4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
42 static long ratelimit_pages
= 32;
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48 * large amounts of I/O are submitted.
50 static inline long sync_writeback_pages(void)
52 return ratelimit_pages
+ ratelimit_pages
/ 2;
55 /* The following parameters are exported via /proc/sys/vm */
58 * Start background writeback (via pdflush) at this percentage
60 int dirty_background_ratio
= 10;
63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64 * dirty_background_ratio * the amount of dirtyable memory
66 unsigned long dirty_background_bytes
;
69 * free highmem will not be subtracted from the total free memory
70 * for calculating free ratios if vm_highmem_is_dirtyable is true
72 int vm_highmem_is_dirtyable
;
75 * The generator of dirty data starts writeback at this percentage
77 int vm_dirty_ratio
= 20;
80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81 * vm_dirty_ratio * the amount of dirtyable memory
83 unsigned long vm_dirty_bytes
;
86 * The interval between `kupdate'-style writebacks
88 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
91 * The longest time for which data is allowed to remain dirty
93 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
96 * Flag that makes the machine dump writes/reads and block dirtyings.
101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102 * a full sync is triggered after this time elapses without any disk activity.
106 EXPORT_SYMBOL(laptop_mode
);
108 /* End of sysctl-exported parameters */
112 * Scale the writeback cache size proportional to the relative writeout speeds.
114 * We do this by keeping a floating proportion between BDIs, based on page
115 * writeback completions [end_page_writeback()]. Those devices that write out
116 * pages fastest will get the larger share, while the slower will get a smaller
119 * We use page writeout completions because we are interested in getting rid of
120 * dirty pages. Having them written out is the primary goal.
122 * We introduce a concept of time, a period over which we measure these events,
123 * because demand can/will vary over time. The length of this period itself is
124 * measured in page writeback completions.
127 static struct prop_descriptor vm_completions
;
128 static struct prop_descriptor vm_dirties
;
131 * couple the period to the dirty_ratio:
133 * period/2 ~ roundup_pow_of_two(dirty limit)
135 static int calc_period_shift(void)
137 unsigned long dirty_total
;
140 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
142 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
144 return 2 + ilog2(dirty_total
- 1);
148 * update the period when the dirty threshold changes.
150 static void update_completion_period(void)
152 int shift
= calc_period_shift();
153 prop_change_shift(&vm_completions
, shift
);
154 prop_change_shift(&vm_dirties
, shift
);
157 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
158 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
163 ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
164 if (ret
== 0 && write
)
165 dirty_background_bytes
= 0;
169 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
170 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
175 ret
= proc_doulongvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
176 if (ret
== 0 && write
)
177 dirty_background_ratio
= 0;
181 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
182 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
185 int old_ratio
= vm_dirty_ratio
;
188 ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
189 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
190 update_completion_period();
197 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
198 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
201 unsigned long old_bytes
= vm_dirty_bytes
;
204 ret
= proc_doulongvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
205 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
206 update_completion_period();
213 * Increment the BDI's writeout completion count and the global writeout
214 * completion count. Called from test_clear_page_writeback().
216 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
218 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
222 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
226 local_irq_save(flags
);
227 __bdi_writeout_inc(bdi
);
228 local_irq_restore(flags
);
230 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
232 void task_dirty_inc(struct task_struct
*tsk
)
234 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
238 * Obtain an accurate fraction of the BDI's portion.
240 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
241 long *numerator
, long *denominator
)
243 if (bdi_cap_writeback_dirty(bdi
)) {
244 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
245 numerator
, denominator
);
253 * Clip the earned share of dirty pages to that which is actually available.
254 * This avoids exceeding the total dirty_limit when the floating averages
255 * fluctuate too quickly.
