= find_free_dev_extent(trans
, device
,
2233 min_free
, &dev_offset
,
2236 list_move_tail(&device
->dev_alloc_list
,
2238 map
->stripes
[index
].dev
= device
;
2239 map
->stripes
[index
].physical
= dev_offset
;
2241 if (type
& BTRFS_BLOCK_GROUP_DUP
) {
2242 map
->stripes
[index
].dev
= device
;
2243 map
->stripes
[index
].physical
=
2244 dev_offset
+ calc_size
;
2248 } else if (device
->in_fs_metadata
&& avail
> max_avail
)
2250 if (cur
== &fs_devices
->alloc_list
)
2253 list_splice(&private_devs
, &fs_devices
->alloc_list
);
2254 if (index
< num_stripes
) {
2255 if (index
>= min_stripes
) {
2256 num_stripes
= index
;
2257 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2258 num_stripes
/= sub_stripes
;
2259 num_stripes
*= sub_stripes
;
2264 if (!looped
&& max_avail
> 0) {
2266 calc_size
= max_avail
;
2272 map
->sector_size
= extent_root
->sectorsize
;
2273 map
->stripe_len
= stripe_len
;
2274 map
->io_align
= stripe_len
;
2275 map
->io_width
= stripe_len
;
2277 map
->num_stripes
= num_stripes
;
2278 map
->sub_stripes
= sub_stripes
;
2281 *stripe_size
= calc_size
;
2282 *num_bytes
= chunk_bytes_by_type(type
, calc_size
,
2283 num_stripes
, sub_stripes
);
2285 em
= alloc_extent_map(GFP_NOFS
);
2290 em
->bdev
= (struct block_device
*)map
;
2292 em
->len
= *num_bytes
;
2293 em
->block_start
= 0;
2294 em
->block_len
= em
->len
;
2296 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2297 spin_lock(&em_tree
->lock
);
2298 ret
= add_extent_mapping(em_tree
, em
);
2299 spin_unlock(&em_tree
->lock
);
2301 free_extent_map(em
);
2303 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2304 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2309 while (index
< map
->num_stripes
) {
2310 device
= map
->stripes
[index
].dev
;
2311 dev_offset
= map
->stripes
[index
].physical
;
2313 ret
= btrfs_alloc_dev_extent(trans
, device
,
2314 info
->chunk_root
->root_key
.objectid
,
2315 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2316 start
, dev_offset
, calc_size
);
2324 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2325 struct btrfs_root
*extent_root
,
2326 struct map_lookup
*map
, u64 chunk_offset
,
2327 u64 chunk_size
, u64 stripe_size
)
2330 struct btrfs_key key
;
2331 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2332 struct btrfs_device
*device
;
2333 struct btrfs_chunk
*chunk
;
2334 struct btrfs_stripe
*stripe
;
2335 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2339 chunk
= kzalloc(item_size
, GFP_NOFS
);
2344 while (index
< map
->num_stripes
) {
2345 device
= map
->stripes
[index
].dev
;
2346 device
->bytes_used
+= stripe_size
;
2347 ret
= btrfs_update_device(trans
, device
);
2353 stripe
= &chunk
->stripe
;
2354 while (index
< map
->num_stripes
) {
2355 device
= map
->stripes
[index
].dev
;
2356 dev_offset
= map
->stripes
[index
].physical
;
2358 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2359 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2360 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2365 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2366 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2367 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2368 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2369 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2370 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2371 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2372 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2373 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2375 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2376 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2377 key
.offset
= chunk_offset
;
2379 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2382 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2383 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2392 * Chunk allocation falls into two parts. The first part does works
2393 * that make the new allocated chunk useable, but not do any operation
2394 * that modifies the chunk tree. The second part does the works that
2395 * require modifying the chunk tree. This division is important for the
2396 * bootstrap process of adding storage to a seed btrfs.
