debugfs: Modified default dir of debugfs for debugging UHCI.
[linux/fpc-iii.git] / mm / slub.c
blob417ed843b251850eb71e3cd2e78835f7272b6aa8
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
175 static int kmem_size = sizeof(struct kmem_cache);
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
181 static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
184 UP, /* Everything works but does not show up in sysfs */
185 SYSFS /* Sysfs up */
186 } slab_state = DOWN;
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
193 * Tracking user of a slab.
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
215 kfree(s);
218 #endif
220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
222 #ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224 #endif
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state >= UP;
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
245 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
247 #ifdef CONFIG_SMP
248 return s->cpu_slab[cpu];
249 #else
250 return &s->cpu_slab;
251 #endif
254 /* Verify that a pointer has an address that is valid within a slab page */
255 static inline int check_valid_pointer(struct kmem_cache *s,
256 struct page *page, const void *object)
258 void *base;
260 if (!object)
261 return 1;
263 base = page_address(page);
264 if (object < base || object >= base + page->objects * s->size ||
265 (object - base) % s->size) {
266 return 0;
269 return 1;
273 * Slow version of get and set free pointer.
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
279 static inline void *get_freepointer(struct kmem_cache *s, void *object)
281 return *(void **)(object + s->offset);
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286 *(void **)(object + s->offset) = fp;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
294 /* Scan freelist */
295 #define for_each_free_object(__p, __s, __free) \
296 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
298 /* Determine object index from a given position */
299 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
301 return (p - addr) / s->size;
304 static inline struct kmem_cache_order_objects oo_make(int order,
305 unsigned long size)
307 struct kmem_cache_order_objects x = {
308 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
311 return x;
314 static inline int oo_order(struct kmem_cache_order_objects x)
316 return x.x >> OO_SHIFT;
319 static inline int oo_objects(struct kmem_cache_order_objects x)
321 return x.x & OO_MASK;
324 #ifdef CONFIG_SLUB_DEBUG
326 * Debug settings:
328 #ifdef CONFIG_SLUB_DEBUG_ON
329 static int slub_debug = DEBUG_DEFAULT_FLAGS;
330 #else
331 static int slub_debug;
332 #endif
334 static char *slub_debug_slabs;
335 static int disable_higher_order_debug;
338 * Object debugging
340 static void print_section(char *text, u8 *addr, unsigned int length)
342 int i, offset;
343 int newline = 1;
344 char ascii[17];
346 ascii[16] = 0;
348 for (i = 0; i < length; i++) {
349 if (newline) {
350 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
351 newline = 0;
353 printk(KERN_CONT " %02x", addr[i]);
354 offset = i % 16;
355 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
356 if (offset == 15) {
357 printk(KERN_CONT " %s\n", ascii);
358 newline = 1;
361 if (!newline) {
362 i %= 16;
363 while (i < 16) {
364 printk(KERN_CONT " ");
365 ascii[i] = ' ';
366 i++;
368 printk(KERN_CONT " %s\n", ascii);
372 static struct track *get_track(struct kmem_cache *s, void *object,
373 enum track_item alloc)
375 struct track *p;
377 if (s->offset)
378 p = object + s->offset + sizeof(void *);
379 else
380 p = object + s->inuse;
382 return p + alloc;
385 static void set_track(struct kmem_cache *s, void *object,
386 enum track_item alloc, unsigned long addr)
388 struct track *p = get_track(s, object, alloc);
390 if (addr) {
391 p->addr = addr;
392 p->cpu = smp_processor_id();
393 p->pid = current->pid;
394 p->when = jiffies;
395 } else
396 memset(p, 0, sizeof(struct track));
399 static void init_tracking(struct kmem_cache *s, void *object)
401 if (!(s->flags & SLAB_STORE_USER))
402 return;
404 set_track(s, object, TRACK_FREE, 0UL);
405 set_track(s, object, TRACK_ALLOC, 0UL);
408 static void print_track(const char *s, struct track *t)
410 if (!t->addr)
411 return;
413 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
414 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
417 static void print_tracking(struct kmem_cache *s, void *object)
419 if (!(s->flags & SLAB_STORE_USER))
420 return;
422 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
423 print_track("Freed", get_track(s, object, TRACK_FREE));
426 static void print_page_info(struct page *page)
428 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
429 page, page->objects, page->inuse, page->freelist, page->flags);
433 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
435 va_list args;
436 char buf[100];
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "========================================"
442 "=====================================\n");
443 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
444 printk(KERN_ERR "----------------------------------------"
445 "-------------------------------------\n\n");
448 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
450 va_list args;
451 char buf[100];
453 va_start(args, fmt);
454 vsnprintf(buf, sizeof(buf), fmt, args);
455 va_end(args);
456 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
459 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
461 unsigned int off; /* Offset of last byte */
462 u8 *addr = page_address(page);
464 print_tracking(s, p);
466 print_page_info(page);
468 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
469 p, p - addr, get_freepointer(s, p));
471 if (p > addr + 16)
472 print_section("Bytes b4", p - 16, 16);
474 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
476 if (s->flags & SLAB_RED_ZONE)
477 print_section("Redzone", p + s->objsize,
478 s->inuse - s->objsize);
480 if (s->offset)
481 off = s->offset + sizeof(void *);
482 else
483 off = s->inuse;
485 if (s->flags & SLAB_STORE_USER)
486 off += 2 * sizeof(struct track);
488 if (off != s->size)
489 /* Beginning of the filler is the free pointer */
490 print_section("Padding", p + off, s->size - off);
492 dump_stack();
495 static void object_err(struct kmem_cache *s, struct page *page,
496 u8 *object, char *reason)
498 slab_bug(s, "%s", reason);
499 print_trailer(s, page, object);
502 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
504 va_list args;
505 char buf[100];
507 va_start(args, fmt);
508 vsnprintf(buf, sizeof(buf), fmt, args);
509 va_end(args);
510 slab_bug(s, "%s", buf);
511 print_page_info(page);
512 dump_stack();
515 static void init_object(struct kmem_cache *s, void *object, int active)
517 u8 *p = object;
519 if (s->flags & __OBJECT_POISON) {
520 memset(p, POISON_FREE, s->objsize - 1);
521 p[s->objsize - 1] = POISON_END;
524 if (s->flags & SLAB_RED_ZONE)
525 memset(p + s->objsize,
526 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
527 s->inuse - s->objsize);
530 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
532 while (bytes) {
533 if (*start != (u8)value)
534 return start;
535 start++;
536 bytes--;
538 return NULL;
541 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542 void *from, void *to)
544 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
545 memset(from, data, to - from);
548 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
549 u8 *object, char *what,
550 u8 *start, unsigned int value, unsigned int bytes)
552 u8 *fault;
553 u8 *end;
555 fault = check_bytes(start, value, bytes);
556 if (!fault)
557 return 1;
559 end = start + bytes;
560 while (end > fault && end[-1] == value)
561 end--;
563 slab_bug(s, "%s overwritten", what);
564 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
565 fault, end - 1, fault[0], value);
566 print_trailer(s, page, object);
568 restore_bytes(s, what, value, fault, end);
569 return 0;
573 * Object layout:
575 * object address
576 * Bytes of the object to be managed.
577 * If the freepointer may overlay the object then the free
578 * pointer is the first word of the object.
580 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
581 * 0xa5 (POISON_END)
583 * object + s->objsize
584 * Padding to reach word boundary. This is also used for Redzoning.
585 * Padding is extended by another word if Redzoning is enabled and
586 * objsize == inuse.
588 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
589 * 0xcc (RED_ACTIVE) for objects in use.
591 * object + s->inuse
592 * Meta data starts here.
594 * A. Free pointer (if we cannot overwrite object on free)
595 * B. Tracking data for SLAB_STORE_USER
596 * C. Padding to reach required alignment boundary or at mininum
597 * one word if debugging is on to be able to detect writes
598 * before the word boundary.
600 * Padding is done using 0x5a (POISON_INUSE)
602 * object + s->size
603 * Nothing is used beyond s->size.
605 * If slabcaches are merged then the objsize and inuse boundaries are mostly
606 * ignored. And therefore no slab options that rely on these boundaries
607 * may be used with merged slabcaches.
610 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
612 unsigned long off = s->inuse; /* The end of info */
614 if (s->offset)
615 /* Freepointer is placed after the object. */
616 off += sizeof(void *);
618 if (s->flags & SLAB_STORE_USER)
619 /* We also have user information there */
620 off += 2 * sizeof(struct track);
622 if (s->size == off)
623 return 1;
625 return check_bytes_and_report(s, page, p, "Object padding",
626 p + off, POISON_INUSE, s->size - off);
629 /* Check the pad bytes at the end of a slab page */
630 static int slab_pad_check(struct kmem_cache *s, struct page *page)
632 u8 *start;
633 u8 *fault;
634 u8 *end;
635 int length;
636 int remainder;
638 if (!(s->flags & SLAB_POISON))
639 return 1;
641 start = page_address(page);
642 length = (PAGE_SIZE << compound_order(page));
643 end = start + length;
644 remainder = length % s->size;
645 if (!remainder)
646 return 1;
648 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
649 if (!fault)
650 return 1;
651 while (end > fault && end[-1] == POISON_INUSE)
652 end--;
654 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
655 print_section("Padding", end - remainder, remainder);
657 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
658 return 0;
661 static int check_object(struct kmem_cache *s, struct page *page,
662 void *object, int active)
664 u8 *p = object;
665 u8 *endobject = object + s->objsize;
667 if (s->flags & SLAB_RED_ZONE) {
668 unsigned int red =
669 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
671 if (!check_bytes_and_report(s, page, object, "Redzone",
672 endobject, red, s->inuse - s->objsize))
673 return 0;
674 } else {
675 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
676 check_bytes_and_report(s, page, p, "Alignment padding",
677 endobject, POISON_INUSE, s->inuse - s->objsize);
681 if (s->flags & SLAB_POISON) {
682 if (!active && (s->flags & __OBJECT_POISON) &&
683 (!check_bytes_and_report(s, page, p, "Poison", p,
684 POISON_FREE, s->objsize - 1) ||
685 !check_bytes_and_report(s, page, p, "Poison",
686 p + s->objsize - 1, POISON_END, 1)))
687 return 0;
689 * check_pad_bytes cleans up on its own.
691 check_pad_bytes(s, page, p);
694 if (!s->offset && active)
696 * Object and freepointer overlap. Cannot check
697 * freepointer while object is allocated.
699 return 1;
701 /* Check free pointer validity */
702 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
703 object_err(s, page, p, "Freepointer corrupt");
705 * No choice but to zap it and thus lose the remainder
706 * of the free objects in this slab. May cause
707 * another error because the object count is now wrong.
709 set_freepointer(s, p, NULL);
710 return 0;
712 return 1;
715 static int check_slab(struct kmem_cache *s, struct page *page)
717 int maxobj;
719 VM_BUG_ON(!irqs_disabled());
721 if (!PageSlab(page)) {
722 slab_err(s, page, "Not a valid slab page");
723 return 0;
726 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
727 if (page->objects > maxobj) {
728 slab_err(s, page, "objects %u > max %u",
729 s->name, page->objects, maxobj);
730 return 0;
732 if (page->inuse > page->objects) {
733 slab_err(s, page, "inuse %u > max %u",
734 s->name, page->inuse, page->objects);
735 return 0;
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s, page);
739 return 1;
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
748 int nr = 0;
749 void *fp = page->freelist;
750 void *object = NULL;
751 unsigned long max_objects;
753 while (fp && nr <= page->objects) {
754 if (fp == search)
755 return 1;
756 if (!check_valid_pointer(s, page, fp)) {
757 if (object) {
758 object_err(s, page, object,
759 "Freechain corrupt");
760 set_freepointer(s, object, NULL);
761 break;
762 } else {
763 slab_err(s, page, "Freepointer corrupt");
764 page->freelist = NULL;
765 page->inuse = page->objects;
766 slab_fix(s, "Freelist cleared");
767 return 0;
769 break;
771 object = fp;
772 fp = get_freepointer(s, object);
773 nr++;
776 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
777 if (max_objects > MAX_OBJS_PER_PAGE)
778 max_objects = MAX_OBJS_PER_PAGE;
780 if (page->objects != max_objects) {
781 slab_err(s, page, "Wrong number of objects. Found %d but "
782 "should be %d", page->objects, max_objects);
783 page->objects = max_objects;
784 slab_fix(s, "Number of objects adjusted.");
786 if (page->inuse != page->objects - nr) {
787 slab_err(s, page, "Wrong object count. Counter is %d but "
788 "counted were %d", page->inuse, page->objects - nr);
789 page->inuse = page->objects - nr;
790 slab_fix(s, "Object count adjusted.");
792 return search == NULL;
795 static void trace(struct kmem_cache *s, struct page *page, void *object,
796 int alloc)
798 if (s->flags & SLAB_TRACE) {
799 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
800 s->name,
801 alloc ? "alloc" : "free",
802 object, page->inuse,
803 page->freelist);
805 if (!alloc)
806 print_section("Object", (void *)object, s->objsize);
808 dump_stack();
813 * Tracking of fully allocated slabs for debugging purposes.
815 static void add_full(struct kmem_cache_node *n, struct page *page)
817 spin_lock(&n->list_lock);
818 list_add(&page->lru, &n->full);
819 spin_unlock(&n->list_lock);
822 static void remove_full(struct kmem_cache *s, struct page *page)
824 struct kmem_cache_node *n;
826 if (!(s->flags & SLAB_STORE_USER))
827 return;
829 n = get_node(s, page_to_nid(page));
831 spin_lock(&n->list_lock);
832 list_del(&page->lru);
833 spin_unlock(&n->list_lock);
836 /* Tracking of the number of slabs for debugging purposes */
837 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
839 struct kmem_cache_node *n = get_node(s, node);
841 return atomic_long_read(&n->nr_slabs);
844 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
846 return atomic_long_read(&n->nr_slabs);
849 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
851 struct kmem_cache_node *n = get_node(s, node);
854 * May be called early in order to allocate a slab for the
855 * kmem_cache_node structure. Solve the chicken-egg
856 * dilemma by deferring the increment of the count during
857 * bootstrap (see early_kmem_cache_node_alloc).