257 static void clip_bdi_dirty_limit(struct backing_dev_info
*bdi
,
258 unsigned long dirty
, unsigned long *pbdi_dirty
)
260 unsigned long avail_dirty
;
262 avail_dirty
= global_page_state(NR_FILE_DIRTY
) +
263 global_page_state(NR_WRITEBACK
) +
264 global_page_state(NR_UNSTABLE_NFS
) +
265 global_page_state(NR_WRITEBACK_TEMP
);
267 if (avail_dirty
< dirty
)
268 avail_dirty
= dirty
- avail_dirty
;
272 avail_dirty
+= bdi_stat(bdi
, BDI_RECLAIMABLE
) +
273 bdi_stat(bdi
, BDI_WRITEBACK
);
275 *pbdi_dirty
= min(*pbdi_dirty
, avail_dirty
);
278 static inline void task_dirties_fraction(struct task_struct
*tsk
,
279 long *numerator
, long *denominator
)
281 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
282 numerator
, denominator
);
286 * scale the dirty limit
288 * task specific dirty limit:
290 * dirty -= (dirty/8) * p_{t}
292 static void task_dirty_limit(struct task_struct
*tsk
, unsigned long *pdirty
)
294 long numerator
, denominator
;
295 unsigned long dirty
= *pdirty
;
296 u64 inv
= dirty
>> 3;
298 task_dirties_fraction(tsk
, &numerator
, &denominator
);
300 do_div(inv
, denominator
);
303 if (dirty
< *pdirty
/2)
312 static unsigned int bdi_min_ratio
;
314 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
318 spin_lock(&bdi_lock
);
319 if (min_ratio
> bdi
->max_ratio
) {
322 min_ratio
-= bdi
->min_ratio
;
323 if (bdi_min_ratio
+ min_ratio
< 100) {
324 bdi_min_ratio
+= min_ratio
;
325 bdi
->min_ratio
+= min_ratio
;
330 spin_unlock(&bdi_lock
);
335 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
342 spin_lock(&bdi_lock
);
343 if (bdi
->min_ratio
> max_ratio
) {
346 bdi
->max_ratio
= max_ratio
;
347 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
349 spin_unlock(&bdi_lock
);
353 EXPORT_SYMBOL(bdi_set_max_ratio
);
356 * Work out the current dirty-memory clamping and background writeout
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
366 * We don't permit the clamping level to fall below 5% - that is getting rather
369 * We make sure that the background writeout level is below the adjusted
373 static unsigned long highmem_dirtyable_memory(unsigned long total
)
375 #ifdef CONFIG_HIGHMEM
379 for_each_node_state(node
, N_HIGH_MEMORY
) {
381 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
383 x
+= zone_page_state(z
, NR_FREE_PAGES
) + zone_lru_pages(z
);
386 * Make sure that the number of highmem pages is never larger
387 * than the number of the total dirtyable memory. This can only
388 * occur in very strange VM situations but we want to make sure
389 * that this does not occur.
391 return min(x
, total
);
398 * determine_dirtyable_memory - amount of memory that may be used
400 * Returns the numebr of pages that can currently be freed and used
401 * by the kernel for direct mappings.
403 unsigned long determine_dirtyable_memory(void)
407 x
= global_page_state(NR_FREE_PAGES
) + global_lru_pages();
409 if (!vm_highmem_is_dirtyable
)
410 x
-= highmem_dirtyable_memory(x
);
412 return x
+ 1; /* Ensure that we never return 0 */
416 get_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
,
417 unsigned long *pbdi_dirty
, struct backing_dev_info
*bdi
)
419 unsigned long background
;
421 unsigned long available_memory
= determine_dirtyable_memory();
422 struct task_struct
*tsk
;
425 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
429 dirty_ratio
= vm_dirty_ratio
;
432 dirty
= (dirty_ratio
* available_memory
) / 100;
435 if (dirty_background_bytes
)
436 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
438 background
= (dirty_background_ratio
* available_memory
) / 100;
440 if (background
>= dirty
)
441 background
= dirty
/ 2;
443 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
444 background
+= background
/ 4;
447 *pbackground
= background
;
452 long numerator
, denominator
;
455 * Calculate this BDI's share of the dirty ratio.
