Linux 5.9.7
[linux/fpc-iii.git] / drivers / base / core.c
blob91980be5543d3efc5a78f5307cc99318ed02a6ea
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
31 #include "base.h"
32 #include "power/power.h"
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
42 return kstrtol(arg, 10, &sysfs_deprecated);
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
61 static inline void device_links_write_lock(void)
63 mutex_lock(&device_links_lock);
66 static inline void device_links_write_unlock(void)
68 mutex_unlock(&device_links_lock);
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 return srcu_read_lock(&device_links_srcu);
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 srcu_read_unlock(&device_links_srcu, idx);
81 int device_links_read_lock_held(void)
83 return srcu_read_lock_held(&device_links_srcu);
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
88 static inline void device_links_write_lock(void)
90 down_write(&device_links_lock);
93 static inline void device_links_write_unlock(void)
95 up_write(&device_links_lock);
98 int device_links_read_lock(void)
100 down_read(&device_links_lock);
101 return 0;
104 void device_links_read_unlock(int not_used)
106 up_read(&device_links_lock);
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
112 return lockdep_is_held(&device_links_lock);
114 #endif
115 #endif /* !CONFIG_SRCU */
118 * device_is_dependent - Check if one device depends on another one
119 * @dev: Device to check dependencies for.
120 * @target: Device to check against.
122 * Check if @target depends on @dev or any device dependent on it (its child or
123 * its consumer etc). Return 1 if that is the case or 0 otherwise.
125 int device_is_dependent(struct device *dev, void *target)
127 struct device_link *link;
128 int ret;
130 if (dev == target)
131 return 1;
133 ret = device_for_each_child(dev, target, device_is_dependent);
134 if (ret)
135 return ret;
137 list_for_each_entry(link, &dev->links.consumers, s_node) {
138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 continue;
141 if (link->consumer == target)
142 return 1;
144 ret = device_is_dependent(link->consumer, target);
145 if (ret)
146 break;
148 return ret;
151 static void device_link_init_status(struct device_link *link,
152 struct device *consumer,
153 struct device *supplier)
155 switch (supplier->links.status) {
156 case DL_DEV_PROBING:
157 switch (consumer->links.status) {
158 case DL_DEV_PROBING:
160 * A consumer driver can create a link to a supplier
161 * that has not completed its probing yet as long as it
162 * knows that the supplier is already functional (for
163 * example, it has just acquired some resources from the
164 * supplier).
166 link->status = DL_STATE_CONSUMER_PROBE;
167 break;
168 default:
169 link->status = DL_STATE_DORMANT;
170 break;
172 break;
173 case DL_DEV_DRIVER_BOUND:
174 switch (consumer->links.status) {
175 case DL_DEV_PROBING:
176 link->status = DL_STATE_CONSUMER_PROBE;
177 break;
178 case DL_DEV_DRIVER_BOUND:
179 link->status = DL_STATE_ACTIVE;
180 break;
181 default:
182 link->status = DL_STATE_AVAILABLE;
183 break;
185 break;
186 case DL_DEV_UNBINDING:
187 link->status = DL_STATE_SUPPLIER_UNBIND;
188 break;
189 default:
190 link->status = DL_STATE_DORMANT;
191 break;
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
197 struct device_link *link;
200 * Devices that have not been registered yet will be put to the ends
201 * of the lists during the registration, so skip them here.
203 if (device_is_registered(dev))
204 devices_kset_move_last(dev);
206 if (device_pm_initialized(dev))
207 device_pm_move_last(dev);
209 device_for_each_child(dev, NULL, device_reorder_to_tail);
210 list_for_each_entry(link, &dev->links.consumers, s_node) {
211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 continue;
213 device_reorder_to_tail(link->consumer, NULL);
216 return 0;
220 * device_pm_move_to_tail - Move set of devices to the end of device lists
221 * @dev: Device to move
223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
225 * It moves the @dev along with all of its children and all of its consumers
226 * to the ends of the device_kset and dpm_list, recursively.
228 void device_pm_move_to_tail(struct device *dev)
230 int idx;
232 idx = device_links_read_lock();
233 device_pm_lock();
234 device_reorder_to_tail(dev, NULL);
235 device_pm_unlock();
236 device_links_read_unlock(idx);
239 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
241 static ssize_t status_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
244 char *status;
246 switch (to_devlink(dev)->status) {
247 case DL_STATE_NONE:
248 status = "not tracked"; break;
249 case DL_STATE_DORMANT:
250 status = "dormant"; break;
251 case DL_STATE_AVAILABLE:
252 status = "available"; break;
253 case DL_STATE_CONSUMER_PROBE:
254 status = "consumer probing"; break;
255 case DL_STATE_ACTIVE:
256 status = "active"; break;
257 case DL_STATE_SUPPLIER_UNBIND:
258 status = "supplier unbinding"; break;
259 default:
260 status = "unknown"; break;
262 return sprintf(buf, "%s\n", status);
264 static DEVICE_ATTR_RO(status);
266 static ssize_t auto_remove_on_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
269 struct device_link *link = to_devlink(dev);
270 char *str;
272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 str = "supplier unbind";
274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 str = "consumer unbind";
276 else
277 str = "never";
279 return sprintf(buf, "%s\n", str);
281 static DEVICE_ATTR_RO(auto_remove_on);
283 static ssize_t runtime_pm_show(struct device *dev,
284 struct device_attribute *attr, char *buf)
286 struct device_link *link = to_devlink(dev);
288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
290 static DEVICE_ATTR_RO(runtime_pm);
292 static ssize_t sync_state_only_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct device_link *link = to_devlink(dev);
297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
299 static DEVICE_ATTR_RO(sync_state_only);
301 static struct attribute *devlink_attrs[] = {
302 &dev_attr_status.attr,
303 &dev_attr_auto_remove_on.attr,
304 &dev_attr_runtime_pm.attr,
305 &dev_attr_sync_state_only.attr,
306 NULL,
308 ATTRIBUTE_GROUPS(devlink);
310 static void device_link_free(struct device_link *link)
312 while (refcount_dec_not_one(&link->rpm_active))
313 pm_runtime_put(link->supplier);
315 put_device(link->consumer);
316 put_device(link->supplier);
317 kfree(link);
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
323 device_link_free(container_of(rhead, struct device_link, rcu_head));
326 static void devlink_dev_release(struct device *dev)
328 struct device_link *link = to_devlink(dev);
330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
332 #else
333 static void devlink_dev_release(struct device *dev)
335 device_link_free(to_devlink(dev));
337 #endif
339 static struct class devlink_class = {
340 .name = "devlink",
341 .owner = THIS_MODULE,
342 .dev_groups = devlink_groups,
343 .dev_release = devlink_dev_release,
346 static int devlink_add_symlinks(struct device *dev,
347 struct class_interface *class_intf)
349 int ret;
350 size_t len;
351 struct device_link *link = to_devlink(dev);
352 struct device *sup = link->supplier;
353 struct device *con = link->consumer;
354 char *buf;
356 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 len += strlen("supplier:") + 1;
358 buf = kzalloc(len, GFP_KERNEL);
359 if (!buf)
360 return -ENOMEM;
362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 if (ret)
364 goto out;
366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 if (ret)
368 goto err_con;
370 snprintf(buf, len, "consumer:%s", dev_name(con));
371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 if (ret)
373 goto err_con_dev;
375 snprintf(buf, len, "supplier:%s", dev_name(sup));
376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 if (ret)
378 goto err_sup_dev;
380 goto out;
382 err_sup_dev:
383 snprintf(buf, len, "consumer:%s", dev_name(con));
384 sysfs_remove_link(&sup->kobj, buf);
385 err_con_dev:
386 sysfs_remove_link(&link->link_dev.kobj, "consumer");
387 err_con:
388 sysfs_remove_link(&link->link_dev.kobj, "supplier");
389 out:
390 kfree(buf);
391 return ret;
394 static void devlink_remove_symlinks(struct device *dev,
395 struct class_interface *class_intf)
397 struct device_link *link = to_devlink(dev);
398 size_t len;
399 struct device *sup = link->supplier;
400 struct device *con = link->consumer;
401 char *buf;
403 sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 sysfs_remove_link(&link->link_dev.kobj, "supplier");
406 len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 len += strlen("supplier:") + 1;
408 buf = kzalloc(len, GFP_KERNEL);
409 if (!buf) {
410 WARN(1, "Unable to properly free device link symlinks!\n");
411 return;
414 snprintf(buf, len, "supplier:%s", dev_name(sup));
415 sysfs_remove_link(&con->kobj, buf);
416 snprintf(buf, len, "consumer:%s", dev_name(con));
417 sysfs_remove_link(&sup->kobj, buf);
418 kfree(buf);
421 static struct class_interface devlink_class_intf = {
422 .class = &devlink_class,
423 .add_dev = devlink_add_symlinks,
424 .remove_dev = devlink_remove_symlinks,
427 static int __init devlink_class_init(void)
429 int ret;
431 ret = class_register(&devlink_class);
432 if (ret)
433 return ret;
435 ret = class_interface_register(&devlink_class_intf);
436 if (ret)
437 class_unregister(&devlink_class);
439 return ret;
441 postcore_initcall(devlink_class_init);
443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 DL_FLAG_AUTOPROBE_CONSUMER | \
446 DL_FLAG_SYNC_STATE_ONLY)
448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
452 * device_link_add - Create a link between two devices.
453 * @consumer: Consumer end of the link.
454 * @supplier: Supplier end of the link.
455 * @flags: Link flags.
457 * The caller is responsible for the proper synchronization of the link creation
458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459 * runtime PM framework to take the link into account. Second, if the
460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461 * be forced into the active metastate and reference-counted upon the creation
462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463 * ignored.
465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466 * expected to release the link returned by it directly with the help of either
467 * device_link_del() or device_link_remove().
469 * If that flag is not set, however, the caller of this function is handing the
470 * management of the link over to the driver core entirely and its return value
471 * can only be used to check whether or not the link is present. In that case,
472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473 * flags can be used to indicate to the driver core when the link can be safely
474 * deleted. Namely, setting one of them in @flags indicates to the driver core
475 * that the link is not going to be used (by the given caller of this function)
476 * after unbinding the consumer or supplier driver, respectively, from its
477 * device, so the link can be deleted at that point. If none of them is set,
478 * the link will be maintained until one of the devices pointed to by it (either
479 * the consumer or the supplier) is unregistered.
481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484 * be used to request the driver core to automaticall probe for a consmer
485 * driver after successfully binding a driver to the supplier device.
487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489 * the same time is invalid and will cause NULL to be returned upfront.
490 * However, if a device link between the given @consumer and @supplier pair
491 * exists already when this function is called for them, the existing link will
492 * be returned regardless of its current type and status (the link's flags may
493 * be modified then). The caller of this function is then expected to treat
494 * the link as though it has just been created, so (in particular) if
495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496 * explicitly when not needed any more (as stated above).
498 * A side effect of the link creation is re-ordering of dpm_list and the
499 * devices_kset list by moving the consumer device and all devices depending
500 * on it to the ends of these lists (that does not happen to devices that have
501 * not been registered when this function is called).
503 * The supplier device is required to be registered when this function is called
504 * and NULL will be returned if that is not the case. The consumer device need
505 * not be registered, however.
507 struct device_link *device_link_add(struct device *consumer,
508 struct device *supplier, u32 flags)
510 struct device_link *link;
512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 return NULL;
521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 if (pm_runtime_get_sync(supplier) < 0) {
523 pm_runtime_put_noidle(supplier);
524 return NULL;
528 if (!(flags & DL_FLAG_STATELESS))
529 flags |= DL_FLAG_MANAGED;
531 device_links_write_lock();
532 device_pm_lock();
535 * If the supplier has not been fully registered yet or there is a
536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 * the supplier already in the graph, return NULL. If the link is a
538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 * because it only affects sync_state() callbacks.
541 if (!device_pm_initialized(supplier)
542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 device_is_dependent(consumer, supplier))) {
544 link = NULL;
545 goto out;
549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
556 list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 if (link->consumer != consumer)
558 continue;
560 if (flags & DL_FLAG_PM_RUNTIME) {
561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 pm_runtime_new_link(consumer);
563 link->flags |= DL_FLAG_PM_RUNTIME;
565 if (flags & DL_FLAG_RPM_ACTIVE)
566 refcount_inc(&link->rpm_active);
569 if (flags & DL_FLAG_STATELESS) {
570 kref_get(&link->kref);
571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 !(link->flags & DL_FLAG_STATELESS)) {
573 link->flags |= DL_FLAG_STATELESS;
574 goto reorder;
575 } else {
576 link->flags |= DL_FLAG_STATELESS;
577 goto out;
582 * If the life time of the link following from the new flags is
583 * longer than indicated by the flags of the existing link,
584 * update the existing link to stay around longer.
586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 DL_FLAG_AUTOREMOVE_SUPPLIER);
595 if (!(link->flags & DL_FLAG_MANAGED)) {
596 kref_get(&link->kref);
597 link->flags |= DL_FLAG_MANAGED;
598 device_link_init_status(link, consumer, supplier);
600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 goto reorder;
606 goto out;
609 link = kzalloc(sizeof(*link), GFP_KERNEL);
610 if (!link)
611 goto out;
613 refcount_set(&link->rpm_active, 1);
615 get_device(supplier);
616 link->supplier = supplier;
617 INIT_LIST_HEAD(&link->s_node);
618 get_device(consumer);
619 link->consumer = consumer;
620 INIT_LIST_HEAD(&link->c_node);
621 link->flags = flags;
622 kref_init(&link->kref);
624 link->link_dev.class = &devlink_class;
625 device_set_pm_not_required(&link->link_dev);
626 dev_set_name(&link->link_dev, "%s--%s",
627 dev_name(supplier), dev_name(consumer));
628 if (device_register(&link->link_dev)) {
629 put_device(consumer);
630 put_device(supplier);
631 kfree(link);
632 link = NULL;
633 goto out;
636 if (flags & DL_FLAG_PM_RUNTIME) {
637 if (flags & DL_FLAG_RPM_ACTIVE)
638 refcount_inc(&link->rpm_active);
640 pm_runtime_new_link(consumer);
643 /* Determine the initial link state. */
644 if (flags & DL_FLAG_STATELESS)
645 link->status = DL_STATE_NONE;
646 else
647 device_link_init_status(link, consumer, supplier);
650 * Some callers expect the link creation during consumer driver probe to
651 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
653 if (link->status == DL_STATE_CONSUMER_PROBE &&
654 flags & DL_FLAG_PM_RUNTIME)
655 pm_runtime_resume(supplier);
657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
660 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 dev_dbg(consumer,
662 "Linked as a sync state only consumer to %s\n",
663 dev_name(supplier));
664 goto out;
667 reorder:
669 * Move the consumer and all of the devices depending on it to the end
670 * of dpm_list and the devices_kset list.