859 if (!NUMA_BUILD || n) {
860 atomic_long_inc(&n->nr_slabs);
861 atomic_long_add(objects, &n->total_objects);
864 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
866 struct kmem_cache_node *n = get_node(s, node);
868 atomic_long_dec(&n->nr_slabs);
869 atomic_long_sub(objects, &n->total_objects);
872 /* Object debug checks for alloc/free paths */
873 static void setup_object_debug(struct kmem_cache *s, struct page *page,
874 void *object)
876 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
877 return;
879 init_object(s, object, 0);
880 init_tracking(s, object);
883 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
884 void *object, unsigned long addr)
886 if (!check_slab(s, page))
887 goto bad;
889 if (!on_freelist(s, page, object)) {
890 object_err(s, page, object, "Object already allocated");
891 goto bad;
894 if (!check_valid_pointer(s, page, object)) {
895 object_err(s, page, object, "Freelist Pointer check fails");
896 goto bad;
899 if (!check_object(s, page, object, 0))
900 goto bad;
902 /* Success perform special debug activities for allocs */
903 if (s->flags & SLAB_STORE_USER)
904 set_track(s, object, TRACK_ALLOC, addr);
905 trace(s, page, object, 1);
906 init_object(s, object, 1);
907 return 1;
909 bad:
910 if (PageSlab(page)) {
912 * If this is a slab page then lets do the best we can
913 * to avoid issues in the future. Marking all objects
914 * as used avoids touching the remaining objects.
916 slab_fix(s, "Marking all objects used");
917 page->inuse = page->objects;
918 page->freelist = NULL;
920 return 0;
923 static int free_debug_processing(struct kmem_cache *s, struct page *page,
924 void *object, unsigned long addr)
926 if (!check_slab(s, page))
927 goto fail;
929 if (!check_valid_pointer(s, page, object)) {
930 slab_err(s, page, "Invalid object pointer 0x%p", object);
931 goto fail;
934 if (on_freelist(s, page, object)) {
935 object_err(s, page, object, "Object already free");
936 goto fail;
939 if (!check_object(s, page, object, 1))
940 return 0;
942 if (unlikely(s != page->slab)) {
943 if (!PageSlab(page)) {
944 slab_err(s, page, "Attempt to free object(0x%p) "
945 "outside of slab", object);
946 } else if (!page->slab) {
947 printk(KERN_ERR
948 "SLUB <none>: no slab for object 0x%p.\n",
949 object);
950 dump_stack();
951 } else
952 object_err(s, page, object,
953 "page slab pointer corrupt.");
954 goto fail;
957 /* Special debug activities for freeing objects */
958 if (!PageSlubFrozen(page) && !page->freelist)
959 remove_full(s, page);
960 if (s->flags & SLAB_STORE_USER)
961 set_track(s, object, TRACK_FREE, addr);
962 trace(s, page, object, 0);
963 init_object(s, object, 0);
964 return 1;
966 fail:
967 slab_fix(s, "Object at 0x%p not freed", object);
968 return 0;
971 static int __init setup_slub_debug(char *str)
973 slub_debug = DEBUG_DEFAULT_FLAGS;
974 if (*str++ != '=' || !*str)
976 * No options specified. Switch on full debugging.
978 goto out;
980 if (*str == ',')
982 * No options but restriction on slabs. This means full
983 * debugging for slabs matching a pattern.
985 goto check_slabs;
987 if (tolower(*str) == 'o') {
989 * Avoid enabling debugging on caches if its minimum order
990 * would increase as a result.
992 disable_higher_order_debug = 1;
993 goto out;
996 slub_debug = 0;
997 if (*str == '-')
999 * Switch off all debugging measures.
1001 goto out;
1004 * Determine which debug features should be switched on
1006 for (; *str && *str != ','; str++) {
1007 switch (tolower(*str)) {
1008 case 'f':
1009 slub_debug |= SLAB_DEBUG_FREE;
1010 break;
1011 case 'z':
1012 slub_debug |= SLAB_RED_ZONE;
1013 break;
1014 case 'p':
1015 slub_debug |= SLAB_POISON;
1016 break;
1017 case 'u':
1018 slub_debug |= SLAB_STORE_USER;
1019 break;
1020 case 't':
1021 slub_debug |= SLAB_TRACE;
1022 break;
1023 default:
1024 printk(KERN_ERR "slub_debug option '%c' "
1025 "unknown. skipped\n", *str);
1029 check_slabs:
1030 if (*str == ',')
1031 slub_debug_slabs = str + 1;
1032 out:
1033 return 1;
1036 __setup("slub_debug", setup_slub_debug);
1038 static unsigned long kmem_cache_flags(unsigned long objsize,
1039 unsigned long flags, const char *name,
1040 void (*ctor)(void *))
1043 * Enable debugging if selected on the kernel commandline.
1045 if (slub_debug && (!slub_debug_slabs ||
1046 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1047 flags |= slub_debug;
1049 return flags;
1051 #else
1052 static inline void setup_object_debug(struct kmem_cache *s,
1053 struct page *page, void *object) {}
1055 static inline int alloc_debug_processing(struct kmem_cache *s,
1056 struct page *page, void *object, unsigned long addr) { return 0; }
1058 static inline int free_debug_processing(struct kmem_cache *s,
1059 struct page *page, void *object, unsigned long addr) { return 0; }
1061 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1062 { return 1; }
1063 static inline int check_object(struct kmem_cache *s, struct page *page,
1064 void *object, int active) { return 1; }
1065 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1066 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1067 unsigned long flags, const char *name,
1068 void (*ctor)(void *))
1070 return flags;
1072 #define slub_debug 0
1074 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1075 { return 0; }
1076 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1077 { return 0; }
1078 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1079 int objects) {}
1080 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1081 int objects) {}
1082 #endif
1085 * Slab allocation and freeing
1087 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1088 struct kmem_cache_order_objects oo)
1090 int order = oo_order(oo);
1092 flags |= __GFP_NOTRACK;
1094 if (node == -1)
1095 return alloc_pages(flags, order);
1096 else
1097 return alloc_pages_node(node, flags, order);
1100 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1102 struct page *page;
1103 struct kmem_cache_order_objects oo = s->oo;
1104 gfp_t alloc_gfp;
1106 flags |= s->allocflags;
1109 * Let the initial higher-order allocation fail under memory pressure
1110 * so we fall-back to the minimum order allocation.
1112 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1114 page = alloc_slab_page(alloc_gfp, node, oo);
1115 if (unlikely(!page)) {
1116 oo = s->min;
1118 * Allocation may have failed due to fragmentation.
1119 * Try a lower order alloc if possible
1121 page = alloc_slab_page(flags, node, oo);
1122 if (!page)
1123 return NULL;
1125 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1128 if (kmemcheck_enabled
1129 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1130 int pages = 1 << oo_order(oo);
1132 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1135 * Objects from caches that have a constructor don't get
1136 * cleared when they're allocated, so we need to do it here.
1138 if (s->ctor)
1139 kmemcheck_mark_uninitialized_pages(page, pages);
1140 else
1141 kmemcheck_mark_unallocated_pages(page, pages);
1144 page->objects = oo_objects(oo);
1145 mod_zone_page_state(page_zone(page),
1146 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1147 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1148 1 << oo_order(oo));
1150 return page;
1153 static void setup_object(struct kmem_cache *s, struct page *page,
1154 void *object)
1156 setup_object_debug(s, page, object);
1157 if (unlikely(s->ctor))
1158 s->ctor(object);
1161 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1163 struct page *page;
1164 void *start;
1165 void *last;
1166 void *p;
1168 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1170 page = allocate_slab(s,
1171 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1172 if (!page)
1173 goto out;
1175 inc_slabs_node(s, page_to_nid(page), page->objects);
1176 page->slab = s;
1177 page->flags |= 1 << PG_slab;
1178 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1179 SLAB_STORE_USER | SLAB_TRACE))
1180 __SetPageSlubDebug(page);
1182 start = page_address(page);
1184 if (unlikely(s->flags & SLAB_POISON))
1185 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1187 last = start;
1188 for_each_object(p, s, start, page->objects) {
1189 setup_object(s, page, last);
1190 set_freepointer(s, last, p);
1191 last = p;
1193 setup_object(s, page, last);
1194 set_freepointer(s, last, NULL);
1196 page->freelist = start;
1197 page->inuse = 0;
1198 out:
1199 return page;
1202 static void __free_slab(struct kmem_cache *s, struct page *page)
1204 int order = compound_order(page);
1205 int pages = 1 << order;
1207 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1208 void *p;
1210 slab_pad_check(s, page);
1211 for_each_object(p, s, page_address(page),
1212 page->objects)
1213 check_object(s, page, p, 0);
1214 __ClearPageSlubDebug(page);
1217 kmemcheck_free_shadow(page, compound_order(page));
1219 mod_zone_page_state(page_zone(page),
1220 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1221 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1222 -pages);
1224 __ClearPageSlab(page);
1225 reset_page_mapcount(page);
1226 if (current->reclaim_state)
1227 current->reclaim_state->reclaimed_slab += pages;
1228 __free_pages(page, order);
1231 static void rcu_free_slab(struct rcu_head *h)
1233 struct page *page;
1235 page = container_of((struct list_head *)h, struct page, lru);
1236 __free_slab(page->slab, page);
1239 static void free_slab(struct kmem_cache *s, struct page *page)
1241 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1243 * RCU free overloads the RCU head over the LRU
1245 struct rcu_head *head = (void *)&page->lru;
1247 call_rcu(head, rcu_free_slab);
1248 } else
1249 __free_slab(s, page);
1252 static void discard_slab(struct kmem_cache *s, struct page *page)
1254 dec_slabs_node(s, page_to_nid(page), page->objects);
1255 free_slab(s, page);
1259 * Per slab locking using the pagelock
1261 static __always_inline void slab_lock(struct page *page)
1263 bit_spin_lock(PG_locked, &page->flags);
1266 static __always_inline void slab_unlock(struct page *page)
1268 __bit_spin_unlock(PG_locked, &page->flags);
1271 static __always_inline int slab_trylock(struct page *page)
1273 int rc = 1;
1275 rc = bit_spin_trylock(PG_locked, &page->flags);
1276 return rc;
1280 * Management of partially allocated slabs
1282 static void add_partial(struct kmem_cache_node *n,
1283 struct page *page, int tail)
1285 spin_lock(&n->list_lock);
1286 n->nr_partial++;
1287 if (tail)
1288 list_add_tail(&page->lru, &n->partial);
1289 else
1290 list_add(&page->lru, &n->partial);
1291 spin_unlock(&n->list_lock);
1294 static void remove_partial(struct kmem_cache *s, struct page *page)
1296 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1298 spin_lock(&n->list_lock);
1299 list_del(&page->lru);
1300 n->nr_partial--;
1301 spin_unlock(&n->list_lock);
1305 * Lock slab and remove from the partial list.
1307 * Must hold list_lock.
1309 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1310 struct page *page)
1312 if (slab_trylock(page)) {
1313 list_del(&page->lru);
1314 n->nr_partial--;
1315 __SetPageSlubFrozen(page);
1316 return 1;
1318 return 0;
1322 * Try to allocate a partial slab from a specific node.
1324 static struct page *get_partial_node(struct kmem_cache_node *n)
1326 struct page *page;
1329 * Racy check. If we mistakenly see no partial slabs then we
1330 * just allocate an empty slab. If we mistakenly try to get a
1331 * partial slab and there is none available then get_partials()
1332 * will return NULL.
1334 if (!n || !n->nr_partial)
1335 return NULL;
1337 spin_lock(&n->list_lock);
1338 list_for_each_entry(page, &n->partial, lru)
1339 if (lock_and_freeze_slab(n, page))
1340 goto out;
1341 page = NULL;
1342 out:
1343 spin_unlock(&n->list_lock);
1344 return page;
1348 * Get a page from somewhere. Search in increasing NUMA distances.
1350 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1352 #ifdef CONFIG_NUMA
1353 struct zonelist *zonelist;
1354 struct zoneref *z;
1355 struct zone *zone;
1356 enum zone_type high_zoneidx = gfp_zone(flags);
1357 struct page *page;
1360 * The defrag ratio allows a configuration of the tradeoffs between
1361 * inter node defragmentation and node local allocations. A lower
1362 * defrag_ratio increases the tendency to do local allocations
1363 * instead of attempting to obtain partial slabs from other nodes.
1365 * If the defrag_ratio is set to 0 then kmalloc() always
1366 * returns node local objects. If the ratio is higher then kmalloc()
1367 * may return off node objects because partial slabs are obtained
1368 * from other nodes and filled up.
1370 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1371 * defrag_ratio = 1000) then every (well almost) allocation will
1372 * first attempt to defrag slab caches on other nodes. This means
1373 * scanning over all nodes to look for partial slabs which may be
1374 * expensive if we do it every time we are trying to find a slab
1375 * with available objects.
1377 if (!s->remote_node_defrag_ratio ||
1378 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1379 return NULL;
1381 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1382 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1383 struct kmem_cache_node *n;
1385 n = get_node(s, zone_to_nid(zone));
1387 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1388 n->nr_partial > s->min_partial) {
1389 page = get_partial_node(n);
1390 if (page)
1391 return page;
1394 #endif
1395 return NULL;
1399 * Get a partial page, lock it and return it.
1401 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1403 struct page *page;
1404 int searchnode = (node == -1) ? numa_node_id() : node;
1406 page = get_partial_node(get_node(s, searchnode));
1407 if (page || (flags & __GFP_THISNODE))
1408 return page;
1410 return get_any_partial(s, flags);
1414 * Move a page back to the lists.
1416 * Must be called with the slab lock held.
1418 * On exit the slab lock will have been dropped.
1420 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1422 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1423 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1425 __ClearPageSlubFrozen(page);
1426 if (page->inuse) {
1428 if (page->freelist) {
1429 add_partial(n, page, tail);
1430 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1431 } else {
1432 stat(c, DEACTIVATE_FULL);
1433 if (SLABDEBUG && PageSlubDebug(page) &&
1434 (s->flags & SLAB_STORE_USER))
1435 add_full(n, page);
1437 slab_unlock(page);
1438 } else {
1439 stat(c, DEACTIVATE_EMPTY);
1440 if (n->nr_partial < s->min_partial) {
1442 * Adding an empty slab to the partial slabs in order
1443 * to avoid page allocator overhead. This slab needs
1444 * to come after the other slabs with objects in
1445 * so that the others get filled first. That way the
1446 * size of the partial list stays small.