457 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
459 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
460 bdi_dirty
*= numerator
;
461 do_div(bdi_dirty
, denominator
);
462 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
463 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
464 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
466 *pbdi_dirty
= bdi_dirty
;
467 clip_bdi_dirty_limit(bdi
, dirty
, pbdi_dirty
);
468 task_dirty_limit(current
, pbdi_dirty
);
473 * balance_dirty_pages() must be called by processes which are generating dirty
474 * data. It looks at the number of dirty pages in the machine and will force
475 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476 * If we're over `background_thresh' then pdflush is woken to perform some
479 static void balance_dirty_pages(struct address_space
*mapping
)
481 long nr_reclaimable
, bdi_nr_reclaimable
;
482 long nr_writeback
, bdi_nr_writeback
;
483 unsigned long background_thresh
;
484 unsigned long dirty_thresh
;
485 unsigned long bdi_thresh
;
486 unsigned long pages_written
= 0;
487 unsigned long write_chunk
= sync_writeback_pages();
489 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
492 struct writeback_control wbc
= {
494 .sync_mode
= WB_SYNC_NONE
,
495 .older_than_this
= NULL
,
496 .nr_to_write
= write_chunk
,
500 get_dirty_limits(&background_thresh
, &dirty_thresh
,
503 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
504 global_page_state(NR_UNSTABLE_NFS
);
505 nr_writeback
= global_page_state(NR_WRITEBACK
);
507 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
508 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
510 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
514 * Throttle it only when the background writeback cannot
515 * catch-up. This avoids (excessively) small writeouts
516 * when the bdi limits are ramping up.
518 if (nr_reclaimable
+ nr_writeback
<
519 (background_thresh
+ dirty_thresh
) / 2)
522 if (!bdi
->dirty_exceeded
)
523 bdi
->dirty_exceeded
= 1;
525 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526 * Unstable writes are a feature of certain networked
527 * filesystems (i.e. NFS) in which data may have been
528 * written to the server's write cache, but has not yet
529 * been flushed to permanent storage.
530 * Only move pages to writeback if this bdi is over its
531 * threshold otherwise wait until the disk writes catch
534 if (bdi_nr_reclaimable
> bdi_thresh
) {
535 writeback_inodes_wbc(&wbc
);
536 pages_written
+= write_chunk
- wbc
.nr_to_write
;
537 get_dirty_limits(&background_thresh
, &dirty_thresh
,
542 * In order to avoid the stacked BDI deadlock we need
543 * to ensure we accurately count the 'dirty' pages when
544 * the threshold is low.
546 * Otherwise it would be possible to get thresh+n pages
547 * reported dirty, even though there are thresh-m pages
548 * actually dirty; with m+n sitting in the percpu
551 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
552 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
553 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
554 } else if (bdi_nr_reclaimable
) {
555 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
556 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
559 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
561 if (pages_written
>= write_chunk
)
562 break; /* We've done our duty */
567 if (bdi_nr_reclaimable
+ bdi_nr_writeback
< bdi_thresh
&&
569 bdi
->dirty_exceeded
= 0;
571 if (writeback_in_progress(bdi
))
572 return; /* pdflush is already working this queue */
575 * In laptop mode, we wait until hitting the higher threshold before
576 * starting background writeout, and then write out all the way down
577 * to the lower threshold. So slow writers cause minimal disk activity.
579 * In normal mode, we start background writeout at the lower
580 * background_thresh, to keep the amount of dirty memory low.
582 if ((laptop_mode
&& pages_written
) ||
583 (!laptop_mode
&& ((nr_writeback
= global_page_state(NR_FILE_DIRTY
)
584 + global_page_state(NR_UNSTABLE_NFS
))
585 > background_thresh
))) {
586 struct writeback_control wbc
= {
588 .sync_mode
= WB_SYNC_NONE
,
589 .nr_to_write
= nr_writeback
,
593 bdi_start_writeback(&wbc
);
597 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
599 if (set_page_dirty(page
) || page_mkwrite
) {
600 struct address_space
*mapping
= page_mapping(page
);
603 balance_dirty_pages_ratelimited(mapping
);
608 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
609 * @mapping: address_space which was dirtied
610 * @nr_pages_dirtied: number of pages which the caller has just dirtied
612 * Processes which are dirtying memory should call in here once for each page
613 * which was newly dirtied. The function will periodically check the system's
614 * dirty state and will initiate writeback if needed.
616 * On really big machines, get_writeback_state is expensive, so try to avoid
617 * calling it too often (ratelimiting). But once we're over the dirty memory
618 * limit we decrease the ratelimiting by a lot, to prevent individual processes
619 * from overshooting the limit by (ratelimit_pages) each.