2398 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2399 struct btrfs_root
*extent_root
, u64 type
)
2404 struct map_lookup
*map
;
2405 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2408 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2413 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2414 &stripe_size
, chunk_offset
, type
);
2418 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2419 chunk_size
, stripe_size
);
2424 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2425 struct btrfs_root
*root
,
2426 struct btrfs_device
*device
)
2429 u64 sys_chunk_offset
;
2433 u64 sys_stripe_size
;
2435 struct map_lookup
*map
;
2436 struct map_lookup
*sys_map
;
2437 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2438 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2441 ret
= find_next_chunk(fs_info
->chunk_root
,
2442 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2445 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2446 (fs_info
->metadata_alloc_profile
&
2447 fs_info
->avail_metadata_alloc_bits
);
2448 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2450 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2451 &stripe_size
, chunk_offset
, alloc_profile
);
2454 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2456 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2457 (fs_info
->system_alloc_profile
&
2458 fs_info
->avail_system_alloc_bits
);
2459 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2461 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2462 &sys_chunk_size
, &sys_stripe_size
,
2463 sys_chunk_offset
, alloc_profile
);
2466 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2470 * Modifying chunk tree needs allocating new blocks from both
2471 * system block group and metadata block group. So we only can
2472 * do operations require modifying the chunk tree after both
2473 * block groups were created.
2475 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2476 chunk_size
, stripe_size
);
2479 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2480 sys_chunk_offset
, sys_chunk_size
,
2486 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2488 struct extent_map
*em
;
2489 struct map_lookup
*map
;
2490 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2494 spin_lock(&map_tree
->map_tree
.lock
);
2495 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2496 spin_unlock(&map_tree
->map_tree
.lock
);
2500 map
= (struct map_lookup
*)em
->bdev
;
2501 for (i
= 0; i
< map
->num_stripes
; i
++) {
2502 if (!map
->stripes
[i
].dev
->writeable
) {
2507 free_extent_map(em
);
2511 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2513 extent_map_tree_init(&tree
->map_tree
, GFP_NOFS
);
2516 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2518 struct extent_map
*em
;
2521 spin_lock(&tree
->map_tree
.lock
);
2522 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2524 remove_extent_mapping(&tree
->map_tree
, em
);
2525 spin_unlock(&tree
->map_tree
.lock
);
2530 free_extent_map(em
);
2531 /* once for the tree */
2532 free_extent_map(em
);
2536 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2538 struct extent_map
*em
;
2539 struct map_lookup
*map
;
2540 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2543 spin_lock(&em_tree
->lock
);
2544 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2545 spin_unlock(&em_tree
->lock
);
2548 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2549 map
= (struct map_lookup
*)em
->bdev
;
2550 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2551 ret
= map
->num_stripes
;
2552 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2553 ret
= map
->sub_stripes
;
2556 free_extent_map(em
);
2560 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2564 if (map
->stripes
[optimal
].dev
->bdev
)
2566 for (i
= first
; i
< first
+ num
; i
++) {
2567 if (map
->stripes
[i
].dev
->bdev
)
2570 /* we couldn't find one that doesn't fail. Just return something
2571 * and the io error handling code will clean up eventually
2576 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2577 u64 logical
, u64
*length
,
2578 struct btrfs_multi_bio
**multi_ret
,
2579 int mirror_num
, struct page
*unplug_page
)
2581 struct extent_map
*em
;
2582 struct map_lookup
*map
;
2583 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2587 int stripes_allocated
= 8;
2588 int stripes_required
= 1;
2593 struct btrfs_multi_bio
*multi
= NULL
;
2595 if (multi_ret
&& !(rw
& (1 << BIO_RW
)))
2596 stripes_allocated
= 1;
2599 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2604 atomic_set(&multi
->error
, 0);
2607 spin_lock(&em_tree