1448 * kmem_cache_shrink can reclaim any empty slabs from
1449 * the partial list.
1451 add_partial(n, page, 1);
1452 slab_unlock(page);
1453 } else {
1454 slab_unlock(page);
1455 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1456 discard_slab(s, page);
1462 * Remove the cpu slab
1464 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1466 struct page *page = c->page;
1467 int tail = 1;
1469 if (page->freelist)
1470 stat(c, DEACTIVATE_REMOTE_FREES);
1472 * Merge cpu freelist into slab freelist. Typically we get here
1473 * because both freelists are empty. So this is unlikely
1474 * to occur.
1476 while (unlikely(c->freelist)) {
1477 void **object;
1479 tail = 0; /* Hot objects. Put the slab first */
1481 /* Retrieve object from cpu_freelist */
1482 object = c->freelist;
1483 c->freelist = c->freelist[c->offset];
1485 /* And put onto the regular freelist */
1486 object[c->offset] = page->freelist;
1487 page->freelist = object;
1488 page->inuse--;
1490 c->page = NULL;
1491 unfreeze_slab(s, page, tail);
1494 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1496 stat(c, CPUSLAB_FLUSH);
1497 slab_lock(c->page);
1498 deactivate_slab(s, c);
1502 * Flush cpu slab.
1504 * Called from IPI handler with interrupts disabled.
1506 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1508 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1510 if (likely(c && c->page))
1511 flush_slab(s, c);
1514 static void flush_cpu_slab(void *d)
1516 struct kmem_cache *s = d;
1518 __flush_cpu_slab(s, smp_processor_id());
1521 static void flush_all(struct kmem_cache *s)
1523 on_each_cpu(flush_cpu_slab, s, 1);
1527 * Check if the objects in a per cpu structure fit numa
1528 * locality expectations.
1530 static inline int node_match(struct kmem_cache_cpu *c, int node)
1532 #ifdef CONFIG_NUMA
1533 if (node != -1 && c->node != node)
1534 return 0;
1535 #endif
1536 return 1;
1539 static int count_free(struct page *page)
1541 return page->objects - page->inuse;
1544 static unsigned long count_partial(struct kmem_cache_node *n,
1545 int (*get_count)(struct page *))
1547 unsigned long flags;
1548 unsigned long x = 0;
1549 struct page *page;
1551 spin_lock_irqsave(&n->list_lock, flags);
1552 list_for_each_entry(page, &n->partial, lru)
1553 x += get_count(page);
1554 spin_unlock_irqrestore(&n->list_lock, flags);
1555 return x;
1558 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1560 #ifdef CONFIG_SLUB_DEBUG
1561 return atomic_long_read(&n->total_objects);
1562 #else
1563 return 0;
1564 #endif
1567 static noinline void
1568 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1570 int node;
1572 printk(KERN_WARNING
1573 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1574 nid, gfpflags);
1575 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1576 "default order: %d, min order: %d\n", s->name, s->objsize,
1577 s->size, oo_order(s->oo), oo_order(s->min));
1579 if (oo_order(s->min) > get_order(s->objsize))
1580 printk(KERN_WARNING " %s debugging increased min order, use "
1581 "slub_debug=O to disable.\n", s->name);
1583 for_each_online_node(node) {
1584 struct kmem_cache_node *n = get_node(s, node);
1585 unsigned long nr_slabs;
1586 unsigned long nr_objs;
1587 unsigned long nr_free;
1589 if (!n)
1590 continue;
1592 nr_free = count_partial(n, count_free);
1593 nr_slabs = node_nr_slabs(n);
1594 nr_objs = node_nr_objs(n);
1596 printk(KERN_WARNING
1597 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1598 node, nr_slabs, nr_objs, nr_free);
1603 * Slow path. The lockless freelist is empty or we need to perform
1604 * debugging duties.
1606 * Interrupts are disabled.
1608 * Processing is still very fast if new objects have been freed to the
1609 * regular freelist. In that case we simply take over the regular freelist
1610 * as the lockless freelist and zap the regular freelist.
1612 * If that is not working then we fall back to the partial lists. We take the
1613 * first element of the freelist as the object to allocate now and move the
1614 * rest of the freelist to the lockless freelist.
1616 * And if we were unable to get a new slab from the partial slab lists then
1617 * we need to allocate a new slab. This is the slowest path since it involves
1618 * a call to the page allocator and the setup of a new slab.
1620 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1621 unsigned long addr, struct kmem_cache_cpu *c)
1623 void **object;
1624 struct page *new;
1626 /* We handle __GFP_ZERO in the caller */
1627 gfpflags &= ~__GFP_ZERO;
1629 if (!c->page)
1630 goto new_slab;
1632 slab_lock(c->page);
1633 if (unlikely(!node_match(c, node)))
1634 goto another_slab;
1636 stat(c, ALLOC_REFILL);
1638 load_freelist:
1639 object = c->page->freelist;
1640 if (unlikely(!object))
1641 goto another_slab;
1642 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1643 goto debug;
1645 c->freelist = object[c->offset];
1646 c->page->inuse = c->page->objects;
1647 c->page->freelist = NULL;
1648 c->node = page_to_nid(c->page);
1649 unlock_out:
1650 slab_unlock(c->page);
1651 stat(c, ALLOC_SLOWPATH);
1652 return object;
1654 another_slab:
1655 deactivate_slab(s, c);
1657 new_slab:
1658 new = get_partial(s, gfpflags, node);
1659 if (new) {
1660 c->page = new;
1661 stat(c, ALLOC_FROM_PARTIAL);
1662 goto load_freelist;
1665 if (gfpflags & __GFP_WAIT)
1666 local_irq_enable();
1668 new = new_slab(s, gfpflags, node);
1670 if (gfpflags & __GFP_WAIT)
1671 local_irq_disable();
1673 if (new) {
1674 c = get_cpu_slab(s, smp_processor_id());
1675 stat(c, ALLOC_SLAB);
1676 if (c->page)
1677 flush_slab(s, c);
1678 slab_lock(new);
1679 __SetPageSlubFrozen(new);
1680 c->page = new;
1681 goto load_freelist;
1683 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1684 slab_out_of_memory(s, gfpflags, node);
1685 return NULL;
1686 debug:
1687 if (!alloc_debug_processing(s, c->page, object, addr))
1688 goto another_slab;
1690 c->page->inuse++;
1691 c->page->freelist = object[c->offset];
1692 c->node = -1;
1693 goto unlock_out;
1697 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1698 * have the fastpath folded into their functions. So no function call
1699 * overhead for requests that can be satisfied on the fastpath.
1701 * The fastpath works by first checking if the lockless freelist can be used.
1702 * If not then __slab_alloc is called for slow processing.
1704 * Otherwise we can simply pick the next object from the lockless free list.
1706 static __always_inline void *slab_alloc(struct kmem_cache *s,
1707 gfp_t gfpflags, int node, unsigned long addr)
1709 void **object;
1710 struct kmem_cache_cpu *c;
1711 unsigned long flags;
1712 unsigned int objsize;
1714 gfpflags &= gfp_allowed_mask;
1716 lockdep_trace_alloc(gfpflags);
1717 might_sleep_if(gfpflags & __GFP_WAIT);
1719 if (should_failslab(s->objsize, gfpflags))
1720 return NULL;
1722 local_irq_save(flags);
1723 c = get_cpu_slab(s, smp_processor_id());
1724 objsize = c->objsize;
1725 if (unlikely(!c->freelist || !node_match(c, node)))
1727 object = __slab_alloc(s, gfpflags, node, addr, c);
1729 else {
1730 object = c->freelist;
1731 c->freelist = object[c->offset];
1732 stat(c, ALLOC_FASTPATH);
1734 local_irq_restore(flags);
1736 if (unlikely((gfpflags & __GFP_ZERO) && object))
1737 memset(object, 0, objsize);
1739 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1740 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1742 return object;
1745 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1747 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1749 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1751 return ret;
1753 EXPORT_SYMBOL(kmem_cache_alloc);
1755 #ifdef CONFIG_KMEMTRACE
1756 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1758 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1760 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1761 #endif
1763 #ifdef CONFIG_NUMA
1764 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1766 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1768 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1769 s->objsize, s->size, gfpflags, node);
1771 return ret;
1773 EXPORT_SYMBOL(kmem_cache_alloc_node);
1774 #endif
1776 #ifdef CONFIG_KMEMTRACE
1777 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1778 gfp_t gfpflags,
1779 int node)
1781 return slab_alloc(s, gfpflags, node, _RET_IP_);
1783 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1784 #endif
1787 * Slow patch handling. This may still be called frequently since objects
1788 * have a longer lifetime than the cpu slabs in most processing loads.
1790 * So we still attempt to reduce cache line usage. Just take the slab
1791 * lock and free the item. If there is no additional partial page
1792 * handling required then we can return immediately.
1794 static void __slab_free(struct kmem_cache *s, struct page *page,
1795 void *x, unsigned long addr, unsigned int offset)
1797 void *prior;
1798 void **object = (void *)x;
1799 struct kmem_cache_cpu *c;
1801 c = get_cpu_slab(s, raw_smp_processor_id());
1802 stat(c, FREE_SLOWPATH);
1803 slab_lock(page);
1805 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1806 goto debug;
1808 checks_ok:
1809 prior = object[offset] = page->freelist;
1810 page->freelist = object;
1811 page->inuse--;
1813 if (unlikely(PageSlubFrozen(page))) {
1814 stat(c, FREE_FROZEN);
1815 goto out_unlock;
1818 if (unlikely(!page->inuse))
1819 goto slab_empty;
1822 * Objects left in the slab. If it was not on the partial list before
1823 * then add it.
1825 if (unlikely(!prior)) {
1826 add_partial(get_node(s, page_to_nid(page)), page, 1);
1827 stat(c, FREE_ADD_PARTIAL);
1830 out_unlock:
1831 slab_unlock(page);
1832 return;
1834 slab_empty:
1835 if (prior) {
1837 * Slab still on the partial list.
1839 remove_partial(s, page);
1840 stat(c, FREE_REMOVE_PARTIAL);
1842 slab_unlock(page);
1843 stat(c, FREE_SLAB);
1844 discard_slab(s, page);
1845 return;
1847 debug:
1848 if (!free_debug_processing(s, page, x, addr))
1849 goto out_unlock;
1850 goto checks_ok;
1854 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1855 * can perform fastpath freeing without additional function calls.
1857 * The fastpath is only possible if we are freeing to the current cpu slab
1858 * of this processor. This typically the case if we have just allocated
1859 * the item before.
1861 * If fastpath is not possible then fall back to __slab_free where we deal
1862 * with all sorts of special processing.
1864 static __always_inline void slab_free(struct kmem_cache *s,
1865 struct page *page, void *x, unsigned long addr)
1867 void **object = (void *)x;
1868 struct kmem_cache_cpu *c;
1869 unsigned long flags;
1871 kmemleak_free_recursive(x, s->flags);
1872 local_irq_save(flags);
1873 c = get_cpu_slab(s, smp_processor_id());
1874 kmemcheck_slab_free(s, object, c->objsize);
1875 debug_check_no_locks_freed(object, c->objsize);
1876 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1877 debug_check_no_obj_freed(object, c->objsize);
1878 if (likely(page == c->page && c->node >= 0)) {
1879 object[c->offset] = c->freelist;
1880 c->freelist = object;
1881 stat(c, FREE_FASTPATH);
1882 } else
1883 __slab_free(s, page, x, addr, c->offset);
1885 local_irq_restore(flags);
1888 void kmem_cache_free(struct kmem_cache *s, void *x)
1890 struct page *page;
1892 page = virt_to_head_page(x);
1894 slab_free(s, page, x, _RET_IP_);
1896 trace_kmem_cache_free(_RET_IP_, x);
1898 EXPORT_SYMBOL(kmem_cache_free);
1900 /* Figure out on which slab page the object resides */
1901 static struct page *get_object_page(const void *x)
1903 struct page *page = virt_to_head_page(x);
1905 if (!PageSlab(page))
1906 return NULL;
1908 return page;
1912 * Object placement in a slab is made very easy because we always start at
1913 * offset 0. If we tune the size of the object to the alignment then we can
1914 * get the required alignment by putting one properly sized object after
1915 * another.
1917 * Notice that the allocation order determines the sizes of the per cpu
1918 * caches. Each processor has always one slab available for allocations.
1919 * Increasing the allocation order reduces the number of times that slabs
1920 * must be moved on and off the partial lists and is therefore a factor in
1921 * locking overhead.
1925 * Mininum / Maximum order of slab pages. This influences locking overhead
1926 * and slab fragmentation. A higher order reduces the number of partial slabs
1927 * and increases the number of allocations possible without having to
1928 * take the list_lock.
1930 static int slub_min_order;
1931 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1932 static int slub_min_objects;
1935 * Merge control. If this is set then no merging of slab caches will occur.
1936 * (Could be removed. This was introduced to pacify the merge skeptics.)
1938 static int slub_nomerge;
1941 * Calculate the order of allocation given an slab object size.
1943 * The order of allocation has significant impact on performance and other
1944 * system components. Generally order 0 allocations should be preferred since
1945 * order 0 does not cause fragmentation in the page allocator. Larger objects
1946 * be problematic to put into order 0 slabs because there may be too much
1947 * unused space left. We go to a higher order if more than 1/16th of the slab
1948 * would be wasted.
1950 * In order to reach satisfactory performance we must ensure that a minimum
1951 * number of objects is in one slab. Otherwise we may generate too much
1952 * activity on the partial lists which requires taking the list_lock. This is
1953 * less a concern for large slabs though which are rarely used.
1955 * slub_max_order specifies the order where we begin to stop considering the
1956 * number of objects in a slab as critical. If we reach slub_max_order then
1957 * we try to keep the page order as low as possible. So we accept more waste
1958 * of space in favor of a small page order.
1960 * Higher order allocations also allow the placement of more objects in a
1961 * slab and thereby reduce object handling overhead. If the user has
1962 * requested a higher mininum order then we start with that one instead of
1963 * the smallest order which will fit the object.