621 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
622 unsigned long nr_pages_dirtied
)
624 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
625 unsigned long ratelimit
;
628 ratelimit
= ratelimit_pages
;
629 if (mapping
->backing_dev_info
->dirty_exceeded
)
633 * Check the rate limiting. Also, we do not want to throttle real-time
634 * tasks in balance_dirty_pages(). Period.
637 p
= &__get_cpu_var(ratelimits
);
638 *p
+= nr_pages_dirtied
;
639 if (unlikely(*p
>= ratelimit
)) {
642 balance_dirty_pages(mapping
);
647 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
649 void throttle_vm_writeout(gfp_t gfp_mask
)
651 unsigned long background_thresh
;
652 unsigned long dirty_thresh
;
655 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
658 * Boost the allowable dirty threshold a bit for page
659 * allocators so they don't get DoS'ed by heavy writers
661 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
663 if (global_page_state(NR_UNSTABLE_NFS
) +
664 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
666 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
669 * The caller might hold locks which can prevent IO completion
670 * or progress in the filesystem. So we cannot just sit here
671 * waiting for IO to complete.
673 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
678 static void laptop_timer_fn(unsigned long unused
);
680 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
683 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
686 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
688 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
692 static void do_laptop_sync(struct work_struct
*work
)
694 wakeup_flusher_threads(0);
698 static void laptop_timer_fn(unsigned long unused
)
700 struct work_struct
*work
;
702 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
704 INIT_WORK(work
, do_laptop_sync
);
710 * We've spun up the disk and we're in laptop mode: schedule writeback
711 * of all dirty data a few seconds from now. If the flush is already scheduled
712 * then push it back - the user is still using the disk.
714 void laptop_io_completion(void)
716 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
720 * We're in laptop mode and we've just synced. The sync's writes will have
721 * caused another writeback to be scheduled by laptop_io_completion.
722 * Nothing needs to be written back anymore, so we unschedule the writeback.
724 void laptop_sync_completion(void)
726 del_timer(&laptop_mode_wb_timer
);
730 * If ratelimit_pages is too high then we can get into dirty-data overload
731 * if a large number of processes all perform writes at the same time.
732 * If it is too low then SMP machines will call the (expensive)
733 * get_writeback_state too often.
735 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
736 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
737 * thresholds before writeback cuts in.
739 * But the limit should not be set too high. Because it also controls the
740 * amount of memory which the balance_dirty_pages() caller has to write back.
741 * If this is too large then the caller will block on the IO queue all the
742 * time. So limit it to four megabytes - the balance_dirty_pages() caller
743 * will write six megabyte chunks, max.
746 void writeback_set_ratelimit(void)
748 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
749 if (ratelimit_pages
< 16)
750 ratelimit_pages
= 16;
751 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
752 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
756 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
758 writeback_set_ratelimit();
762 static struct notifier_block __cpuinitdata ratelimit_nb
= {
763 .notifier_call
= ratelimit_handler
,
768 * Called early on to tune the page writeback dirty limits.
770 * We used to scale dirty pages according to how total memory
771 * related to pages that could be allocated for buffers (by
772 * comparing nr_free_buffer_pages() to vm_total_pages.
774 * However, that was when we used "dirty_ratio" to scale with
775 * all memory, and we don't do that any more. "dirty_ratio"
776 * is now applied to total non-HIGHPAGE memory (by subtracting
777 * totalhigh_pages from vm_total_pages), and as such we can't
778 * get into the old insane situation any more where we had
779 * large amounts of dirty pages compared to a small amount of
780 * non-HIGHMEM memory.
782 * But we might still want to scale the dirty_ratio by how
783 * much memory the box has..
785 void __init
page_writeback_init(void)
789 writeback_set_ratelimit();
790 register_cpu_notifier(&ratelimit_nb
);
792 shift
= calc_period_shift();
793 prop_descriptor_init(&vm_completions
, shift
);
794 prop_descriptor_init(&vm_dirties
, shift
);
798 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
799 * @mapping: address space structure to write
800 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
801 * @writepage: function called for each page
802 * @data: data passed to writepage function
804 * If a page is already under I/O, write_cache_pages() skips it, even
805 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
806 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
807 * and msync() need to guarantee that all the data which was dirty at the time
808 * the call was made get new I/O started against them. If wbc->sync_mode is
809 * WB_SYNC_ALL then we were called for data integrity and we must wait for
810 * existing IO to complete.