->lock
);
2608 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2609 spin_unlock(&em_tree
->lock
);
2611 if (!em
&& unplug_page
)
2615 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2616 (unsigned long long)logical
,
2617 (unsigned long long)*length
);
2621 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2622 map
= (struct map_lookup
*)em
->bdev
;
2623 offset
= logical
- em
->start
;
2625 if (mirror_num
> map
->num_stripes
)
2628 /* if our multi bio struct is too small, back off and try again */
2629 if (rw
& (1 << BIO_RW
)) {
2630 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2631 BTRFS_BLOCK_GROUP_DUP
)) {
2632 stripes_required
= map
->num_stripes
;
2634 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2635 stripes_required
= map
->sub_stripes
;
2639 if (multi_ret
&& (rw
& (1 << BIO_RW
)) &&
2640 stripes_allocated
< stripes_required
) {
2641 stripes_allocated
= map
->num_stripes
;
2642 free_extent_map(em
);
2648 * stripe_nr counts the total number of stripes we have to stride
2649 * to get to this block
2651 do_div(stripe_nr
, map
->stripe_len
);
2653 stripe_offset
= stripe_nr
* map
->stripe_len
;
2654 BUG_ON(offset
< stripe_offset
);
2656 /* stripe_offset is the offset of this block in its stripe*/
2657 stripe_offset
= offset
- stripe_offset
;
2659 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
2660 BTRFS_BLOCK_GROUP_RAID10
|
2661 BTRFS_BLOCK_GROUP_DUP
)) {
2662 /* we limit the length of each bio to what fits in a stripe */
2663 *length
= min_t(u64
, em
->len
- offset
,
2664 map
->stripe_len
- stripe_offset
);
2666 *length
= em
->len
- offset
;
2669 if (!multi_ret
&& !unplug_page
)
2674 if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2675 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2676 num_stripes
= map
->num_stripes
;
2677 else if (mirror_num
)
2678 stripe_index
= mirror_num
- 1;
2680 stripe_index
= find_live_mirror(map
, 0,
2682 current
->pid
% map
->num_stripes
);
2685 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2686 if (rw
& (1 << BIO_RW
))
2687 num_stripes
= map
->num_stripes
;
2688 else if (mirror_num
)
2689 stripe_index
= mirror_num
- 1;
2691 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2692 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2694 stripe_index
= do_div(stripe_nr
, factor
);
2695 stripe_index
*= map
->sub_stripes
;
2697 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2698 num_stripes
= map
->sub_stripes
;
2699 else if (mirror_num
)
2700 stripe_index
+= mirror_num
- 1;
2702 stripe_index
= find_live_mirror(map
, stripe_index
,
2703 map
->sub_stripes
, stripe_index
+
2704 current
->pid
% map
->sub_stripes
);
2708 * after this do_div call, stripe_nr is the number of stripes
2709 * on this device we have to walk to find the data, and
2710 * stripe_index is the number of our device in the stripe array
2712 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2714 BUG_ON(stripe_index
>= map
->num_stripes
);
2716 for (i
= 0; i
< num_stripes
; i
++) {
2718 struct btrfs_device
*device
;
2719 struct backing_dev_info
*bdi
;
2721 device
= map
->stripes
[stripe_index
].dev
;
2723 bdi
= blk_get_backing_dev_info(device
->bdev
);
2724 if (bdi
->unplug_io_fn
)
2725 bdi
->unplug_io_fn(bdi
, unplug_page
);
2728 multi
->stripes
[i
].physical
=
2729 map
->stripes
[stripe_index
].physical
+
2730 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2731 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2737 multi
->num_stripes
= num_stripes
;
2738 multi
->max_errors
= max_errors
;
2741 free_extent_map(em
);
2745 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2746 u64 logical
, u64
*length
,
2747 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
2749 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
2753 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
2754 u64 chunk_start
, u64 physical
, u64 devid
,
2755 u64
**logical
, int *naddrs
, int *stripe_len
)
2757 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2758 struct extent_map
*em
;
2759 struct map_lookup
*map
;
2766 spin_lock(&em_tree
->lock
);
2767 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
2768 spin_unlock(&em_tree
->lock
);
2770 BUG_ON(!em
|| em
->start
!= chunk_start
);
2771 map
= (struct map_lookup
*)em
->bdev
;
2774 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2775 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
2776 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
2777 do_div(length
, map
->num_stripes
);
2779 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
2782 for (i
= 0; i
< map
->num_stripes
; i
++) {