1965 static inline int slab_order(int size, int min_objects,
1966 int max_order, int fract_leftover)
1968 int order;
1969 int rem;
1970 int min_order = slub_min_order;
1972 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1973 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1975 for (order = max(min_order,
1976 fls(min_objects * size - 1) - PAGE_SHIFT);
1977 order <= max_order; order++) {
1979 unsigned long slab_size = PAGE_SIZE << order;
1981 if (slab_size < min_objects * size)
1982 continue;
1984 rem = slab_size % size;
1986 if (rem <= slab_size / fract_leftover)
1987 break;
1991 return order;
1994 static inline int calculate_order(int size)
1996 int order;
1997 int min_objects;
1998 int fraction;
1999 int max_objects;
2002 * Attempt to find best configuration for a slab. This
2003 * works by first attempting to generate a layout with
2004 * the best configuration and backing off gradually.
2006 * First we reduce the acceptable waste in a slab. Then
2007 * we reduce the minimum objects required in a slab.
2009 min_objects = slub_min_objects;
2010 if (!min_objects)
2011 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2012 max_objects = (PAGE_SIZE << slub_max_order)/size;
2013 min_objects = min(min_objects, max_objects);
2015 while (min_objects > 1) {
2016 fraction = 16;
2017 while (fraction >= 4) {
2018 order = slab_order(size, min_objects,
2019 slub_max_order, fraction);
2020 if (order <= slub_max_order)
2021 return order;
2022 fraction /= 2;
2024 min_objects--;
2028 * We were unable to place multiple objects in a slab. Now
2029 * lets see if we can place a single object there.
2031 order = slab_order(size, 1, slub_max_order, 1);
2032 if (order <= slub_max_order)
2033 return order;
2036 * Doh this slab cannot be placed using slub_max_order.
2038 order = slab_order(size, 1, MAX_ORDER, 1);
2039 if (order < MAX_ORDER)
2040 return order;
2041 return -ENOSYS;
2045 * Figure out what the alignment of the objects will be.
2047 static unsigned long calculate_alignment(unsigned long flags,
2048 unsigned long align, unsigned long size)
2051 * If the user wants hardware cache aligned objects then follow that
2052 * suggestion if the object is sufficiently large.
2054 * The hardware cache alignment cannot override the specified
2055 * alignment though. If that is greater then use it.
2057 if (flags & SLAB_HWCACHE_ALIGN) {
2058 unsigned long ralign = cache_line_size();
2059 while (size <= ralign / 2)
2060 ralign /= 2;
2061 align = max(align, ralign);
2064 if (align < ARCH_SLAB_MINALIGN)
2065 align = ARCH_SLAB_MINALIGN;
2067 return ALIGN(align, sizeof(void *));
2070 static void init_kmem_cache_cpu(struct kmem_cache *s,
2071 struct kmem_cache_cpu *c)
2073 c->page = NULL;
2074 c->freelist = NULL;
2075 c->node = 0;
2076 c->offset = s->offset / sizeof(void *);
2077 c->objsize = s->objsize;
2078 #ifdef CONFIG_SLUB_STATS
2079 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2080 #endif
2083 static void
2084 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2086 n->nr_partial = 0;
2087 spin_lock_init(&n->list_lock);
2088 INIT_LIST_HEAD(&n->partial);
2089 #ifdef CONFIG_SLUB_DEBUG
2090 atomic_long_set(&n->nr_slabs, 0);
2091 atomic_long_set(&n->total_objects, 0);
2092 INIT_LIST_HEAD(&n->full);
2093 #endif
2096 #ifdef CONFIG_SMP
2098 * Per cpu array for per cpu structures.
2100 * The per cpu array places all kmem_cache_cpu structures from one processor
2101 * close together meaning that it becomes possible that multiple per cpu
2102 * structures are contained in one cacheline. This may be particularly
2103 * beneficial for the kmalloc caches.
2105 * A desktop system typically has around 60-80 slabs. With 100 here we are
2106 * likely able to get per cpu structures for all caches from the array defined
2107 * here. We must be able to cover all kmalloc caches during bootstrap.
2109 * If the per cpu array is exhausted then fall back to kmalloc
2110 * of individual cachelines. No sharing is possible then.
2112 #define NR_KMEM_CACHE_CPU 100
2114 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2115 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2117 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2118 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2120 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2121 int cpu, gfp_t flags)
2123 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2125 if (c)
2126 per_cpu(kmem_cache_cpu_free, cpu) =
2127 (void *)c->freelist;
2128 else {
2129 /* Table overflow: So allocate ourselves */
2130 c = kmalloc_node(
2131 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2132 flags, cpu_to_node(cpu));
2133 if (!c)
2134 return NULL;
2137 init_kmem_cache_cpu(s, c);
2138 return c;
2141 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2143 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2144 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2145 kfree(c);
2146 return;
2148 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2149 per_cpu(kmem_cache_cpu_free, cpu) = c;
2152 static void free_kmem_cache_cpus(struct kmem_cache *s)
2154 int cpu;
2156 for_each_online_cpu(cpu) {
2157 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2159 if (c) {
2160 s->cpu_slab[cpu] = NULL;
2161 free_kmem_cache_cpu(c, cpu);
2166 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2168 int cpu;
2170 for_each_online_cpu(cpu) {
2171 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2173 if (c)
2174 continue;
2176 c = alloc_kmem_cache_cpu(s, cpu, flags);
2177 if (!c) {
2178 free_kmem_cache_cpus(s);
2179 return 0;
2181 s->cpu_slab[cpu] = c;
2183 return 1;
2187 * Initialize the per cpu array.
2189 static void init_alloc_cpu_cpu(int cpu)
2191 int i;
2193 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2194 return;
2196 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2197 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2199 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2202 static void __init init_alloc_cpu(void)
2204 int cpu;
2206 for_each_online_cpu(cpu)
2207 init_alloc_cpu_cpu(cpu);
2210 #else
2211 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2212 static inline void init_alloc_cpu(void) {}
2214 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2216 init_kmem_cache_cpu(s, &s->cpu_slab);
2217 return 1;
2219 #endif
2221 #ifdef CONFIG_NUMA
2223 * No kmalloc_node yet so do it by hand. We know that this is the first
2224 * slab on the node for this slabcache. There are no concurrent accesses
2225 * possible.
2227 * Note that this function only works on the kmalloc_node_cache
2228 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2229 * memory on a fresh node that has no slab structures yet.
2231 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2233 struct page *page;
2234 struct kmem_cache_node *n;
2235 unsigned long flags;
2237 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2239 page = new_slab(kmalloc_caches, gfpflags, node);
2241 BUG_ON(!page);
2242 if (page_to_nid(page) != node) {
2243 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2244 "node %d\n", node);
2245 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2246 "in order to be able to continue\n");
2249 n = page->freelist;
2250 BUG_ON(!n);
2251 page->freelist = get_freepointer(kmalloc_caches, n);
2252 page->inuse++;
2253 kmalloc_caches->node[node] = n;
2254 #ifdef CONFIG_SLUB_DEBUG
2255 init_object(kmalloc_caches, n, 1);
2256 init_tracking(kmalloc_caches, n);
2257 #endif
2258 init_kmem_cache_node(n, kmalloc_caches);
2259 inc_slabs_node(kmalloc_caches, node, page->objects);
2262 * lockdep requires consistent irq usage for each lock
2263 * so even though there cannot be a race this early in
2264 * the boot sequence, we still disable irqs.
2266 local_irq_save(flags);
2267 add_partial(n, page, 0);
2268 local_irq_restore(flags);
2271 static void free_kmem_cache_nodes(struct kmem_cache *s)
2273 int node;
2275 for_each_node_state(node, N_NORMAL_MEMORY) {
2276 struct kmem_cache_node *n = s->node[node];
2277 if (n && n != &s->local_node)
2278 kmem_cache_free(kmalloc_caches, n);
2279 s->node[node] = NULL;
2283 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2285 int node;
2286 int local_node;
2288 if (slab_state >= UP)
2289 local_node = page_to_nid(virt_to_page(s));
2290 else
2291 local_node = 0;
2293 for_each_node_state(node, N_NORMAL_MEMORY) {
2294 struct kmem_cache_node *n;
2296 if (local_node == node)
2297 n = &s->local_node;
2298 else {
2299 if (slab_state == DOWN) {
2300 early_kmem_cache_node_alloc(gfpflags, node);
2301 continue;
2303 n = kmem_cache_alloc_node(kmalloc_caches,
2304 gfpflags, node);
2306 if (!n) {
2307 free_kmem_cache_nodes(s);
2308 return 0;
2312 s->node[node] = n;
2313 init_kmem_cache_node(n, s);
2315 return 1;
2317 #else
2318 static void free_kmem_cache_nodes(struct kmem_cache *s)
2322 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2324 init_kmem_cache_node(&s->local_node, s);
2325 return 1;
2327 #endif
2329 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2331 if (min < MIN_PARTIAL)
2332 min = MIN_PARTIAL;
2333 else if (min > MAX_PARTIAL)
2334 min = MAX_PARTIAL;
2335 s->min_partial = min;
2339 * calculate_sizes() determines the order and the distribution of data within
2340 * a slab object.
2342 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2344 unsigned long flags = s->flags;
2345 unsigned long size = s->objsize;
2346 unsigned long align = s->align;
2347 int order;
2350 * Round up object size to the next word boundary. We can only
2351 * place the free pointer at word boundaries and this determines
2352 * the possible location of the free pointer.
2354 size = ALIGN(size, sizeof(void *));
2356 #ifdef CONFIG_SLUB_DEBUG
2358 * Determine if we can poison the object itself. If the user of
2359 * the slab may touch the object after free or before allocation
2360 * then we should never poison the object itself.
2362 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2363 !s->ctor)
2364 s->flags |= __OBJECT_POISON;
2365 else
2366 s->flags &= ~__OBJECT_POISON;
2370 * If we are Redzoning then check if there is some space between the
2371 * end of the object and the free pointer. If not then add an
2372 * additional word to have some bytes to store Redzone information.
2374 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2375 size += sizeof(void *);
2376 #endif
2379 * With that we have determined the number of bytes in actual use
2380 * by the object. This is the potential offset to the free pointer.
2382 s->inuse = size;
2384 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2385 s->ctor)) {
2387 * Relocate free pointer after the object if it is not
2388 * permitted to overwrite the first word of the object on
2389 * kmem_cache_free.
2391 * This is the case if we do RCU, have a constructor or
2392 * destructor or are poisoning the objects.
2394 s->offset = size;
2395 size += sizeof(void *);
2398 #ifdef CONFIG_SLUB_DEBUG
2399 if (flags & SLAB_STORE_USER)
2401 * Need to store information about allocs and frees after
2402 * the object.
2404 size += 2 * sizeof(struct track);
2406 if (flags & SLAB_RED_ZONE)
2408 * Add some empty padding so that we can catch
2409 * overwrites from earlier objects rather than let
2410 * tracking information or the free pointer be
2411 * corrupted if a user writes before the start
2412 * of the object.
2414 size += sizeof(void *);
2415 #endif
2418 * Determine the alignment based on various parameters that the
2419 * user specified and the dynamic determination of cache line size
2420 * on bootup.
2422 align = calculate_alignment(flags, align, s->objsize);
2423 s->align = align;
2426 * SLUB stores one object immediately after another beginning from
2427 * offset 0. In order to align the objects we have to simply size
2428 * each object to conform to the alignment.
2430 size = ALIGN(size, align);
2431 s->size = size;
2432 if (forced_order >= 0)
2433 order = forced_order;
2434 else
2435 order = calculate_order(size);
2437 if (order < 0)
2438 return 0;
2440 s->allocflags = 0;
2441 if (order)
2442 s->allocflags |= __GFP_COMP;
2444 if (s->flags & SLAB_CACHE_DMA)
2445 s->allocflags |= SLUB_DMA;
2447 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2448 s->allocflags |= __GFP_RECLAIMABLE;
2451 * Determine the number of objects per slab
2453 s->oo = oo_make(order, size);
2454 s->min = oo_make(get_order(size), size);
2455 if (oo_objects(s->oo) > oo_objects(s->max))
2456 s->max = s->oo;
2458 return !!oo_objects(s->oo);
2462 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2463 const char *name, size_t size,
2464 size_t align, unsigned long flags,
2465 void (*ctor)(void *))
2467 memset(s, 0, kmem_size);
2468 s->name = name;
2469 s->ctor = ctor;
2470 s->objsize = size;
2471 s->align = align;
2472 s->flags = kmem_cache_flags(size, flags, name, ctor);
2474 if (!calculate_sizes(s, -1))
2475 goto error;
2476 if (disable_higher_order_debug) {
2478 * Disable debugging flags that store metadata if the min slab
2479 * order increased.
2481 if (get_order(s->size) > get_order(s->objsize)) {
2482 s->flags &= ~DEBUG_METADATA_FLAGS;
2483 s->offset = 0;
2484 if (!calculate_sizes(s, -1))
2485 goto error;
2490 * The larger the object size is, the more pages we want on the partial
2491 * list to avoid pounding the page allocator excessively.
2493 set_min_partial(s, ilog2(s->size));
2494 s->refcount = 1;
2495 #ifdef CONFIG_NUMA
2496 s->remote_node_defrag_ratio = 1000;
2497 #endif
2498 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2499 goto error;
2501 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2502 return 1;
2503 free_kmem_cache_nodes(s);
2504 error:
2505 if (flags & SLAB_PANIC)
2506 panic("Cannot create slab %s size=%lu realsize=%u "
2507 "order=%u offset=%u flags=%lx\n",
2508 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2509 s->offset, flags);
2510 return 0;
2514 * Check if a given pointer is valid
2516 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2518 struct page *page;
2520 page = get_object_page(object);
2522 if (!page || s != page->slab)
2523 /* No slab or wrong slab */
2524 return 0;
2526 if (!check_valid_pointer(s, page, object))
2527 return 0;
2530 * We could also check if the object is on the slabs freelist.
2531 * But this would be too expensive and it seems that the main
2532 * purpose of kmem_ptr_valid() is to check if the object belongs
2533 * to a certain slab.