812 int write_cache_pages(struct address_space
*mapping
,
813 struct writeback_control
*wbc
, writepage_t writepage
,
816 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
821 pgoff_t
uninitialized_var(writeback_index
);
823 pgoff_t end
; /* Inclusive */
827 long nr_to_write
= wbc
->nr_to_write
;
829 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
830 wbc
->encountered_congestion
= 1;
834 pagevec_init(&pvec
, 0);
835 if (wbc
->range_cyclic
) {
836 writeback_index
= mapping
->writeback_index
; /* prev offset */
837 index
= writeback_index
;
844 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
845 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
846 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
848 cycled
= 1; /* ignore range_cyclic tests */
852 while (!done
&& (index
<= end
)) {
855 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
857 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
861 for (i
= 0; i
< nr_pages
; i
++) {
862 struct page
*page
= pvec
.pages
[i
];
865 * At this point, the page may be truncated or
866 * invalidated (changing page->mapping to NULL), or
867 * even swizzled back from swapper_space to tmpfs file
868 * mapping. However, page->index will not change
869 * because we have a reference on the page.
871 if (page
->index
> end
) {
873 * can't be range_cyclic (1st pass) because
874 * end == -1 in that case.
880 done_index
= page
->index
+ 1;
885 * Page truncated or invalidated. We can freely skip it
886 * then, even for data integrity operations: the page
887 * has disappeared concurrently, so there could be no
888 * real expectation of this data interity operation
889 * even if there is now a new, dirty page at the same
892 if (unlikely(page
->mapping
!= mapping
)) {
898 if (!PageDirty(page
)) {
899 /* someone wrote it for us */
900 goto continue_unlock
;
903 if (PageWriteback(page
)) {
904 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
905 wait_on_page_writeback(page
);
907 goto continue_unlock
;
910 BUG_ON(PageWriteback(page
));
911 if (!clear_page_dirty_for_io(page
))
912 goto continue_unlock
;
914 ret
= (*writepage
)(page
, wbc
, data
);
916 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
921 * done_index is set past this page,
922 * so media errors will not choke
923 * background writeout for the entire
924 * file. This has consequences for
925 * range_cyclic semantics (ie. it may
926 * not be suitable for data integrity
934 if (nr_to_write
> 0) {
936 if (nr_to_write
== 0 &&
937 wbc
->sync_mode
== WB_SYNC_NONE
) {
939 * We stop writing back only if we are
940 * not doing integrity sync. In case of
941 * integrity sync we have to keep going
942 * because someone may be concurrently
943 * dirtying pages, and we might have
944 * synced a lot of newly appeared dirty
945 * pages, but have not synced all of the
953 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
954 wbc
->encountered_congestion
= 1;
959 pagevec_release(&pvec
);
962 if (!cycled
&& !done
) {
965 * We hit the last page and there is more work to be done: wrap
966 * back to the start of the file
970 end
= writeback_index
- 1;
973 if (!wbc
->no_nrwrite_index_update
) {
974 if (wbc
->range_cyclic
|| (range_whole
&& nr_to_write
> 0))
975 mapping
->writeback_index
= done_index
;
976 wbc
->nr_to_write
= nr_to_write
;
981 EXPORT_SYMBOL(write_cache_pages
);
984 * Function used by generic_writepages to call the real writepage
985 * function and set the mapping flags on error
987 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
990 struct address_space
*mapping
= data
;
991 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
992 mapping_set_error(mapping
, ret
);
997 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
998 * @mapping: address space structure to write
999 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1001 * This is a library function, which implements the writepages()
1002 * address_space_operation.
