1 // SPDX-License-Identifier: GPL-2.0
3 * Arch specific cpu topology information
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
24 __weak
bool arch_freq_counters_available(struct cpumask
*cpus
)
28 DEFINE_PER_CPU(unsigned long, freq_scale
) = SCHED_CAPACITY_SCALE
;
30 void arch_set_freq_scale(struct cpumask
*cpus
, unsigned long cur_freq
,
31 unsigned long max_freq
)
37 * If the use of counters for FIE is enabled, just return as we don't
38 * want to update the scale factor with information from CPUFREQ.
39 * Instead the scale factor will be updated from arch_scale_freq_tick.
41 if (arch_freq_counters_available(cpus
))
44 scale
= (cur_freq
<< SCHED_CAPACITY_SHIFT
) / max_freq
;
47 per_cpu(freq_scale
, i
) = scale
;
50 DEFINE_PER_CPU(unsigned long, cpu_scale
) = SCHED_CAPACITY_SCALE
;
52 void topology_set_cpu_scale(unsigned int cpu
, unsigned long capacity
)
54 per_cpu(cpu_scale
, cpu
) = capacity
;
57 DEFINE_PER_CPU(unsigned long, thermal_pressure
);
59 void topology_set_thermal_pressure(const struct cpumask
*cpus
,
60 unsigned long th_pressure
)
64 for_each_cpu(cpu
, cpus
)
65 WRITE_ONCE(per_cpu(thermal_pressure
, cpu
), th_pressure
);
68 static ssize_t
cpu_capacity_show(struct device
*dev
,
69 struct device_attribute
*attr
,
72 struct cpu
*cpu
= container_of(dev
, struct cpu
, dev
);
74 return sprintf(buf
, "%lu\n", topology_get_cpu_scale(cpu
->dev
.id
));
77 static void update_topology_flags_workfn(struct work_struct
*work
);
78 static DECLARE_WORK(update_topology_flags_work
, update_topology_flags_workfn
);
80 static DEVICE_ATTR_RO(cpu_capacity
);
82 static int register_cpu_capacity_sysctl(void)
87 for_each_possible_cpu(i
) {
88 cpu
= get_cpu_device(i
);
90 pr_err("%s: too early to get CPU%d device!\n",
94 device_create_file(cpu
, &dev_attr_cpu_capacity
);
99 subsys_initcall(register_cpu_capacity_sysctl
);
101 static int update_topology
;
103 int topology_update_cpu_topology(void)
105 return update_topology
;
109 * Updating the sched_domains can't be done directly from cpufreq callbacks
110 * due to locking, so queue the work for later.
112 static void update_topology_flags_workfn(struct work_struct
*work
)
115 rebuild_sched_domains();
116 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
120 static DEFINE_PER_CPU(u32
, freq_factor
) = 1;
121 static u32
*raw_capacity
;
123 static int free_raw_capacity(void)
131 void topology_normalize_cpu_scale(void)
141 for_each_possible_cpu(cpu
) {
142 capacity
= raw_capacity
[cpu
] * per_cpu(freq_factor
, cpu
);
143 capacity_scale
= max(capacity
, capacity_scale
);
146 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale
);
147 for_each_possible_cpu(cpu
) {
148 capacity
= raw_capacity
[cpu
] * per_cpu(freq_factor
, cpu
);
149 capacity
= div64_u64(capacity
<< SCHED_CAPACITY_SHIFT
,
151 topology_set_cpu_scale(cpu
, capacity
);
152 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
153 cpu
, topology_get_cpu_scale(cpu
));
157 bool __init
topology_parse_cpu_capacity(struct device_node
*cpu_node
, int cpu
)
160 static bool cap_parsing_failed
;
164 if (cap_parsing_failed
)
167 ret
= of_property_read_u32(cpu_node
, "capacity-dmips-mhz",
171 raw_capacity
= kcalloc(num_possible_cpus(),
172 sizeof(*raw_capacity
),
175 cap_parsing_failed
= true;
179 raw_capacity
[cpu
] = cpu_capacity
;
180 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
181 cpu_node
, raw_capacity
[cpu
]);
184 * Update freq_factor for calculating early boot cpu capacities.
185 * For non-clk CPU DVFS mechanism, there's no way to get the
186 * frequency value now, assuming they are running at the same
187 * frequency (by keeping the initial freq_factor value).