2783 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
2785 if (map
->stripes
[i
].physical
> physical
||
2786 map
->stripes
[i
].physical
+ length
<= physical
)
2789 stripe_nr
= physical
- map
->stripes
[i
].physical
;
2790 do_div(stripe_nr
, map
->stripe_len
);
2792 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2793 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2794 do_div(stripe_nr
, map
->sub_stripes
);
2795 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2796 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2798 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
2799 WARN_ON(nr
>= map
->num_stripes
);
2800 for (j
= 0; j
< nr
; j
++) {
2801 if (buf
[j
] == bytenr
)
2805 WARN_ON(nr
>= map
->num_stripes
);
2812 *stripe_len
= map
->stripe_len
;
2814 free_extent_map(em
);
2818 int btrfs_unplug_page(struct btrfs_mapping_tree
*map_tree
,
2819 u64 logical
, struct page
*page
)
2821 u64 length
= PAGE_CACHE_SIZE
;
2822 return __btrfs_map_block(map_tree
, READ
, logical
, &length
,
2826 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
2828 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
2829 int is_orig_bio
= 0;
2832 atomic_inc(&multi
->error
);
2834 if (bio
== multi
->orig_bio
)
2837 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
2840 bio
= multi
->orig_bio
;
2842 bio
->bi_private
= multi
->private;
2843 bio
->bi_end_io
= multi
->end_io
;
2844 /* only send an error to the higher layers if it is
2845 * beyond the tolerance of the multi-bio
2847 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
2851 * this bio is actually up to date, we didn't
2852 * go over the max number of errors
2854 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2859 bio_endio(bio
, err
);
2860 } else if (!is_orig_bio
) {
2865 struct async_sched
{
2868 struct btrfs_fs_info
*info
;
2869 struct btrfs_work work
;
2873 * see run_scheduled_bios for a description of why bios are collected for
2876 * This will add one bio to the pending list for a device and make sure
2877 * the work struct is scheduled.
2879 static noinline
int schedule_bio(struct btrfs_root
*root
,
2880 struct btrfs_device
*device
,
2881 int rw
, struct bio
*bio
)
2883 int should_queue
= 1;
2884 struct btrfs_pending_bios
*pending_bios
;
2886 /* don't bother with additional async steps for reads, right now */
2887 if (!(rw
& (1 << BIO_RW
))) {
2889 submit_bio(rw
, bio
);
2895 * nr_async_bios allows us to reliably return congestion to the
2896 * higher layers. Otherwise, the async bio makes it appear we have
2897 * made progress against dirty pages when we've really just put it
2898 * on a queue for later
2900 atomic_inc(&root
->fs_info
->nr_async_bios
);
2901 WARN_ON(bio
->bi_next
);
2902 bio
->bi_next
= NULL
;
2905 spin_lock(&device
->io_lock
);
2906 if (bio_rw_flagged(bio
, BIO_RW_SYNCIO
))
2907 pending_bios
= &device
->pending_sync_bios
;
2909 pending_bios
= &device
->pending_bios
;
2911 if (pending_bios
->tail
)
2912 pending_bios
->tail
->bi_next
= bio
;
2914 pending_bios
->tail
= bio
;
2915 if (!pending_bios
->head
)
2916 pending_bios
->head
= bio
;
2917 if (device
->running_pending
)
2920 spin_unlock(&device
->io_lock
);
2923 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
2928 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
2929 int mirror_num
, int async_submit
)
2931 struct btrfs_mapping_tree
*map_tree
;
2932 struct btrfs_device
*dev
;
2933 struct bio
*first_bio
= bio
;
2934 u64 logical
= (u64
)bio
->bi_sector
<< 9;
2937 struct btrfs_multi_bio
*multi
= NULL
;
2942 length
= bio
->bi_size
;
2943 map_tree
= &root
->fs_info
->mapping_tree
;
2944 map_length
= length
;
2946 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
2950 total_devs
= multi
->num_stripes
;
2951 if (map_length
< length
) {
2952 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
2953 "len %llu\n", (unsigned long long)logical
,
2954 (unsigned long long)length
,
2955 (unsigned long long)map_length
);
2958 multi
->end_io
= first_bio
->bi_end_io
;
2959 multi
->private = first_bio
->bi_private
;
2960 multi
->orig_bio
= first_bio
;
2961 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
2963 while (dev_nr
< total_devs
) {
2964 if (total_devs
> 1) {
2965 if (dev_nr
< total_devs
- 1) {
2966 bio
= bio_clone(first_bio
, GFP_NOFS
);
2971 bio
->bi_private
= multi
;
2972 bio
->bi_end_io
= end_bio_multi_stripe
;
2974 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
2975 dev
= multi
->stripes
[dev_nr
].dev
;
2976 BUG_ON(rw
== WRITE
&& !dev
->writeable
);
2977 if (dev
&& dev
->bdev
) {
2978 bio
->bi_bdev
= dev
->bdev
;
2980 schedule_bio(root
, dev