2535 return 1;
2537 EXPORT_SYMBOL(kmem_ptr_validate);
2540 * Determine the size of a slab object
2542 unsigned int kmem_cache_size(struct kmem_cache *s)
2544 return s->objsize;
2546 EXPORT_SYMBOL(kmem_cache_size);
2548 const char *kmem_cache_name(struct kmem_cache *s)
2550 return s->name;
2552 EXPORT_SYMBOL(kmem_cache_name);
2554 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2555 const char *text)
2557 #ifdef CONFIG_SLUB_DEBUG
2558 void *addr = page_address(page);
2559 void *p;
2560 DECLARE_BITMAP(map, page->objects);
2562 bitmap_zero(map, page->objects);
2563 slab_err(s, page, "%s", text);
2564 slab_lock(page);
2565 for_each_free_object(p, s, page->freelist)
2566 set_bit(slab_index(p, s, addr), map);
2568 for_each_object(p, s, addr, page->objects) {
2570 if (!test_bit(slab_index(p, s, addr), map)) {
2571 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2572 p, p - addr);
2573 print_tracking(s, p);
2576 slab_unlock(page);
2577 #endif
2581 * Attempt to free all partial slabs on a node.
2583 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2585 unsigned long flags;
2586 struct page *page, *h;
2588 spin_lock_irqsave(&n->list_lock, flags);
2589 list_for_each_entry_safe(page, h, &n->partial, lru) {
2590 if (!page->inuse) {
2591 list_del(&page->lru);
2592 discard_slab(s, page);
2593 n->nr_partial--;
2594 } else {
2595 list_slab_objects(s, page,
2596 "Objects remaining on kmem_cache_close()");
2599 spin_unlock_irqrestore(&n->list_lock, flags);
2603 * Release all resources used by a slab cache.
2605 static inline int kmem_cache_close(struct kmem_cache *s)
2607 int node;
2609 flush_all(s);
2611 /* Attempt to free all objects */
2612 free_kmem_cache_cpus(s);
2613 for_each_node_state(node, N_NORMAL_MEMORY) {
2614 struct kmem_cache_node *n = get_node(s, node);
2616 free_partial(s, n);
2617 if (n->nr_partial || slabs_node(s, node))
2618 return 1;
2620 free_kmem_cache_nodes(s);
2621 return 0;
2625 * Close a cache and release the kmem_cache structure
2626 * (must be used for caches created using kmem_cache_create)
2628 void kmem_cache_destroy(struct kmem_cache *s)
2630 down_write(&slub_lock);
2631 s->refcount--;
2632 if (!s->refcount) {
2633 list_del(&s->list);
2634 up_write(&slub_lock);
2635 if (kmem_cache_close(s)) {
2636 printk(KERN_ERR "SLUB %s: %s called for cache that "
2637 "still has objects.\n", s->name, __func__);
2638 dump_stack();
2640 if (s->flags & SLAB_DESTROY_BY_RCU)
2641 rcu_barrier();
2642 sysfs_slab_remove(s);
2643 } else
2644 up_write(&slub_lock);
2646 EXPORT_SYMBOL(kmem_cache_destroy);
2648 /********************************************************************
2649 * Kmalloc subsystem
2650 *******************************************************************/
2652 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2653 EXPORT_SYMBOL(kmalloc_caches);
2655 static int __init setup_slub_min_order(char *str)
2657 get_option(&str, &slub_min_order);
2659 return 1;
2662 __setup("slub_min_order=", setup_slub_min_order);
2664 static int __init setup_slub_max_order(char *str)
2666 get_option(&str, &slub_max_order);
2667 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2669 return 1;
2672 __setup("slub_max_order=", setup_slub_max_order);
2674 static int __init setup_slub_min_objects(char *str)
2676 get_option(&str, &slub_min_objects);
2678 return 1;
2681 __setup("slub_min_objects=", setup_slub_min_objects);
2683 static int __init setup_slub_nomerge(char *str)
2685 slub_nomerge = 1;
2686 return 1;
2689 __setup("slub_nomerge", setup_slub_nomerge);
2691 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2692 const char *name, int size, gfp_t gfp_flags)
2694 unsigned int flags = 0;
2696 if (gfp_flags & SLUB_DMA)
2697 flags = SLAB_CACHE_DMA;
2700 * This function is called with IRQs disabled during early-boot on
2701 * single CPU so there's no need to take slub_lock here.
2703 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2704 flags, NULL))
2705 goto panic;
2707 list_add(&s->list, &slab_caches);
2709 if (sysfs_slab_add(s))
2710 goto panic;
2711 return s;
2713 panic:
2714 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2717 #ifdef CONFIG_ZONE_DMA
2718 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2720 static void sysfs_add_func(struct work_struct *w)
2722 struct kmem_cache *s;
2724 down_write(&slub_lock);
2725 list_for_each_entry(s, &slab_caches, list) {
2726 if (s->flags & __SYSFS_ADD_DEFERRED) {
2727 s->flags &= ~__SYSFS_ADD_DEFERRED;
2728 sysfs_slab_add(s);
2731 up_write(&slub_lock);
2734 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2736 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2738 struct kmem_cache *s;
2739 char *text;
2740 size_t realsize;
2741 unsigned long slabflags;
2743 s = kmalloc_caches_dma[index];
2744 if (s)
2745 return s;
2747 /* Dynamically create dma cache */
2748 if (flags & __GFP_WAIT)
2749 down_write(&slub_lock);
2750 else {
2751 if (!down_write_trylock(&slub_lock))
2752 goto out;
2755 if (kmalloc_caches_dma[index])
2756 goto unlock_out;
2758 realsize = kmalloc_caches[index].objsize;
2759 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2760 (unsigned int)realsize);
2761 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2764 * Must defer sysfs creation to a workqueue because we don't know
2765 * what context we are called from. Before sysfs comes up, we don't
2766 * need to do anything because our sysfs initcall will start by
2767 * adding all existing slabs to sysfs.
2769 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2770 if (slab_state >= SYSFS)
2771 slabflags |= __SYSFS_ADD_DEFERRED;
2773 if (!s || !text || !kmem_cache_open(s, flags, text,
2774 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2775 kfree(s);
2776 kfree(text);
2777 goto unlock_out;
2780 list_add(&s->list, &slab_caches);
2781 kmalloc_caches_dma[index] = s;
2783 if (slab_state >= SYSFS)
2784 schedule_work(&sysfs_add_work);
2786 unlock_out:
2787 up_write(&slub_lock);
2788 out:
2789 return kmalloc_caches_dma[index];
2791 #endif
2794 * Conversion table for small slabs sizes / 8 to the index in the
2795 * kmalloc array. This is necessary for slabs < 192 since we have non power
2796 * of two cache sizes there. The size of larger slabs can be determined using
2797 * fls.
2799 static s8 size_index[24] = {
2800 3, /* 8 */
2801 4, /* 16 */
2802 5, /* 24 */
2803 5, /* 32 */
2804 6, /* 40 */
2805 6, /* 48 */
2806 6, /* 56 */
2807 6, /* 64 */
2808 1, /* 72 */
2809 1, /* 80 */
2810 1, /* 88 */
2811 1, /* 96 */
2812 7, /* 104 */
2813 7, /* 112 */
2814 7, /* 120 */
2815 7, /* 128 */
2816 2, /* 136 */
2817 2, /* 144 */
2818 2, /* 152 */
2819 2, /* 160 */
2820 2, /* 168 */
2821 2, /* 176 */
2822 2, /* 184 */
2823 2 /* 192 */
2826 static inline int size_index_elem(size_t bytes)
2828 return (bytes - 1) / 8;
2831 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2833 int index;
2835 if (size <= 192) {
2836 if (!size)
2837 return ZERO_SIZE_PTR;
2839 index = size_index[size_index_elem(size)];
2840 } else
2841 index = fls(size - 1);
2843 #ifdef CONFIG_ZONE_DMA
2844 if (unlikely((flags & SLUB_DMA)))
2845 return dma_kmalloc_cache(index, flags);
2847 #endif
2848 return &kmalloc_caches[index];
2851 void *__kmalloc(size_t size, gfp_t flags)
2853 struct kmem_cache *s;
2854 void *ret;
2856 if (unlikely(size > SLUB_MAX_SIZE))
2857 return kmalloc_large(size, flags);
2859 s = get_slab(size, flags);
2861 if (unlikely(ZERO_OR_NULL_PTR(s)))
2862 return s;
2864 ret = slab_alloc(s, flags, -1, _RET_IP_);
2866 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2868 return ret;
2870 EXPORT_SYMBOL(__kmalloc);
2872 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2874 struct page *page;
2875 void *ptr = NULL;
2877 flags |= __GFP_COMP | __GFP_NOTRACK;
2878 page = alloc_pages_node(node, flags, get_order(size));
2879 if (page)
2880 ptr = page_address(page);
2882 kmemleak_alloc(ptr, size, 1, flags);
2883 return ptr;
2886 #ifdef CONFIG_NUMA
2887 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2889 struct kmem_cache *s;
2890 void *ret;
2892 if (unlikely(size > SLUB_MAX_SIZE)) {
2893 ret = kmalloc_large_node(size, flags, node);
2895 trace_kmalloc_node(_RET_IP_, ret,
2896 size, PAGE_SIZE << get_order(size),
2897 flags, node);
2899 return ret;
2902 s = get_slab(size, flags);
2904 if (unlikely(ZERO_OR_NULL_PTR(s)))
2905 return s;
2907 ret = slab_alloc(s, flags, node, _RET_IP_);
2909 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2911 return ret;
2913 EXPORT_SYMBOL(__kmalloc_node);
2914 #endif
2916 size_t ksize(const void *object)
2918 struct page *page;
2919 struct kmem_cache *s;
2921 if (unlikely(object == ZERO_SIZE_PTR))
2922 return 0;
2924 page = virt_to_head_page(object);
2926 if (unlikely(!PageSlab(page))) {
2927 WARN_ON(!PageCompound(page));
2928 return PAGE_SIZE << compound_order(page);
2930 s = page->slab;
2932 #ifdef CONFIG_SLUB_DEBUG
2934 * Debugging requires use of the padding between object
2935 * and whatever may come after it.
2937 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2938 return s->objsize;
2940 #endif
2942 * If we have the need to store the freelist pointer
2943 * back there or track user information then we can
2944 * only use the space before that information.
2946 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2947 return s->inuse;
2949 * Else we can use all the padding etc for the allocation
2951 return s->size;
2953 EXPORT_SYMBOL(ksize);
2955 void kfree(const void *x)
2957 struct page *page;
2958 void *object = (void *)x;
2960 trace_kfree(_RET_IP_, x);
2962 if (unlikely(ZERO_OR_NULL_PTR(x)))
2963 return;
2965 page = virt_to_head_page(x);
2966 if (unlikely(!PageSlab(page))) {
2967 BUG_ON(!PageCompound(page));
2968 kmemleak_free(x);
2969 put_page(page);
2970 return;
2972 slab_free(page->slab, page, object, _RET_IP_);
2974 EXPORT_SYMBOL(kfree);
2977 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2978 * the remaining slabs by the number of items in use. The slabs with the
2979 * most items in use come first. New allocations will then fill those up
2980 * and thus they can be removed from the partial lists.
2982 * The slabs with the least items are placed last. This results in them
2983 * being allocated from last increasing the chance that the last objects
2984 * are freed in them.
2986 int kmem_cache_shrink(struct kmem_cache *s)
2988 int node;
2989 int i;
2990 struct kmem_cache_node *n;
2991 struct page *page;
2992 struct page *t;
2993 int objects = oo_objects(s->max);
2994 struct list_head *slabs_by_inuse =
2995 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2996 unsigned long flags;
2998 if (!slabs_by_inuse)
2999 return -ENOMEM;
3001 flush_all(s);
3002 for_each_node_state(node, N_NORMAL_MEMORY) {
3003 n = get_node(s, node);
3005 if (!n->nr_partial)
3006 continue;
3008 for (i = 0; i < objects; i++)
3009 INIT_LIST_HEAD(slabs_by_inuse + i);
3011 spin_lock_irqsave(&n->list_lock, flags);
3014 * Build lists indexed by the items in use in each slab.
3016 * Note that concurrent frees may occur while we hold the
3017 * list_lock. page->inuse here is the upper limit.
3019 list_for_each_entry_safe(page, t, &n->partial, lru) {
3020 if (!page->inuse && slab_trylock(page)) {
3022 * Must hold slab lock here because slab_free
3023 * may have freed the last object and be
3024 * waiting to release the slab.
3026 list_del(&page->lru);
3027 n->nr_partial--;
3028 slab_unlock(page);
3029 discard_slab(s, page);
3030 } else {
3031 list_move(&page->lru,
3032 slabs_by_inuse + page->inuse);
3037 * Rebuild the partial list with the slabs filled up most
3038 * first and the least used slabs at the end.
3040 for (i = objects - 1; i >= 0; i--)
3041 list_splice(slabs_by_inuse + i, n->partial.prev);
3043 spin_unlock_irqrestore(&n->list_lock, flags);
3046 kfree(slabs_by_inuse);
3047 return 0;
3049 EXPORT_SYMBOL(kmem_cache_shrink);
3051 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3052 static int slab_mem_going_offline_callback(void *arg)
3054 struct kmem_cache *s;
3056 down_read(&slub_lock);
3057 list_for_each_entry(s, &slab_caches, list)
3058 kmem_cache_shrink(s);
3059 up_read(&slub_lock);
3061 return 0;
3064 static void slab_mem_offline_callback(void *arg)
3066 struct kmem_cache_node *n;
3067 struct kmem_cache *s;
3068 struct memory_notify *marg = arg;
3069 int offline_node;
3071 offline_node = marg->status_change_nid;
3074 * If the node still has available memory. we need kmem_cache_node
3075 * for it yet.
3077 if (offline_node < 0)
3078 return;
3080 down_read(&slub_lock);
3081 list_for_each_entry(s, &slab_caches, list) {
3082 n = get_node(s, offline_node);
3083 if (n) {
3085 * if n->nr_slabs > 0, slabs still exist on the node
3086 * that is going down. We were unable to free them,
3087 * and offline_pages() function shoudn't call this
3088 * callback. So, we must fail.