189 cpu_clk
= of_clk_get(cpu_node
, 0);
190 if (!PTR_ERR_OR_ZERO(cpu_clk
)) {
191 per_cpu(freq_factor
, cpu
) =
192 clk_get_rate(cpu_clk
) / 1000;
197 pr_err("cpu_capacity: missing %pOF raw capacity\n",
199 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
201 cap_parsing_failed
= true;
208 #ifdef CONFIG_CPU_FREQ
209 static cpumask_var_t cpus_to_visit
;
210 static void parsing_done_workfn(struct work_struct
*work
);
211 static DECLARE_WORK(parsing_done_work
, parsing_done_workfn
);
214 init_cpu_capacity_callback(struct notifier_block
*nb
,
218 struct cpufreq_policy
*policy
= data
;
224 if (val
!= CPUFREQ_CREATE_POLICY
)
227 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
228 cpumask_pr_args(policy
->related_cpus
),
229 cpumask_pr_args(cpus_to_visit
));
231 cpumask_andnot(cpus_to_visit
, cpus_to_visit
, policy
->related_cpus
);
233 for_each_cpu(cpu
, policy
->related_cpus
)
234 per_cpu(freq_factor
, cpu
) = policy
->cpuinfo
.max_freq
/ 1000;
236 if (cpumask_empty(cpus_to_visit
)) {
237 topology_normalize_cpu_scale();
238 schedule_work(&update_topology_flags_work
);
240 pr_debug("cpu_capacity: parsing done\n");
241 schedule_work(&parsing_done_work
);
247 static struct notifier_block init_cpu_capacity_notifier
= {
248 .notifier_call
= init_cpu_capacity_callback
,
251 static int __init
register_cpufreq_notifier(void)
256 * on ACPI-based systems we need to use the default cpu capacity
257 * until we have the necessary code to parse the cpu capacity, so
258 * skip registering cpufreq notifier.
260 if (!acpi_disabled
|| !raw_capacity
)
263 if (!alloc_cpumask_var(&cpus_to_visit
, GFP_KERNEL
))
266 cpumask_copy(cpus_to_visit
, cpu_possible_mask
);
268 ret
= cpufreq_register_notifier(&init_cpu_capacity_notifier
,
269 CPUFREQ_POLICY_NOTIFIER
);
272 free_cpumask_var(cpus_to_visit
);
276 core_initcall(register_cpufreq_notifier
);
278 static void parsing_done_workfn(struct work_struct
*work
)
280 cpufreq_unregister_notifier(&init_cpu_capacity_notifier
,
281 CPUFREQ_POLICY_NOTIFIER
);
282 free_cpumask_var(cpus_to_visit
);
286 core_initcall(free_raw_capacity
);
289 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
291 * This function returns the logic cpu number of the node.
292 * There are basically three kinds of return values:
293 * (1) logic cpu number which is > 0.
294 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
295 * there is no possible logical CPU in the kernel to match. This happens
296 * when CONFIG_NR_CPUS is configure to be smaller than the number of
297 * CPU nodes in DT. We need to just ignore this case.
298 * (3) -1 if the node does not exist in the device tree
300 static int __init
get_cpu_for_node(struct device_node
*node
)
302 struct device_node
*cpu_node
;
305 cpu_node
= of_parse_phandle(node
, "cpu", 0);
309 cpu
= of_cpu_node_to_id(cpu_node
);
311 topology_parse_cpu_capacity(cpu_node
, cpu
);
313 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
314 cpu_node
, cpumask_pr_args(cpu_possible_mask
));
316 of_node_put(cpu_node
);
320 static int __init
parse_core(struct device_node
*core
, int package_id
,
327 struct device_node
*t
;
330 snprintf(name
, sizeof(name
), "thread%d", i
);
331 t
= of_get_child_by_name(core
, name
);
334 cpu
= get_cpu_for_node(t
);
336 cpu_topology
[cpu
].package_id
= package_id
;
337 cpu_topology
[cpu
].core_id
= core_id
;
338 cpu_topology
[cpu
].thread_id
= i
;
339 } else if (cpu
!= -ENODEV
) {
340 pr_err("%pOF: Can't get CPU for thread\n", t
);
349 cpu
= get_cpu_for_node(core
);
352 pr_err("%pOF: Core has both threads and CPU\n",
357 cpu_topology
[cpu
].package_id
= package_id
;
358 cpu_topology
[cpu
].core_id
= core_id
;
359 } else if (leaf
&& cpu
!= -ENODEV
) {
360 pr_err("%pOF: Can't get CPU for leaf core\n", core
);
367 static int __init
parse_cluster(struct device_node
*cluster
, int depth
)
371 bool has_cores
= false;
372 struct device_node
*c
;
373 static int package_id __initdata
;
378 * First check for child clusters; we currently ignore any
379 * information about the nesting of clusters and present the
380 * scheduler with a flat list of them.
384 snprintf(name
, sizeof(name
), "cluster%d", i
);
385 c
= of_get_child_by_name(cluster
, name
);
388 ret
= parse_cluster(c
, depth
+ 1);
396 /* Now check for cores */
399 snprintf(name
, sizeof(name
), "core%d", i
);
400 c
= of_get_child_by_name(cluster
, name
);
405 pr_err("%pOF: cpu-map children should be clusters\n",
412 ret
= parse_core(c
, package_id
, core_id
++);
414 pr_err("%pOF: Non-leaf cluster with core %s\n",
426 if (leaf
&& !has_cores
)
427 pr_warn("%pOF: empty cluster\n", cluster
);
435 static int __init
parse_dt_topology(void)
437 struct device_node
*cn
, *map
;
441 cn
= of_find_node_by_path("/cpus");
443 pr_err("No CPU information found in DT\n");
448 * When topology is provided cpu-map is essentially a root
449 * cluster with restricted subnodes.