672 * It is necessary to hold dpm_list locked throughout all that or else
673 * we may end up suspending with a wrong ordering of it.
675 device_reorder_to_tail(consumer, NULL);
677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
679 out:
680 device_pm_unlock();
681 device_links_write_unlock();
683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 pm_runtime_put(supplier);
686 return link;
688 EXPORT_SYMBOL_GPL(device_link_add);
691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692 * @consumer: Consumer device
694 * Marks the @consumer device as waiting for suppliers to become available by
695 * adding it to the wait_for_suppliers list. The consumer device will never be
696 * probed until it's removed from the wait_for_suppliers list.
698 * The caller is responsible for adding the links to the supplier devices once
699 * they are available and removing the @consumer device from the
700 * wait_for_suppliers list once links to all the suppliers have been created.
702 * This function is NOT meant to be called from the probe function of the
703 * consumer but rather from code that creates/adds the consumer device.
705 static void device_link_wait_for_supplier(struct device *consumer,
706 bool need_for_probe)
708 mutex_lock(&wfs_lock);
709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 consumer->links.need_for_probe = need_for_probe;
711 mutex_unlock(&wfs_lock);
714 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
716 device_link_wait_for_supplier(consumer, true);
719 static void device_link_wait_for_optional_supplier(struct device *consumer)
721 device_link_wait_for_supplier(consumer, false);
725 * device_link_add_missing_supplier_links - Add links from consumer devices to
726 * supplier devices, leaving any
727 * consumer with inactive suppliers on
728 * the wait_for_suppliers list
730 * Loops through all consumers waiting on suppliers and tries to add all their
731 * supplier links. If that succeeds, the consumer device is removed from
732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733 * list. Devices left on the wait_for_suppliers list will not be probed.
735 * The fwnode add_links callback is expected to return 0 if it has found and
736 * added all the supplier links for the consumer device. It should return an
737 * error if it isn't able to do so.
739 * The caller of device_link_wait_for_supplier() is expected to call this once
740 * it's aware of potential suppliers becoming available.
742 static void device_link_add_missing_supplier_links(void)
744 struct device *dev, *tmp;
746 mutex_lock(&wfs_lock);
747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 links.needs_suppliers) {
749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 if (!ret)
751 list_del_init(&dev->links.needs_suppliers);
752 else if (ret != -ENODEV || fw_devlink_is_permissive())
753 dev->links.need_for_probe = false;
755 mutex_unlock(&wfs_lock);
758 #ifdef CONFIG_SRCU
759 static void __device_link_del(struct kref *kref)
761 struct device_link *link = container_of(kref, struct device_link, kref);
763 dev_dbg(link->consumer, "Dropping the link to %s\n",
764 dev_name(link->supplier));
766 pm_runtime_drop_link(link);
768 list_del_rcu(&link->s_node);
769 list_del_rcu(&link->c_node);
770 device_unregister(&link->link_dev);
772 #else /* !CONFIG_SRCU */
773 static void __device_link_del(struct kref *kref)
775 struct device_link *link = container_of(kref, struct device_link, kref);
777 dev_info(link->consumer, "Dropping the link to %s\n",
778 dev_name(link->supplier));
780 pm_runtime_drop_link(link);
782 list_del(&link->s_node);
783 list_del(&link->c_node);
784 device_unregister(&link->link_dev);
786 #endif /* !CONFIG_SRCU */
788 static void device_link_put_kref(struct device_link *link)
790 if (link->flags & DL_FLAG_STATELESS)
791 kref_put(&link->kref, __device_link_del);
792 else
793 WARN(1, "Unable to drop a managed device link reference\n");
797 * device_link_del - Delete a stateless link between two devices.
798 * @link: Device link to delete.
800 * The caller must ensure proper synchronization of this function with runtime
801 * PM. If the link was added multiple times, it needs to be deleted as often.
802 * Care is required for hotplugged devices: Their links are purged on removal
803 * and calling device_link_del() is then no longer allowed.
805 void device_link_del(struct device_link *link)
807 device_links_write_lock();
808 device_link_put_kref(link);
809 device_links_write_unlock();
811 EXPORT_SYMBOL_GPL(device_link_del);
814 * device_link_remove - Delete a stateless link between two devices.
815 * @consumer: Consumer end of the link.
816 * @supplier: Supplier end of the link.
818 * The caller must ensure proper synchronization of this function with runtime
819 * PM.
821 void device_link_remove(void *consumer, struct device *supplier)
823 struct device_link *link;
825 if (WARN_ON(consumer == supplier))
826 return;
828 device_links_write_lock();
830 list_for_each_entry(link, &supplier->links.consumers, s_node) {
831 if (link->consumer == consumer) {
832 device_link_put_kref(link);
833 break;
837 device_links_write_unlock();
839 EXPORT_SYMBOL_GPL(device_link_remove);
841 static void device_links_missing_supplier(struct device *dev)
843 struct device_link *link;
845 list_for_each_entry(link, &dev->links.suppliers, c_node) {
846 if (link->status != DL_STATE_CONSUMER_PROBE)
847 continue;
849 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
850 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
851 } else {
852 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
853 WRITE_ONCE(link->status, DL_STATE_DORMANT);
859 * device_links_check_suppliers - Check presence of supplier drivers.
860 * @dev: Consumer device.
862 * Check links from this device to any suppliers. Walk the list of the device's
863 * links to suppliers and see if all of them are available. If not, simply
864 * return -EPROBE_DEFER.
866 * We need to guarantee that the supplier will not go away after the check has
867 * been positive here. It only can go away in __device_release_driver() and
868 * that function checks the device's links to consumers. This means we need to
869 * mark the link as "consumer probe in progress" to make the supplier removal
870 * wait for us to complete (or bad things may happen).
872 * Links without the DL_FLAG_MANAGED flag set are ignored.
874 int device_links_check_suppliers(struct device *dev)
876 struct device_link *link;
877 int ret = 0;
880 * Device waiting for supplier to become available is not allowed to
881 * probe.
883 mutex_lock(&wfs_lock);
884 if (!list_empty(&dev->links.needs_suppliers) &&
885 dev->links.need_for_probe) {
886 mutex_unlock(&wfs_lock);
887 return -EPROBE_DEFER;
889 mutex_unlock(&wfs_lock);
891 device_links_write_lock();
893 list_for_each_entry(link, &dev->links.suppliers, c_node) {
894 if (!(link->flags & DL_FLAG_MANAGED))
895 continue;
897 if (link->status != DL_STATE_AVAILABLE &&
898 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
899 device_links_missing_supplier(dev);
900 ret = -EPROBE_DEFER;
901 break;
903 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
905 dev->links.status = DL_DEV_PROBING;
907 device_links_write_unlock();
908 return ret;
912 * __device_links_queue_sync_state - Queue a device for sync_state() callback
913 * @dev: Device to call sync_state() on
914 * @list: List head to queue the @dev on
916 * Queues a device for a sync_state() callback when the device links write lock
917 * isn't held. This allows the sync_state() execution flow to use device links
918 * APIs. The caller must ensure this function is called with
919 * device_links_write_lock() held.
921 * This function does a get_device() to make sure the device is not freed while
922 * on this list.
924 * So the caller must also ensure that device_links_flush_sync_list() is called
925 * as soon as the caller releases device_links_write_lock(). This is necessary
926 * to make sure the sync_state() is called in a timely fashion and the
927 * put_device() is called on this device.
929 static void __device_links_queue_sync_state(struct device *dev,
930 struct list_head *list)
932 struct device_link *link;
934 if (!dev_has_sync_state(dev))
935 return;
936 if (dev->state_synced)
937 return;
939 list_for_each_entry(link, &dev->links.consumers, s_node) {
940 if (!(link->flags & DL_FLAG_MANAGED))
941 continue;
942 if (link->status != DL_STATE_ACTIVE)
943 return;
947 * Set the flag here to avoid adding the same device to a list more
948 * than once. This can happen if new consumers get added to the device
949 * and probed before the list is flushed.
951 dev->state_synced = true;
953 if (WARN_ON(!list_empty(&dev->links.defer_hook)))
954 return;
956 get_device(dev);
957 list_add_tail(&dev->links.defer_hook, list);
961 * device_links_flush_sync_list - Call sync_state() on a list of devices
962 * @list: List of devices to call sync_state() on
963 * @dont_lock_dev: Device for which lock is already held by the caller
965 * Calls sync_state() on all the devices that have been queued for it. This
966 * function is used in conjunction with __device_links_queue_sync_state(). The
967 * @dont_lock_dev parameter is useful when this function is called from a
968 * context where a device lock is already held.
970 static void device_links_flush_sync_list(struct list_head *list,
971 struct device *dont_lock_dev)
973 struct device *dev, *tmp;
975 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
976 list_del_init(&dev->links.defer_hook);
978 if (dev != dont_lock_dev)
979 device_lock(dev);
981 if (dev->bus->sync_state)
982 dev->bus->sync_state(dev);
983 else if (dev->driver && dev->driver->sync_state)
984 dev->driver->sync_state(dev);
986 if (dev != dont_lock_dev)
987 device_unlock(dev);
989 put_device(dev);
993 void device_links_supplier_sync_state_pause(void)
995 device_links_write_lock();
996 defer_sync_state_count++;
997 device_links_write_unlock();
1000 void device_links_supplier_sync_state_resume(void)
1002 struct device *dev, *tmp;
1003 LIST_HEAD(sync_list);
1005 device_links_write_lock();
1006 if (!defer_sync_state_count) {
1007 WARN(true, "Unmatched sync_state pause/resume!");
1008 goto out;
1010 defer_sync_state_count--;
1011 if (defer_sync_state_count)
1012 goto out;
1014 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1016 * Delete from deferred_sync list before queuing it to
1017 * sync_list because defer_hook is used for both lists.
1019 list_del_init(&dev->links.defer_hook);
1020 __device_links_queue_sync_state(dev, &sync_list);
1022 out:
1023 device_links_write_unlock();
1025 device_links_flush_sync_list(&sync_list, NULL);
1028 static int sync_state_resume_initcall(void)
1030 device_links_supplier_sync_state_resume();
1031 return 0;
1033 late_initcall(sync_state_resume_initcall);
1035 static void __device_links_supplier_defer_sync(struct device *sup)
1037 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1038 list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041 static void device_link_drop_managed(struct device_link *link)
1043 link->flags &= ~DL_FLAG_MANAGED;
1044 WRITE_ONCE(link->status, DL_STATE_NONE);
1045 kref_put(&link->kref, __device_link_del);
1048 static ssize_t waiting_for_supplier_show(struct device *dev,
1049 struct device_attribute *attr,
1050 char *buf)
1052 bool val;
1054 device_lock(dev);
1055 mutex_lock(&wfs_lock);
1056 val = !list_empty(&dev->links.needs_suppliers)
1057 && dev->links.need_for_probe;
1058 mutex_unlock(&wfs_lock);
1059 device_unlock(dev);
1060 return sprintf(buf, "%u\n", val);
1062 static DEVICE_ATTR_RO(waiting_for_supplier);
1065 * device_links_driver_bound - Update device links after probing its driver.
1066 * @dev: Device to update the links for.
1068 * The probe has been successful, so update links from this device to any
1069 * consumers by changing their status to "available".
1071 * Also change the status of @dev's links to suppliers to "active".
1073 * Links without the DL_FLAG_MANAGED flag set are ignored.
1075 void device_links_driver_bound(struct device *dev)
1077 struct device_link *link, *ln;
1078 LIST_HEAD(sync_list);
1081 * If a device probes successfully, it's expected to have created all
1082 * the device links it needs to or make new device links as it needs
1083 * them. So, it no longer needs to wait on any suppliers.
1085 mutex_lock(&wfs_lock);
1086 list_del_init(&dev->links.needs_suppliers);
1087 mutex_unlock(&wfs_lock);
1088 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1090 device_links_write_lock();
1092 list_for_each_entry(link, &dev->links.consumers, s_node) {
1093 if (!(link->flags & DL_FLAG_MANAGED))
1094 continue;
1097 * Links created during consumer probe may be in the "consumer
1098 * probe" state to start with if the supplier is still probing
1099 * when they are created and they may become "active" if the
1100 * consumer probe returns first. Skip them here.
1102 if (link->status == DL_STATE_CONSUMER_PROBE ||
1103 link->status == DL_STATE_ACTIVE)
1104 continue;
1106 WARN_ON(link->status != DL_STATE_DORMANT);
1107 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1109 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1110 driver_deferred_probe_add(link->consumer);
1113 if (defer_sync_state_count)
1114 __device_links_supplier_defer_sync(dev);
1115 else
1116 __device_links_queue_sync_state(dev, &sync_list);
1118 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1119 struct device *supplier;
1121 if (!(link->flags & DL_FLAG_MANAGED))
1122 continue;
1124 supplier = link->supplier;
1125 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1127 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1128 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1129 * save to drop the managed link completely.
1131 device_link_drop_managed(link);
1132 } else {
1133 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1134 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1138 * This needs to be done even for the deleted
1139 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1140 * device link that was preventing the supplier from getting a
1141 * sync_state() call.
1143 if (defer_sync_state_count)
1144 __device_links_supplier_defer_sync(supplier);
1145 else
1146 __device_links_queue_sync_state(supplier, &sync_list);
1149 dev->links.status = DL_DEV_DRIVER_BOUND;
1151 device_links_write_unlock();
1153 device_links_flush_sync_list(&sync_list, dev);
1157 * __device_links_no_driver - Update links of a device without a driver.
1158 * @dev: Device without a drvier.
1160 * Delete all non-persistent links from this device to any suppliers.
1162 * Persistent links stay around, but their status is changed to "available",
1163 * unless they already are in the "supplier unbind in progress" state in which
1164 * case they need not be updated.
1166 * Links without the DL_FLAG_MANAGED flag set are ignored.