3090 BUG_ON(slabs_node(s, offline_node));
3092 s->node[offline_node] = NULL;
3093 kmem_cache_free(kmalloc_caches, n);
3096 up_read(&slub_lock);
3099 static int slab_mem_going_online_callback(void *arg)
3101 struct kmem_cache_node *n;
3102 struct kmem_cache *s;
3103 struct memory_notify *marg = arg;
3104 int nid = marg->status_change_nid;
3105 int ret = 0;
3108 * If the node's memory is already available, then kmem_cache_node is
3109 * already created. Nothing to do.
3111 if (nid < 0)
3112 return 0;
3115 * We are bringing a node online. No memory is available yet. We must
3116 * allocate a kmem_cache_node structure in order to bring the node
3117 * online.
3119 down_read(&slub_lock);
3120 list_for_each_entry(s, &slab_caches, list) {
3122 * XXX: kmem_cache_alloc_node will fallback to other nodes
3123 * since memory is not yet available from the node that
3124 * is brought up.
3126 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3127 if (!n) {
3128 ret = -ENOMEM;
3129 goto out;
3131 init_kmem_cache_node(n, s);
3132 s->node[nid] = n;
3134 out:
3135 up_read(&slub_lock);
3136 return ret;
3139 static int slab_memory_callback(struct notifier_block *self,
3140 unsigned long action, void *arg)
3142 int ret = 0;
3144 switch (action) {
3145 case MEM_GOING_ONLINE:
3146 ret = slab_mem_going_online_callback(arg);
3147 break;
3148 case MEM_GOING_OFFLINE:
3149 ret = slab_mem_going_offline_callback(arg);
3150 break;
3151 case MEM_OFFLINE:
3152 case MEM_CANCEL_ONLINE:
3153 slab_mem_offline_callback(arg);
3154 break;
3155 case MEM_ONLINE:
3156 case MEM_CANCEL_OFFLINE:
3157 break;
3159 if (ret)
3160 ret = notifier_from_errno(ret);
3161 else
3162 ret = NOTIFY_OK;
3163 return ret;
3166 #endif /* CONFIG_MEMORY_HOTPLUG */
3168 /********************************************************************
3169 * Basic setup of slabs
3170 *******************************************************************/
3172 void __init kmem_cache_init(void)
3174 int i;
3175 int caches = 0;
3177 init_alloc_cpu();
3179 #ifdef CONFIG_NUMA
3181 * Must first have the slab cache available for the allocations of the
3182 * struct kmem_cache_node's. There is special bootstrap code in
3183 * kmem_cache_open for slab_state == DOWN.
3185 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3186 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3187 kmalloc_caches[0].refcount = -1;
3188 caches++;
3190 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3191 #endif
3193 /* Able to allocate the per node structures */
3194 slab_state = PARTIAL;
3196 /* Caches that are not of the two-to-the-power-of size */
3197 if (KMALLOC_MIN_SIZE <= 32) {
3198 create_kmalloc_cache(&kmalloc_caches[1],
3199 "kmalloc-96", 96, GFP_NOWAIT);
3200 caches++;
3202 if (KMALLOC_MIN_SIZE <= 64) {
3203 create_kmalloc_cache(&kmalloc_caches[2],
3204 "kmalloc-192", 192, GFP_NOWAIT);
3205 caches++;
3208 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3209 create_kmalloc_cache(&kmalloc_caches[i],
3210 "kmalloc", 1 << i, GFP_NOWAIT);
3211 caches++;
3216 * Patch up the size_index table if we have strange large alignment
3217 * requirements for the kmalloc array. This is only the case for
3218 * MIPS it seems. The standard arches will not generate any code here.
3220 * Largest permitted alignment is 256 bytes due to the way we
3221 * handle the index determination for the smaller caches.
3223 * Make sure that nothing crazy happens if someone starts tinkering
3224 * around with ARCH_KMALLOC_MINALIGN
3226 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3227 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3229 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3230 int elem = size_index_elem(i);
3231 if (elem >= ARRAY_SIZE(size_index))
3232 break;
3233 size_index[elem] = KMALLOC_SHIFT_LOW;
3236 if (KMALLOC_MIN_SIZE == 64) {
3238 * The 96 byte size cache is not used if the alignment
3239 * is 64 byte.
3241 for (i = 64 + 8; i <= 96; i += 8)
3242 size_index[size_index_elem(i)] = 7;
3243 } else if (KMALLOC_MIN_SIZE == 128) {
3245 * The 192 byte sized cache is not used if the alignment
3246 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3247 * instead.
3249 for (i = 128 + 8; i <= 192; i += 8)
3250 size_index[size_index_elem(i)] = 8;
3253 slab_state = UP;
3255 /* Provide the correct kmalloc names now that the caches are up */
3256 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3257 kmalloc_caches[i]. name =
3258 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3260 #ifdef CONFIG_SMP
3261 register_cpu_notifier(&slab_notifier);
3262 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3263 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3264 #else
3265 kmem_size = sizeof(struct kmem_cache);
3266 #endif
3268 printk(KERN_INFO
3269 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3270 " CPUs=%d, Nodes=%d\n",
3271 caches, cache_line_size(),
3272 slub_min_order, slub_max_order, slub_min_objects,
3273 nr_cpu_ids, nr_node_ids);
3276 void __init kmem_cache_init_late(void)
3281 * Find a mergeable slab cache
3283 static int slab_unmergeable(struct kmem_cache *s)
3285 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3286 return 1;
3288 if (s->ctor)
3289 return 1;
3292 * We may have set a slab to be unmergeable during bootstrap.
3294 if (s->refcount < 0)
3295 return 1;
3297 return 0;
3300 static struct kmem_cache *find_mergeable(size_t size,
3301 size_t align, unsigned long flags, const char *name,
3302 void (*ctor)(void *))
3304 struct kmem_cache *s;
3306 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3307 return NULL;
3309 if (ctor)
3310 return NULL;
3312 size = ALIGN(size, sizeof(void *));
3313 align = calculate_alignment(flags, align, size);
3314 size = ALIGN(size, align);
3315 flags = kmem_cache_flags(size, flags, name, NULL);
3317 list_for_each_entry(s, &slab_caches, list) {
3318 if (slab_unmergeable(s))
3319 continue;
3321 if (size > s->size)
3322 continue;
3324 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3325 continue;
3327 * Check if alignment is compatible.
3328 * Courtesy of Adrian Drzewiecki
3330 if ((s->size & ~(align - 1)) != s->size)
3331 continue;
3333 if (s->size - size >= sizeof(void *))
3334 continue;
3336 return s;
3338 return NULL;
3341 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3342 size_t align, unsigned long flags, void (*ctor)(void *))
3344 struct kmem_cache *s;
3346 down_write(&slub_lock);
3347 s = find_mergeable(size, align, flags, name, ctor);
3348 if (s) {
3349 int cpu;
3351 s->refcount++;
3353 * Adjust the object sizes so that we clear
3354 * the complete object on kzalloc.
3356 s->objsize = max(s->objsize, (int)size);
3359 * And then we need to update the object size in the
3360 * per cpu structures
3362 for_each_online_cpu(cpu)
3363 get_cpu_slab(s, cpu)->objsize = s->objsize;
3365 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3366 up_write(&slub_lock);
3368 if (sysfs_slab_alias(s, name)) {
3369 down_write(&slub_lock);
3370 s->refcount--;
3371 up_write(&slub_lock);
3372 goto err;
3374 return s;
3377 s = kmalloc(kmem_size, GFP_KERNEL);
3378 if (s) {
3379 if (kmem_cache_open(s, GFP_KERNEL, name,
3380 size, align, flags, ctor)) {
3381 list_add(&s->list, &slab_caches);
3382 up_write(&slub_lock);
3383 if (sysfs_slab_add(s)) {
3384 down_write(&slub_lock);
3385 list_del(&s->list);
3386 up_write(&slub_lock);
3387 kfree(s);
3388 goto err;
3390 return s;
3392 kfree(s);
3394 up_write(&slub_lock);
3396 err:
3397 if (flags & SLAB_PANIC)
3398 panic("Cannot create slabcache %s\n", name);
3399 else
3400 s = NULL;
3401 return s;
3403 EXPORT_SYMBOL(kmem_cache_create);
3405 #ifdef CONFIG_SMP
3407 * Use the cpu notifier to insure that the cpu slabs are flushed when
3408 * necessary.
3410 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3411 unsigned long action, void *hcpu)
3413 long cpu = (long)hcpu;
3414 struct kmem_cache *s;
3415 unsigned long flags;
3417 switch (action) {
3418 case CPU_UP_PREPARE:
3419 case CPU_UP_PREPARE_FROZEN:
3420 init_alloc_cpu_cpu(cpu);
3421 down_read(&slub_lock);
3422 list_for_each_entry(s, &slab_caches, list)
3423 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3424 GFP_KERNEL);
3425 up_read(&slub_lock);
3426 break;
3428 case CPU_UP_CANCELED:
3429 case CPU_UP_CANCELED_FROZEN:
3430 case CPU_DEAD:
3431 case CPU_DEAD_FROZEN:
3432 down_read(&slub_lock);
3433 list_for_each_entry(s, &slab_caches, list) {
3434 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3436 local_irq_save(flags);
3437 __flush_cpu_slab(s, cpu);
3438 local_irq_restore(flags);
3439 free_kmem_cache_cpu(c, cpu);
3440 s->cpu_slab[cpu] = NULL;
3442 up_read(&slub_lock);
3443 break;
3444 default:
3445 break;
3447 return NOTIFY_OK;
3450 static struct notifier_block __cpuinitdata slab_notifier = {
3451 .notifier_call = slab_cpuup_callback
3454 #endif
3456 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3458 struct kmem_cache *s;
3459 void *ret;
3461 if (unlikely(size > SLUB_MAX_SIZE))
3462 return kmalloc_large(size, gfpflags);
3464 s = get_slab(size, gfpflags);
3466 if (unlikely(ZERO_OR_NULL_PTR(s)))
3467 return s;
3469 ret = slab_alloc(s, gfpflags, -1, caller);
3471 /* Honor the call site pointer we recieved. */
3472 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3474 return ret;
3477 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3478 int node, unsigned long caller)
3480 struct kmem_cache *s;
3481 void *ret;
3483 if (unlikely(size > SLUB_MAX_SIZE))
3484 return kmalloc_large_node(size, gfpflags, node);
3486 s = get_slab(size, gfpflags);
3488 if (unlikely(ZERO_OR_NULL_PTR(s)))
3489 return s;
3491 ret = slab_alloc(s, gfpflags, node, caller);
3493 /* Honor the call site pointer we recieved. */
3494 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3496 return ret;
3499 #ifdef CONFIG_SLUB_DEBUG
3500 static int count_inuse(struct page *page)
3502 return page->inuse;
3505 static int count_total(struct page *page)
3507 return page->objects;
3510 static int validate_slab(struct kmem_cache *s, struct page *page,
3511 unsigned long *map)
3513 void *p;
3514 void *addr = page_address(page);
3516 if (!check_slab(s, page) ||
3517 !on_freelist(s, page, NULL))
3518 return 0;
3520 /* Now we know that a valid freelist exists */
3521 bitmap_zero(map, page->objects);
3523 for_each_free_object(p, s, page->freelist) {
3524 set_bit(slab_index(p, s, addr), map);
3525 if (!check_object(s, page, p, 0))
3526 return 0;
3529 for_each_object(p, s, addr, page->objects)
3530 if (!test_bit(slab_index(p, s, addr), map))
3531 if (!check_object(s, page, p, 1))
3532 return 0;
3533 return 1;
3536 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3537 unsigned long *map)
3539 if (slab_trylock(page)) {
3540 validate_slab(s, page, map);
3541 slab_unlock(page);
3542 } else
3543 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3544 s->name, page);
3546 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3547 if (!PageSlubDebug(page))
3548 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3549 "on slab 0x%p\n", s->name, page);
3550 } else {
3551 if (PageSlubDebug(page))
3552 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3553 "slab 0x%p\n", s->name, page);
3557 static int validate_slab_node(struct kmem_cache *s,
3558 struct kmem_cache_node *n, unsigned long *map)
3560 unsigned long count = 0;
3561 struct page *page;
3562 unsigned long flags;
3564 spin_lock_irqsave(&n->list_lock, flags);
3566 list_for_each_entry(page, &n->partial, lru) {
3567 validate_slab_slab(s, page, map);
3568 count++;
3570 if (count != n->nr_partial)
3571 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3572 "counter=%ld\n", s->name, count, n->nr_partial);
3574 if (!(s->flags & SLAB_STORE_USER))
3575 goto out;
3577 list_for_each_entry(page, &n->full, lru) {
3578 validate_slab_slab(s, page, map);
3579 count++;
3581 if (count != atomic_long_read(&n->nr_slabs))
3582 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3583 "counter=%ld\n", s->name, count,
3584 atomic_long_read(&n->nr_slabs));
3586 out:
3587 spin_unlock_irqrestore(&n->list_lock, flags);
3588 return count;
3591 static long validate_slab_cache(struct kmem_cache *s)
3593 int node;
3594 unsigned long count = 0;
3595 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3596 sizeof(unsigned long), GFP_KERNEL);
3598 if (!map)
3599 return -ENOMEM;
3601 flush_all(s);
3602 for_each_node_state(node, N_NORMAL_MEMORY) {
3603 struct kmem_cache_node *n = get_node(s, node);
3605 count += validate_slab_node(s, n, map);
3607 kfree(map);
3608 return count;
3611 #ifdef SLUB_RESILIENCY_TEST
3612 static void resiliency_test(void)
3614 u8 *p;
3616 printk(KERN_ERR "SLUB resiliency testing\n");
3617 printk(KERN_ERR "-----------------------\n");
3618 printk(KERN_ERR "A. Corruption after allocation\n");
3620 p = kzalloc(16, GFP_KERNEL);
3621 p[16] = 0x12;
3622 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3623 " 0x12->0x%p\n\n", p + 16);
3625 validate_slab_cache(kmalloc_caches + 4);
3627 /* Hmmm... The next two are dangerous */
3628 p = kzalloc(32, GFP_KERNEL);
3629 p[32 + sizeof(void *)] = 0x34;
3630 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3631 " 0x34 -> -0x%p\n", p);
3632 printk(KERN_ERR
3633 "If allocated object is overwritten then not detectable\n\n");
3635 validate_slab_cache(kmalloc_caches + 5);
3636 p = kzalloc(64, GFP_KERNEL);
3637 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3638 *p = 0x56;
3639 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3641 printk(KERN_ERR
3642 "If allocated object is overwritten then not detectable\n\n");
3643 validate_slab_cache(kmalloc_caches + 6);
3645 printk(KERN_ERR "\nB. Corruption after free\n");
3646 p = kzalloc(128, GFP_KERNEL);
3647 kfree(p);
3648 *p = 0x78;
3649 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3650 validate_slab_cache(kmalloc_caches + 7);
3652 p = kzalloc(256, GFP_KERNEL);
3653 kfree(p);
3654 p[50] = 0x9a;
3655 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3657 validate_slab_cache(kmalloc_caches + 8);
3659 p = kzalloc(512, GFP_KERNEL);
3660 kfree(p);
3661 p[512] = 0xab;
3662 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3663 validate_slab_cache(kmalloc_caches + 9);
3665 #else
3666 static void resiliency_test(void) {};
3667 #endif
3670 * Generate lists of code addresses where slabcache objects are allocated
3671 * and freed.