, rw
, bio
);
2982 submit_bio(rw
, bio
);
2984 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2985 bio
->bi_sector
= logical
>> 9;
2986 bio_endio(bio
, -EIO
);
2990 if (total_devs
== 1)
2995 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
2998 struct btrfs_device
*device
;
2999 struct btrfs_fs_devices
*cur_devices
;
3001 cur_devices
= root
->fs_info
->fs_devices
;
3002 while (cur_devices
) {
3004 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3005 device
= __find_device(&cur_devices
->devices
,
3010 cur_devices
= cur_devices
->seed
;
3015 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
3016 u64 devid
, u8
*dev_uuid
)
3018 struct btrfs_device
*device
;
3019 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
3021 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
3024 list_add(&device
->dev_list
,
3025 &fs_devices
->devices
);
3026 device
->barriers
= 1;
3027 device
->dev_root
= root
->fs_info
->dev_root
;
3028 device
->devid
= devid
;
3029 device
->work
.func
= pending_bios_fn
;
3030 device
->fs_devices
= fs_devices
;
3031 fs_devices
->num_devices
++;
3032 spin_lock_init(&device
->io_lock
);
3033 INIT_LIST_HEAD(&device
->dev_alloc_list
);
3034 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
3038 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
3039 struct extent_buffer
*leaf
,
3040 struct btrfs_chunk
*chunk
)
3042 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3043 struct map_lookup
*map
;
3044 struct extent_map
*em
;
3048 u8 uuid
[BTRFS_UUID_SIZE
];
3053 logical
= key
->offset
;
3054 length
= btrfs_chunk_length(leaf
, chunk
);
3056 spin_lock(&map_tree
->map_tree
.lock
);
3057 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
3058 spin_unlock(&map_tree
->map_tree
.lock
);
3060 /* already mapped? */
3061 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
3062 free_extent_map(em
);
3065 free_extent_map(em
);
3068 em
= alloc_extent_map(GFP_NOFS
);
3071 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3072 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3074 free_extent_map(em
);
3078 em
->bdev
= (struct block_device
*)map
;
3079 em
->start
= logical
;
3081 em
->block_start
= 0;
3082 em
->block_len
= em
->len
;
3084 map
->num_stripes
= num_stripes
;
3085 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
3086 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
3087 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
3088 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
3089 map
->type
= btrfs_chunk_type(leaf
, chunk
);
3090 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
3091 for (i
= 0; i
< num_stripes
; i
++) {
3092 map
->stripes
[i
].physical
=
3093 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
3094 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
3095 read_extent_buffer(leaf
, uuid
, (unsigned long)
3096 btrfs_stripe_dev_uuid_nr(chunk
, i
),
3098 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
3100 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
3102 free_extent_map(em
);
3105 if (!map
->stripes
[i
].dev
) {
3106 map
->stripes
[i
].dev
=
3107 add_missing_dev(root
, devid
, uuid
);
3108 if (!map
->stripes
[i
].dev
) {
3110 free_extent_map(em
);
3114 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
3117 spin_lock(&map_tree
->map_tree
.lock
);
3118 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
3119 spin_unlock(&map_tree
->map_tree
.lock
);
3121 free_extent_map(em
);
3126 static int fill_device_from_item(struct extent_buffer
*leaf
,
3127 struct btrfs_dev_item
*dev_item
,
3128 struct btrfs_device
*device
)
3132 device
->devid
= btrfs_device_id(leaf
, dev_item
);
3133 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
3134 device
->total_bytes
= device
->disk_total_bytes
;
3135 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
3136 device
->type
= btrfs_device_type(leaf
, dev_item
);
3137 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
3138 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
3139 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
3141 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
3142 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
3147 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
3149 struct btrfs_fs_devices
*fs_devices
;
3152 mutex_lock(&uuid_mutex
);
3154 fs_devices
= root
->fs_info
->fs_devices
->seed
;
3155 while (fs_devices
) {
3156 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3160 fs_devices
= fs_devices
->seed
;
3163 fs_devices
= find_fsid(fsid
);
3169 fs_devices
= clone_fs_devices(fs_devices
);
3170 if (IS_ERR(fs_devices
)) {