1168 static void __device_links_no_driver(struct device *dev)
1170 struct device_link *link, *ln;
1172 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1173 if (!(link->flags & DL_FLAG_MANAGED))
1174 continue;
1176 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1177 device_link_drop_managed(link);
1178 continue;
1181 if (link->status != DL_STATE_CONSUMER_PROBE &&
1182 link->status != DL_STATE_ACTIVE)
1183 continue;
1185 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1186 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1187 } else {
1188 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1189 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1193 dev->links.status = DL_DEV_NO_DRIVER;
1197 * device_links_no_driver - Update links after failing driver probe.
1198 * @dev: Device whose driver has just failed to probe.
1200 * Clean up leftover links to consumers for @dev and invoke
1201 * %__device_links_no_driver() to update links to suppliers for it as
1202 * appropriate.
1204 * Links without the DL_FLAG_MANAGED flag set are ignored.
1206 void device_links_no_driver(struct device *dev)
1208 struct device_link *link;
1210 device_links_write_lock();
1212 list_for_each_entry(link, &dev->links.consumers, s_node) {
1213 if (!(link->flags & DL_FLAG_MANAGED))
1214 continue;
1217 * The probe has failed, so if the status of the link is
1218 * "consumer probe" or "active", it must have been added by
1219 * a probing consumer while this device was still probing.
1220 * Change its state to "dormant", as it represents a valid
1221 * relationship, but it is not functionally meaningful.
1223 if (link->status == DL_STATE_CONSUMER_PROBE ||
1224 link->status == DL_STATE_ACTIVE)
1225 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228 __device_links_no_driver(dev);
1230 device_links_write_unlock();
1234 * device_links_driver_cleanup - Update links after driver removal.
1235 * @dev: Device whose driver has just gone away.
1237 * Update links to consumers for @dev by changing their status to "dormant" and
1238 * invoke %__device_links_no_driver() to update links to suppliers for it as
1239 * appropriate.
1241 * Links without the DL_FLAG_MANAGED flag set are ignored.
1243 void device_links_driver_cleanup(struct device *dev)
1245 struct device_link *link, *ln;
1247 device_links_write_lock();
1249 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1250 if (!(link->flags & DL_FLAG_MANAGED))
1251 continue;
1253 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1254 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257 * autoremove the links between this @dev and its consumer
1258 * devices that are not active, i.e. where the link state
1259 * has moved to DL_STATE_SUPPLIER_UNBIND.
1261 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1262 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1263 device_link_drop_managed(link);
1265 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 list_del_init(&dev->links.defer_hook);
1269 __device_links_no_driver(dev);
1271 device_links_write_unlock();
1275 * device_links_busy - Check if there are any busy links to consumers.
1276 * @dev: Device to check.
1278 * Check each consumer of the device and return 'true' if its link's status
1279 * is one of "consumer probe" or "active" (meaning that the given consumer is
1280 * probing right now or its driver is present). Otherwise, change the link
1281 * state to "supplier unbind" to prevent the consumer from being probed
1282 * successfully going forward.
1284 * Return 'false' if there are no probing or active consumers.
1286 * Links without the DL_FLAG_MANAGED flag set are ignored.
1288 bool device_links_busy(struct device *dev)
1290 struct device_link *link;
1291 bool ret = false;
1293 device_links_write_lock();
1295 list_for_each_entry(link, &dev->links.consumers, s_node) {
1296 if (!(link->flags & DL_FLAG_MANAGED))
1297 continue;
1299 if (link->status == DL_STATE_CONSUMER_PROBE
1300 || link->status == DL_STATE_ACTIVE) {
1301 ret = true;
1302 break;
1304 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307 dev->links.status = DL_DEV_UNBINDING;
1309 device_links_write_unlock();
1310 return ret;
1314 * device_links_unbind_consumers - Force unbind consumers of the given device.
1315 * @dev: Device to unbind the consumers of.
1317 * Walk the list of links to consumers for @dev and if any of them is in the
1318 * "consumer probe" state, wait for all device probes in progress to complete
1319 * and start over.
1321 * If that's not the case, change the status of the link to "supplier unbind"
1322 * and check if the link was in the "active" state. If so, force the consumer
1323 * driver to unbind and start over (the consumer will not re-probe as we have
1324 * changed the state of the link already).
1326 * Links without the DL_FLAG_MANAGED flag set are ignored.
1328 void device_links_unbind_consumers(struct device *dev)
1330 struct device_link *link;
1332 start:
1333 device_links_write_lock();
1335 list_for_each_entry(link, &dev->links.consumers, s_node) {
1336 enum device_link_state status;
1338 if (!(link->flags & DL_FLAG_MANAGED) ||
1339 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1340 continue;
1342 status = link->status;
1343 if (status == DL_STATE_CONSUMER_PROBE) {
1344 device_links_write_unlock();
1346 wait_for_device_probe();
1347 goto start;
1349 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1350 if (status == DL_STATE_ACTIVE) {
1351 struct device *consumer = link->consumer;
1353 get_device(consumer);
1355 device_links_write_unlock();
1357 device_release_driver_internal(consumer, NULL,
1358 consumer->parent);
1359 put_device(consumer);
1360 goto start;
1364 device_links_write_unlock();
1368 * device_links_purge - Delete existing links to other devices.
1369 * @dev: Target device.
1371 static void device_links_purge(struct device *dev)
1373 struct device_link *link, *ln;
1375 if (dev->class == &devlink_class)
1376 return;
1378 mutex_lock(&wfs_lock);
1379 list_del(&dev->links.needs_suppliers);
1380 mutex_unlock(&wfs_lock);
1383 * Delete all of the remaining links from this device to any other
1384 * devices (either consumers or suppliers).
1386 device_links_write_lock();
1388 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1389 WARN_ON(link->status == DL_STATE_ACTIVE);
1390 __device_link_del(&link->kref);
1393 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1394 WARN_ON(link->status != DL_STATE_DORMANT &&
1395 link->status != DL_STATE_NONE);
1396 __device_link_del(&link->kref);
1399 device_links_write_unlock();
1402 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1403 static int __init fw_devlink_setup(char *arg)
1405 if (!arg)
1406 return -EINVAL;
1408 if (strcmp(arg, "off") == 0) {
1409 fw_devlink_flags = 0;
1410 } else if (strcmp(arg, "permissive") == 0) {
1411 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1412 } else if (strcmp(arg, "on") == 0) {
1413 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1414 } else if (strcmp(arg, "rpm") == 0) {
1415 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1416 DL_FLAG_PM_RUNTIME;
1418 return 0;
1420 early_param("fw_devlink", fw_devlink_setup);
1422 u32 fw_devlink_get_flags(void)
1424 return fw_devlink_flags;
1427 static bool fw_devlink_is_permissive(void)
1429 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432 static void fw_devlink_link_device(struct device *dev)
1434 int fw_ret;
1436 if (!fw_devlink_flags)
1437 return;
1439 mutex_lock(&defer_fw_devlink_lock);
1440 if (!defer_fw_devlink_count)
1441 device_link_add_missing_supplier_links();
1444 * The device's fwnode not having add_links() doesn't affect if other
1445 * consumers can find this device as a supplier. So, this check is
1446 * intentionally placed after device_link_add_missing_supplier_links().
1448 if (!fwnode_has_op(dev->fwnode, add_links))
1449 goto out;
1452 * If fw_devlink is being deferred, assume all devices have mandatory
1453 * suppliers they need to link to later. Then, when the fw_devlink is
1454 * resumed, all these devices will get a chance to try and link to any
1455 * suppliers they have.
1457 if (!defer_fw_devlink_count) {
1458 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1459 if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1460 fw_ret = -EAGAIN;
1461 } else {
1462 fw_ret = -ENODEV;
1464 * defer_hook is not used to add device to deferred_sync list
1465 * until device is bound. Since deferred fw devlink also blocks
1466 * probing, same list hook can be used for deferred_fw_devlink.
1468 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471 if (fw_ret == -ENODEV)
1472 device_link_wait_for_mandatory_supplier(dev);
1473 else if (fw_ret)
1474 device_link_wait_for_optional_supplier(dev);
1476 out:
1477 mutex_unlock(&defer_fw_devlink_lock);
1481 * fw_devlink_pause - Pause parsing of fwnode to create device links
1483 * Calling this function defers any fwnode parsing to create device links until
1484 * fw_devlink_resume() is called. Both these functions are ref counted and the
1485 * caller needs to match the calls.
1487 * While fw_devlink is paused:
1488 * - Any device that is added won't have its fwnode parsed to create device
1489 * links.
1490 * - The probe of the device will also be deferred during this period.
1491 * - Any devices that were already added, but waiting for suppliers won't be
1492 * able to link to newly added devices.
1494 * Once fw_devlink_resume():
1495 * - All the fwnodes that was not parsed will be parsed.
1496 * - All the devices that were deferred probing will be reattempted if they
1497 * aren't waiting for any more suppliers.
1499 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1500 * when a lot of devices that need to link to each other are added in a short
1501 * interval of time. For example, adding all the top level devices in a system.
1503 * For example, if N devices are added and:
1504 * - All the consumers are added before their suppliers
1505 * - All the suppliers of the N devices are part of the N devices
1507 * Then:
1509 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1510 * will only need one parsing of its fwnode because it is guaranteed to find
1511 * all the supplier devices already registered and ready to link to. It won't
1512 * have to do another pass later to find one or more suppliers it couldn't
1513 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1514 * parses.
1516 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1517 * end up doing O(N^2) parses of fwnodes because every device that's added is
1518 * guaranteed to trigger a parse of the fwnode of every device added before
1519 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1520 * device is parsed, all it descendant devices might need to have their
1521 * fwnodes parsed too (even if the devices themselves aren't added).
1523 void fw_devlink_pause(void)
1525 mutex_lock(&defer_fw_devlink_lock);
1526 defer_fw_devlink_count++;
1527 mutex_unlock(&defer_fw_devlink_lock);
1530 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1532 * This function is used in conjunction with fw_devlink_pause() and is ref
1533 * counted. See documentation for fw_devlink_pause() for more details.
1535 void fw_devlink_resume(void)
1537 struct device *dev, *tmp;
1538 LIST_HEAD(probe_list);
1540 mutex_lock(&defer_fw_devlink_lock);
1541 if (!defer_fw_devlink_count) {
1542 WARN(true, "Unmatched fw_devlink pause/resume!");
1543 goto out;
1546 defer_fw_devlink_count--;
1547 if (defer_fw_devlink_count)
1548 goto out;
1550 device_link_add_missing_supplier_links();
1551 list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1552 out:
1553 mutex_unlock(&defer_fw_devlink_lock);
1556 * bus_probe_device() can cause new devices to get added and they'll
1557 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1558 * the defer_fw_devlink_lock.
1560 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1561 list_del_init(&dev->links.defer_hook);
1562 bus_probe_device(dev);
1565 /* Device links support end. */
1567 int (*platform_notify)(struct device *dev) = NULL;
1568 int (*platform_notify_remove)(struct device *dev) = NULL;
1569 static struct kobject *dev_kobj;
1570 struct kobject *sysfs_dev_char_kobj;
1571 struct kobject *sysfs_dev_block_kobj;
1573 static DEFINE_MUTEX(device_hotplug_lock);
1575 void lock_device_hotplug(void)
1577 mutex_lock(&device_hotplug_lock);
1580 void unlock_device_hotplug(void)
1582 mutex_unlock(&device_hotplug_lock);
1585 int lock_device_hotplug_sysfs(void)
1587 if (mutex_trylock(&device_hotplug_lock))
1588 return 0;
1590 /* Avoid busy looping (5 ms of sleep should do). */
1591 msleep(5);
1592 return restart_syscall();
1595 #ifdef CONFIG_BLOCK
1596 static inline int device_is_not_partition(struct device *dev)
1598 return !(dev->type == &part_type);
1600 #else
1601 static inline int device_is_not_partition(struct device *dev)
1603 return 1;
1605 #endif
1607 static int
1608 device_platform_notify(struct device *dev, enum kobject_action action)
1610 int ret;
1612 ret = acpi_platform_notify(dev, action);
1613 if (ret)
1614 return ret;
1616 ret = software_node_notify(dev, action);
1617 if (ret)
1618 return ret;
1620 if (platform_notify && action == KOBJ_ADD)
1621 platform_notify(dev);
1622 else if (platform_notify_remove && action == KOBJ_REMOVE)
1623 platform_notify_remove(dev);
1624 return 0;
1628 * dev_driver_string - Return a device's driver name, if at all possible
1629 * @dev: struct device to get the name of
1631 * Will return the device's driver's name if it is bound to a device. If
1632 * the device is not bound to a driver, it will return the name of the bus
1633 * it is attached to. If it is not attached to a bus either, an empty
1634 * string will be returned.
1636 const char *dev_driver_string(const struct device *dev)
1638 struct device_driver *drv;
1640 /* dev->driver can change to NULL underneath us because of unbinding,
1641 * so be careful about accessing it. dev->bus and dev->class should
1642 * never change once they are set, so they don't need special care.
1644 drv = READ_ONCE(dev->driver);
1645 return drv ? drv->name :
1646 (dev->bus ? dev->bus->name :
1647 (dev->class ? dev->class->name : ""));
1649 EXPORT_SYMBOL(dev_driver_string);
1651 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1653 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1654 char *buf)
1656 struct device_attribute *dev_attr = to_dev_attr(attr);
1657 struct device *dev = kobj_to_dev(kobj);
1658 ssize_t ret = -EIO;
1660 if (dev_attr->show)
1661 ret = dev_attr->show(dev, dev_attr, buf);
1662 if (ret >= (ssize_t)PAGE_SIZE) {
1663 printk("dev_attr_show: %pS returned bad count\n",
1664 dev_attr->show);
1666 return ret;
1669 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1670 const char *buf, size_t count)
1672 struct device_attribute *dev_attr = to_dev_attr(attr);
1673 struct device *dev = kobj_to_dev(kobj);
1674 ssize_t ret = -EIO;
1676 if (dev_attr->store)
1677 ret = dev_attr->store(dev, dev_attr, buf, count);
1678 return ret;
1681 static const struct sysfs_ops dev_sysfs_ops = {
1682 .show = dev_attr_show,
1683 .store = dev_attr_store,
1686 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1688 ssize_t device_store_ulong(struct device *dev,
1689 struct device_attribute *attr,
1690 const char *buf, size_t size)
1692 struct dev_ext_attribute *ea = to_ext_attr(attr);
1693 int ret;
1694 unsigned long new;
1696 ret = kstrtoul(buf, 0, &new);
1697 if (ret)
1698 return ret;
1699 *(unsigned long *)(ea->var) = new;
1700 /* Always return full write size even if we didn't consume all */
1701 return size;
1703 EXPORT_SYMBOL_GPL(device_store_ulong);
1705 ssize_t device_show_ulong(struct device *dev,
1706 struct device_attribute *attr,
1707 char *buf)
1709 struct dev_ext_attribute *ea = to_ext_attr(attr);
1710 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1712 EXPORT_SYMBOL_GPL(device_show_ulong);
1714 ssize_t device_store_int(struct device *dev,
1715 struct device_attribute *attr,
1716 const char *buf, size_t size)
1718 struct dev_ext_attribute *ea = to_ext_attr(attr);
1719 int ret;
1720 long new;
1722 ret = kstrtol(buf, 0, &new);
1723 if (ret)
1724 return ret;
1726 if (new > INT_MAX || new < INT_MIN)
1727 return -EINVAL;
1728 *(int *)(ea->var) = new;
1729 /* Always return full write size even if we didn't consume all */
1730 return size;
1732 EXPORT_SYMBOL_GPL(device_store_int);
1734 ssize_t device_show_int(struct device *dev,
1735 struct device_attribute *attr,
1736 char *buf)
1738 struct dev_ext_attribute *ea = to_ext_attr(attr);
1740 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1742 EXPORT_SYMBOL_GPL(device_show_int);
1744 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1745 const char *buf, size_t size)
1747 struct dev_ext_attribute *ea = to_ext_attr(attr);
1749 if (strtobool(buf, ea->var) < 0)
1750 return -EINVAL;
1752 return size;
1754 EXPORT_SYMBOL_GPL(device_store_bool);
1756 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1757 char *buf)
1759 struct dev_ext_attribute *ea = to_ext_attr(attr);
1761 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1763 EXPORT_SYMBOL_GPL(device_show_bool);
1766 * device_release - free device structure.