451 map
= of_get_child_by_name(cn
, "cpu-map");
455 ret
= parse_cluster(map
, 0);
459 topology_normalize_cpu_scale();
462 * Check that all cores are in the topology; the SMP code will
463 * only mark cores described in the DT as possible.
465 for_each_possible_cpu(cpu
)
466 if (cpu_topology
[cpu
].package_id
== -1)
480 struct cpu_topology cpu_topology
[NR_CPUS
];
481 EXPORT_SYMBOL_GPL(cpu_topology
);
483 const struct cpumask
*cpu_coregroup_mask(int cpu
)
485 const cpumask_t
*core_mask
= cpumask_of_node(cpu_to_node(cpu
));
487 /* Find the smaller of NUMA, core or LLC siblings */
488 if (cpumask_subset(&cpu_topology
[cpu
].core_sibling
, core_mask
)) {
489 /* not numa in package, lets use the package siblings */
490 core_mask
= &cpu_topology
[cpu
].core_sibling
;
492 if (cpu_topology
[cpu
].llc_id
!= -1) {
493 if (cpumask_subset(&cpu_topology
[cpu
].llc_sibling
, core_mask
))
494 core_mask
= &cpu_topology
[cpu
].llc_sibling
;
500 void update_siblings_masks(unsigned int cpuid
)
502 struct cpu_topology
*cpu_topo
, *cpuid_topo
= &cpu_topology
[cpuid
];
505 /* update core and thread sibling masks */
506 for_each_online_cpu(cpu
) {
507 cpu_topo
= &cpu_topology
[cpu
];
509 if (cpuid_topo
->llc_id
== cpu_topo
->llc_id
) {
510 cpumask_set_cpu(cpu
, &cpuid_topo
->llc_sibling
);
511 cpumask_set_cpu(cpuid
, &cpu_topo
->llc_sibling
);
514 if (cpuid_topo
->package_id
!= cpu_topo
->package_id
)
517 cpumask_set_cpu(cpuid
, &cpu_topo
->core_sibling
);
518 cpumask_set_cpu(cpu
, &cpuid_topo
->core_sibling
);
520 if (cpuid_topo
->core_id
!= cpu_topo
->core_id
)
523 cpumask_set_cpu(cpuid
, &cpu_topo
->thread_sibling
);
524 cpumask_set_cpu(cpu
, &cpuid_topo
->thread_sibling
);
528 static void clear_cpu_topology(int cpu
)
530 struct cpu_topology
*cpu_topo
= &cpu_topology
[cpu
];
532 cpumask_clear(&cpu_topo
->llc_sibling
);
533 cpumask_set_cpu(cpu
, &cpu_topo
->llc_sibling
);
535 cpumask_clear(&cpu_topo
->core_sibling
);
536 cpumask_set_cpu(cpu
, &cpu_topo
->core_sibling
);
537 cpumask_clear(&cpu_topo
->thread_sibling
);
538 cpumask_set_cpu(cpu
, &cpu_topo
->thread_sibling
);
541 void __init
reset_cpu_topology(void)
545 for_each_possible_cpu(cpu
) {
546 struct cpu_topology
*cpu_topo
= &cpu_topology
[cpu
];
548 cpu_topo
->thread_id
= -1;
549 cpu_topo
->core_id
= -1;
550 cpu_topo
->package_id
= -1;
551 cpu_topo
->llc_id
= -1;
553 clear_cpu_topology(cpu
);
557 void remove_cpu_topology(unsigned int cpu
)
561 for_each_cpu(sibling
, topology_core_cpumask(cpu
))
562 cpumask_clear_cpu(cpu
, topology_core_cpumask(sibling
));
563 for_each_cpu(sibling
, topology_sibling_cpumask(cpu
))
564 cpumask_clear_cpu(cpu
, topology_sibling_cpumask(sibling
));
565 for_each_cpu(sibling
, topology_llc_cpumask(cpu
))
566 cpumask_clear_cpu(cpu
, topology_llc_cpumask(sibling
));
568 clear_cpu_topology(cpu
);
571 __weak
int __init
parse_acpi_topology(void)
576 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
577 void __init
init_cpu_topology(void)
579 reset_cpu_topology();
582 * Discard anything that was parsed if we hit an error so we
583 * don't use partial information.
585 if (parse_acpi_topology())
586 reset_cpu_topology();
587 else if (of_have_populated_dt() && parse_dt_topology())
588 reset_cpu_topology();