1004 int generic_writepages(struct address_space
*mapping
,
1005 struct writeback_control
*wbc
)
1007 /* deal with chardevs and other special file */
1008 if (!mapping
->a_ops
->writepage
)
1011 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1014 EXPORT_SYMBOL(generic_writepages
);
1016 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1020 if (wbc
->nr_to_write
<= 0)
1022 wbc
->for_writepages
= 1;
1023 if (mapping
->a_ops
->writepages
)
1024 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1026 ret
= generic_writepages(mapping
, wbc
);
1027 wbc
->for_writepages
= 0;
1032 * write_one_page - write out a single page and optionally wait on I/O
1033 * @page: the page to write
1034 * @wait: if true, wait on writeout
1036 * The page must be locked by the caller and will be unlocked upon return.
1038 * write_one_page() returns a negative error code if I/O failed.
1040 int write_one_page(struct page
*page
, int wait
)
1042 struct address_space
*mapping
= page
->mapping
;
1044 struct writeback_control wbc
= {
1045 .sync_mode
= WB_SYNC_ALL
,
1049 BUG_ON(!PageLocked(page
));
1052 wait_on_page_writeback(page
);
1054 if (clear_page_dirty_for_io(page
)) {
1055 page_cache_get(page
);
1056 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1057 if (ret
== 0 && wait
) {
1058 wait_on_page_writeback(page
);
1059 if (PageError(page
))
1062 page_cache_release(page
);
1068 EXPORT_SYMBOL(write_one_page
);
1071 * For address_spaces which do not use buffers nor write back.
1073 int __set_page_dirty_no_writeback(struct page
*page
)
1075 if (!PageDirty(page
))
1081 * Helper function for set_page_dirty family.
1082 * NOTE: This relies on being atomic wrt interrupts.
1084 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1086 if (mapping_cap_account_dirty(mapping
)) {
1087 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1088 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1089 task_dirty_inc(current
);
1090 task_io_account_write(PAGE_CACHE_SIZE
);
1095 * For address_spaces which do not use buffers. Just tag the page as dirty in
1098 * This is also used when a single buffer is being dirtied: we want to set the
1099 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1100 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1102 * Most callers have locked the page, which pins the address_space in memory.
1103 * But zap_pte_range() does not lock the page, however in that case the
1104 * mapping is pinned by the vma's ->vm_file reference.
1106 * We take care to handle the case where the page was truncated from the
1107 * mapping by re-checking page_mapping() inside tree_lock.
1109 int __set_page_dirty_nobuffers(struct page
*page
)
1111 if (!TestSetPageDirty(page
)) {
1112 struct address_space
*mapping
= page_mapping(page
);
1113 struct address_space
*mapping2
;
1118 spin_lock_irq(&mapping
->tree_lock
);
1119 mapping2
= page_mapping(page
);
1120 if (mapping2
) { /* Race with truncate? */
1121 BUG_ON(mapping2
!= mapping
);
1122 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1123 account_page_dirtied(page
, mapping
);
1124 radix_tree_tag_set(&mapping
->page_tree
,
1125 page_index(page
), PAGECACHE_TAG_DIRTY
);
1127 spin_unlock_irq(&mapping
->tree_lock
);
1128 if (mapping
->host
) {
1129 /* !PageAnon && !swapper_space */
1130 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1136 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1139 * When a writepage implementation decides that it doesn't want to write this
1140 * page for some reason, it should redirty the locked page via
1141 * redirty_page_for_writepage() and it should then unlock the page and return 0
1143 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1145 wbc
->pages_skipped
++;
1146 return __set_page_dirty_nobuffers(page
);
1148 EXPORT_SYMBOL(redirty_page_for_writepage
);
1151 * If the mapping doesn't provide a set_page_dirty a_op, then
1152 * just fall through and assume that it wants buffer_heads.
1154 int set_page_dirty(struct page
*page
)
1156 struct address_space
*mapping
= page_mapping(page
);
1158 if (likely(mapping
)) {
1159 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1162 spd
= __set_page_dirty_buffers
;
1164 return (*spd
)(page
);
1166 if (!PageDirty(page
)) {
1167 if (!TestSetPageDirty(page
))
1172 EXPORT_SYMBOL(set_page_dirty
);
1175 * set_page_dirty() is racy if the caller has no reference against
1176 * page->mapping->host, and if the page is unlocked. This is because another
1177 * CPU could truncate the page off the mapping and then free the mapping.