1767 * @kobj: device's kobject.
1769 * This is called once the reference count for the object
1770 * reaches 0. We forward the call to the device's release
1771 * method, which should handle actually freeing the structure.
1773 static void device_release(struct kobject *kobj)
1775 struct device *dev = kobj_to_dev(kobj);
1776 struct device_private *p = dev->p;
1779 * Some platform devices are driven without driver attached
1780 * and managed resources may have been acquired. Make sure
1781 * all resources are released.
1783 * Drivers still can add resources into device after device
1784 * is deleted but alive, so release devres here to avoid
1785 * possible memory leak.
1787 devres_release_all(dev);
1789 if (dev->release)
1790 dev->release(dev);
1791 else if (dev->type && dev->type->release)
1792 dev->type->release(dev);
1793 else if (dev->class && dev->class->dev_release)
1794 dev->class->dev_release(dev);
1795 else
1796 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1797 dev_name(dev));
1798 kfree(p);
1801 static const void *device_namespace(struct kobject *kobj)
1803 struct device *dev = kobj_to_dev(kobj);
1804 const void *ns = NULL;
1806 if (dev->class && dev->class->ns_type)
1807 ns = dev->class->namespace(dev);
1809 return ns;
1812 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1814 struct device *dev = kobj_to_dev(kobj);
1816 if (dev->class && dev->class->get_ownership)
1817 dev->class->get_ownership(dev, uid, gid);
1820 static struct kobj_type device_ktype = {
1821 .release = device_release,
1822 .sysfs_ops = &dev_sysfs_ops,
1823 .namespace = device_namespace,
1824 .get_ownership = device_get_ownership,
1828 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1830 struct kobj_type *ktype = get_ktype(kobj);
1832 if (ktype == &device_ktype) {
1833 struct device *dev = kobj_to_dev(kobj);
1834 if (dev->bus)
1835 return 1;
1836 if (dev->class)
1837 return 1;
1839 return 0;
1842 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1844 struct device *dev = kobj_to_dev(kobj);
1846 if (dev->bus)
1847 return dev->bus->name;
1848 if (dev->class)
1849 return dev->class->name;
1850 return NULL;
1853 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1854 struct kobj_uevent_env *env)
1856 struct device *dev = kobj_to_dev(kobj);
1857 int retval = 0;
1859 /* add device node properties if present */
1860 if (MAJOR(dev->devt)) {
1861 const char *tmp;
1862 const char *name;
1863 umode_t mode = 0;
1864 kuid_t uid = GLOBAL_ROOT_UID;
1865 kgid_t gid = GLOBAL_ROOT_GID;
1867 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1868 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1869 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1870 if (name) {
1871 add_uevent_var(env, "DEVNAME=%s", name);
1872 if (mode)
1873 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1874 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1875 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1876 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1877 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1878 kfree(tmp);
1882 if (dev->type && dev->type->name)
1883 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1885 if (dev->driver)
1886 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1888 /* Add common DT information about the device */
1889 of_device_uevent(dev, env);
1891 /* have the bus specific function add its stuff */
1892 if (dev->bus && dev->bus->uevent) {
1893 retval = dev->bus->uevent(dev, env);
1894 if (retval)
1895 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1896 dev_name(dev), __func__, retval);
1899 /* have the class specific function add its stuff */
1900 if (dev->class && dev->class->dev_uevent) {
1901 retval = dev->class->dev_uevent(dev, env);
1902 if (retval)
1903 pr_debug("device: '%s': %s: class uevent() "
1904 "returned %d\n", dev_name(dev),
1905 __func__, retval);
1908 /* have the device type specific function add its stuff */
1909 if (dev->type && dev->type->uevent) {
1910 retval = dev->type->uevent(dev, env);
1911 if (retval)
1912 pr_debug("device: '%s': %s: dev_type uevent() "
1913 "returned %d\n", dev_name(dev),
1914 __func__, retval);
1917 return retval;
1920 static const struct kset_uevent_ops device_uevent_ops = {
1921 .filter = dev_uevent_filter,
1922 .name = dev_uevent_name,
1923 .uevent = dev_uevent,
1926 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1927 char *buf)
1929 struct kobject *top_kobj;
1930 struct kset *kset;
1931 struct kobj_uevent_env *env = NULL;
1932 int i;
1933 size_t count = 0;
1934 int retval;
1936 /* search the kset, the device belongs to */
1937 top_kobj = &dev->kobj;
1938 while (!top_kobj->kset && top_kobj->parent)
1939 top_kobj = top_kobj->parent;
1940 if (!top_kobj->kset)
1941 goto out;
1943 kset = top_kobj->kset;
1944 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1945 goto out;
1947 /* respect filter */
1948 if (kset->uevent_ops && kset->uevent_ops->filter)
1949 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1950 goto out;
1952 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1953 if (!env)
1954 return -ENOMEM;
1956 /* let the kset specific function add its keys */
1957 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1958 if (retval)
1959 goto out;
1961 /* copy keys to file */
1962 for (i = 0; i < env->envp_idx; i++)
1963 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1964 out:
1965 kfree(env);
1966 return count;
1969 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1970 const char *buf, size_t count)
1972 int rc;
1974 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1976 if (rc) {
1977 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1978 return rc;
1981 return count;
1983 static DEVICE_ATTR_RW(uevent);
1985 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1986 char *buf)
1988 bool val;
1990 device_lock(dev);
1991 val = !dev->offline;
1992 device_unlock(dev);
1993 return sprintf(buf, "%u\n", val);
1996 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1997 const char *buf, size_t count)
1999 bool val;
2000 int ret;
2002 ret = strtobool(buf, &val);
2003 if (ret < 0)
2004 return ret;
2006 ret = lock_device_hotplug_sysfs();
2007 if (ret)
2008 return ret;
2010 ret = val ? device_online(dev) : device_offline(dev);
2011 unlock_device_hotplug();
2012 return ret < 0 ? ret : count;
2014 static DEVICE_ATTR_RW(online);
2016 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2018 return sysfs_create_groups(&dev->kobj, groups);
2020 EXPORT_SYMBOL_GPL(device_add_groups);
2022 void device_remove_groups(struct device *dev,
2023 const struct attribute_group **groups)
2025 sysfs_remove_groups(&dev->kobj, groups);
2027 EXPORT_SYMBOL_GPL(device_remove_groups);
2029 union device_attr_group_devres {
2030 const struct attribute_group *group;
2031 const struct attribute_group **groups;
2034 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2036 return ((union device_attr_group_devres *)res)->group == data;
2039 static void devm_attr_group_remove(struct device *dev, void *res)
2041 union device_attr_group_devres *devres = res;
2042 const struct attribute_group *group = devres->group;
2044 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2045 sysfs_remove_group(&dev->kobj, group);
2048 static void devm_attr_groups_remove(struct device *dev, void *res)
2050 union device_attr_group_devres *devres = res;
2051 const struct attribute_group **groups = devres->groups;
2053 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2054 sysfs_remove_groups(&dev->kobj, groups);
2058 * devm_device_add_group - given a device, create a managed attribute group
2059 * @dev: The device to create the group for
2060 * @grp: The attribute group to create
2062 * This function creates a group for the first time. It will explicitly
2063 * warn and error if any of the attribute files being created already exist.
2065 * Returns 0 on success or error code on failure.
2067 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2069 union device_attr_group_devres *devres;
2070 int error;
2072 devres = devres_alloc(devm_attr_group_remove,
2073 sizeof(*devres), GFP_KERNEL);
2074 if (!devres)
2075 return -ENOMEM;
2077 error = sysfs_create_group(&dev->kobj, grp);
2078 if (error) {
2079 devres_free(devres);
2080 return error;
2083 devres->group = grp;
2084 devres_add(dev, devres);
2085 return 0;
2087 EXPORT_SYMBOL_GPL(devm_device_add_group);
2090 * devm_device_remove_group: remove a managed group from a device
2091 * @dev: device to remove the group from
2092 * @grp: group to remove
2094 * This function removes a group of attributes from a device. The attributes
2095 * previously have to have been created for this group, otherwise it will fail.
2097 void devm_device_remove_group(struct device *dev,
2098 const struct attribute_group *grp)
2100 WARN_ON(devres_release(dev, devm_attr_group_remove,
2101 devm_attr_group_match,
2102 /* cast away const */ (void *)grp));
2104 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107 * devm_device_add_groups - create a bunch of managed attribute groups
2108 * @dev: The device to create the group for
2109 * @groups: The attribute groups to create, NULL terminated
2111 * This function creates a bunch of managed attribute groups. If an error
2112 * occurs when creating a group, all previously created groups will be
2113 * removed, unwinding everything back to the original state when this
2114 * function was called. It will explicitly warn and error if any of the
2115 * attribute files being created already exist.
2117 * Returns 0 on success or error code from sysfs_create_group on failure.
2119 int devm_device_add_groups(struct device *dev,
2120 const struct attribute_group **groups)
2122 union device_attr_group_devres *devres;
2123 int error;
2125 devres = devres_alloc(devm_attr_groups_remove,
2126 sizeof(*devres), GFP_KERNEL);
2127 if (!devres)
2128 return -ENOMEM;
2130 error = sysfs_create_groups(&dev->kobj, groups);
2131 if (error) {
2132 devres_free(devres);
2133 return error;
2136 devres->groups = groups;
2137 devres_add(dev, devres);
2138 return 0;
2140 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143 * devm_device_remove_groups - remove a list of managed groups
2145 * @dev: The device for the groups to be removed from
2146 * @groups: NULL terminated list of groups to be removed
2148 * If groups is not NULL, remove the specified groups from the device.
2150 void devm_device_remove_groups(struct device *dev,
2151 const struct attribute_group **groups)
2153 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2154 devm_attr_group_match,
2155 /* cast away const */ (void *)groups));
2157 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2159 static int device_add_attrs(struct device *dev)
2161 struct class *class = dev->class;
2162 const struct device_type *type = dev->type;
2163 int error;
2165 if (class) {
2166 error = device_add_groups(dev, class->dev_groups);
2167 if (error)
2168 return error;
2171 if (type) {
2172 error = device_add_groups(dev, type->groups);
2173 if (error)
2174 goto err_remove_class_groups;
2177 error = device_add_groups(dev, dev->groups);
2178 if (error)
2179 goto err_remove_type_groups;
2181 if (device_supports_offline(dev) && !dev->offline_disabled) {
2182 error = device_create_file(dev, &dev_attr_online);
2183 if (error)
2184 goto err_remove_dev_groups;
2187 if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2188 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2189 if (error)
2190 goto err_remove_dev_online;
2193 return 0;
2195 err_remove_dev_online:
2196 device_remove_file(dev, &dev_attr_online);
2197 err_remove_dev_groups:
2198 device_remove_groups(dev, dev->groups);
2199 err_remove_type_groups:
2200 if (type)
2201 device_remove_groups(dev, type->groups);
2202 err_remove_class_groups:
2203 if (class)
2204 device_remove_groups(dev, class->dev_groups);
2206 return error;
2209 static void device_remove_attrs(struct device *dev)
2211 struct class *class = dev->class;
2212 const struct device_type *type = dev->type;
2214 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2215 device_remove_file(dev, &dev_attr_online);
2216 device_remove_groups(dev, dev->groups);
2218 if (type)
2219 device_remove_groups(dev, type->groups);
2221 if (class)
2222 device_remove_groups(dev, class->dev_groups);
2225 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2226 char *buf)
2228 return print_dev_t(buf, dev->devt);
2230 static DEVICE_ATTR_RO(dev);
2232 /* /sys/devices/ */
2233 struct kset *devices_kset;
2236 * devices_kset_move_before - Move device in the devices_kset's list.
2237 * @deva: Device to move.
2238 * @devb: Device @deva should come before.
2240 static void devices_kset_move_before(struct device *deva, struct device *devb)
2242 if (!devices_kset)
2243 return;
2244 pr_debug("devices_kset: Moving %s before %s\n",
2245 dev_name(deva), dev_name(devb));
2246 spin_lock(&devices_kset->list_lock);
2247 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2248 spin_unlock(&devices_kset->list_lock);
2252 * devices_kset_move_after - Move device in the devices_kset's list.
2253 * @deva: Device to move
2254 * @devb: Device @deva should come after.
2256 static void devices_kset_move_after(struct device *deva, struct device *devb)
2258 if (!devices_kset)
2259 return;
2260 pr_debug("devices_kset: Moving %s after %s\n",
2261 dev_name(deva), dev_name(devb));
2262 spin_lock(&devices_kset->list_lock);
2263 list_move(&deva->kobj.entry, &devb->kobj.entry);
2264 spin_unlock(&devices_kset->list_lock);
2268 * devices_kset_move_last - move the device to the end of devices_kset's list.