3171 ret
= PTR_ERR(fs_devices
);
3175 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3176 root
->fs_info
->bdev_holder
);
3180 if (!fs_devices
->seeding
) {
3181 __btrfs_close_devices(fs_devices
);
3182 free_fs_devices(fs_devices
);
3187 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3188 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3190 mutex_unlock(&uuid_mutex
);
3194 static int read_one_dev(struct btrfs_root
*root
,
3195 struct extent_buffer
*leaf
,
3196 struct btrfs_dev_item
*dev_item
)
3198 struct btrfs_device
*device
;
3201 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3202 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3204 devid
= btrfs_device_id(leaf
, dev_item
);
3205 read_extent_buffer(leaf
, dev_uuid
,
3206 (unsigned long)btrfs_device_uuid(dev_item
),
3208 read_extent_buffer(leaf
, fs_uuid
,
3209 (unsigned long)btrfs_device_fsid(dev_item
),
3212 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3213 ret
= open_seed_devices(root
, fs_uuid
);
3214 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3218 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3219 if (!device
|| !device
->bdev
) {
3220 if (!btrfs_test_opt(root
, DEGRADED
))
3224 printk(KERN_WARNING
"warning devid %llu missing\n",
3225 (unsigned long long)devid
);
3226 device
= add_missing_dev(root
, devid
, dev_uuid
);
3232 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3233 BUG_ON(device
->writeable
);
3234 if (device
->generation
!=
3235 btrfs_device_generation(leaf
, dev_item
))
3239 fill_device_from_item(leaf
, dev_item
, device
);
3240 device
->dev_root
= root
->fs_info
->dev_root
;
3241 device
->in_fs_metadata
= 1;
3242 if (device
->writeable
)
3243 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3248 int btrfs_read_super_device(struct btrfs_root
*root
, struct extent_buffer
*buf
)
3250 struct btrfs_dev_item
*dev_item
;
3252 dev_item
= (struct btrfs_dev_item
*)offsetof(struct btrfs_super_block
,
3254 return read_one_dev(root
, buf
, dev_item
);
3257 int btrfs_read_sys_array(struct btrfs_root
*root
)
3259 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3260 struct extent_buffer
*sb
;
3261 struct btrfs_disk_key
*disk_key
;
3262 struct btrfs_chunk
*chunk
;
3264 unsigned long sb_ptr
;
3270 struct btrfs_key key
;
3272 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3273 BTRFS_SUPER_INFO_SIZE
);
3276 btrfs_set_buffer_uptodate(sb
);
3277 btrfs_set_buffer_lockdep_class(sb
, 0);
3279 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3280 array_size
= btrfs_super_sys_array_size(super_copy
);
3282 ptr
= super_copy
->sys_chunk_array
;
3283 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3286 while (cur
< array_size
) {
3287 disk_key
= (struct btrfs_disk_key
*)ptr
;
3288 btrfs_disk_key_to_cpu(&key
, disk_key
);
3290 len
= sizeof(*disk_key
); ptr
+= len
;
3294 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3295 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3296 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3299 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3300 len
= btrfs_chunk_item_size(num_stripes
);
3309 free_extent_buffer(sb
);
3313 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3315 struct btrfs_path
*path
;
3316 struct extent_buffer
*leaf
;
3317 struct btrfs_key key
;
3318 struct btrfs_key found_key
;
3322 root
= root
->fs_info
->chunk_root
;
3324 path
= btrfs_alloc_path();
3328 /* first we search for all of the device items, and then we
3329 * read in all of the chunk items. This way we can create chunk
3330 * mappings that reference all of the devices that are afound
3332 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3336 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3338 leaf
= path
->nodes
[0];
3339 slot
= path
->slots
[0];
3340 if (slot
>= btrfs_header_nritems(leaf
)) {
3341 ret
= btrfs_next_leaf(root
, path
);
3348 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3349 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3350 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3352 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3353 struct btrfs_dev_item
*dev_item
;
3354 dev_item
= btrfs_item_ptr(leaf
, slot
,
3355 struct btrfs_dev_item
);
3356 ret
= read_one_dev(root
, leaf
, dev_item
);
3360 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3361 struct btrfs_chunk
*chunk
;
3362 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3363 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3369 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3371 btrfs_release_path(root
, path
);
3376 btrfs_free_path(path
);