1179 * Usually, the page _is_ locked, or the caller is a user-space process which
1180 * holds a reference on the inode by having an open file.
1182 * In other cases, the page should be locked before running set_page_dirty().
1184 int set_page_dirty_lock(struct page
*page
)
1188 lock_page_nosync(page
);
1189 ret
= set_page_dirty(page
);
1193 EXPORT_SYMBOL(set_page_dirty_lock
);
1196 * Clear a page's dirty flag, while caring for dirty memory accounting.
1197 * Returns true if the page was previously dirty.
1199 * This is for preparing to put the page under writeout. We leave the page
1200 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1201 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1202 * implementation will run either set_page_writeback() or set_page_dirty(),
1203 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1206 * This incoherency between the page's dirty flag and radix-tree tag is
1207 * unfortunate, but it only exists while the page is locked.
1209 int clear_page_dirty_for_io(struct page
*page
)
1211 struct address_space
*mapping
= page_mapping(page
);
1213 BUG_ON(!PageLocked(page
));
1215 ClearPageReclaim(page
);
1216 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1218 * Yes, Virginia, this is indeed insane.
1220 * We use this sequence to make sure that
1221 * (a) we account for dirty stats properly
1222 * (b) we tell the low-level filesystem to
1223 * mark the whole page dirty if it was
1224 * dirty in a pagetable. Only to then
1225 * (c) clean the page again and return 1 to
1226 * cause the writeback.
1228 * This way we avoid all nasty races with the
1229 * dirty bit in multiple places and clearing
1230 * them concurrently from different threads.
1232 * Note! Normally the "set_page_dirty(page)"
1233 * has no effect on the actual dirty bit - since
1234 * that will already usually be set. But we
1235 * need the side effects, and it can help us
1238 * We basically use the page "master dirty bit"
1239 * as a serialization point for all the different
1240 * threads doing their things.
1242 if (page_mkclean(page
))
1243 set_page_dirty(page
);
1245 * We carefully synchronise fault handlers against
1246 * installing a dirty pte and marking the page dirty
1247 * at this point. We do this by having them hold the
1248 * page lock at some point after installing their
1249 * pte, but before marking the page dirty.
1250 * Pages are always locked coming in here, so we get
1251 * the desired exclusion. See mm/memory.c:do_wp_page()
1252 * for more comments.
1254 if (TestClearPageDirty(page
)) {
1255 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1256 dec_bdi_stat(mapping
->backing_dev_info
,
1262 return TestClearPageDirty(page
);
1264 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1266 int test_clear_page_writeback(struct page
*page
)
1268 struct address_space
*mapping
= page_mapping(page
);
1272 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1273 unsigned long flags
;
1275 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1276 ret
= TestClearPageWriteback(page
);
1278 radix_tree_tag_clear(&mapping
->page_tree
,
1280 PAGECACHE_TAG_WRITEBACK
);
1281 if (bdi_cap_account_writeback(bdi
)) {
1282 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1283 __bdi_writeout_inc(bdi
);
1286 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1288 ret
= TestClearPageWriteback(page
);
1291 dec_zone_page_state(page
, NR_WRITEBACK
);
1295 int test_set_page_writeback(struct page
*page
)
1297 struct address_space
*mapping
= page_mapping(page
);
1301 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1302 unsigned long flags
;
1304 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1305 ret
= TestSetPageWriteback(page
);
1307 radix_tree_tag_set(&mapping
->page_tree
,
1309 PAGECACHE_TAG_WRITEBACK
);
1310 if (bdi_cap_account_writeback(bdi
))
1311 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1313 if (!PageDirty(page
))
1314 radix_tree_tag_clear(&mapping
->page_tree
,
1316 PAGECACHE_TAG_DIRTY
);
1317 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1319 ret
= TestSetPageWriteback(page
);
1322 inc_zone_page_state(page
, NR_WRITEBACK
);
1326 EXPORT_SYMBOL(test_set_page_writeback
);
1329 * Return true if any of the pages in the mapping are marked with the
1332 int mapping_tagged(struct address_space
*mapping
, int tag
)
1336 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1340 EXPORT_SYMBOL(mapping_tagged
);