2269 * @dev: device to move
2271 void devices_kset_move_last(struct device *dev)
2273 if (!devices_kset)
2274 return;
2275 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2276 spin_lock(&devices_kset->list_lock);
2277 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2278 spin_unlock(&devices_kset->list_lock);
2282 * device_create_file - create sysfs attribute file for device.
2283 * @dev: device.
2284 * @attr: device attribute descriptor.
2286 int device_create_file(struct device *dev,
2287 const struct device_attribute *attr)
2289 int error = 0;
2291 if (dev) {
2292 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2293 "Attribute %s: write permission without 'store'\n",
2294 attr->attr.name);
2295 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2296 "Attribute %s: read permission without 'show'\n",
2297 attr->attr.name);
2298 error = sysfs_create_file(&dev->kobj, &attr->attr);
2301 return error;
2303 EXPORT_SYMBOL_GPL(device_create_file);
2306 * device_remove_file - remove sysfs attribute file.
2307 * @dev: device.
2308 * @attr: device attribute descriptor.
2310 void device_remove_file(struct device *dev,
2311 const struct device_attribute *attr)
2313 if (dev)
2314 sysfs_remove_file(&dev->kobj, &attr->attr);
2316 EXPORT_SYMBOL_GPL(device_remove_file);
2319 * device_remove_file_self - remove sysfs attribute file from its own method.
2320 * @dev: device.
2321 * @attr: device attribute descriptor.
2323 * See kernfs_remove_self() for details.
2325 bool device_remove_file_self(struct device *dev,
2326 const struct device_attribute *attr)
2328 if (dev)
2329 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2330 else
2331 return false;
2333 EXPORT_SYMBOL_GPL(device_remove_file_self);
2336 * device_create_bin_file - create sysfs binary attribute file for device.
2337 * @dev: device.
2338 * @attr: device binary attribute descriptor.
2340 int device_create_bin_file(struct device *dev,
2341 const struct bin_attribute *attr)
2343 int error = -EINVAL;
2344 if (dev)
2345 error = sysfs_create_bin_file(&dev->kobj, attr);
2346 return error;
2348 EXPORT_SYMBOL_GPL(device_create_bin_file);
2351 * device_remove_bin_file - remove sysfs binary attribute file
2352 * @dev: device.
2353 * @attr: device binary attribute descriptor.
2355 void device_remove_bin_file(struct device *dev,
2356 const struct bin_attribute *attr)
2358 if (dev)
2359 sysfs_remove_bin_file(&dev->kobj, attr);
2361 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2363 static void klist_children_get(struct klist_node *n)
2365 struct device_private *p = to_device_private_parent(n);
2366 struct device *dev = p->device;
2368 get_device(dev);
2371 static void klist_children_put(struct klist_node *n)
2373 struct device_private *p = to_device_private_parent(n);
2374 struct device *dev = p->device;
2376 put_device(dev);
2380 * device_initialize - init device structure.
2381 * @dev: device.
2383 * This prepares the device for use by other layers by initializing
2384 * its fields.
2385 * It is the first half of device_register(), if called by
2386 * that function, though it can also be called separately, so one
2387 * may use @dev's fields. In particular, get_device()/put_device()
2388 * may be used for reference counting of @dev after calling this
2389 * function.
2391 * All fields in @dev must be initialized by the caller to 0, except
2392 * for those explicitly set to some other value. The simplest
2393 * approach is to use kzalloc() to allocate the structure containing
2394 * @dev.
2396 * NOTE: Use put_device() to give up your reference instead of freeing
2397 * @dev directly once you have called this function.
2399 void device_initialize(struct device *dev)
2401 dev->kobj.kset = devices_kset;
2402 kobject_init(&dev->kobj, &device_ktype);
2403 INIT_LIST_HEAD(&dev->dma_pools);
2404 mutex_init(&dev->mutex);
2405 #ifdef CONFIG_PROVE_LOCKING
2406 mutex_init(&dev->lockdep_mutex);
2407 #endif
2408 lockdep_set_novalidate_class(&dev->mutex);
2409 spin_lock_init(&dev->devres_lock);
2410 INIT_LIST_HEAD(&dev->devres_head);
2411 device_pm_init(dev);
2412 set_dev_node(dev, -1);
2413 #ifdef CONFIG_GENERIC_MSI_IRQ
2414 INIT_LIST_HEAD(&dev->msi_list);
2415 #endif
2416 INIT_LIST_HEAD(&dev->links.consumers);
2417 INIT_LIST_HEAD(&dev->links.suppliers);
2418 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2419 INIT_LIST_HEAD(&dev->links.defer_hook);
2420 dev->links.status = DL_DEV_NO_DRIVER;
2422 EXPORT_SYMBOL_GPL(device_initialize);
2424 struct kobject *virtual_device_parent(struct device *dev)
2426 static struct kobject *virtual_dir = NULL;
2428 if (!virtual_dir)
2429 virtual_dir = kobject_create_and_add("virtual",
2430 &devices_kset->kobj);
2432 return virtual_dir;
2435 struct class_dir {
2436 struct kobject kobj;
2437 struct class *class;
2440 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2442 static void class_dir_release(struct kobject *kobj)
2444 struct class_dir *dir = to_class_dir(kobj);
2445 kfree(dir);
2448 static const
2449 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2451 struct class_dir *dir = to_class_dir(kobj);
2452 return dir->class->ns_type;
2455 static struct kobj_type class_dir_ktype = {
2456 .release = class_dir_release,
2457 .sysfs_ops = &kobj_sysfs_ops,
2458 .child_ns_type = class_dir_child_ns_type
2461 static struct kobject *
2462 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2464 struct class_dir *dir;
2465 int retval;
2467 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2468 if (!dir)
2469 return ERR_PTR(-ENOMEM);
2471 dir->class = class;
2472 kobject_init(&dir->kobj, &class_dir_ktype);
2474 dir->kobj.kset = &class->p->glue_dirs;
2476 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2477 if (retval < 0) {
2478 kobject_put(&dir->kobj);
2479 return ERR_PTR(retval);
2481 return &dir->kobj;
2484 static DEFINE_MUTEX(gdp_mutex);
2486 static struct kobject *get_device_parent(struct device *dev,
2487 struct device *parent)
2489 if (dev->class) {
2490 struct kobject *kobj = NULL;
2491 struct kobject *parent_kobj;
2492 struct kobject *k;
2494 #ifdef CONFIG_BLOCK
2495 /* block disks show up in /sys/block */
2496 if (sysfs_deprecated && dev->class == &block_class) {
2497 if (parent && parent->class == &block_class)
2498 return &parent->kobj;
2499 return &block_class.p->subsys.kobj;
2501 #endif
2504 * If we have no parent, we live in "virtual".
2505 * Class-devices with a non class-device as parent, live
2506 * in a "glue" directory to prevent namespace collisions.
2508 if (parent == NULL)
2509 parent_kobj = virtual_device_parent(dev);
2510 else if (parent->class && !dev->class->ns_type)
2511 return &parent->kobj;
2512 else
2513 parent_kobj = &parent->kobj;
2515 mutex_lock(&gdp_mutex);
2517 /* find our class-directory at the parent and reference it */
2518 spin_lock(&dev->class->p->glue_dirs.list_lock);
2519 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2520 if (k->parent == parent_kobj) {
2521 kobj = kobject_get(k);
2522 break;
2524 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2525 if (kobj) {
2526 mutex_unlock(&gdp_mutex);
2527 return kobj;
2530 /* or create a new class-directory at the parent device */
2531 k = class_dir_create_and_add(dev->class, parent_kobj);
2532 /* do not emit an uevent for this simple "glue" directory */
2533 mutex_unlock(&gdp_mutex);
2534 return k;
2537 /* subsystems can specify a default root directory for their devices */
2538 if (!parent && dev->bus && dev->bus->dev_root)
2539 return &dev->bus->dev_root->kobj;
2541 if (parent)
2542 return &parent->kobj;
2543 return NULL;
2546 static inline bool live_in_glue_dir(struct kobject *kobj,
2547 struct device *dev)
2549 if (!kobj || !dev->class ||
2550 kobj->kset != &dev->class->p->glue_dirs)
2551 return false;
2552 return true;
2555 static inline struct kobject *get_glue_dir(struct device *dev)
2557 return dev->kobj.parent;
2561 * make sure cleaning up dir as the last step, we need to make
2562 * sure .release handler of kobject is run with holding the
2563 * global lock
2565 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2567 unsigned int ref;
2569 /* see if we live in a "glue" directory */
2570 if (!live_in_glue_dir(glue_dir, dev))
2571 return;
2573 mutex_lock(&gdp_mutex);
2575 * There is a race condition between removing glue directory
2576 * and adding a new device under the glue directory.
2578 * CPU1: CPU2:
2580 * device_add()
2581 * get_device_parent()
2582 * class_dir_create_and_add()
2583 * kobject_add_internal()
2584 * create_dir() // create glue_dir
2586 * device_add()
2587 * get_device_parent()
2588 * kobject_get() // get glue_dir
2590 * device_del()
2591 * cleanup_glue_dir()
2592 * kobject_del(glue_dir)
2594 * kobject_add()
2595 * kobject_add_internal()
2596 * create_dir() // in glue_dir
2597 * sysfs_create_dir_ns()
2598 * kernfs_create_dir_ns(sd)
2600 * sysfs_remove_dir() // glue_dir->sd=NULL
2601 * sysfs_put() // free glue_dir->sd
2603 * // sd is freed
2604 * kernfs_new_node(sd)
2605 * kernfs_get(glue_dir)
2606 * kernfs_add_one()
2607 * kernfs_put()
2609 * Before CPU1 remove last child device under glue dir, if CPU2 add
2610 * a new device under glue dir, the glue_dir kobject reference count
2611 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2612 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2613 * and sysfs_put(). This result in glue_dir->sd is freed.
2615 * Then the CPU2 will see a stale "empty" but still potentially used
2616 * glue dir around in kernfs_new_node().
2618 * In order to avoid this happening, we also should make sure that
2619 * kernfs_node for glue_dir is released in CPU1 only when refcount
2620 * for glue_dir kobj is 1.
2622 ref = kref_read(&glue_dir->kref);
2623 if (!kobject_has_children(glue_dir) && !--ref)
2624 kobject_del(glue_dir);
2625 kobject_put(glue_dir);
2626 mutex_unlock(&gdp_mutex);
2629 static int device_add_class_symlinks(struct device *dev)
2631 struct device_node *of_node = dev_of_node(dev);
2632 int error;
2634 if (of_node) {
2635 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2636 if (error)
2637 dev_warn(dev, "Error %d creating of_node link\n",error);
2638 /* An error here doesn't warrant bringing down the device */
2641 if (!dev->class)
2642 return 0;
2644 error = sysfs_create_link(&dev->kobj,
2645 &dev->class->p->subsys.kobj,
2646 "subsystem");
2647 if (error)
2648 goto out_devnode;
2650 if (dev->parent && device_is_not_partition(dev)) {
2651 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2652 "device");
2653 if (error)
2654 goto out_subsys;
2657 #ifdef CONFIG_BLOCK
2658 /* /sys/block has directories and does not need symlinks */
2659 if (sysfs_deprecated && dev->class == &block_class)
2660 return 0;
2661 #endif
2663 /* link in the class directory pointing to the device */
2664 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2665 &dev->kobj, dev_name(dev));
2666 if (error)
2667 goto out_device;
2669 return 0;
2671 out_device:
2672 sysfs_remove_link(&dev->kobj, "device");
2674 out_subsys:
2675 sysfs_remove_link(&dev->kobj, "subsystem");
2676 out_devnode:
2677 sysfs_remove_link(&dev->kobj, "of_node");
2678 return error;
2681 static void device_remove_class_symlinks(struct device *dev)
2683 if (dev_of_node(dev))
2684 sysfs_remove_link(&dev->kobj, "of_node");
2686 if (!dev->class)
2687 return;
2689 if (dev->parent && device_is_not_partition(dev))
2690 sysfs_remove_link(&dev->kobj, "device");
2691 sysfs_remove_link(&dev->kobj, "subsystem");
2692 #ifdef CONFIG_BLOCK
2693 if (sysfs_deprecated && dev->class == &block_class)
2694 return;
2695 #endif
2696 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2700 * dev_set_name - set a device name
2701 * @dev: device
2702 * @fmt: format string for the device's name
2704 int dev_set_name(struct device *dev, const char *fmt, ...)
2706 va_list vargs;
2707 int err;
2709 va_start(vargs, fmt);
2710 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2711 va_end(vargs);
2712 return err;
2714 EXPORT_SYMBOL_GPL(dev_set_name);
2717 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2718 * @dev: device
2720 * By default we select char/ for new entries. Setting class->dev_obj
2721 * to NULL prevents an entry from being created. class->dev_kobj must
2722 * be set (or cleared) before any devices are registered to the class
2723 * otherwise device_create_sys_dev_entry() and
2724 * device_remove_sys_dev_entry() will disagree about the presence of
2725 * the link.
2727 static struct kobject *device_to_dev_kobj(struct device *dev)
2729 struct kobject *kobj;
2731 if (dev->class)
2732 kobj = dev->class->dev_kobj;
2733 else
2734 kobj = sysfs_dev_char_kobj;
2736 return kobj;
2739 static int device_create_sys_dev_entry(struct device *dev)
2741 struct kobject *kobj = device_to_dev_kobj(dev);
2742 int error = 0;
2743 char devt_str[15];
2745 if (kobj) {
2746 format_dev_t(devt_str, dev->devt);
2747 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750 return error;
2753 static void device_remove_sys_dev_entry(struct device *dev)
2755 struct kobject *kobj = device_to_dev_kobj(dev);
2756 char devt_str[15];
2758 if (kobj) {
2759 format_dev_t(devt_str, dev->devt);
2760 sysfs_remove_link(kobj, devt_str);
2764 static int device_private_init(struct device *dev)
2766 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2767 if (!dev->p)
2768 return -ENOMEM;
2769 dev->p->device = dev;
2770 klist_init(&dev->p->klist_children, klist_children_get,
2771 klist_children_put);
2772 INIT_LIST_HEAD(&dev->p->deferred_probe);
2773 return 0;
2777 * device_add - add device to device hierarchy.
2778 * @dev: device.
2780 * This is part 2 of device_register(), though may be called
2781 * separately _iff_ device_initialize() has been called separately.
2783 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2784 * to the global and sibling lists for the device, then
2785 * adds it to the other relevant subsystems of the driver model.