3674 struct location {
3675 unsigned long count;
3676 unsigned long addr;
3677 long long sum_time;
3678 long min_time;
3679 long max_time;
3680 long min_pid;
3681 long max_pid;
3682 DECLARE_BITMAP(cpus, NR_CPUS);
3683 nodemask_t nodes;
3686 struct loc_track {
3687 unsigned long max;
3688 unsigned long count;
3689 struct location *loc;
3692 static void free_loc_track(struct loc_track *t)
3694 if (t->max)
3695 free_pages((unsigned long)t->loc,
3696 get_order(sizeof(struct location) * t->max));
3699 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3701 struct location *l;
3702 int order;
3704 order = get_order(sizeof(struct location) * max);
3706 l = (void *)__get_free_pages(flags, order);
3707 if (!l)
3708 return 0;
3710 if (t->count) {
3711 memcpy(l, t->loc, sizeof(struct location) * t->count);
3712 free_loc_track(t);
3714 t->max = max;
3715 t->loc = l;
3716 return 1;
3719 static int add_location(struct loc_track *t, struct kmem_cache *s,
3720 const struct track *track)
3722 long start, end, pos;
3723 struct location *l;
3724 unsigned long caddr;
3725 unsigned long age = jiffies - track->when;
3727 start = -1;
3728 end = t->count;
3730 for ( ; ; ) {
3731 pos = start + (end - start + 1) / 2;
3734 * There is nothing at "end". If we end up there
3735 * we need to add something to before end.
3737 if (pos == end)
3738 break;
3740 caddr = t->loc[pos].addr;
3741 if (track->addr == caddr) {
3743 l = &t->loc[pos];
3744 l->count++;
3745 if (track->when) {
3746 l->sum_time += age;
3747 if (age < l->min_time)
3748 l->min_time = age;
3749 if (age > l->max_time)
3750 l->max_time = age;
3752 if (track->pid < l->min_pid)
3753 l->min_pid = track->pid;
3754 if (track->pid > l->max_pid)
3755 l->max_pid = track->pid;
3757 cpumask_set_cpu(track->cpu,
3758 to_cpumask(l->cpus));
3760 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3761 return 1;
3764 if (track->addr < caddr)
3765 end = pos;
3766 else
3767 start = pos;
3771 * Not found. Insert new tracking element.
3773 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3774 return 0;
3776 l = t->loc + pos;
3777 if (pos < t->count)
3778 memmove(l + 1, l,
3779 (t->count - pos) * sizeof(struct location));
3780 t->count++;
3781 l->count = 1;
3782 l->addr = track->addr;
3783 l->sum_time = age;
3784 l->min_time = age;
3785 l->max_time = age;
3786 l->min_pid = track->pid;
3787 l->max_pid = track->pid;
3788 cpumask_clear(to_cpumask(l->cpus));
3789 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3790 nodes_clear(l->nodes);
3791 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3792 return 1;
3795 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3796 struct page *page, enum track_item alloc)
3798 void *addr = page_address(page);
3799 DECLARE_BITMAP(map, page->objects);
3800 void *p;
3802 bitmap_zero(map, page->objects);
3803 for_each_free_object(p, s, page->freelist)
3804 set_bit(slab_index(p, s, addr), map);
3806 for_each_object(p, s, addr, page->objects)
3807 if (!test_bit(slab_index(p, s, addr), map))
3808 add_location(t, s, get_track(s, p, alloc));
3811 static int list_locations(struct kmem_cache *s, char *buf,
3812 enum track_item alloc)
3814 int len = 0;
3815 unsigned long i;
3816 struct loc_track t = { 0, 0, NULL };
3817 int node;
3819 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3820 GFP_TEMPORARY))
3821 return sprintf(buf, "Out of memory\n");
3823 /* Push back cpu slabs */
3824 flush_all(s);
3826 for_each_node_state(node, N_NORMAL_MEMORY) {
3827 struct kmem_cache_node *n = get_node(s, node);
3828 unsigned long flags;
3829 struct page *page;
3831 if (!atomic_long_read(&n->nr_slabs))
3832 continue;
3834 spin_lock_irqsave(&n->list_lock, flags);
3835 list_for_each_entry(page, &n->partial, lru)
3836 process_slab(&t, s, page, alloc);
3837 list_for_each_entry(page, &n->full, lru)
3838 process_slab(&t, s, page, alloc);
3839 spin_unlock_irqrestore(&n->list_lock, flags);
3842 for (i = 0; i < t.count; i++) {
3843 struct location *l = &t.loc[i];
3845 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3846 break;
3847 len += sprintf(buf + len, "%7ld ", l->count);
3849 if (l->addr)
3850 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3851 else
3852 len += sprintf(buf + len, "<not-available>");
3854 if (l->sum_time != l->min_time) {
3855 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3856 l->min_time,
3857 (long)div_u64(l->sum_time, l->count),
3858 l->max_time);
3859 } else
3860 len += sprintf(buf + len, " age=%ld",
3861 l->min_time);
3863 if (l->min_pid != l->max_pid)
3864 len += sprintf(buf + len, " pid=%ld-%ld",
3865 l->min_pid, l->max_pid);
3866 else
3867 len += sprintf(buf + len, " pid=%ld",
3868 l->min_pid);
3870 if (num_online_cpus() > 1 &&
3871 !cpumask_empty(to_cpumask(l->cpus)) &&
3872 len < PAGE_SIZE - 60) {
3873 len += sprintf(buf + len, " cpus=");
3874 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3875 to_cpumask(l->cpus));
3878 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3879 len < PAGE_SIZE - 60) {
3880 len += sprintf(buf + len, " nodes=");
3881 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3882 l->nodes);
3885 len += sprintf(buf + len, "\n");
3888 free_loc_track(&t);
3889 if (!t.count)
3890 len += sprintf(buf, "No data\n");
3891 return len;
3894 enum slab_stat_type {
3895 SL_ALL, /* All slabs */
3896 SL_PARTIAL, /* Only partially allocated slabs */
3897 SL_CPU, /* Only slabs used for cpu caches */
3898 SL_OBJECTS, /* Determine allocated objects not slabs */
3899 SL_TOTAL /* Determine object capacity not slabs */
3902 #define SO_ALL (1 << SL_ALL)
3903 #define SO_PARTIAL (1 << SL_PARTIAL)
3904 #define SO_CPU (1 << SL_CPU)
3905 #define SO_OBJECTS (1 << SL_OBJECTS)
3906 #define SO_TOTAL (1 << SL_TOTAL)
3908 static ssize_t show_slab_objects(struct kmem_cache *s,
3909 char *buf, unsigned long flags)
3911 unsigned long total = 0;
3912 int node;
3913 int x;
3914 unsigned long *nodes;
3915 unsigned long *per_cpu;
3917 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3918 if (!nodes)
3919 return -ENOMEM;
3920 per_cpu = nodes + nr_node_ids;
3922 if (flags & SO_CPU) {
3923 int cpu;
3925 for_each_possible_cpu(cpu) {
3926 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3928 if (!c || c->node < 0)
3929 continue;
3931 if (c->page) {
3932 if (flags & SO_TOTAL)
3933 x = c->page->objects;
3934 else if (flags & SO_OBJECTS)
3935 x = c->page->inuse;
3936 else
3937 x = 1;
3939 total += x;
3940 nodes[c->node] += x;
3942 per_cpu[c->node]++;
3946 if (flags & SO_ALL) {
3947 for_each_node_state(node, N_NORMAL_MEMORY) {
3948 struct kmem_cache_node *n = get_node(s, node);
3950 if (flags & SO_TOTAL)
3951 x = atomic_long_read(&n->total_objects);
3952 else if (flags & SO_OBJECTS)
3953 x = atomic_long_read(&n->total_objects) -
3954 count_partial(n, count_free);
3956 else
3957 x = atomic_long_read(&n->nr_slabs);
3958 total += x;
3959 nodes[node] += x;
3962 } else if (flags & SO_PARTIAL) {
3963 for_each_node_state(node, N_NORMAL_MEMORY) {
3964 struct kmem_cache_node *n = get_node(s, node);
3966 if (flags & SO_TOTAL)
3967 x = count_partial(n, count_total);
3968 else if (flags & SO_OBJECTS)
3969 x = count_partial(n, count_inuse);
3970 else
3971 x = n->nr_partial;
3972 total += x;
3973 nodes[node] += x;
3976 x = sprintf(buf, "%lu", total);
3977 #ifdef CONFIG_NUMA
3978 for_each_node_state(node, N_NORMAL_MEMORY)
3979 if (nodes[node])
3980 x += sprintf(buf + x, " N%d=%lu",
3981 node, nodes[node]);
3982 #endif
3983 kfree(nodes);
3984 return x + sprintf(buf + x, "\n");
3987 static int any_slab_objects(struct kmem_cache *s)
3989 int node;
3991 for_each_online_node(node) {
3992 struct kmem_cache_node *n = get_node(s, node);
3994 if (!n)
3995 continue;
3997 if (atomic_long_read(&n->total_objects))
3998 return 1;
4000 return 0;
4003 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4004 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4006 struct slab_attribute {
4007 struct attribute attr;
4008 ssize_t (*show)(struct kmem_cache *s, char *buf);
4009 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4012 #define SLAB_ATTR_RO(_name) \
4013 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4015 #define SLAB_ATTR(_name) \
4016 static struct slab_attribute _name##_attr = \
4017 __ATTR(_name, 0644, _name##_show, _name##_store)
4019 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4021 return sprintf(buf, "%d\n", s->size);
4023 SLAB_ATTR_RO(slab_size);
4025 static ssize_t align_show(struct kmem_cache *s, char *buf)
4027 return sprintf(buf, "%d\n", s->align);
4029 SLAB_ATTR_RO(align);
4031 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4033 return sprintf(buf, "%d\n", s->objsize);
4035 SLAB_ATTR_RO(object_size);
4037 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4039 return sprintf(buf, "%d\n", oo_objects(s->oo));
4041 SLAB_ATTR_RO(objs_per_slab);
4043 static ssize_t order_store(struct kmem_cache *s,
4044 const char *buf, size_t length)
4046 unsigned long order;
4047 int err;
4049 err = strict_strtoul(buf, 10, &order);
4050 if (err)
4051 return err;
4053 if (order > slub_max_order || order < slub_min_order)
4054 return -EINVAL;
4056 calculate_sizes(s, order);
4057 return length;
4060 static ssize_t order_show(struct kmem_cache *s, char *buf)
4062 return sprintf(buf, "%d\n", oo_order(s->oo));
4064 SLAB_ATTR(order);
4066 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4068 return sprintf(buf, "%lu\n", s->min_partial);
4071 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4072 size_t length)
4074 unsigned long min;
4075 int err;
4077 err = strict_strtoul(buf, 10, &min);
4078 if (err)
4079 return err;
4081 set_min_partial(s, min);
4082 return length;
4084 SLAB_ATTR(min_partial);
4086 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4088 if (s->ctor) {
4089 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4091 return n + sprintf(buf + n, "\n");
4093 return 0;
4095 SLAB_ATTR_RO(ctor);
4097 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4099 return sprintf(buf, "%d\n", s->refcount - 1);
4101 SLAB_ATTR_RO(aliases);
4103 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4105 return show_slab_objects(s, buf, SO_ALL);
4107 SLAB_ATTR_RO(slabs);
4109 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4111 return show_slab_objects(s, buf, SO_PARTIAL);
4113 SLAB_ATTR_RO(partial);
4115 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4117 return show_slab_objects(s, buf, SO_CPU);
4119 SLAB_ATTR_RO(cpu_slabs);
4121 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4123 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4125 SLAB_ATTR_RO(objects);
4127 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4129 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4131 SLAB_ATTR_RO(objects_partial);
4133 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4135 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4137 SLAB_ATTR_RO(total_objects);
4139 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4144 static ssize_t sanity_checks_store(struct kmem_cache *s,
4145 const char *buf, size_t length)
4147 s->flags &= ~SLAB_DEBUG_FREE;
4148 if (buf[0] == '1')
4149 s->flags |= SLAB_DEBUG_FREE;
4150 return length;
4152 SLAB_ATTR(sanity_checks);
4154 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4159 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4160 size_t length)
4162 s->flags &= ~SLAB_TRACE;
4163 if (buf[0] == '1')
4164 s->flags |= SLAB_TRACE;
4165 return length;
4167 SLAB_ATTR(trace);
4169 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4174 static ssize_t reclaim_account_store(struct kmem_cache *s,
4175 const char *buf, size_t length)
4177 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4178 if (buf[0] == '1')
4179 s->flags |= SLAB_RECLAIM_ACCOUNT;
4180 return length;
4182 SLAB_ATTR(reclaim_account);
4184 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4188 SLAB_ATTR_RO(hwcache_align);
4190 #ifdef CONFIG_ZONE_DMA
4191 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4195 SLAB_ATTR_RO(cache_dma);
4196 #endif
4198 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4200 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4202 SLAB_ATTR_RO(destroy_by_rcu);
4204 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4209 static ssize_t red_zone_store(struct kmem_cache *s,
4210 const char *buf, size_t length)
4212 if (any_slab_objects(s))
4213 return -EBUSY;
4215 s->flags &= ~SLAB_RED_ZONE;
4216 if (buf[0] == '1')
4217 s->flags |= SLAB_RED_ZONE;
4218 calculate_sizes(s, -1);
4219 return length;
4221 SLAB_ATTR(red_zone);
4223 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4228 static ssize_t poison_store(struct kmem_cache *s,
4229 const char *buf, size_t length)
4231 if (any_slab_objects(s))
4232 return -EBUSY;
4234 s->flags &= ~SLAB_POISON;
4235 if (buf[0] == '1')
4236 s->flags |= SLAB_POISON;
4237 calculate_sizes(s, -1);
4238 return length;
4240 SLAB_ATTR(poison);