2787 * Do not call this routine or device_register() more than once for
2788 * any device structure. The driver model core is not designed to work
2789 * with devices that get unregistered and then spring back to life.
2790 * (Among other things, it's very hard to guarantee that all references
2791 * to the previous incarnation of @dev have been dropped.) Allocate
2792 * and register a fresh new struct device instead.
2794 * NOTE: _Never_ directly free @dev after calling this function, even
2795 * if it returned an error! Always use put_device() to give up your
2796 * reference instead.
2798 * Rule of thumb is: if device_add() succeeds, you should call
2799 * device_del() when you want to get rid of it. If device_add() has
2800 * *not* succeeded, use *only* put_device() to drop the reference
2801 * count.
2803 int device_add(struct device *dev)
2805 struct device *parent;
2806 struct kobject *kobj;
2807 struct class_interface *class_intf;
2808 int error = -EINVAL;
2809 struct kobject *glue_dir = NULL;
2811 dev = get_device(dev);
2812 if (!dev)
2813 goto done;
2815 if (!dev->p) {
2816 error = device_private_init(dev);
2817 if (error)
2818 goto done;
2822 * for statically allocated devices, which should all be converted
2823 * some day, we need to initialize the name. We prevent reading back
2824 * the name, and force the use of dev_name()
2826 if (dev->init_name) {
2827 dev_set_name(dev, "%s", dev->init_name);
2828 dev->init_name = NULL;
2831 /* subsystems can specify simple device enumeration */
2832 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2833 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2835 if (!dev_name(dev)) {
2836 error = -EINVAL;
2837 goto name_error;
2840 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2842 parent = get_device(dev->parent);
2843 kobj = get_device_parent(dev, parent);
2844 if (IS_ERR(kobj)) {
2845 error = PTR_ERR(kobj);
2846 goto parent_error;
2848 if (kobj)
2849 dev->kobj.parent = kobj;
2851 /* use parent numa_node */
2852 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2853 set_dev_node(dev, dev_to_node(parent));
2855 /* first, register with generic layer. */
2856 /* we require the name to be set before, and pass NULL */
2857 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2858 if (error) {
2859 glue_dir = get_glue_dir(dev);
2860 goto Error;
2863 /* notify platform of device entry */
2864 error = device_platform_notify(dev, KOBJ_ADD);
2865 if (error)
2866 goto platform_error;
2868 error = device_create_file(dev, &dev_attr_uevent);
2869 if (error)
2870 goto attrError;
2872 error = device_add_class_symlinks(dev);
2873 if (error)
2874 goto SymlinkError;
2875 error = device_add_attrs(dev);
2876 if (error)
2877 goto AttrsError;
2878 error = bus_add_device(dev);
2879 if (error)
2880 goto BusError;
2881 error = dpm_sysfs_add(dev);
2882 if (error)
2883 goto DPMError;
2884 device_pm_add(dev);
2886 if (MAJOR(dev->devt)) {
2887 error = device_create_file(dev, &dev_attr_dev);
2888 if (error)
2889 goto DevAttrError;
2891 error = device_create_sys_dev_entry(dev);
2892 if (error)
2893 goto SysEntryError;
2895 devtmpfs_create_node(dev);
2898 /* Notify clients of device addition. This call must come
2899 * after dpm_sysfs_add() and before kobject_uevent().
2901 if (dev->bus)
2902 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2903 BUS_NOTIFY_ADD_DEVICE, dev);
2905 kobject_uevent(&dev->kobj, KOBJ_ADD);
2908 * Check if any of the other devices (consumers) have been waiting for
2909 * this device (supplier) to be added so that they can create a device
2910 * link to it.
2912 * This needs to happen after device_pm_add() because device_link_add()
2913 * requires the supplier be registered before it's called.
2915 * But this also needs to happen before bus_probe_device() to make sure
2916 * waiting consumers can link to it before the driver is bound to the
2917 * device and the driver sync_state callback is called for this device.
2919 if (dev->fwnode && !dev->fwnode->dev) {
2920 dev->fwnode->dev = dev;
2921 fw_devlink_link_device(dev);
2924 bus_probe_device(dev);
2925 if (parent)
2926 klist_add_tail(&dev->p->knode_parent,
2927 &parent->p->klist_children);
2929 if (dev->class) {
2930 mutex_lock(&dev->class->p->mutex);
2931 /* tie the class to the device */
2932 klist_add_tail(&dev->p->knode_class,
2933 &dev->class->p->klist_devices);
2935 /* notify any interfaces that the device is here */
2936 list_for_each_entry(class_intf,
2937 &dev->class->p->interfaces, node)
2938 if (class_intf->add_dev)
2939 class_intf->add_dev(dev, class_intf);
2940 mutex_unlock(&dev->class->p->mutex);
2942 done:
2943 put_device(dev);
2944 return error;
2945 SysEntryError:
2946 if (MAJOR(dev->devt))
2947 device_remove_file(dev, &dev_attr_dev);
2948 DevAttrError:
2949 device_pm_remove(dev);
2950 dpm_sysfs_remove(dev);
2951 DPMError:
2952 bus_remove_device(dev);
2953 BusError:
2954 device_remove_attrs(dev);
2955 AttrsError:
2956 device_remove_class_symlinks(dev);
2957 SymlinkError:
2958 device_remove_file(dev, &dev_attr_uevent);
2959 attrError:
2960 device_platform_notify(dev, KOBJ_REMOVE);
2961 platform_error:
2962 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2963 glue_dir = get_glue_dir(dev);
2964 kobject_del(&dev->kobj);
2965 Error:
2966 cleanup_glue_dir(dev, glue_dir);
2967 parent_error:
2968 put_device(parent);
2969 name_error:
2970 kfree(dev->p);
2971 dev->p = NULL;
2972 goto done;
2974 EXPORT_SYMBOL_GPL(device_add);
2977 * device_register - register a device with the system.
2978 * @dev: pointer to the device structure
2980 * This happens in two clean steps - initialize the device
2981 * and add it to the system. The two steps can be called
2982 * separately, but this is the easiest and most common.
2983 * I.e. you should only call the two helpers separately if
2984 * have a clearly defined need to use and refcount the device
2985 * before it is added to the hierarchy.
2987 * For more information, see the kerneldoc for device_initialize()
2988 * and device_add().
2990 * NOTE: _Never_ directly free @dev after calling this function, even
2991 * if it returned an error! Always use put_device() to give up the
2992 * reference initialized in this function instead.
2994 int device_register(struct device *dev)
2996 device_initialize(dev);
2997 return device_add(dev);
2999 EXPORT_SYMBOL_GPL(device_register);
3002 * get_device - increment reference count for device.
3003 * @dev: device.
3005 * This simply forwards the call to kobject_get(), though
3006 * we do take care to provide for the case that we get a NULL
3007 * pointer passed in.
3009 struct device *get_device(struct device *dev)
3011 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3013 EXPORT_SYMBOL_GPL(get_device);
3016 * put_device - decrement reference count.
3017 * @dev: device in question.
3019 void put_device(struct device *dev)
3021 /* might_sleep(); */
3022 if (dev)
3023 kobject_put(&dev->kobj);
3025 EXPORT_SYMBOL_GPL(put_device);
3027 bool kill_device(struct device *dev)
3030 * Require the device lock and set the "dead" flag to guarantee that
3031 * the update behavior is consistent with the other bitfields near
3032 * it and that we cannot have an asynchronous probe routine trying
3033 * to run while we are tearing out the bus/class/sysfs from
3034 * underneath the device.
3036 lockdep_assert_held(&dev->mutex);
3038 if (dev->p->dead)
3039 return false;
3040 dev->p->dead = true;
3041 return true;
3043 EXPORT_SYMBOL_GPL(kill_device);
3046 * device_del - delete device from system.
3047 * @dev: device.
3049 * This is the first part of the device unregistration
3050 * sequence. This removes the device from the lists we control
3051 * from here, has it removed from the other driver model
3052 * subsystems it was added to in device_add(), and removes it
3053 * from the kobject hierarchy.
3055 * NOTE: this should be called manually _iff_ device_add() was
3056 * also called manually.
3058 void device_del(struct device *dev)
3060 struct device *parent = dev->parent;
3061 struct kobject *glue_dir = NULL;
3062 struct class_interface *class_intf;
3064 device_lock(dev);
3065 kill_device(dev);
3066 device_unlock(dev);
3068 if (dev->fwnode && dev->fwnode->dev == dev)
3069 dev->fwnode->dev = NULL;
3071 /* Notify clients of device removal. This call must come
3072 * before dpm_sysfs_remove().
3074 if (dev->bus)
3075 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3076 BUS_NOTIFY_DEL_DEVICE, dev);
3078 dpm_sysfs_remove(dev);
3079 if (parent)
3080 klist_del(&dev->p->knode_parent);
3081 if (MAJOR(dev->devt)) {
3082 devtmpfs_delete_node(dev);
3083 device_remove_sys_dev_entry(dev);
3084 device_remove_file(dev, &dev_attr_dev);
3086 if (dev->class) {
3087 device_remove_class_symlinks(dev);
3089 mutex_lock(&dev->class->p->mutex);
3090 /* notify any interfaces that the device is now gone */
3091 list_for_each_entry(class_intf,
3092 &dev->class->p->interfaces, node)
3093 if (class_intf->remove_dev)
3094 class_intf->remove_dev(dev, class_intf);
3095 /* remove the device from the class list */
3096 klist_del(&dev->p->knode_class);
3097 mutex_unlock(&dev->class->p->mutex);
3099 device_remove_file(dev, &dev_attr_uevent);
3100 device_remove_attrs(dev);
3101 bus_remove_device(dev);
3102 device_pm_remove(dev);
3103 driver_deferred_probe_del(dev);
3104 device_platform_notify(dev, KOBJ_REMOVE);
3105 device_remove_properties(dev);
3106 device_links_purge(dev);
3108 if (dev->bus)
3109 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3110 BUS_NOTIFY_REMOVED_DEVICE, dev);
3111 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3112 glue_dir = get_glue_dir(dev);
3113 kobject_del(&dev->kobj);
3114 cleanup_glue_dir(dev, glue_dir);
3115 put_device(parent);
3117 EXPORT_SYMBOL_GPL(device_del);
3120 * device_unregister - unregister device from system.
3121 * @dev: device going away.
3123 * We do this in two parts, like we do device_register(). First,
3124 * we remove it from all the subsystems with device_del(), then
3125 * we decrement the reference count via put_device(). If that
3126 * is the final reference count, the device will be cleaned up
3127 * via device_release() above. Otherwise, the structure will
3128 * stick around until the final reference to the device is dropped.
3130 void device_unregister(struct device *dev)
3132 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3133 device_del(dev);
3134 put_device(dev);
3136 EXPORT_SYMBOL_GPL(device_unregister);
3138 static struct device *prev_device(struct klist_iter *i)
3140 struct klist_node *n = klist_prev(i);
3141 struct device *dev = NULL;
3142 struct device_private *p;
3144 if (n) {
3145 p = to_device_private_parent(n);
3146 dev = p->device;
3148 return dev;
3151 static struct device *next_device(struct klist_iter *i)
3153 struct klist_node *n = klist_next(i);
3154 struct device *dev = NULL;
3155 struct device_private *p;
3157 if (n) {
3158 p = to_device_private_parent(n);
3159 dev = p->device;
3161 return dev;
3165 * device_get_devnode - path of device node file
3166 * @dev: device
3167 * @mode: returned file access mode
3168 * @uid: returned file owner
3169 * @gid: returned file group
3170 * @tmp: possibly allocated string
3172 * Return the relative path of a possible device node.
3173 * Non-default names may need to allocate a memory to compose
3174 * a name. This memory is returned in tmp and needs to be
3175 * freed by the caller.
3177 const char *device_get_devnode(struct device *dev,
3178 umode_t *mode, kuid_t *uid, kgid_t *gid,
3179 const char **tmp)
3181 char *s;
3183 *tmp = NULL;
3185 /* the device type may provide a specific name */
3186 if (dev->type && dev->type->devnode)
3187 *tmp = dev->type->devnode(dev, mode, uid, gid);
3188 if (*tmp)
3189 return *tmp;
3191 /* the class may provide a specific name */
3192 if (dev->class && dev->class->devnode)
3193 *tmp = dev->class->devnode(dev, mode);
3194 if (*tmp)
3195 return *tmp;
3197 /* return name without allocation, tmp == NULL */
3198 if (strchr(dev_name(dev), '!') == NULL)
3199 return dev_name(dev);
3201 /* replace '!' in the name with '/' */
3202 s = kstrdup(dev_name(dev), GFP_KERNEL);
3203 if (!s)
3204 return NULL;
3205 strreplace(s, '!', '/');
3206 return *tmp = s;
3210 * device_for_each_child - device child iterator.
3211 * @parent: parent struct device.
3212 * @fn: function to be called for each device.
3213 * @data: data for the callback.
3215 * Iterate over @parent's child devices, and call @fn for each,
3216 * passing it @data.
3218 * We check the return of @fn each time. If it returns anything
3219 * other than 0, we break out and return that value.
3221 int device_for_each_child(struct device *parent, void *data,
3222 int (*fn)(struct device *dev, void *data))
3224 struct klist_iter i;
3225 struct device *child;
3226 int error = 0;
3228 if (!parent->p)
3229 return 0;
3231 klist_iter_init(&parent->p->klist_children, &i);
3232 while (!error && (child = next_device(&i)))
3233 error = fn(child, data);
3234 klist_iter_exit(&i);
3235 return error;
3237 EXPORT_SYMBOL_GPL(device_for_each_child);
3240 * device_for_each_child_reverse - device child iterator in reversed order.
3241 * @parent: parent struct device.
3242 * @fn: function to be called for each device.
3243 * @data: data for the callback.
3245 * Iterate over @parent's child devices, and call @fn for each,
3246 * passing it @data.
3248 * We check the return of @fn each time. If it returns anything
3249 * other than 0, we break out and return that value.
3251 int device_for_each_child_reverse(struct device *parent, void *data,
3252 int (*fn)(struct device *dev, void *data))
3254 struct klist_iter i;
3255 struct device *child;
3256 int error = 0;
3258 if (!parent->p)
3259 return 0;
3261 klist_iter_init(&parent->p->klist_children, &i);
3262 while ((child = prev_device(&i)) && !error)
3263 error = fn(child, data);
3264 klist_iter_exit(&i);
3265 return error;
3267 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270 * device_find_child - device iterator for locating a particular device.
3271 * @parent: parent struct device
3272 * @match: Callback function to check device
3273 * @data: Data to pass to match function
3275 * This is similar to the device_for_each_child() function above, but it
3276 * returns a reference to a device that is 'found' for later use, as
3277 * determined by the @match callback.
3279 * The callback should return 0 if the device doesn't match and non-zero
3280 * if it does. If the callback returns non-zero and a reference to the
3281 * current device can be obtained, this function will return to the caller
3282 * and not iterate over any more devices.
3284 * NOTE: you will need to drop the reference with put_device() after use.
3286 struct device *device_find_child(struct device *parent, void *data,
3287 int (*match)(struct device *dev, void *data))
3289 struct klist_iter i;
3290 struct device *child;
3292 if (!parent)
3293 return NULL;
3295 klist_iter_init(&parent->p->klist_children, &i);
3296 while ((child = next_device(&i)))
3297 if (match(child, data) && get_device(child))
3298 break;
3299 klist_iter_exit(&i);
3300 return child;
3302 EXPORT_SYMBOL_GPL(device_find_child);
3305 * device_find_child_by_name - device iterator for locating a child device.
3306 * @parent: parent struct device
3307 * @name: name of the child device
3309 * This is similar to the device_find_child() function above, but it
3310 * returns a reference to a device that has the name @name.
3312 * NOTE: you will need to drop the reference with put_device() after use.
3314 struct device *device_find_child_by_name(struct device *parent,
3315 const char *name)
3317 struct klist_iter i;
3318 struct device *child;
3320 if (!parent)
3321 return NULL;
3323 klist_iter_init(&parent->p->klist_children, &i);
3324 while ((child = next_device(&i)))
3325 if (!strcmp(dev_name(child), name) && get_device(child))
3326 break;
3327 klist_iter_exit(&i);
3328 return child;
3330 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3332 int __init devices_init(void)
3334 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3335 if (!devices_kset)
3336 return -ENOMEM;
3337 dev_kobj = kobject_create_and_add("dev", NULL);
3338 if (!dev_kobj)
3339 goto dev_kobj_err;
3340 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3341 if (!sysfs_dev_block_kobj)
3342 goto block_kobj_err;
3343 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3344 if (!sysfs_dev_char_kobj)
3345 goto char_kobj_err;
3347 return 0;
3349 char_kobj_err:
3350 kobject_put(sysfs_dev_block_kobj);
3351 block_kobj_err:
3352 kobject_put(dev_kobj);
3353 dev_kobj_err:
3354 kset_unregister(devices_kset);
3355 return -ENOMEM;
3358 static int device_check_offline(struct device *dev, void *not_used)
3360 int ret;
3362 ret = device_for_each_child(dev, NULL, device_check_offline);
3363 if (ret)
3364 return ret;
3366 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3370 * device_offline - Prepare the device for hot-removal.
3371 * @dev: Device to be put offline.
3373 * Execute the device bus type's .offline() callback, if present, to prepare
3374 * the device for a subsequent hot-removal. If that succeeds, the device must
3375 * not be used until either it is removed or its bus type's .online() callback
3376 * is executed.
3378 * Call under device_hotplug_lock.
3380 int device_offline(struct device *dev)
3382 int ret;
3384 if (dev->offline_disabled)
3385 return -EPERM;
3387 ret = device_for_each_child(dev, NULL, device_check_offline);
3388 if (ret)
3389 return ret;
3391 device_lock(dev);
3392 if (device_supports_offline(dev)) {
3393 if (dev->offline) {
3394 ret = 1;
3395 } else {
3396 ret = dev->bus->offline(dev);
3397 if (!ret) {
3398 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3399 dev->offline = true;
3403 device_unlock(dev);
3405 return ret;
3409 * device_online - Put the device back online after successful device_offline().
3410 * @dev: Device to be put back online.
3412 * If device_offline() has been successfully executed for @dev, but the device
3413 * has not been removed subsequently, execute its bus type's .online() callback
3414 * to indicate that the device can be used again.
3416 * Call under device_hotplug_lock.
3418 int device_online(struct device *dev)
3420 int ret = 0;
3422 device_lock(dev);
3423 if (device_supports_offline(dev)) {
3424 if (dev->offline) {
3425 ret = dev->bus->online(dev);
3426 if (!ret) {
3427 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3428 dev->offline = false;
3430 } else {
3431 ret = 1;
3434 device_unlock(dev);
3436 return ret;
3439 struct root_device {
3440 struct device dev;
3441 struct module *owner;
3444 static inline struct root_device *to_root_device(struct device *d)
3446 return container_of(d, struct root_device, dev);
3449 static void root_device_release(struct device *dev)
3451 kfree(to_root_device(dev));
3455 * __root_device_register - allocate and register a root device
3456 * @name: root device name
3457 * @owner: owner module of the root device, usually THIS_MODULE
3459 * This function allocates a root device and registers it
3460 * using device_register(). In order to free the returned
3461 * device, use root_device_unregister().
3463 * Root devices are dummy devices which allow other devices
3464 * to be grouped under /sys/devices. Use this function to
3465 * allocate a root device and then use it as the parent of
3466 * any device which should appear under /sys/devices/{name}
3468 * The /sys/devices/{name} directory will also contain a
3469 * 'module' symlink which points to the @owner directory
3470 * in sysfs.
3472 * Returns &struct device pointer on success, or ERR_PTR() on error.
3474 * Note: You probably want to use root_device_register().
3476 struct device *__root_device_register(const char *name, struct module *owner)
3478 struct root_device *root;
3479 int err = -ENOMEM;
3481 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3482 if (!root)
3483 return ERR_PTR(err);
3485 err = dev_set_name(&root->dev, "%s", name);
3486 if (err) {
3487 kfree(root);
3488 return ERR_PTR(err);
3491 root->dev.release = root_device_release;
3493 err = device_register(&root->dev);
3494 if (err) {
3495 put_device(&root->dev);
3496 return ERR_PTR(err);
3499 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3500 if (owner) {
3501 struct module_kobject *mk = &owner->mkobj;
3503 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3504 if (err) {
3505 device_unregister(&root->dev);
3506 return ERR_PTR(err);
3508 root->owner = owner;
3510 #endif
3512 return &root->dev;
3514 EXPORT_SYMBOL_GPL(__root_device_register);
3517 * root_device_unregister - unregister and free a root device
3518 * @dev: device going away
3520 * This function unregisters and cleans up a device that was created by
3521 * root_device_register().
3523 void root_device_unregister(struct device *dev)
3525 struct root_device *root = to_root_device(dev);
3527 if (root->owner)
3528 sysfs_remove_link(&root->dev.kobj, "module");
3530 device_unregister(dev);
3532 EXPORT_SYMBOL_GPL(root_device_unregister);
3535 static void device_create_release(struct device *dev)
3537 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3538 kfree(dev);
3541 static __printf(6, 0) struct device *
3542 device_create_groups_vargs(struct class *class, struct device *parent,
3543 dev_t devt, void *drvdata,
3544 const struct attribute_group **groups,
3545 const char *fmt, va_list args)
3547 struct device *dev = NULL;
3548 int retval = -ENODEV;
3550 if (class == NULL || IS_ERR(class))
3551 goto error;
3553 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3554 if (!dev) {
3555 retval = -ENOMEM;
3556 goto error;
3559 device_initialize(dev);
3560 dev->devt = devt;
3561 dev->class = class;
3562 dev->parent = parent;
3563 dev->groups = groups;
3564 dev->release = device_create_release;
3565 dev_set_drvdata(dev, drvdata);
3567 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3568 if (retval)
3569 goto error;
3571 retval = device_add(dev);
3572 if (retval)
3573 goto error;
3575 return dev;
3577 error:
3578 put_device(dev);
3579 return ERR_PTR(retval);
3583 * device_create - creates a device and registers it with sysfs
3584 * @class: pointer to the struct class that this device should be registered to
3585 * @parent: pointer to the parent struct device of this new device, if any
3586 * @devt: the dev_t for the char device to be added
3587 * @drvdata: the data to be added to the device for callbacks
3588 * @fmt: string for the device's name
3590 * This function can be used by char device classes. A struct device
3591 * will be created in sysfs, registered to the specified class.
3593 * A "dev" file will be created, showing the dev_t for the device, if
3594 * the dev_t is not 0,0.
3595 * If a pointer to a parent struct device is passed in, the newly created
3596 * struct device will be a child of that device in sysfs.
3597 * The pointer to the struct device will be returned from the call.
3598 * Any further sysfs files that might be required can be created using this
3599 * pointer.
3601 * Returns &struct device pointer on success, or ERR_PTR() on error.
3603 * Note: the struct class passed to this function must have previously
3604 * been created with a call to class_create().
3606 struct device *device_create(struct class *class, struct device *parent,
3607 dev_t devt, void *drvdata, const char *fmt, ...)
3609 va_list vargs;
3610 struct device *dev;
3612 va_start(vargs, fmt);
3613 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3614 fmt, vargs);
3615 va_end(vargs);
3616 return dev;
3618 EXPORT_SYMBOL_GPL(device_create);
3621 * device_create_with_groups - creates a device and registers it with sysfs
3622 * @class: pointer to the struct class that this device should be registered to
3623 * @parent: pointer to the parent struct device of this new device, if any
3624 * @devt: the dev_t for the char device to be added
3625 * @drvdata: the data to be added to the device for callbacks
3626 * @groups: NULL-terminated list of attribute groups to be created
3627 * @fmt: string for the device's name
3629 * This function can be used by char device classes. A struct device
3630 * will be created in sysfs, registered to the specified class.
3631 * Additional attributes specified in the groups parameter will also
3632 * be created automatically.
3634 * A "dev" file will be created, showing the dev_t for the device, if
3635 * the dev_t is not 0,0.
3636 * If a pointer to a parent struct device is passed in, the newly created
3637 * struct device will be a child of that device in sysfs.
3638 * The pointer to the struct device will be returned from the call.
3639 * Any further sysfs files that might be required can be created using this
3640 * pointer.
3642 * Returns &struct device pointer on success, or ERR_PTR() on error.
3644 * Note: the struct class passed to this function must have previously
3645 * been created with a call to class_create().
3647 struct device *device_create_with_groups(struct class *class,
3648 struct device *parent, dev_t devt,
3649 void *drvdata,
3650 const struct attribute_group **groups,
3651 const char *fmt, ...)
3653 va_list vargs;
3654 struct device *dev;
3656 va_start(vargs, fmt);
3657 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3658 fmt, vargs);
3659 va_end(vargs);
3660 return dev;
3662 EXPORT_SYMBOL_GPL(device_create_with_groups);
3665 * device_destroy - removes a device that was created with device_create()
3666 * @class: pointer to the struct class that this device was registered with
3667 * @devt: the dev_t of the device that was previously registered
3669 * This call unregisters and cleans up a device that was created with a
3670 * call to device_create().
3672 void device_destroy(struct class *class, dev_t devt)
3674 struct device *dev;
3676 dev = class_find_device_by_devt(class, devt);
3677 if (dev) {
3678 put_device(dev);
3679 device_unregister(dev);
3682 EXPORT_SYMBOL_GPL(device_destroy);
3685 * device_rename - renames a device
3686 * @dev: the pointer to the struct device to be renamed
3687 * @new_name: the new name of the device
3689 * It is the responsibility of the caller to provide mutual
3690 * exclusion between two different calls of device_rename
3691 * on the same device to ensure that new_name is valid and
3692 * won't conflict with other devices.
3694 * Note: Don't call this function. Currently, the networking layer calls this
3695 * function, but that will change. The following text from Kay Sievers offers
3696 * some insight:
3698 * Renaming devices is racy at many levels, symlinks and other stuff are not
3699 * replaced atomically, and you get a "move" uevent, but it's not easy to
3700 * connect the event to the old and new device. Device nodes are not renamed at
3701 * all, there isn't even support for that in the kernel now.
3703 * In the meantime, during renaming, your target name might be taken by another
3704 * driver, creating conflicts. Or the old name is taken directly after you
3705 * renamed it -- then you get events for the same DEVPATH, before you even see
3706 * the "move" event. It's just a mess, and nothing new should ever rely on
3707 * kernel device renaming. Besides that, it's not even implemented now for
3708 * other things than (driver-core wise very simple) network devices.
3710 * We are currently about to change network renaming in udev to completely
3711 * disallow renaming of devices in the same namespace as the kernel uses,
3712 * because we can't solve the problems properly, that arise with swapping names
3713 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3714 * be allowed to some other name than eth[0-9]*, for the aforementioned
3715 * reasons.