4242 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4244 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4247 static ssize_t store_user_store(struct kmem_cache *s,
4248 const char *buf, size_t length)
4250 if (any_slab_objects(s))
4251 return -EBUSY;
4253 s->flags &= ~SLAB_STORE_USER;
4254 if (buf[0] == '1')
4255 s->flags |= SLAB_STORE_USER;
4256 calculate_sizes(s, -1);
4257 return length;
4259 SLAB_ATTR(store_user);
4261 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4263 return 0;
4266 static ssize_t validate_store(struct kmem_cache *s,
4267 const char *buf, size_t length)
4269 int ret = -EINVAL;
4271 if (buf[0] == '1') {
4272 ret = validate_slab_cache(s);
4273 if (ret >= 0)
4274 ret = length;
4276 return ret;
4278 SLAB_ATTR(validate);
4280 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4282 return 0;
4285 static ssize_t shrink_store(struct kmem_cache *s,
4286 const char *buf, size_t length)
4288 if (buf[0] == '1') {
4289 int rc = kmem_cache_shrink(s);
4291 if (rc)
4292 return rc;
4293 } else
4294 return -EINVAL;
4295 return length;
4297 SLAB_ATTR(shrink);
4299 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4301 if (!(s->flags & SLAB_STORE_USER))
4302 return -ENOSYS;
4303 return list_locations(s, buf, TRACK_ALLOC);
4305 SLAB_ATTR_RO(alloc_calls);
4307 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4309 if (!(s->flags & SLAB_STORE_USER))
4310 return -ENOSYS;
4311 return list_locations(s, buf, TRACK_FREE);
4313 SLAB_ATTR_RO(free_calls);
4315 #ifdef CONFIG_NUMA
4316 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4318 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4321 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4322 const char *buf, size_t length)
4324 unsigned long ratio;
4325 int err;
4327 err = strict_strtoul(buf, 10, &ratio);
4328 if (err)
4329 return err;
4331 if (ratio <= 100)
4332 s->remote_node_defrag_ratio = ratio * 10;
4334 return length;
4336 SLAB_ATTR(remote_node_defrag_ratio);
4337 #endif
4339 #ifdef CONFIG_SLUB_STATS
4340 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4342 unsigned long sum = 0;
4343 int cpu;
4344 int len;
4345 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4347 if (!data)
4348 return -ENOMEM;
4350 for_each_online_cpu(cpu) {
4351 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4353 data[cpu] = x;
4354 sum += x;
4357 len = sprintf(buf, "%lu", sum);
4359 #ifdef CONFIG_SMP
4360 for_each_online_cpu(cpu) {
4361 if (data[cpu] && len < PAGE_SIZE - 20)
4362 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4364 #endif
4365 kfree(data);
4366 return len + sprintf(buf + len, "\n");
4369 #define STAT_ATTR(si, text) \
4370 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4372 return show_stat(s, buf, si); \
4374 SLAB_ATTR_RO(text); \
4376 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4377 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4378 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4379 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4380 STAT_ATTR(FREE_FROZEN, free_frozen);
4381 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4382 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4383 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4384 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4385 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4386 STAT_ATTR(FREE_SLAB, free_slab);
4387 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4388 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4389 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4390 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4391 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4392 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4393 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4394 #endif
4396 static struct attribute *slab_attrs[] = {
4397 &slab_size_attr.attr,
4398 &object_size_attr.attr,
4399 &objs_per_slab_attr.attr,
4400 &order_attr.attr,
4401 &min_partial_attr.attr,
4402 &objects_attr.attr,
4403 &objects_partial_attr.attr,
4404 &total_objects_attr.attr,
4405 &slabs_attr.attr,
4406 &partial_attr.attr,
4407 &cpu_slabs_attr.attr,
4408 &ctor_attr.attr,
4409 &aliases_attr.attr,
4410 &align_attr.attr,
4411 &sanity_checks_attr.attr,
4412 &trace_attr.attr,
4413 &hwcache_align_attr.attr,
4414 &reclaim_account_attr.attr,
4415 &destroy_by_rcu_attr.attr,
4416 &red_zone_attr.attr,
4417 &poison_attr.attr,
4418 &store_user_attr.attr,
4419 &validate_attr.attr,
4420 &shrink_attr.attr,
4421 &alloc_calls_attr.attr,
4422 &free_calls_attr.attr,
4423 #ifdef CONFIG_ZONE_DMA
4424 &cache_dma_attr.attr,
4425 #endif
4426 #ifdef CONFIG_NUMA
4427 &remote_node_defrag_ratio_attr.attr,
4428 #endif
4429 #ifdef CONFIG_SLUB_STATS
4430 &alloc_fastpath_attr.attr,
4431 &alloc_slowpath_attr.attr,
4432 &free_fastpath_attr.attr,
4433 &free_slowpath_attr.attr,
4434 &free_frozen_attr.attr,
4435 &free_add_partial_attr.attr,
4436 &free_remove_partial_attr.attr,
4437 &alloc_from_partial_attr.attr,
4438 &alloc_slab_attr.attr,
4439 &alloc_refill_attr.attr,
4440 &free_slab_attr.attr,
4441 &cpuslab_flush_attr.attr,
4442 &deactivate_full_attr.attr,
4443 &deactivate_empty_attr.attr,
4444 &deactivate_to_head_attr.attr,
4445 &deactivate_to_tail_attr.attr,
4446 &deactivate_remote_frees_attr.attr,
4447 &order_fallback_attr.attr,
4448 #endif
4449 NULL
4452 static struct attribute_group slab_attr_group = {
4453 .attrs = slab_attrs,
4456 static ssize_t slab_attr_show(struct kobject *kobj,
4457 struct attribute *attr,
4458 char *buf)
4460 struct slab_attribute *attribute;
4461 struct kmem_cache *s;
4462 int err;
4464 attribute = to_slab_attr(attr);
4465 s = to_slab(kobj);
4467 if (!attribute->show)
4468 return -EIO;
4470 err = attribute->show(s, buf);
4472 return err;
4475 static ssize_t slab_attr_store(struct kobject *kobj,
4476 struct attribute *attr,
4477 const char *buf, size_t len)
4479 struct slab_attribute *attribute;
4480 struct kmem_cache *s;
4481 int err;
4483 attribute = to_slab_attr(attr);
4484 s = to_slab(kobj);
4486 if (!attribute->store)
4487 return -EIO;
4489 err = attribute->store(s, buf, len);
4491 return err;
4494 static void kmem_cache_release(struct kobject *kobj)
4496 struct kmem_cache *s = to_slab(kobj);
4498 kfree(s);
4501 static struct sysfs_ops slab_sysfs_ops = {
4502 .show = slab_attr_show,
4503 .store = slab_attr_store,
4506 static struct kobj_type slab_ktype = {
4507 .sysfs_ops = &slab_sysfs_ops,
4508 .release = kmem_cache_release
4511 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4513 struct kobj_type *ktype = get_ktype(kobj);
4515 if (ktype == &slab_ktype)
4516 return 1;
4517 return 0;
4520 static struct kset_uevent_ops slab_uevent_ops = {
4521 .filter = uevent_filter,
4524 static struct kset *slab_kset;
4526 #define ID_STR_LENGTH 64
4528 /* Create a unique string id for a slab cache:
4530 * Format :[flags-]size
4532 static char *create_unique_id(struct kmem_cache *s)
4534 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4535 char *p = name;
4537 BUG_ON(!name);
4539 *p++ = ':';
4541 * First flags affecting slabcache operations. We will only
4542 * get here for aliasable slabs so we do not need to support
4543 * too many flags. The flags here must cover all flags that
4544 * are matched during merging to guarantee that the id is
4545 * unique.
4547 if (s->flags & SLAB_CACHE_DMA)
4548 *p++ = 'd';
4549 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4550 *p++ = 'a';
4551 if (s->flags & SLAB_DEBUG_FREE)
4552 *p++ = 'F';
4553 if (!(s->flags & SLAB_NOTRACK))
4554 *p++ = 't';
4555 if (p != name + 1)
4556 *p++ = '-';
4557 p += sprintf(p, "%07d", s->size);
4558 BUG_ON(p > name + ID_STR_LENGTH - 1);
4559 return name;
4562 static int sysfs_slab_add(struct kmem_cache *s)
4564 int err;
4565 const char *name;
4566 int unmergeable;
4568 if (slab_state < SYSFS)
4569 /* Defer until later */
4570 return 0;
4572 unmergeable = slab_unmergeable(s);
4573 if (unmergeable) {
4575 * Slabcache can never be merged so we can use the name proper.
4576 * This is typically the case for debug situations. In that
4577 * case we can catch duplicate names easily.
4579 sysfs_remove_link(&slab_kset->kobj, s->name);
4580 name = s->name;
4581 } else {
4583 * Create a unique name for the slab as a target
4584 * for the symlinks.
4586 name = create_unique_id(s);
4589 s->kobj.kset = slab_kset;
4590 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4591 if (err) {
4592 kobject_put(&s->kobj);
4593 return err;
4596 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4597 if (err) {
4598 kobject_del(&s->kobj);
4599 kobject_put(&s->kobj);
4600 return err;
4602 kobject_uevent(&s->kobj, KOBJ_ADD);
4603 if (!unmergeable) {
4604 /* Setup first alias */
4605 sysfs_slab_alias(s, s->name);
4606 kfree(name);
4608 return 0;
4611 static void sysfs_slab_remove(struct kmem_cache *s)
4613 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4614 kobject_del(&s->kobj);
4615 kobject_put(&s->kobj);
4619 * Need to buffer aliases during bootup until sysfs becomes
4620 * available lest we lose that information.
4622 struct saved_alias {
4623 struct kmem_cache *s;
4624 const char *name;
4625 struct saved_alias *next;
4628 static struct saved_alias *alias_list;
4630 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4632 struct saved_alias *al;
4634 if (slab_state == SYSFS) {
4636 * If we have a leftover link then remove it.
4638 sysfs_remove_link(&slab_kset->kobj, name);
4639 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4642 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4643 if (!al)
4644 return -ENOMEM;
4646 al->s = s;
4647 al->name = name;
4648 al->next = alias_list;
4649 alias_list = al;
4650 return 0;
4653 static int __init slab_sysfs_init(void)
4655 struct kmem_cache *s;
4656 int err;
4658 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4659 if (!slab_kset) {
4660 printk(KERN_ERR "Cannot register slab subsystem.\n");
4661 return -ENOSYS;
4664 slab_state = SYSFS;
4666 list_for_each_entry(s, &slab_caches, list) {
4667 err = sysfs_slab_add(s);
4668 if (err)
4669 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4670 " to sysfs\n", s->name);
4673 while (alias_list) {
4674 struct saved_alias *al = alias_list;
4676 alias_list = alias_list->next;
4677 err = sysfs_slab_alias(al->s, al->name);
4678 if (err)
4679 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4680 " %s to sysfs\n", s->name);
4681 kfree(al);
4684 resiliency_test();
4685 return 0;
4688 __initcall(slab_sysfs_init);
4689 #endif
4692 * The /proc/slabinfo ABI
4694 #ifdef CONFIG_SLABINFO
4695 static void print_slabinfo_header(struct seq_file *m)
4697 seq_puts(m, "slabinfo - version: 2.1\n");
4698 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4699 "<objperslab> <pagesperslab>");
4700 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4701 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4702 seq_putc(m, '\n');
4705 static void *s_start(struct seq_file *m, loff_t *pos)
4707 loff_t n = *pos;
4709 down_read(&slub_lock);
4710 if (!n)
4711 print_slabinfo_header(m);
4713 return seq_list_start(&slab_caches, *pos);
4716 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4718 return seq_list_next(p, &slab_caches, pos);
4721 static void s_stop(struct seq_file *m, void *p)
4723 up_read(&slub_lock);
4726 static int s_show(struct seq_file *m, void *p)
4728 unsigned long nr_partials = 0;
4729 unsigned long nr_slabs = 0;
4730 unsigned long nr_inuse = 0;
4731 unsigned long nr_objs = 0;
4732 unsigned long nr_free = 0;
4733 struct kmem_cache *s;
4734 int node;
4736 s = list_entry(p, struct kmem_cache, list);
4738 for_each_online_node(node) {
4739 struct kmem_cache_node *n = get_node(s, node);
4741 if (!n)
4742 continue;
4744 nr_partials += n->nr_partial;
4745 nr_slabs += atomic_long_read(&n->nr_slabs);
4746 nr_objs += atomic_long_read(&n->total_objects);
4747 nr_free += count_partial(n, count_free);
4750 nr_inuse = nr_objs - nr_free;
4752 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4753 nr_objs, s->size, oo_objects(s->oo),
4754 (1 << oo_order(s->oo)));
4755 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4756 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4757 0UL);
4758 seq_putc(m, '\n');
4759 return 0;
4762 static const struct seq_operations slabinfo_op = {
4763 .start = s_start,
4764 .next = s_next,
4765 .stop = s_stop,
4766 .show = s_show,
4769 static int slabinfo_open(struct inode *inode, struct file *file)
4771 return seq_open(file, &slabinfo_op);
4774 static const struct file_operations proc_slabinfo_operations = {
4775 .open = slabinfo_open,
4776 .read = seq_read,
4777 .llseek = seq_lseek,
4778 .release = seq_release,
4781 static int __init slab_proc_init(void)
4783 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4784 return 0;
4786 module_init(slab_proc_init);
4787 #endif /* CONFIG_SLABINFO */