3717 * Make up a "real" name in the driver before you register anything, or add
3718 * some other attributes for userspace to find the device, or use udev to add
3719 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3720 * don't even want to get into that and try to implement the missing pieces in
3721 * the core. We really have other pieces to fix in the driver core mess. :)
3723 int device_rename(struct device *dev, const char *new_name)
3725 struct kobject *kobj = &dev->kobj;
3726 char *old_device_name = NULL;
3727 int error;
3729 dev = get_device(dev);
3730 if (!dev)
3731 return -EINVAL;
3733 dev_dbg(dev, "renaming to %s\n", new_name);
3735 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3736 if (!old_device_name) {
3737 error = -ENOMEM;
3738 goto out;
3741 if (dev->class) {
3742 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3743 kobj, old_device_name,
3744 new_name, kobject_namespace(kobj));
3745 if (error)
3746 goto out;
3749 error = kobject_rename(kobj, new_name);
3750 if (error)
3751 goto out;
3753 out:
3754 put_device(dev);
3756 kfree(old_device_name);
3758 return error;
3760 EXPORT_SYMBOL_GPL(device_rename);
3762 static int device_move_class_links(struct device *dev,
3763 struct device *old_parent,
3764 struct device *new_parent)
3766 int error = 0;
3768 if (old_parent)
3769 sysfs_remove_link(&dev->kobj, "device");
3770 if (new_parent)
3771 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3772 "device");
3773 return error;
3777 * device_move - moves a device to a new parent
3778 * @dev: the pointer to the struct device to be moved
3779 * @new_parent: the new parent of the device (can be NULL)
3780 * @dpm_order: how to reorder the dpm_list
3782 int device_move(struct device *dev, struct device *new_parent,
3783 enum dpm_order dpm_order)
3785 int error;
3786 struct device *old_parent;
3787 struct kobject *new_parent_kobj;
3789 dev = get_device(dev);
3790 if (!dev)
3791 return -EINVAL;
3793 device_pm_lock();
3794 new_parent = get_device(new_parent);
3795 new_parent_kobj = get_device_parent(dev, new_parent);
3796 if (IS_ERR(new_parent_kobj)) {
3797 error = PTR_ERR(new_parent_kobj);
3798 put_device(new_parent);
3799 goto out;
3802 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3803 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3804 error = kobject_move(&dev->kobj, new_parent_kobj);
3805 if (error) {
3806 cleanup_glue_dir(dev, new_parent_kobj);
3807 put_device(new_parent);
3808 goto out;
3810 old_parent = dev->parent;
3811 dev->parent = new_parent;
3812 if (old_parent)
3813 klist_remove(&dev->p->knode_parent);
3814 if (new_parent) {
3815 klist_add_tail(&dev->p->knode_parent,
3816 &new_parent->p->klist_children);
3817 set_dev_node(dev, dev_to_node(new_parent));
3820 if (dev->class) {
3821 error = device_move_class_links(dev, old_parent, new_parent);
3822 if (error) {
3823 /* We ignore errors on cleanup since we're hosed anyway... */
3824 device_move_class_links(dev, new_parent, old_parent);
3825 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3826 if (new_parent)
3827 klist_remove(&dev->p->knode_parent);
3828 dev->parent = old_parent;
3829 if (old_parent) {
3830 klist_add_tail(&dev->p->knode_parent,
3831 &old_parent->p->klist_children);
3832 set_dev_node(dev, dev_to_node(old_parent));
3835 cleanup_glue_dir(dev, new_parent_kobj);
3836 put_device(new_parent);
3837 goto out;
3840 switch (dpm_order) {
3841 case DPM_ORDER_NONE:
3842 break;
3843 case DPM_ORDER_DEV_AFTER_PARENT:
3844 device_pm_move_after(dev, new_parent);
3845 devices_kset_move_after(dev, new_parent);
3846 break;
3847 case DPM_ORDER_PARENT_BEFORE_DEV:
3848 device_pm_move_before(new_parent, dev);
3849 devices_kset_move_before(new_parent, dev);
3850 break;
3851 case DPM_ORDER_DEV_LAST:
3852 device_pm_move_last(dev);
3853 devices_kset_move_last(dev);
3854 break;
3857 put_device(old_parent);
3858 out:
3859 device_pm_unlock();
3860 put_device(dev);
3861 return error;
3863 EXPORT_SYMBOL_GPL(device_move);
3865 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3866 kgid_t kgid)
3868 struct kobject *kobj = &dev->kobj;
3869 struct class *class = dev->class;
3870 const struct device_type *type = dev->type;
3871 int error;
3873 if (class) {
3875 * Change the device groups of the device class for @dev to
3876 * @kuid/@kgid.
3878 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3879 kgid);
3880 if (error)
3881 return error;
3884 if (type) {
3886 * Change the device groups of the device type for @dev to
3887 * @kuid/@kgid.
3889 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3890 kgid);
3891 if (error)
3892 return error;
3895 /* Change the device groups of @dev to @kuid/@kgid. */
3896 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3897 if (error)
3898 return error;
3900 if (device_supports_offline(dev) && !dev->offline_disabled) {
3901 /* Change online device attributes of @dev to @kuid/@kgid. */
3902 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3903 kuid, kgid);
3904 if (error)
3905 return error;
3908 return 0;
3912 * device_change_owner - change the owner of an existing device.
3913 * @dev: device.
3914 * @kuid: new owner's kuid
3915 * @kgid: new owner's kgid
3917 * This changes the owner of @dev and its corresponding sysfs entries to
3918 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3919 * core.
3921 * Returns 0 on success or error code on failure.
3923 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3925 int error;
3926 struct kobject *kobj = &dev->kobj;
3928 dev = get_device(dev);
3929 if (!dev)
3930 return -EINVAL;
3933 * Change the kobject and the default attributes and groups of the
3934 * ktype associated with it to @kuid/@kgid.
3936 error = sysfs_change_owner(kobj, kuid, kgid);
3937 if (error)
3938 goto out;
3941 * Change the uevent file for @dev to the new owner. The uevent file
3942 * was created in a separate step when @dev got added and we mirror
3943 * that step here.
3945 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3946 kgid);
3947 if (error)
3948 goto out;
3951 * Change the device groups, the device groups associated with the
3952 * device class, and the groups associated with the device type of @dev
3953 * to @kuid/@kgid.
3955 error = device_attrs_change_owner(dev, kuid, kgid);
3956 if (error)
3957 goto out;
3959 error = dpm_sysfs_change_owner(dev, kuid, kgid);
3960 if (error)
3961 goto out;
3963 #ifdef CONFIG_BLOCK
3964 if (sysfs_deprecated && dev->class == &block_class)
3965 goto out;
3966 #endif
3969 * Change the owner of the symlink located in the class directory of
3970 * the device class associated with @dev which points to the actual
3971 * directory entry for @dev to @kuid/@kgid. This ensures that the
3972 * symlink shows the same permissions as its target.
3974 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3975 dev_name(dev), kuid, kgid);
3976 if (error)
3977 goto out;
3979 out:
3980 put_device(dev);
3981 return error;
3983 EXPORT_SYMBOL_GPL(device_change_owner);
3986 * device_shutdown - call ->shutdown() on each device to shutdown.
3988 void device_shutdown(void)
3990 struct device *dev, *parent;
3992 wait_for_device_probe();
3993 device_block_probing();
3995 cpufreq_suspend();
3997 spin_lock(&devices_kset->list_lock);
3999 * Walk the devices list backward, shutting down each in turn.
4000 * Beware that device unplug events may also start pulling
4001 * devices offline, even as the system is shutting down.
4003 while (!list_empty(&devices_kset->list)) {
4004 dev = list_entry(devices_kset->list.prev, struct device,
4005 kobj.entry);
4008 * hold reference count of device's parent to
4009 * prevent it from being freed because parent's
4010 * lock is to be held
4012 parent = get_device(dev->parent);
4013 get_device(dev);
4015 * Make sure the device is off the kset list, in the
4016 * event that dev->*->shutdown() doesn't remove it.
4018 list_del_init(&dev->kobj.entry);
4019 spin_unlock(&devices_kset->list_lock);
4021 /* hold lock to avoid race with probe/release */
4022 if (parent)
4023 device_lock(parent);
4024 device_lock(dev);
4026 /* Don't allow any more runtime suspends */
4027 pm_runtime_get_noresume(dev);
4028 pm_runtime_barrier(dev);
4030 if (dev->class && dev->class->shutdown_pre) {
4031 if (initcall_debug)
4032 dev_info(dev, "shutdown_pre\n");
4033 dev->class->shutdown_pre(dev);
4035 if (dev->bus && dev->bus->shutdown) {
4036 if (initcall_debug)
4037 dev_info(dev, "shutdown\n");
4038 dev->bus->shutdown(dev);
4039 } else if (dev->driver && dev->driver->shutdown) {
4040 if (initcall_debug)
4041 dev_info(dev, "shutdown\n");
4042 dev->driver->shutdown(dev);
4045 device_unlock(dev);
4046 if (parent)
4047 device_unlock(parent);
4049 put_device(dev);
4050 put_device(parent);
4052 spin_lock(&devices_kset->list_lock);
4054 spin_unlock(&devices_kset->list_lock);
4058 * Device logging functions
4061 #ifdef CONFIG_PRINTK
4062 static int
4063 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4065 const char *subsys;
4066 size_t pos = 0;
4068 if (dev->class)
4069 subsys = dev->class->name;
4070 else if (dev->bus)
4071 subsys = dev->bus->name;
4072 else
4073 return 0;
4075 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4076 if (pos >= hdrlen)
4077 goto overflow;
4080 * Add device identifier DEVICE=:
4081 * b12:8 block dev_t
4082 * c127:3 char dev_t
4083 * n8 netdev ifindex
4084 * +sound:card0 subsystem:devname
4086 if (MAJOR(dev->devt)) {
4087 char c;
4089 if (strcmp(subsys, "block") == 0)
4090 c = 'b';
4091 else
4092 c = 'c';
4093 pos++;
4094 pos += snprintf(hdr + pos, hdrlen - pos,
4095 "DEVICE=%c%u:%u",
4096 c, MAJOR(dev->devt), MINOR(dev->devt));
4097 } else if (strcmp(subsys, "net") == 0) {
4098 struct net_device *net = to_net_dev(dev);
4100 pos++;
4101 pos += snprintf(hdr + pos, hdrlen - pos,
4102 "DEVICE=n%u", net->ifindex);
4103 } else {
4104 pos++;
4105 pos += snprintf(hdr + pos, hdrlen - pos,
4106 "DEVICE=+%s:%s", subsys, dev_name(dev));
4109 if (pos >= hdrlen)
4110 goto overflow;
4112 return pos;
4114 overflow:
4115 dev_WARN(dev, "device/subsystem name too long");
4116 return 0;
4119 int dev_vprintk_emit(int level, const struct device *dev,
4120 const char *fmt, va_list args)
4122 char hdr[128];
4123 size_t hdrlen;
4125 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4127 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4129 EXPORT_SYMBOL(dev_vprintk_emit);
4131 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4133 va_list args;
4134 int r;
4136 va_start(args, fmt);
4138 r = dev_vprintk_emit(level, dev, fmt, args);
4140 va_end(args);
4142 return r;
4144 EXPORT_SYMBOL(dev_printk_emit);
4146 static void __dev_printk(const char *level, const struct device *dev,
4147 struct va_format *vaf)
4149 if (dev)
4150 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4151 dev_driver_string(dev), dev_name(dev), vaf);
4152 else
4153 printk("%s(NULL device *): %pV", level, vaf);
4156 void dev_printk(const char *level, const struct device *dev,
4157 const char *fmt, ...)
4159 struct va_format vaf;
4160 va_list args;
4162 va_start(args, fmt);
4164 vaf.fmt = fmt;
4165 vaf.va = &args;
4167 __dev_printk(level, dev, &vaf);
4169 va_end(args);
4171 EXPORT_SYMBOL(dev_printk);
4173 #define define_dev_printk_level(func, kern_level) \
4174 void func(const struct device *dev, const char *fmt, ...) \
4176 struct va_format vaf; \
4177 va_list args; \
4179 va_start(args, fmt); \
4181 vaf.fmt = fmt; \
4182 vaf.va = &args; \
4184 __dev_printk(kern_level, dev, &vaf); \
4186 va_end(args); \
4188 EXPORT_SYMBOL(func);
4190 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4191 define_dev_printk_level(_dev_alert, KERN_ALERT);
4192 define_dev_printk_level(_dev_crit, KERN_CRIT);
4193 define_dev_printk_level(_dev_err, KERN_ERR);
4194 define_dev_printk_level(_dev_warn, KERN_WARNING);
4195 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4196 define_dev_printk_level(_dev_info, KERN_INFO);
4198 #endif
4201 * dev_err_probe - probe error check and log helper
4202 * @dev: the pointer to the struct device
4203 * @err: error value to test
4204 * @fmt: printf-style format string
4205 * @...: arguments as specified in the format string
4207 * This helper implements common pattern present in probe functions for error
4208 * checking: print debug or error message depending if the error value is
4209 * -EPROBE_DEFER and propagate error upwards.
4210 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4211 * checked later by reading devices_deferred debugfs attribute.
4212 * It replaces code sequence:
4213 * if (err != -EPROBE_DEFER)
4214 * dev_err(dev, ...);
4215 * else
4216 * dev_dbg(dev, ...);
4217 * return err;
4218 * with
4219 * return dev_err_probe(dev, err, ...);
4221 * Returns @err.
4224 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4226 struct va_format vaf;
4227 va_list args;
4229 va_start(args, fmt);
4230 vaf.fmt = fmt;
4231 vaf.va = &args;
4233 if (err != -EPROBE_DEFER) {
4234 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4235 } else {
4236 device_set_deferred_probe_reason(dev, &vaf);
4237 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240 va_end(args);
4242 return err;
4244 EXPORT_SYMBOL_GPL(dev_err_probe);
4246 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4248 return fwnode && !IS_ERR(fwnode->secondary);
4252 * set_primary_fwnode - Change the primary firmware node of a given device.
4253 * @dev: Device to handle.
4254 * @fwnode: New primary firmware node of the device.
4256 * Set the device's firmware node pointer to @fwnode, but if a secondary
4257 * firmware node of the device is present, preserve it.
4259 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4261 struct device *parent = dev->parent;
4262 struct fwnode_handle *fn = dev->fwnode;
4264 if (fwnode) {
4265 if (fwnode_is_primary(fn))
4266 fn = fn->secondary;
4268 if (fn) {
4269 WARN_ON(fwnode->secondary);
4270 fwnode->secondary = fn;
4272 dev->fwnode = fwnode;
4273 } else {
4274 if (fwnode_is_primary(fn)) {
4275 dev->fwnode = fn->secondary;
4276 if (!(parent && fn == parent->fwnode))
4277 fn->secondary = ERR_PTR(-ENODEV);
4278 } else {
4279 dev->fwnode = NULL;
4283 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4294 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4296 if (fwnode)
4297 fwnode->secondary = ERR_PTR(-ENODEV);
4299 if (fwnode_is_primary(dev->fwnode))
4300 dev->fwnode->secondary = fwnode;
4301 else
4302 dev->fwnode = fwnode;
4304 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4314 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4316 of_node_put(dev->of_node);
4317 dev->of_node = of_node_get(dev2->of_node);
4318 dev->of_node_reused = true;
4320 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4322 int device_match_name(struct device *dev, const void *name)
4324 return sysfs_streq(dev_name(dev), name);
4326 EXPORT_SYMBOL_GPL(device_match_name);
4328 int device_match_of_node(struct device *dev, const void *np)
4330 return dev->of_node == np;
4332 EXPORT_SYMBOL_GPL(device_match_of_node);
4334 int device_match_fwnode(struct device *dev, const void *fwnode)
4336 return dev_fwnode(dev) == fwnode;
4338 EXPORT_SYMBOL_GPL(device_match_fwnode);
4340 int device_match_devt(struct device *dev, const void *pdevt)
4342 return dev->devt == *(dev_t *)pdevt;
4344 EXPORT_SYMBOL_GPL(device_match_devt);
4346 int device_match_acpi_dev(struct device *dev, const void *adev)
4348 return ACPI_COMPANION(dev) == adev;
4350 EXPORT_SYMBOL(device_match_acpi_dev);
4352 int device_match_any(struct device *dev, const void *unused)
4354 return 1;
4356 EXPORT_SYMBOL_GPL(device_match_any);